
Universidade de São Paulo
Instituto de Matemática e Estatística

Bachalerado em Ciência da Computação

Ângelo Gregório Lovatto

Reinforcement Learning

based on Policy Gradient

São Paulo
December 2018

Reinforcement Learning
based on Policy Gradient

Monografia final da disciplina
MAC0499 – Trabalho de Formatura Supervisionado.

Supervisor: Prof. Dr. Leliane de Nunes Barros

São Paulo
December 2018

Abstract

Many Reinforcement Learning methods based on Policy Gradients have been developed
over the last decade. Unlike other methods that search for optimal state and action values,
from which an optimal policy is derived, Policy Gradient methods optimize a parameterized
policy directly. This approach provides significant advantages, such as better convergence
guarantees to a locally optimal policy and the ability to handle large or continuous action
spaces. Combined with recent deep learning techniques, some of these methods enable com-
plicated problems, such as navigation in robotics, to be tackled directly and with no prior
knowledge. Theoretically, these algorithms make little to no assumptions about the type of
policy parameterization to be used or the specifics of the tasks to be solved, but these vari-
ables can significantly influence the results. Thus, we study and empirically compare three
selected methods based on Policy Gradients with respect to their performance in different
environments, with varying policy architectures and combinations of hyperparameters. En-
vironments are offered by the OpenAI Gym toolkit for reinforcement learning research and
the algorithms implemented using the PyTorch framework, allowing easy computation of
gradients through the backpropagation algorithm.

Keywords: Reinforcement Learning, Policy Gradients, Machine Learning.

i

Contents

1 Preliminaries 1
1.1 Agent-Environment Interface . 1
1.2 Theory of mdps . 2
1.3 Classical Solutions and their Limitations . 5
1.4 Policy Gradient based Solutions . 6

2 Vanilla Policy Gradient 11
2.1 reinforce update . 11
2.2 Practical algorithm . 12
2.3 Simple Experiments . 13

2.3.1 Environments Details . 13
2.3.2 Experimental Setup . 14
2.3.3 Experimental Results . 15

2.4 Actor-critic Methods and Generalized Advantage Estimation 17
2.5 Experiments with gae . 20

2.5.1 Experiment Settings . 20
2.5.2 Experiment Results . 21

3 Natural Policy Gradient 25
3.1 Trajectory Distribution Manifold . 25
3.2 Natural Gradient . 26
3.3 Fisher Information Metric . 27
3.4 Natural Policy Gradient . 29
3.5 Practical Considerations . 29
3.6 Experiments . 30

4 Trust Region Policy Optimization 33
4.1 Policy Improvement Bounds . 33
4.2 trpo update . 35
4.3 Practical Algorithm . 36
4.4 Experiments I . 37

4.4.1 Task Details . 38

iii

iv CONTENTS

4.4.2 Experimental Setup . 40
4.4.3 Experiment Results . 40

4.5 Experiments II . 44
4.5.1 Motivation and Settings . 44
4.5.2 Experiment Results . 45

5 Conclusions 47

A Proofs 49
A.1 Proof of Theorem 1 . 49
A.2 Proof of Proposition 2 . 50
A.3 Proof of Theorem 3 . 50

Bibliography 53

Chapter 1

Preliminaries

Reinforcement Learning is a subfield of Machine Learning. It is the problem of learning
from the interactions with the environment: at each stage an agent performs an action
that can change the current state of the environment producing a reward signal and taking
the environment to a next state. The reward depends on the current state and action.
The agent’s objective is to maximize the expected accumulated reward signal, throughout
successive interactions with the environment.

Different challenges arise in this setting from those faced in classical machine learning
techniques such as supervised or unsupervised learning. One such challenge is the compromise
between assuring immediate rewards and choosing actions which might increase the chances
of receiving greater future rewards. Moreover, the agent must prefer actions that have shown
to be more effective in past interactions, but to discover such actions it has to try out actions
that have not been selected before. This is called the exploration-exploitation dilemma.

Our focus is on advanced techniques for dealing with the reinforcement learning prob-
lem, called Policy Gradient methods. Before that, however, we briefly introduce the main
concepts, definitions and models used throughout this text.

1.1 Agent-Environment Interface
Markov Decision Processes (mdps) are stochastic processes that can model the dynamics

of a system or environment. These models can be learned, if the problem in question has
such an underlying structure, or constructed in order to formalize a problem and explore
its properties, as is the case with the environments used for our experiments later on. This
is the main model studied in the reinforcement learning literature and therefore will be
considered throughout this study. The learner and decision maker is called the agent. The
system it interacts with, comprising everything outside the agent, is called the environment.
Both interact continuously, the agent selecting actions and the environment responding to
those actions and presenting new situations to the agent.

Formally, the agent and environment interact in a sequence of discrete timesteps. At
each timestep t, the agent receives some representation st ∈ S of the current state of the
environment and selects an action at ∈ A, where S and A are the sets of states and actions,
respectively. The agent then receives from the environment the new current state st+1 and
a numerical reward rt+1 ∈ R. The sequence st, at, rt+1, st+1 is called a transition.

It’s important to note that the environment is stochastic in nature, therefore it may not
return the same state and reward pair for the same current state and action in different
timesteps. Therefore the agent, through its action, is only part of what determines the
transition from one state to another, as well as the reward received in that transition. This

1

2 PRELIMINARIES 1.2

Figure 1.1: The agent-environment interface in a Markov Decision Process. Figure source:
Sutton & Barto (2018)

makes mdps a very general and powerful framework for modeling many problems of interest.
Example 1: CartPole

A pole is attached by an un-actuated joint to a cart,
which moves along a frictionless track. The system
is controlled by applying a force of +1 or -1 to the
cart. The pendulum starts upright, and the goal is to
prevent it from falling over. A reward of +1 is provided
for every timestep that the pole remains upright. The
episode ends when the pole is more than 15 degrees
from vertical, or the cart moves more than 2.4 units
from the center.

1.2 Theory of mdps
We now restrict our attention to countable mdps and the expected discounted total

reward criterion in order to formally introduce some key results from the theory of mdps. In
order to reduce clutter and avoid repetition, we provide all results from this section onward
for the countable setting. However, under some technical conditions, the results also apply
to continuous state-action mdps.

A countable mdp is a tuple M = (S,A,P0), where S is a countable set of states, A a
countable set of actions and P0 is a transition probability kernel that assigns a probability
measure over S ×R for every (s, a) ∈ S ×A, which we shall denote by P0(·|s, a). Therefore,
for every K ⊂ S×R, P0(K|s, a) gives the probability that the next state and reward belongs
to K, given that the current state and action are s and a, respectively.

The transition probability kernel gives rise to the state transition probability kernel P ,
which gives the probability of moving from a state s to state s′ by taking action a, for every
(s, a, s′) ∈ S ×A× S:

P(s′ | s, a) = P0({s′} × R|s, a). (1.1)

Moreover, P0 also gives rise to the immediate reward function R, which for every (s, a) ∈
S×A gives the expected immediate reward when action a is taken in state s: if (s′(s,a), r(s,a)) ∼
P0(·|s, a), where ∼ means ’sampled from’, then

R(s, a) = E[r(s,a)]. (1.2)

Throughout this text, we shall assume that all rewards are bounded, i.e., there is a fixed M ∈ R

1.2 THEORY OF MDPS 3

such that for every (s, a) ∈ S × A, |r(s,a)| ≤ M almost surely1. We call an mdp finite if both S
and A are finite. Given the above definitions, we may alternatively denote an mdp by the tuple
(S,A,P,R).

An agent interacting with this mdp at timestep t receives a current state st and must pick an
action at ∈ A. Then, the next state and reward are sampled according to P0:

(st+1, rt+1) ∼ P0(·|st, at). (1.3)

A rule that defines how actions are selected is called a behaviour, and together with some initial
random state s0, defines a random state-action-reward sequence, or trajectory,

(s0, a0, r1, s1, a1, r2, s2, a2, r3, . . .),

where (st+1, rt+1) is linked to (st, at) by (1.3) and at is the action selected by the behaviour based
on the trajectory until state st. The goal of the agent is to define an action selection rule that
maximizes the expected discounted total reward, or return. The return from a timestep t is given
by

Rt =

∞∑
t′=t

γt
′−trt′+1, (1.4)

where 0 ≤ γ ≤ 1, and the return of a trajectory is defined as R0. Thus, if γ < 1 then rewards far
into the future are worth exponentially less than immediate rewards. We call such mdps discounted,
and in the case that γ = 1, undiscounted.

In some mdps there are what are called terminal states: if s is such a state, then st+k = s almost
surely for every k ≥ 1 provided that st = s, which means that any action taken in s will lead to
s (s is also called an absorbing state). By convention, we consider that no reward is incurred once
a terminal state is reached. An episode is then the random time period before reaching a terminal
state, assuming one is always reached. It is then common to reset the experiment by sampling a
new initial state, usually from a fixed initial state distribution, from which a new trajectory will
be generated. Such mdps are called episodic and will be the main subjects of our experiments later
on. In these scenarios, it is common to consider the expected total reward, i.e. when γ = 1, since
the sum in equation (1.4) will be bounded, assuming there is an upper bound on the length of an
episode or that the probability of longer episodes decreases at a fast enough rate.

Stationary policies represent a special class of behaviours which play a fundamental role in the
theory of mdps. A stochastic stationary policy (or simply stationary policy) π defines a probability
distribution over the action space for every state in the state space. We use π(·|s) to denote the
probability mass function over A for state s and thus π(a|s) denotes the probability of action a
being selected at state s. Following a stationary policy means that:

at ∼ π(·|st), t ∈ N. (1.5)

A policy and an mdp together give rise to the stochastic process ((st, at, rt+1); t ≥ 0), where
(st+1, rt+1) ∼ P0(·|st, at) and at ∼ π(· | st). Note that the state process (st; t ≥ 0) when following
a stationary policy is a (time-homogeneous) Markov chain. For brevity, throughout this text we’ll
refer to stationary policies as simply policies and use Πstat to denote this class of policies.

The state value function (or value function for short), V π : S → R, underlying a fixed policy π
is defined as

V π(s) = E

[∞∑
t=0

γtrt+1

∣∣∣∣s0 = s

]
, s ∈ S, (1.6)

with the understanding that (i) (rt+1; t ≥ 0) is the reward part of the process ((st, at, rt+1); t ≥ 0)

1Almost surely here means with probability 1. The expression is used to indicate that the event occurs
in every point in the probability space, except in a subset with probability zero.

4 PRELIMINARIES 1.3

obtained by following policy π and (ii) P(s0 = s) > 0 holds for all states s ∈ S, where P denotes the
probability of an event. The second condition is necessary in order for the conditional probability
to be well-defined. Similarly, the action-value function, Qπ : S × A → R, underlying a policy π is
defined as

Qπ(s, a) = E

[∞∑
t=0

γtrt+1

∣∣∣∣s0 = s, a0 = a

]
, s ∈ S, a ∈ A, (1.7)

subject to the same conditions and also that P(a0 = a) > 0 holds for all a ∈ A. The following
equalities follow fairly straightforward from (1.6) and (1.7):

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a), s ∈ S, (1.8)

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a)V π(s′), (s, a) ∈ S ×A. (1.9)

Definition 1: Bellman equations

Fix an mdp M = (S,A,P0), a discount factor 0 ≤ γ ≤ 1 and a policy π ∈ Πstat. Let r be
the immediate reward function ofM. Then V π satisfies

V π(s) =
∑
a∈A

π(a|s)

[
R(s, a) + γ

∑
s′∈S
P(s′ | s, a)V π(s′)

]
, s ∈ S. (1.10)

This system of equations is called the Bellman equation for V π. Define the Bellman operator
underlying π, T π : RS → RS , by

(T πV)(s) =
∑
a∈A

π(a|s)

[
R(s, a) + γ

∑
s′∈S
P(s′ | s, a)V (s′)

]
, s ∈ S. (1.11)

With the help of T π, Equation (1.10) can be written in the compact form

T πV π = V π. (1.12)

Note that this is a linear system of equations and T π is an affine linear operator. If 0 < γ < 1
then T π is a maximum-norm contraction and the fixed point equation T πV = V has a unique
solution. Similarly, Qπ satisfies

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a)

∑
a′∈A

Qπ(s′, a′), (s, a) ∈ S ×A. (1.13)

Redefining T π : RS×A → RS×A as

(T πQ)(s, a) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a)

∑
a′∈A

π(a′|s′)Q(s′, a′), (s, a) ∈ S ×A, (1.14)

then if 0 < γ < 1, Qπ is the unique solution to T πQ = Q.

Recall that the maximum-norm of a function f : X → R is defined by ‖f‖∞ = supx∈X |f(x)|.
The above definition follows from Banach’s fixed-point theorem, which also gives that, starting
from any initial guess V0, the sequence (Vk; k ≥ 0) generated by Vk+1 = T πVk converges to V π at
geometric rate (see appendix A of Szepesvári (2009) for a detailed explanation). It is not hard to
see that the definitions for the state and action value functions given in (1.6) and (1.7) respectively
satisfy the Bellman equations.

1.3 CLASSICAL SOLUTIONS AND THEIR LIMITATIONS 5

1.3 Classical Solutions and their Limitations
Control methods in reinforcement learning provide ways of finding policies that maximize the

expected return. The highest achievable expected return from state s ∈ S is given by the optimal
value function V ∗ : S → R. A policy that achieves the optimal values in all states is called optimal.
Similarly, the optimal action-value function Q∗ : S × A → R gives, for every (s, a) ∈ S × A, the
highest achievable expected return provided that the process starts at state s and the first action
chosen is a. Optimal value functions also have their corresponding Bellman equations.

Definition 2: Bellman Optimality Equations

The optimal value function satisfies the fixed-point equation

V ∗(s) = sup
a∈A

{
R(s, a) + γ

∑
s′∈S
P(s′ | s, a)V ∗(s′)

}
, s ∈ S.

Define the Bellman optimality operator, T ∗ : RS → RS , by

T ∗V = sup
a∈A

{
R(s, a) + γ

∑
s′∈S
P(s′ | s, a)V (s′)

}
, s ∈ S.

Thus, T ∗V ∗ = V ∗ and if 0 < γ < 1 then T ∗ is a maximum-norm contraction and T ∗V = V
has a unique solution. Similarly, Q∗ satisfies

Q∗(s) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a) sup

a′∈A
Q∗(s′, a′), (s, a) ∈ S ×A.

Define the Bellman optimality operator for Q, T ∗ : RS×A → RS×A, by

(T ∗Q)(s, a) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a) sup

a′∈A
Q(s′, a′), (s, a) ∈ S ×A.

Then T ∗ is a maximum-norm contraction, T ∗Q∗ = Q∗ and Q∗ is the unique solution to this
fixed-point equation.

Value iteration algorithms generate a sequence of state value functions

Vk+1 = T ∗Vk or Qk+1 = T ∗Qk, k ≥ 0,

which, by Banach’s fixed point theorem, converges to the optimal function at a geometric rate.
These optimal functions are related by the following equations.

V ∗(s) = sup
a∈A

Q∗(s, a), s ∈ S,

Q∗(s, a) = R(s, a) + γ
∑
s′∈S
P(s′ | s, a)V ∗(s′), (s, a) ∈ S ×A.

Any policy π ∈ Πstat which satisfies∑
a∈A

π(a|s)Q∗(s, a) = V ∗(s), s ∈ S,

is optimal. Since the equation above implies that π(·|s) is concentrated on the actions that maximize
Q∗, π is called greedy with respect to Q∗. Similarly, given V ∗, r and P, it is possible to compute a
policy π that is greedy w.r.t. V ∗, and it is not hard to see that such a policy is also optimal. Thus,
value iteration gives an indirect method for finding an optimal policy.

6 PRELIMINARIES 1.4

Policy iteration methods work as follows. Fix an arbitrary initial policy π0. At iteration k > 0
compute the action-value function Qπ underlying π (this is called the policy evaluation step). Then,
define πk+1 as the policy which is greedy w.r.t. Qπ (this is called the policy evaluation step). After
k iterations, policy iteration gives a policy not worse than the policy that is greedy with respect to
Qk computed by value iteration, given that both methods start from the same initial policy.

Problems begin to arise once we start considering large state or action spaces. The game of go
is a classical example where the size of the state space makes the problem intractable in practice,
since value- and policy-iteration algorithms, also called dynamic programming methods, need to
update the value function for all states. Several learning counterparts of these methods have been
developed over the years for this reason. They can be seen as sample-based, approximate versions
of the classical methods of dynamic programming, such as Q-learning (value iteration) and sarsa
(policy iteration).

However, many still require the values of each state-action pair to be stored in memory, the so
called tabular methods. As in the case of go, this can easily get out of hand, and continuous state-
action mdps are not even a consideration. In order to handle such large state-action spaces, many
methods started incorporating ideas from supervised learning, specially function approximation, by
replacing the tabular value functions Q(s, a) with parameterized, differentiable functions Q̂(s, a,w),
where w ∈ Rd, d � |S|. The idea is to approximate the real value functions by adjusting the
parameter w in order to minimize some error measure between the approximated function and its
real counterpart, usually measured by sampling. The intuition behind it is that Q̂ will generalize to
points not previously visited in the state-action space, which saves a lot in terms of computational
cost. Recent advances in function approximation methods, such as neural networks, have yielded
impressive results when used in conjunction with reinforcement learning methods, as is the case
with Deep Q-learning (see Mnih et al. (2015)).

It has been shown, however, that even when using simple, linear function approximation, many
algorithms are not guaranteed to converge to an optimal policy, as shown by Baird (1995) in the
case of Q-learning (see section 3). The problem is connected to the fact that, by adjusting the
weight vector w, several action-values are affected, and this correlation may lead action-values to
diverge. Moreover, all of the aforementioned methods approximate an optimal policy indirectly,
i.e., by first computing value functions from which the policy is derived. This can be a problem
for high-dimensional action spaces, since one needs to efficiently compute arg maxa∈A Q̂(s, a) when
computing greedy policies (or worse, one needs r and P when the state-value function is being
approximated). Policy gradient methods address these difficulties by directly optimizing the policy,
but also come with their own set of challenges.

1.4 Policy Gradient based Solutions
In Policy Gradients, the objective is to find a parameterized policy from a smoothly param-

eterized policy class Π = {πθ; θ ∈ Rd} that maximizes some performance measure J(θ). Here,
θ ∈ Rd denotes the vector of parameters of the policy πθ, and we assume that π is differentiable
with respect to its paramater, i.e., that ∇θπθ(s, a), (s, a) ∈ S×A, exists. For simplicity, we usually
write ∇πθ(s, a) when it is implicit that the derivation is w.r.t. θ.

Example 2: Policy parameterizations

In general, the states in our experiments consist of vectors in Rn characterizing certain aspects
of the state, e.g., in the CartPole problem (Example 1) the state feature vector consists of the
cart’s velocity, the cart’s position, the pole’s angle with the vertical and the pole’s velocity
at the tip. As for the actions, there are two situations in general: finite discrete action spaces
and continuous action spaces.
For a finite discrete action space, Figure 1.2 shows how one can implement a policy parameter-
ization using a Multilayer perceptron, where the input nodes correspond to each component

1.4 POLICY GRADIENT BASED SOLUTIONS 7

Actions

St
at
e
fe
at
ur
e
ve
ct
or

Hidden
layerInput layer Action

logits Sampling

Figure 1.2: Policy parameterization for discrete action spaces using a multilayer perceptron. The
sampling node implements a softmax distribution using the action logits

Actions

logσ
parameters

St
at
e
fe
at
ur
e
ve
ct
or

Hidden
layerInput layer

µ
parameters Sampling

Figure 1.3: Policy parameterization for continuous action spaces using a multilayer perceptron.
The sampling node implements a multivariate normal distribution using the mean vector µ and
diagonal covariance matrix with entries σ

8 PRELIMINARIES 1.4

of the state feature vector. The network then maps these inputs to numerical values for each
action, denoted by the nodes in the logits layer. These logits can be thought of as functions
of the input vector and the weights of the connections of the network, which we denote by a
single vector θ ∈ Rd, where d is the number of weights in the network. Given a state s ∈ S,
let h(s, a,θ) denote the numerical value corresponding to action a ∈ A. The sampling node
combines these values to define a softmax distribution as follows:

πθ(a | s) =
eh(s,a,θ)∑
b∈A e

h(s,b,θ)
, a ∈ A.

It is not hard to see that πθ(· | s) is a probability mass function in the space of actions. Thus,
this neural network architecture defines a policy class Π where each choice of parameter
θ ∈ Rd corresponds to a policy πθ ∈ Π.

One can deal with continuous action spaces in a similar way, as shown by Figure 1.3. Here, we
assume that actions consist of vectors in Rm, e.g., the joint torques in a robot. The parameters
in this network consist of the connection weights, θ′ ∈ Rd′ , and a vector logσ ∈ Rm, denoted
by the node below the sampling node, and thus θ = (θ′, logσ)

ᵀ ∈ Rd. This network maps
the state vector to a vector µ = µ(s, a,θ′) ∈ Rm (the µ parameters layer) and the sampling
node combines it with logσ to define a multivariate normal distribution as follows:

πθ(· | s) = N (µ, diag(e2 logσ)),

where diag(e2 logσ) = diag(σ2
1, σ

2
2, . . . , σ

2
m). This is equivalent to a collection of m normal

distributions with mean µi and variance σ2
i , respectively. Note that the variance does not

depend on the state input, which allows for the policy to control its exploratory behaviour
independently.

Policy gradient methods perform stochastic gradient ascent on the surface of J induced by Π
in order to find an approximately optimal policy πθ, thus applying the following update rule to the
policy parameter,

θk+1 = θk + αk∇̂J(θk), k ≥ 0, (1.15)

where αk is called the step size or learning rate. The hat symbol means that we’re using an approxi-
mation of the gradient. If ∇̂J(θk) is an unbiased estimate of the gradient, i.e., E[∇̂J(θk)] = ∇J(θk)
for every k, then the sequence (θk) will converge to a stationary point of J almost surely, provided
that the sequence (αk) satisfies the Robbins-Monro (RM) conditions,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k < +∞,

and assuming ∇J is Lipschitz continuous and the error in the approximation of ∇J(θk) satisfies
standard conditions in stochastic gradient methods, as in Bertsekas & Tsitsiklis (2000). We assume
these conditions are satisfied.

Definition 3: On-policy distribution of states

Fix an mdp (S,A,P,R, ρ0) and a policy π, where ρ0 : S → [0, 1] denotes the initial state
probability distribution. Then, the probability of visiting any state s ∈ S at time t is given
by

1. P(s0 = s) = ρ0(s),

2. P(st = s) =
∑

s′∈S P(sn−1 = s′)
∑

a∈A π(a|s′)P(s′ | s, a), t > 0.

1.4 POLICY GRADIENT BASED SOLUTIONS 9

Let ρπ denote the discounted state visitation frequencies:

ρπ(s) =
∞∑
t=0

γtP(st = s), s ∈ S. (1.16)

Then, normalizing the frequencies to sum up to one, the on-policy distribution of states is
given by

dπ(s) =

(∑
s′∈S

ρπ(s′)

)−1

ρπ(s)

=

(∑
s′∈S

∞∑
t=0

γtP(st = s)

)−1

ρπ(s)

=

(∞∑
t=0

∑
s′∈S

γtP(st = s)

)−1

ρπ(s)

=

(∞∑
t=0

γt

)−1

ρπ(s)

= (1− γ)
∞∑
t=0

γtP(st = s), s ∈ S.

Note that this requires that γ ∈ (0, 1). When dealing with episodic mdps in which, for all
policies, every episode reaches a terminal state within some finite time T , it is useful to
consider Equation 1.16 with the sum modified to sum to T rather than∞. Then, using γ = 1
yields

dπ(s) =
ρπ(s)

T
, s ∈ S,

which is the average number of times s is visited in an episode.

The performance measure J(θ) to be considered here is the expected return by following policy
πθ in an mdp (S,A,P,R, ρ0):

J(θ) = Es0:∞
a0:∞

[∞∑
t=0

γtR(st, at)

]
,

where the subscript of E enumerates the variables being integrated over and s0 ∼ ρ0, at ∼ πθ(· | st)
and st+1 ∼ P(· | st, at) for t ≥ 0. The problem is that this function (and most other performance
measures of interest) depends on the distribution of states induced by πθ and the mdp. Since
reinforcement learning methods avoid using any knowledge of the dynamics of the mdp, this poses
a challenge at first. Fortunately, the Policy Gradient Theorem provides an expression for the gradient
∇J(θ) with respect to the policy parameters without the derivative of the state distribution. The
following theorem and proof are adapted from Sutton et al. (2000).

Theorem 1: Policy Gradient

Given an mdp (S,A,P,R, ρ0) and a smoothly parameterized policy class Π = {πθ; θ ∈ Rd},
the gradient of the expected return J(θ) = Es0:∞,a0:∞

[∑∞
t=0 γ

tR(st, at)
]
following πθ for any

θ ∈ Rd is given by
∇J(θ) ∝

∑
s∈S

dπ(s)
∑
a∈A

Qπθ(s, a)∇πθ(a|s). (1.17)

The proof is given in appendix A.1. Theorem 1 provides the basis for policy gradient algorithms

10 PRELIMINARIES 1.4

by providing an expression for the gradient of the performance measure that doesn’t depend on the
state distribution and can be sampled from experience:

∇J(θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)∇πθ(a|s)

= Es0:∞

[∞∑
t=0

γt
∑
a∈A

Qπθ(st, a)∇πθ(a|st)

]
.

(1.18)

Although the given quantity is only proportional to the gradient, it is so by a constant, which can be
absorbed into the learning rate schedule (αk) in (2.1). Different algorithms may have variations with
respect to the parameter update rule or of how Qπ is estimated. Nevertheless, the underlying princi-
ples are the same: we define a performance measure, choose a differentiable policy parameterization
and estimate the gradient of performance through experience.

Chapter 2

Vanilla Policy Gradient

The first policy gradient algorithm we’ll be looking at is commonly known as "vanilla" policy
gradient. The term "vanilla" comes from the fact that the algorithm makes little to no changes
to the original gradient yielded by the policy gradient theorem. By keeping the gradient estimate
unbiased, all the theoretical convergence guarantees are satisfied, although the variance of such
estimate may cause the algorithm to converge very slowly or achieve an unsatisfactory low local
optimum of J(θ).

Such issues can be addressed by using reinforcement baselines to discriminate better-than-
average actions from others, while still keeping the gradient estimate unbiased, as proposed by
Williams (1992). Other approaches deliberately introduce some bias into the gradient estimate in
order to reduce the variance of the estimates in high-dimensional problems such as robot control.
In what follows, we’ll be considering episodic mdps in which every episode terminates in a finite
amount of time.

2.1 reinforce update
The most straightforward way to estimate (1.18) is to use the sampled action at and the return

from timestep t (log denotes the natural logarithm):

∇J(θ) ∝ Es0:∞

[∞∑
t=0

γt
∑
a∈A

Qπθ(st, a)∇πθ(a | st)

]

= Es0:∞

[∞∑
t=0

γt
∑
a∈A

Qπθ(st, a)πθ(a | st)
∇πθ(a | st)
πθ(a | st)

]

= Es0:∞
a0:∞

[∞∑
t=0

γtQπθ(st, at)∇ log πθ(at | st)

]
(∇ log x = ∇x

x)

= Es0:∞
a0:∞

[∞∑
t=0

γtRt∇ log πθ(at | st)

]
(Qπ(s, a) = E[Rt | st = s, at = a]).

Thus, we have a quantity that can be sampled after each episode, or roll-out, yielding the update

θk = θk+1 + αk

(∞∑
t=0

γtRt∇ log πθ(at | st)

)
. (2.1)

This equation has an intuitive interpretation: if the return obtained after taking action at in state
st is positive, Rt∇ log πθ(at | st) points in the direction of increasing the log of the probability, also
called likelihood, of that action given the state input st. If the return from the roll-out is positive,
the probability of that trajectory is increased.

11

12 VANILLA POLICY GRADIENT 2.3

Theorem 1 can also be extended to include a baseline:

∇J(θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

(Qπθ(s, a)− b(s))∇πθ(a | s)

since ∑
a∈A
∇πθ(a | s)b = b

∑
a∈A
∇πθ(a | s) = b∇

∑
a∈A

πθ(a | s) = b∇1 = 0,

as long as b doesn’t depend on the action. The resulting parameter update rule is

θk = θk+1 + αk

(∞∑
t=0

γt (Rt − b(st))∇ log πθ(at | st)

)
. (2.2)

This rule was originally proposed by Williams (1992) and used by the author to define episodic
reinforce algorithms. The baseline b, originally called a reinforcement baseline, does not introduce
bias into the estimator, but it may play an important role in minimizing the variance of the gradient
estimate.

An interesting choice of baseline is the state-value function V π, since substituting it for b in
the above expression for the policy gradient makes the term weighting ∇π(a | s) equivalent to the
advantage function underlying π:

Aπ(s, a) = Qπ(s, a)− V π(s), (s, a) ∈ S ×A. (2.3)

Intuitively, Aπ tells by how much taking action a in state s differs from the default behavior of the
policy (randomly sampling an action), and it’s easy to see that its expected value is zero in all states
(where the expectation is w.r.t. the probability distribution of actions defined by the policy in each
state). This is specially interesting in problems where the rewards are all either negative or positive,
as in Example 1, allowing better-than-average actions to be discriminated from worse-than-average
ones. Of course, V π is not known and must be estimated in practice.

2.2 Practical algorithm
Although one can implement (2.2) with just a single roll-out, it is better to average the policy

gradient estimate across several roll-outs in order to obtain a more robust estimate:

∇J(θ) ≈ 1

m

m∑
i=1

∞∑
t=0

γt
(
R

(i)
t − b(s

(i)
t)
)
∇ log πθ(a

(i)
t | s

(i)
t),

where the superscript indicates which roll-out the variables are calculated from. As alluded to in
the previous section, the baseline considered here will be an approximation to V π. One simple way
to do so when implementing bφ using a non-linear function approximator with parameter vector φ,
as explained by Schulman et al. (2015b), is to solve a nonlinear regression problem:

min
φ

N∑
n=1

‖b(sn)−Rn‖2 , (2.4)

where n indexes over all sampled trajectories and timesteps. This approach is also used for value
function estimation in the classical methods mentioned in Section 1.3. Algorithm 1 implements
this approach and is usually referred to as the "vanilla" policy gradient algorithm, for the reasons
enunciated at the beginning of this chapter.

2.3 SIMPLE EXPERIMENTS 13

Algorithm 1 "Vanilla" policy gradient
Input: Parameterized policy πθ, learning rate schedule (αk), baseline b, discount parameter

γ
1: Initialize policy parameter vector θ0 ∈ Rn, baseline b
2: for k=1, 2, 3, . . . do
3: Generate a set of episodes s0, a0, r1, s1, . . . , sT−1, aT−1, rT , sT , following πθk
4: for each episode i and timestep t do
5: Compute the return R(i)

t =
∑T−1

k=t γ
k−trt+1

6: Compute the advantage estimate A(i)
t = R

(i)
t − b(s

(i)
t)

7: end for
8: Fit baseline to the empirical returns by minimizing

∥∥∥b(s(i)
t)−R(i)

t

∥∥∥2

summed over all
episodes and timesteps

9: θk+1 ← θk + αk
1
m

∑m
i=1

∑T−1
t=0 γ

tA
(i)
t ∇ log πθ(a

(i)
t | s

(i)
t)

10: end for

2.3 Simple Experiments
Throughout this monograph, we’ll consider control problems available in the OpenAI Gym

(gym) toolkit by Brockman et al. (2016), which offers a variety of environments implementing the
agent-environment interface of Figure 1.1. For this section, we picked two environments, described
in detail in the following subsection, from the classic_control module from gym and applied
Algorithm 1 in order to approximately solve them. The experiments were designed to explore the
following questions:

• How does the learning rate schedule influence the learning processes? Is it better to have
faster or slower decaying step sizes?

• How do different policy architectures influence the final performance? Do bigger networks
benefit from better expressivity or does the higher variance from having more parameters
negatively impact performance?

2.3.1 Environments Details

Figure 2.1: Renderings of the CartPole-v0 (left) and MountainCar-v0 (right) environments.

Two environments were selected for the experiments: CartPole-v0 (example 1) and Mountain

CarContinuous-v0. In the former, the agent controls a cart on a horizontal line with a pole
attached to it by an un-actuated joint by choosing between the actions move left and move right

14 VANILLA POLICY GRADIENT 2.3

at every timestep. The state feature vector consists of: the cart’s velocity, the cart’s position, the
pole’s angle with the vertical and the pole’s velocity at the tip. A reward of +1 is incurred at every
timestep, and the episode ends if the pole is more than 12o from the vertical, the cart’s position is
more than ±2.4 (with the origin being the center of the display) or the episode length is more than
200 timesteps.

While the goal in the first is about maintaining the pole balanced for as long as possible and
positive rewards are plentiful and available from the beginning, the second poses a harder challenge.
The agent controls a car that starts at a valley between two hills by regulating the car’s engine
strength, choosing an action a ∈ [−1, 1] at each timestep, where negative values push the car to
the left and positives, to the right. The state feature vector consists of the car’s position and speed.
The agent receives a penalty of −0.1a2 at every timestep and a reward of +100 if it reached the
top of the right hill. A crucial factor in this problem is that the car’s engine doesn’t have enough
force to push it directly to the top of the right hill, therefore the agent must learn to swing the
car back and forth between the hills in order to gain enough momentum to make it over the right
hill. The penalty in the amount of force applied to the engine makes it so that an optimal policy
must not only make it to the top but do it so using the least amount of force. However, if the agent
never stumbles upon a sequence of actions (sampled by the stochastic policy) that take the car to
the top, it will very likely instead learn to decrease the force applied by engine, settling for a local
optimum where the car stays at the valley receiving 0 reward.

Figure 2.1 shows renderings of the two environments. Environments are considered solved when
the average return over a certain number of consecutive episodes is greater than a given threshold.
Each gym environment has its own EnvSpec instance which specifies the requirements for solving
it. In CartPole-v0, the policy must achieve a return > 195, which corresponds to balancing the
pole for at least 195 timesteps over 100 consecutive episodes; while in MountainCarContinuous-v0
a return of > 90 must be achieved over 100 consecutive episodes. The EnvSpec also includes the
timestep limit for the episodes, which can be seen as the maximum time period before reaching
a terminal state. Since all environments have this limit, we’ll consider the undiscounted expected
return criterion.

2.3.2 Experimental Setup
Implementation details

All the algorithms in this monograph were implemented in the Python programming language
using the PyTorch framework by Paszke et al. (2017), allowing easy computation of gradients
through the backpropagation algorithm, the backbone of many deep learning applications to this day.
One of the advantages of using automatic differentiation libraries is that it allows one to estimate
the policy gradient using the following formula:

Es0:∞
a0:∞

[
T∑
t=0

γtAt∇ log πθ(at | st)

]
= ∇Es0:∞

a0:∞

[
T∑
t=0

γtAt log πθ(at | st)

]

≈ ∇ 1

N

m∑
i=1

T∑
t=0

γtA
(i)
t log πθ(a

(i)
t | s

(i)
t),

where At refers to the estimate of the advantage function Aπ(st, at), calculated in step 6 of the
algorithm, treated as a constant. The first line is valid assuming the order of differentiation and
integration (with respect to the probabilities of states and actions) can be exchanged. Sufficient
conditions for this are given by the Leibniz integral rule, which we assume are satisfied.1.

In the second line, instead of dividing the sum of all likelihood-advantage pairs by the number

1It is not unreasonable to assume so, since most function approximation methods used for the policy,
such as neural networks, are continuously differentiable.

2.3 SIMPLE EXPERIMENTS 15

of episodes sampled, we take the mean over all the pairs, therefore substituting 1
N for 1

m , were N
is the total number of transitions. This doesn’t change the direction of the gradient and helps keep
its magnitude controlled even when episodes differ in length.

As a final note, most stochastic optimization procedures consider minimization of objective
functions, therefore we take the negative of the gradient estimate and consider stochastic gradient
descent instead.

Algorithm settings

Algorithm 1 hyperparameters
Iterations 200
Batch size 20 episodes

γ 1

Keeping in line with the theory, the Harmonic series, αk =
1
k , was chosen as the general learning rate schedule, which is
well-known to satisfy the rm conditions enunciated in Section
1.4. In order to control the number of steps between decreases
in learning rate, a δ variable was added as follows:

αk =
1

bk/δc+ 1
, δ ∈ N.

The choice of δ is indicated in Figure 2.2 using the convention ’sgdδ’, where sgd stands for stochas-
tic gradient descent2.

For step 8 of Algorithm 1, we used the l-bfgs algorithm in order to approximately solve the
non-linear regression problem enunciated in (2.4). Although this is a somewhat arbitrary choice,
it is implemented in PyTorch as an optimizer and gives good results in practice. A maximum
number of 10 iterations was used to fit the baseline to the empirical returns. This approach for
updating the baseline will be kept throughout this monograph.

Architectures

All policies throughout this monograph were implemented using multilayer perceptron architec-
tures, illustrated in figures 1.2 and 1.3 for discrete and continuous action spaces respectively. Thus,
the main variations between different policy parameterizations are the number of hidden layers,
their respective sizes (number of units) and the type of non-linear activation for each perceptron.
The approach adopted here was to use the same non-linear activation for all units in the network.
This allows us to denote different architectures using the convention ’Mlp:size-size-. . . :activation’,
where the sizes are numbers indicating the size of each hidden layer, in order from input to output.
This makes clear the correspondence between the results and the architectures used to achieve them
in the plots that follow. The baselines use the same architecture of the policy, with the difference
that the output layer is composed of a single unit with linear activation, as their purpose is to
output a numerical value.

The one exception is a linear policy parameterization where each action logit or mean is given
by sᵀθa, a ∈ A, where s denotes the state feature vector and the parameter vectors θa are distinct.
This type of policy is denoted ’Linear’ in the figures that follow. The baseline used in this case is a
simple multilayer perceptron with one hidden layer of 20 units with hyperbolic tangent activations,
or tanh.

2.3.3 Experimental Results
Since the requirements for solving the environments require that the average return exceed a

certain threshold over 100 consecutive episodes, we plot the ’AverageReturn’ per iteration in figures
2.2 and 2.3, a running average of the returns obtained over the last 100 episodes. Each line indicates
the average result over multiple trials and the area of the same color, with lower opacity, surrounding

2In retrospect, this was an error, as the learning rates should be considerably smaller, specially for larger
networks

16 VANILLA POLICY GRADIENT 2.3

0 50 100 150

20

40

60

80

100

120

140

160

180

Mlp:32:elu Mlp:3232:elu Mlp:323232:elu Linear

SGD1

Iteration

A
ve
ra
ge
R
et
ur
n

0 50 100 150

20

40

60

80

100

120

140

160

180

Mlp:32:elu Mlp:3232:elu Mlp:323232:elu Linear

SGD2

Iteration

A
ve
ra
ge
R
et
ur
n

0 50 100 150

20

40

60

80

100

120

140

160

Mlp:32:elu Mlp:3232:elu Mlp:323232:elu Linear

SGD4

Iteration

A
ve
ra
ge
R
et
ur
n

0 50 100 150

20

40

60

80

100

120

140

160

Mlp:32:elu Mlp:3232:elu Mlp:323232:elu Linear

SGD6

Iteration

A
ve
ra
ge
R
et
ur
n

Figure 2.2: Means and standard errors using Algorithm 1 in the CartPole-v0 environment. Each
line corresponds to a policy architecture, where ’Mlp’ denotes Multilayer perceptron (see Figure 1.2),
’elu’ denotes Exponential Linear Unit (elu) and ’Linear’ denotes a simple linear policy. Each plot
corresponds to a step size schedule, where sgd stands for stochastic gradient descent and the postfix
number indicates how slowly the learning rates decay.

it denotes the sample standard error, the empirical estimate of the sampling distribution’s standard
deviation:

sample standard error =
sample standard deviation√

number of samples
. (2.5)

Cartpole balancing task

For this environment, 21 trials with different initial random seeds were collected for each archi-
tecture and optimizer. Results are shown in figure 2.2. On average, the two simpler architectures
outperformed the rest across all step size schedules, with the exception of the first. However, note
that the results have high variance. This illustrates one of the problems of policy gradient meth-
ods: although asymptotic convergence to a local minimum is guaranteed if the gradient estimate is
unbiased, its variance may occasionally cause the algorithm to compute bad steps. A bad step in
parameter space, i.e., one that results in a policy with worse performance, is specially harmful in
reinforcement learning applications, compared to supervised learning, since it also affects the state
visitation frequencies. Thus, the new policy may receive positive rewards less often, which in turn
produces even worse gradient estimates.

Mountain car task

In this task, 7 trials for each of three architectures were collected with different initial random
seeds. In all of our experiments, no combination of learning rate schedule and architecture was

2.4 ACTOR-CRITIC METHODS AND GENERALIZED ADVANTAGE ESTIMATION 17

0 50 100 150

−140

−120

−100

−80

−60

−40

−20

Linear

Mlp:32:elu

Mlp:6432:elu

MountainCarContinuousv0

Iteration

A
ve
ra
ge
R
et
ur
n

0 50 100 150
−100

−80

−60

−40

−20

0

20

40

60

Linear

MountainCarContinuousv0

Iteration

M
ax
R
et
ur
n

Figure 2.3: Algorithm 1 results in the MountainCarContinuous-v0 environment. Left: means
and standard errors over of the average returns for different policy architectures. Right: maximum
return over the 100 preceding episodes for each iteration, where each line corresponds to a different
trial, all using a linear policy.

able to obtain a positive average return. Figure 2.3 (left) illustrates this, where the learning rate
schedule αk = 1

k was used. Although this might suggest that none of the agents managed to reach
the top of the right mountain at some point, Figure 2.3 (right) shows that, at least in a few of
the trials, this isn’t true. One possible explanation is that since successful episodes are very few
and far between, the contribution of data from these episodes to the gradient calculated in step 9
is negligible when combined with all the other data from unsuccessful ones. However, as we’ll see
later, different algorithms make it possible to obtain better results using the same policy, initial
seeds and batch size.

2.4 Actor-critic Methods and Generalized Advantage Es-
timation

In the previous Section we saw how the noise in the policy gradient estimate can affect the
performance of the policy and the speed of improvement. Actor-critic methods seek to mitigate this
problem by using the learned value function V̂ not only as a baseline, but also in the estimate of
the expected return Rt, also called the monte-carlo estimate of Qπ(st, at) in classic reinforcement
learning literature. Specifically, they combine the observed rewards following st, at with the estimate
of the value of a later state, V̂ (st+n), yielding the n-step return:

Q̂
(n)
t := rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnV̂ (st+n),

which is a biased estimate of Qπ(st, at) and introduces dependence on the quality of the state-value
estimator. This is a technique known as bootstrapping and is directly analogous to temporal difference
methods in classic reinforcement learning literature (Sutton & Barto (2018)). In practice, such
estimates, although biased, can greatly increase the speed of learning because of their lower variance,
which decreases with the degree of bootstrapping: the fraction of the estimate approximated using
V̂ . Thus, the later we truncate the sequence of returns, the closer the estimate is to the empirical
return Rt and the higher the variance. Another benefit of using these estimates is that one doesn’t
need to wait for an episode to end in order to calculate the approximation of Qπ(st, at), making it
possible to collect a batch of N transitions instead of m episodes, which have variable lengths, and
thus the running time of the algorithm doesn’t depend on how well or poorly the agent performs
in each iteration of the algorithm.

A recent method incorporating these ideas is Generalized Advantage Estimation, Schulman et al.

18 VANILLA POLICY GRADIENT 2.4

(2015b). Consider the setting where the objective is to maximize the undiscounted expected return
in an episodic mdp. The policy gradient can be written as

g := Es0:∞
a0:∞

[∞∑
t=0

Aπ(st, at)∇ log πθ(st, at)

]
. (2.6)

This is just a simpler form of the extended version of Theorem 1 using V π(s) as the baseline. This
form, as discussed earlier, can be estimated after collecting a batch of roll-outs to produce an unbi-
ased estimate of the gradient, although one with high variance. In generalized advantage estimation
instead, the gradient being estimated is a discounted approximation to the policy gradient, defined
as follows:

gγ := Es0:∞
a0:∞

[∞∑
t=0

Aπ,γ(st, at)∇ log πθ(st, at)

]
, (2.7)

where γ ∈ [0, 1], Aπ,γ(s, a) := Qπ,γ(s, a)−V π,γ(s) and the discounted value functions Qπ,γ and V π,γ

are given by (1.7) and (1.6) respectively. Here, the superscript γ indicates that the discounting is a
hyperparameter of the approximation, not of the problem formulation. Furthermore, note that gγ

is not equivalent to the policy gradient for the discounted problem formulation, since it’s missing
a γt term weighting the advantage function. It follows that the variance gγ is lower than that of g
because of the downweighting of delayed rewards.

In order to produce accurate estimates of the discounted approximation to the gradient, one
needs to estimate the discounted advantage function Aπ,γ(st, at) for every timestep of the episode.
Let V be an approximation of the discounted value function and define δVt = rt+1+γV (st+1)−V (st).
It follows that, if V = V π,γ , then δVt is an unbiased estimate of the discounted advantage function,
since

E
[
δVt
]

= E [rt+1 + γV π,γ(st+1)− V π,γ(st) | st, at]
= E [rt+1 + γV π,γ(st+1) | st, at]− V π,γ(st)

= Qπ,γ(at, st)− V π,γ(st) = Aπ,γ(st, at), (eq. 1.9)

where (st+1, rt+1) ∼ P0(· | st, at). However, this is only true if we have the true value function
V π,γ . Since δVt is too reliant on the quality of the approximation V , because of its high degree of
bootstrapping, it is worth considering the more general k-step estimates of the advantage, denoted
by Â(k)

t and defined as follows:

Â
(1)
t := rt+1 + γV (st+1)− V (st) = δVt (2.8)

Â
(2)
t := rt+1 + γrt+2 + γ2V (st+2)− V (st) = δVt + γδVt+1 (2.9)

Â
(3)
t := rt+1 + γrt+2 + γ2rt+3 + γ3V (st+3)− V (st) = δVt + γδVt+1 + γ2δVt+2 (2.10)
...

Â
(k)
t := rt+1 + γrt+2 + · · ·+ γn−1rt+k + γkV (st+k)− V (st) =

k∑
l=0

γlδVt+l. (2.11)

Note that this is analogous to the n-step return definition. Moreover, as k →∞, we obtain

Â
(∞)
t = Rγt − V (st) =

∞∑
l=0

γlδVt+l,

where Rγt is the return as defined in (1.4). It follows that Â(∞)
t can be used in place of the true

discounted advantage function in timestep t without introducing bias into the discounted gradient
estimate, by the following proposition (where the arguments si:j , ai:j enumerate which trajectory

2.4 ACTOR-CRITIC METHODS AND GENERALIZED ADVANTAGE ESTIMATION 19

variables the functions may depend on).

Proposition 1

Suppose that Ât can be written in the form Ât(s0:∞, a0:∞) = Qt(s0:∞, a0:∞)− b(s0:st , a0:t−1),
such that for all (st, at), Est+1:∞,at+1:∞ [Qt(s0:∞, a0:∞) | st, at] = Qπ,γ(st, at). Then

Es0:∞
a0:∞

[
Ât(s0:∞, a0:∞)∇ log πθ(st, at)

]
= Es0:∞

a0:∞
[Aπ,γ(st, at)∇ log πθ(st, at)]

Proof. See Schulman et al. (2015b).

The generalized advantage estimator is an exponentially weighted average of all the k-step
estimates, parameterized by γ, λ ∈ [0, 1], defined as follows:

Â
gae(γ,λ)
t := (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·

)
= (1− λ)

(
δVt + λ

(
δVt + γδVt+1

)
+ λ2

(
δVt + γδVt+1 + γ2δVt+2

)
+ · · ·

)
= (1− λ)

(
δVt
(
1 + λ+ λ2 + · · ·

)
+ γδVt+1

(
λ+ λ2 + λ3 + · · ·

)
+

γ2δVt+2

(
λ2 + λ3 + λ4 + · · ·

)
+ · · ·

)
= (1− λ)

(
δVt

(
1

1− λ

)
+ γδVt+1

(
λ

1− λ

)
+ γ2δVt+2

(
λ2

1− λ

)
+ · · ·

)
=

∞∑
l=0

(γλ)lδVt+l. (2.12)

This is closely analogous to the λ-return defined in the td(λ) algorithm (Sutton & Barto (2018)),
although there the objective is to obtain an estimate of the state-value function whereas here the
advantage function is of concern. This remarkably simple expression for the estimator has two
notable cases, corresponding to the values of λ = 0 and λ = 1:

Â
gae(γ,0)
t := δVt = rt+1 + γV (st+1)− V (st),

Â
gae(γ,1)
t :=

∞∑
l=0

γlδVt+l = Rγt − V (st);

The first is the low-variance, high-bias estimate of the advantage which is highly dependent on
the quality of V as an estimator of V π,γ . The second is an unbiased, high-variance estimate which
satisfies Proposition 1 regardless of V . A value of 0 < λ < 1 is a compromise between the two,
therefore λ allows for flexible adjustment of the degree of bootstrapping. It’s important to note
that this is different from the role of γ, which is to control the magnitude of the estimate by
downweighting delayed rewards.

Algorithm 2 implements the vanilla policy gradient together with generalized advantage estima-
tion, therefore it is a procedure for optimizing a policy with respect to the expected total reward.
As alluded to earlier, it collects N transitions instead of m episodes. This means that some trajec-
tories might not be completed, i.e., the collecting of transitions might stop before a terminal state is
reached. Since generalized advantage estimation already relies on the quality of the value function
estimator V , the approach adopted here is to use bootstrapping to calculate Rγt for the unfinished
trajectories:

Rγt ≈
T−1∑
l=t

γl−trl+1 + γT−tV (sT),

with the understanding that T is the length of the particular trajectory and equality holds when
sT is terminal and V (sT) = 0. The benefit of this approach is that each iteration of the outer loop

20 VANILLA POLICY GRADIENT 2.5

has fixed time period, assuming each transition has a fixed computational cost. Moreover, note that
for each trajectory the residuals δVt can be precomputed in parallel, which allows the estimators
Â

gae(γ,λ)
t to be computed by a single backwards pass through the trajectory timesteps.

Algorithm 2 Vanilla + gae

Input: Parameterized policy πθ, learning rate schedule (αk), baseline V , gae parameters
γ, λ

1: Initialize policy parameter vector θ0 ∈ Rn, baseline V
2: for k=1, 2, 3, . . . do
3: Collect N transitions (sn, an, rn+1) following πθk
4: for each trajectory (s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT , sT) do
5: if final state sT is terminal then
6: V (sT)← 0
7: end if
8: Compute Rγ

t =
∑T−1

l=t γ
l−trl+1 + γT−tV (sT) for every timestep

9: Compute Âgae(γ,λ)
t =

∑T−1
l=0 (γλ)lδVt+l for every timestep

10: end for
11: Fit baseline by minimizing ‖V (sn)−Rγ

n‖
2 summed over all timesteps

12: θk+1 ← θk + αk
1
N

∑N
n=1 Â

gae(γ,λ)
n ∇ log πθ(an | sn)

13: end for

2.5 Experiments with gae
The goal in the next few experiments is to explore the following questions:

• What’s the influence of γ and λ in the learning process?

• Is it possible to obtain near-optimal policies with generalized advantage estimation and larger
networks?

2.5.1 Experiment Settings

Algorithm 2 hyperparameters
Iterations 100
Batch size 2000 timesteps

Envs. in parallel 8

To compare the influence of the gae parameters, Algo-
rithm 2 was implemented in the cartpole balancing task using
a multilayer perceptron policy with a single hidden layer of 32
units with elu activations, given that this architecture was the
best performing, on average, in the previous experiments. The
learning rate schedule (αk) used for this task was αk = 1

k . The
number of environments given in the table to the right is rele-
vant when doing sample batches, since more environments with the same number of samples may
lead to more trajectories left unfinished.

The other experiments used a bigger network with 2 hidden layers of 64 elu units each, which
correspond to a total of 4,096 parameters just between the two hidden layers. In order to make
the most out of this architecture and obtain better results, the learning rates were handled using
the Adam optimizer by Kingma & Ba (2014). Adam is a stochastic optimization method requiring
only gradient estimates which implements an adaptive learning rate schedule and, as claimed by the
authors, is well-suited for problems using a large number of parameters. The only hyperparameter
required is the initial learning rate which was set to 0.01, denoted 1e-2 in the plots.

2.5 EXPERIMENTS WITH GAE 21

0 20 40 60 80

20

40

60

80

100

120

140

160

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

20

40

60

80

100

120

140

160

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

20

40

60

80

100

120

140

160

180

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

20

40

60

80

100

120

140

160

180

Iteration

A
ve
ra
ge
R
et
ur
n

Figure 2.4: Means and standard errors of learning curves in the cartpole task using generalized
advantage estimation with varying values of γ and λ.

2.5.2 Experiment Results
gae parameters comparison

Figure 2.4 shows the results of a total of 16 different combinations of the gae parameters γ and
λ averaged across 7 different trials for each. In general, as γ increases, the average return increases
as well. This is understandable for this particular environment because the returns are directly
related to the length of the episode, therefore the downweighting of delayed rewards introduced by
gamma decreases the value of later states. The higher standard error shown when using γ = 0.999
illustrates its role in reducing the variance of the estimator. As noted by Schulman et al. (2015b),
the best results use intermediate values of γ and λ. The higher standard error at γ = 0.98 and
λ = 0.97 is due to one of the trials having a premature drop in the average policy entropy (see
Figure 2.5), defined as

H(π) = Es∼dπ
[
−
∑
a∈A

π(a | s) log π(a | s)

]
, (2.13)

which is a way of measuring how action probabilities are spread. Lower values indicate that the
average probability is concentrated in a few of the actions (in this case, one action). Thus, the policy
keeps choosing the same action regardless of the average return it incurs. It’s unclear what causes
this behaviour, which is observed in a few of our experiments.

Since actor-critic methods are more reliant on the quality of the value function estimator, the
explained variance of the baseline was used to judge its effectiveness, defined as

1− Var [Rt − b(st)]
Var [Rt]

, (2.14)

22 VANILLA POLICY GRADIENT 2.5

0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

En
tr
op
y

0 20 40 60 80
−5

−4

−3

−2

−1

0

1

Iteration

Ex
pl
ai
ne
dV
ar
ia
nc
e

Figure 2.5: Left: average entropy curves for individual trials in the cartpole task using generalized
advantage estimation with γ = 0.98 and λ = 0.97. Right: average explained variance of the baselines
for γ = 0.99 and different values of λ.

0 20 40 60 80

20

40

60

80

100

120

140

160

180

200

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

0.2

0.3

0.4

0.5

0.6

0.7 Adam:1e2

SGD

CartPolev0

Iteration

En
tr
op
y

Figure 2.6: Left: Means and standard errors for the cartpole balancing task using the Adam op-
timizer and generalized advantage estimation with different values of λ. Right: average entropy
comparison between experiments using the Adam optimizer and stochastic gradient descent with
learning rate schedule αk = 1

k .

where the random variables from which the variances are calculated are the ones sampled in a single
iteration of Algorithm 2. This gives a quantity at every iteration which indicates how close the
values predicted by the baseline are to the empirical returns collected in that iteration, normalized
by the observed variance of the returns. Generally, a positive explained variance indicates that the
baseline is a good fit to the data, whereas negative values are observed otherwise. Figure 2.5 (right)
shows the explained variance per iteration for the trials using γ = 0.99. Note that the drop in
explained variance for λ = 0.97 and λ = 0.99 coincides with the drop in performance shown in the
corresponding plot in Figure 2.4.

Adam with large network

The average returns obtained using the larger network with the Adam method are shown in
Figure 2.6 (right). The results were averaged over 7 different trials for each combination of γ = 0.99
and λ with values 0.96, 0.97, 0.98, 0.99. With the exception of λ = 0.97, for all the other values of
λ at least 4 trials achieved the maximum return of 200. Figure 2.6 (right) shows the difference in
the average policy entropy between the aforementioned experiments and the ones using the simple
stochastic gradient descent method of Figure 2.4, with the same values of γ and λ. We see that the
final policies obtained using the Adam optimizer with the bigger network are more deterministic

2.5 EXPERIMENTS WITH GAE 23

on average, which is in line with the theory since optimal policies are greedy with respect to the
optimal action values Q∗.

Chapter 3

Natural Policy Gradient

Although policy gradients have strong convergence properties and allow for flexibility in their
implementation, they tend to converge very slowly and sometimes reach suboptimal plateaus of
performance. Moreover, the vanilla gradient is non-covariant, i.e., a simple reparameterization of
the policy may lead to a different gradient direction.

Natural gradients are a covariant gradient ascent rule that define the ascent direction with
respect to the distance on the manifold induced by the parameters, rather than the parameters
themselves. This is a very well studied problem in pattern recognition and statistical inference.
Kakade (2002) introduced this to reinforcement learning and defined the natural policy gradient.
This direction has interesting theoretical properties and its use in large scale problems has shown
strong empirical performance.

3.1 Trajectory Distribution Manifold
Recall that our performance measure, J(θ) = Es0:∞,a0:∞

[∑∞
t=0 γ

tR(st, at)
]
, is defined as a

function of the policy parameters. However, it is also possible to think of the return as a function on
the set of probability distributions of trajectories, with the expected return defined as an expectation
over the space of trajectories.

Definition 4: Trajectory space and probability

In a countable mdp, a trajectory τ of length n is defined as a sequence of states and actions
of length n starting at an initial state-action pair s0, a0 and ending at a state sn:

τ = (s0, a0, s1, . . . , sn−1, an−1, sn), |τ | = n. (3.1)

The space of all such trajectories of length n is defined by T n = (S,A)n×S. Given a policy
π and an initial state distribution ρ0, the probability of a trajectory τ of any length is simply
the probability of sampling each state and action sequentially following π:

Pr(τ |π) = ρ0(s0)

|τ |−1∏
t=0

P(st+1 | st, at)π(at | st), τ ∈ T n. (3.2)

The discounted trajectory distribution is defined over the set of all trajectories of length
1, . . . , n, denoted T n+ =

⋃n
t=1 T n, each with probability

Prγ(τ |π) =
1− γ
1− γn

γ|τ |−1Pr(τ |π), τ ∈ T n+ . (3.3)

It is easy to see for an episodic mdp with episodes of length up to n that definition 4 allows us

25

26 NATURAL POLICY GRADIENT 3.2

to rewrite the expected return as

Es0:n−1
a0:n−1

[
n−1∑
t=0

γtR(st, at)

]
= Eτ∈T n

[
n−1∑
t=0

γtR(st, at)

]
, (3.4)

where τ ∼ Pr(·|π), which makes explicit that the expected return can be seen as a function on
the set of probability distributions over trajectories, induced by π and the mdp. For the infinite-
horizon, discounted case, the following proposition makes the same relation explicit by using a
different trajectory distribution.

Proposition 2: Expected return over trajectories

Fix an mdp (S,A,P,R, ρ0) and a policy π. Then if γ ∈ (0, 1) the following holds:

J(π) = Es0:∞
a0:∞

[∞∑
t=0

γtR(st, at)

]
=

1

1− γ
lim
n→∞

Eτ∈T n+
[
R(s|τ |−1, a|τ |−1)

]
,

where τ ∼ Prγ(· |π).

The proof is given in appendix A.2. Thus, for each choice of parameter vector θ corresponds a
probability distribution Pr(· |) over the space of trajectories, and the set of all such distributions
defines a manifold S = {Pr(· |πθ); θ ∈ Rd} (a statistical manifold in this case) with coordinate
system ϕ : Rd → S. A manifold is called differentiable if the mapping from the coordinate space to
the set (in this case, Pr(· |πθ)) is differentiable. The study of parameterized manifolds in general
is the domain of differential geometry, and information geometry uses its tools on problems from
a variety of fields, e.g., statistics, information theory and control theory, in order to visualize them
geometrically and from that develop new tools and insights. Of special importance to reinforcement
learning and machine learning in general is the derivation of the true steepest ascent direction when
the parameter space has such an underlying structure, called the natural gradient.

3.2 Natural Gradient
Given a function L(ξ) : Ξ → R, Ξ ⊂ Rd, the steepest ascent direction with respect to the

current parameters is defined as
max
∆ξ

L(ξ + ∆ξ)

subject to
‖∆ξ‖2 < ε,

where ε is an infinitesimal. When the parameter space on which the function L is defined is a
Euclidean space with an orthonormal coordinate system, the squared norm above is the Euclidean
norm,

∑d
i=0 ∆ξ2

i . In that case, the steepest ascent direction is the gradient ∇L(ξ).
However, the parameter space may not be the canonical Euclidean space and L may be defined

on a differentiable manifold S with coordinate system ϕ : Ξ→ S. If, additionally, an inner product
〈 , 〉G is defined on the tangent space of S, the local linear approximation to the manifold at any
point ϕ(ξ)1, then the squared length is given by

‖∆ξ‖2 =
∑
i,j

gij(ξ)∆ξi∆ξj .

1This may be getting into too much detail, as there’s a whole chapter in the book by Amari & Nagaoka
(2007) introducing these ideas. The key point to take away here is that an inner product defined on this
space gives a local approximation between two points in the manifold, given their coordinates.

3.3 FISHER INFORMATION METRIC 27

Such a manifold is called a Riemannian manifold (or space) and the matrix G = (gij) is called the
Riemannian metric tensor, which depends on ξ in general and must be symmetric positive definite.
Amari (1998) argued that most supervised learning problems have this structure and named the
steepest ascent direction in such a space the natural gradient, giving the following theorem and
proof, adapted from the original paper.

Theorem 2: Natural gradient

In a Riemannian space, the steepest ascent direction of L(ξ) is given by

∇̃L(ξ) = G−1∇L(ξ), (3.5)

whereG−1 is the inverse of the Riemannian metric tensor and∇J is the conventional gradient.

Proof. We put ∆ξ = εd and search for the direction d that maximizes

lim
ε→0

L(ξ + εd)− L(ξ)

ε
= ∇L(ξ)

ᵀ
d,

subject to
‖d‖2G = 1,

where ‖d‖2G = d
ᵀ
Gd. Any solution to the constrained optimization problem above must satisfy the

kkt conditions2: for some λ ∈ R,

∇d
(
∇L(ξ)

ᵀ
d− λdᵀGd

)
= 0,

d
ᵀ
Gd = 1,

λ(d
ᵀ
Gd− 1) = 0;

which gives
∇L(ξ) = λ2Gd

=⇒ d ∝ G−1∇L(ξ).

Following the work of Amari regarding natural gradients in supervised learning applications,
Kakade (2002) proposed the natural policy gradient, which already showed promising signs of im-
provement by achieving strong empirical results in the complicated mdp of Tetris, a challenge at
the time. However, Kakade’s work lacked a proper differentiable manifold and distance metric,
since it was originally considered that the policy mapped the parameters to a collection of sta-
tistical manifolds, the sets of action probability distributions for each state of the mdp. Later,
Bagnell & Schneider (2003) defined a proper manifold, the set of distributions over trajectories in-
duced by the policy and the mdp. This is made explicit by definition 4 and allows for the derivation
of an important metric, which we briefly introduce in the next section.

3.3 Fisher Information Metric
Consider the general case: a statistical model over a set X , that is, a parameterized probability

distribution function pξ, ξ ∈ Ξ ⊂ Rn, over X . In this setting, the Fisher information matrix is
defined as

G(ξ) = Epξ
[
∇ log p(x; ξ)∇ log p(x; ξ)

ᵀ]
, (3.6)

where the gradient is implicitly with respect to ξ and Epξ denotes expectation w.r.t. to the distri-
bution p with coordinates ξ (in the language of manifolds), Epξ [f(x)] :=

∫
f(x)p(x; ξ)dx. We abuse

2see the book by Wright & Nocedal (1999) for a detailed view of the kkt optimality conditions.

28 NATURAL POLICY GRADIENT 3.4

notation here by using the integral expression for both countable and continuous sets, and pξ for
both probability mass and density functions. An alternative form for this matrix can be derived by
noting that ∫

X
p(x; ξ)∇ log p(x; ξ)dx =

∫
X
∇p(x; ξ)dx = ∇

∫
X
p(x; ξ)dx = ∇1 = 0,

therefore
0 = ∇

∫
X
p(x; ξ)∇ log p(x; ξ)dx

=

∫
X
p(x; ξ)∇ log p(x; ξ)∇ log p(x; ξ)

ᵀ
+

∫
X
p(x; ξ)∇2 log p(x; ξ)dx

⇐⇒ G(ξ) = −Epξ
[
∇2 log p(x; ξ)

]
,

(3.7)

assuming the order of integration and differentiation can be freely rearranged. This matrix is sym-
metric and also positive semidefinite: for any vector d ∈ Rn,

d
ᵀ
G(ξ)d =

∫
X
p(x; ξ)

(
d
ᵀ∇ log p(x; ξ)

)2
dx ≥ 0.

We assume further that it is positive definite, which is equivalent to saying that the vectors
∇ log p(x; ξ), when seen as functions on X , are linearly independent. Under these assumptions,
G is a Riemannian metric on S = {pξ | ξ ∈ Ξ}, also called the Fisher information metric, and (S,G)
defines a Riemannian manifold.

Although this choice is not unique, the Fisher information metric has extensive theory behind it
and a collection of interesting properties, some of which that are unique to it, that make it appealing
to use. Among them is the fact that the metric is invariant under coordinate transformation, i.e., if
the difference between probability distributions p and p′ is measured by the inner product 〈 , 〉G in
two different parameterizations of p, e.g. ϕ : S → Ξ and ψ : S → Ψ, Ξ,Ψ ⊂ Rd, the difference will
have the same size in both. Furthermore, the metric can be derived by considering "distances" on
probability distribution spaces. The relative entropy, or Kullback-Leiber divergence, between two
distributions q and p is defined as

DKL (q ‖ p) =

∫
X
q(x) log

q(x)

p(x)
dx. (3.8)

This is a natural divergence on changes in a distribution and is notably invariant to parameteriza-
tion. Although it is clearly not symmetric in general, its second order Taylor expansion agrees with
the Fisher information (up to scale): fixing a point ξ′,

DKL
(
ξ′ ‖ ξ

)
≈ DKL

(
ξ′ ‖ ξ′

)
+
(
∇ξDKL

(
ξ′ ‖ ξ

)
|ξ=ξ′

)ᵀ
(ξ − ξ′) + 1

2(ξ − ξ′)ᵀH(ξ − ξ′),

where ∇ξDKL
(
ξ′ ‖ ξ

)
|ξ=ξ′ = −

∫
X
pξ′(x)∇ξ′ log pξ′(x)dx = −

∫
X
∇ξ′pξ′(x)dx = 0

and H = ∇2
ξDKL

(
ξ′ ‖ ξ

)
|ξ=ξ′ = −

∫
X
pξ′(x)∇2

ξ′ log pξ′(x)dx = −Epξ′ [∇
2
ξ log p(x; ξ)],

(3.9)

where we overload notation by letting DKL (ξ′ ‖ ξ) ≡ DKL
(
pξ′ ‖ pξ

)
. Thus, the Fisher information

matrix G(ξ) gives a second order approximation of the kl divergence between pξ and a distribution
pξ′ , ξ

′ ∈ Ξ: (ξ′−ξ)
ᵀ
G(ξ)(ξ′−ξ). For further information on this metric, also known as the Fisher-

Rao metric in statistical inference, and on information geometry in general, see Amari & Nagaoka
(2007).

3.5 NATURAL POLICY GRADIENT 29

3.4 Natural Policy Gradient
In order to define the natural policy gradient, we must first establish the Fisher information

metric in the space of probability distributions over trajectories induced by the policy and the
mdp, as given by definition 4. This turns out to have a convenient expression that can be sampled
from experiences, as shown by the following theorem.

Theorem 3: Fisher information metric

Fix an mdp, a differentiable policy πθ and let dπθ be as in definition 3. Then, the Fisher
information metric on the statistical manifold of paths is given by

F (θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a | s)
(
−∇2 log πθ(a | s)

)
. (3.10)

The proof is given in appendix A.3. Theorem 3 has an interesting interpretation: the Fisher
information matrix on the trajectory distribution manifold becomes the average of the Fisher in-
formation matrices of the policy for each state of the mdp, weighted by their respective visitation
frequencies.

Thus, given the Fisher information matrix F (θ), the natural policy gradient is defined following
Theorem 2:

g̃ = F (θ)−1g, (3.11)

where g denotes the policy gradient.

3.5 Practical Considerations
Consider the episodic setting. Since the Fisher information matrix given by Theorem 3 is defined

as an expectation with respect to the on-policy distribution of states and actions, a straightforward
way of estimating F (θ) would be calculate the matrix −∇2 log πθ(an | sn) for every timestep across
several episodes and take the average of the results:

F (θ) ≈ − 1

N

N−1∑
n=0

∇2 log πθ(an | sn),

where n indexes over all timesteps in a batch of trajectories. However, this turns out to be im-
practical, since forming and storing this matrix in memory can be too costly, let alone inverting
it afterwards. As an example, consider a Multilayer perceptron with two hidden layers of 64 units
each: the number of connection weights between these two layers alone is 4,096. This means a policy
using this architecture would have a parameter vector θ of at least 4,096 elements, therefore the
hessian would be a matrix with at least 16,777,216 entries.

To circumvent this issue, we estimate the natural policy gradient directly by using the conjugate
gradient (cg) algorithm by Wright & Nocedal (1999). cg is an iterative procedure that approxi-
mates the solution x̃ to a linear system Ax = b, where A ∈ Rn×n is non-singular and x, b ∈ Rn,
by repeatedly evaluating Ax, generating a sequence (xk; k ≥ 0) that converges to the solution x̃.
Thus, one only needs to provide a function f(x) = Ax. We call the matrix-vector product in our
setting the Fisher vector product, F (θ)v, since we’re trying to solve the system F (θ)v = g.

In order to approximate the Fisher vector product without forming the full matrix, note that
the Fisher information matrix can be expressed as:

F (θ) ∝
∑
s∈S

dπθ(s)∇2
θDKL (πθ′(· | s) ‖ πθ(· | s)) |θ′=θ

= Es∼dπθ
[
∇2
θDKL (πθ′(· | s) ‖ πθ(· | s)) |θ′=θ

]
,

(3.12)

30 NATURAL POLICY GRADIENT 3.6

following Equation (3.9) and Theorem 3. Thus, given a batch of episodes, let gKL denote the gradient
of the average kl divergence over the sampled states:

gKL =
1

N

N−1∑
n=0

∇θDKL (πθ′(· | s) ‖ πθ(· | s)) |θ′=θ

= ∇θ
1

N

N−1∑
n=0

DKL (πθ′(· | s) ‖ πθ(· | s)) |θ′=θ,

where n indexes over all timesteps in the batch of episodes. Then, the Fisher vector product is
approximately the gradient of the gradient vector product, since

∇θ
(
(gKL)

ᵀ
v
)

=

(
1

N

N−1∑
n=0

∇2
θDKL (πθ′(· | s) ‖ πθ(· | s)) |θ′=θ

)
v

≈ F (θ)v.

The formula above is convenient since it doesn’t involve forming any matrices and the gradients
can be calculated by the backpropagation algorithm. A general policy optimization procedure in-
corporating this method is given by Algorithm 3. Notice that the algorithm leaves room for using
either the unbiased gradient, with or without a baseline, or the biased gradient estimate resulting
from actor-critic methods. These have no influence in the definition of the Fisher information ma-
trix, therefore the natural policy gradient may be calculated with respect to either of the gradient
estimates.

Algorithm 3 Natural Policy Gradient
Input: Parameterized policy πθ, learning rate schedule (αk)
1: Initialize policy parameter vector θ0 ∈ Rn

2: for k=1, 2, 3, . . . do
3: Collect a set of trajectories following πθk
4: Compute Ân for all timesteps using any advantage estimation algorithm
5: Compute the policy gradient g
6: Use CG and approximate Fisher vector products to solve F (θ)g̃ = g
7: Update the policy parameters

θk+1 ← θk + αkg̃

8: end for

3.6 Experiments
We designed a set of experiments to explore the properties of the natural policy gradient and

compare the performance of the policies obtained here with the ones obtained by the vanilla policy
gradient. The main focus was to test if simply substituting the original gradient in some of the
experiments of chapter 2 with the natural would yield substantial improvements.

Mountain car with natural gradients

We kept the same settings used to obtain the results in Figure 2.3, but substituted the vanilla
gradient estimate with the approximate result of solving for F (θ)g̃ = g using the conjugate gradient
method. Figure 3.1 shows the results for the individual trials using the linear policy architecture.

3.6 EXPERIMENTS 31

0 50 100 150

−150

−100

−50

0

50

100

Linear

MountainCarContinuousv0

Iteration

A
ve
ra
ge
R
et
ur
n

0 50 100 150
−100

−50

0

50

100

Linear

MountainCarContinuousv0

Iteration

M
ax
R
et
ur
n

Figure 3.1: Results from substituting the natural policy gradient for the normal one in the experi-
ments of Figure 2.3 using the linear policy architecture. Left: average returns for individual trials.
Right: maximum returns for individual trials, where each point indicates the maximum total reward
obtained in the last 100 episodes.

Unlike the vanilla policy gradient results, in all the trials which the agent managed to reach the top
of the right mountain at some point, the policy achieved a positive average reward. This means that
although successful episodes are rare, their contribution is not lost among the other data collected
in their respective iterations. Bagnell & Schneider (2003) showed for a simple 2-state mdp that
the natural policy gradient is similar to the original except that it removes the weighting by the
stationary distribution of states: ∑

s∈S

∑
a∈A

Aπθ(s, a)∇πθ(a | s).

Although it is difficult to prove whether or not this generalizes to larger, continuous mdps such
as this environment, it would explain how the algorithm can take advantage of the limited data
available from rarely visited states.

β Meankl
0.1 0.006
0.2 0.028
0.3 0.070
0.4 0.135
0.5 0.229
0.6 0.358

Table 3.1: Average kl divergence between policies after one update in the natural policy gradient
direction, using the same base learning rate scaled by β.

Although these results are very impressive, problems began to arise when applying the same
procedure for the two other architectures of the experiment. It turns out that this procedure is very
sensitive to the learning rates αk. In order to show this, a scaling parameter β was added to the
learning rate schedule as follows:

αk = β
1

k
, k ∈ N.

By varying the value of β, it was observed that the average kl divergence between the initial policy
and the one computed after one update in the natural policy gradient direction varied greatly, as
shown in Table 3.1. As a point of reference, an average kl divergence of 0.01 between successive
policies is considered acceptable and is used by Schulman et al. (2015a) in their experiments with

32 NATURAL POLICY GRADIENT 3.6

0 20 40 60 80

20

40

60

80

100

120

140

160

180

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

En
tr
op
y

Figure 3.2: Generalized advantage estimation with natural gradients. Comparison of average results
over 7 trials for each value of λ.

the more advanced algorithm of Trust Region Policy Optimization. This made it difficult to find an
appropriate step size schedule that satisfied the rm conditions for stochastic optimization, since as
the learning rate has to decrease over time, the average kl divergence between successive policies
after just a few iterations becomes too little to produce any significant change in performance.

Actor-critic with natural gradients

Nevertheless, we repeated the experiments of Figure 2.4, replacing the biased gradient gγ ob-
tained by generalized advantage estimation by the natural gradient in the same fashion of the
MountainCarContinuous-v0 experiments. Also, trials with λ = 1 were added in order to consider
estimates with no bootstrapping. Figure 3.2 shows the average results by fixing γ = 0.99. The
average returns obtained with the natural gradient were, on average, worse than the ones in the
original experiments. This is most likely due to the observed premature drop in entropy in the first
few iterations, caused by the larger step sizes, after which it remains relatively stable. Thus, if the
algorithm does not perform the right updates in the first few iterations, there is little improvement
to be expected in the subsequent ones. Figure 3.2 also shows evidence of this, noticing how the
worst performing configurations have, in general, the larger drops in average policy entropy in the
first 5 or so iterations.

Chapter 4

Trust Region Policy Optimization

While the natural policy gradient can provide a substantial improvement over the vanilla one,
it still relies on an ad-hoc choice of step-size given by stochastic gradient ascent methods, which
provide no information on how to exploit the structure of the reinforcement learning problem. Trust
Region Policy Optimization, introduced by Schulman et al. (2015a), offers a solution by considering
a constrained optimization problem where the objective is to obtain the best policy with respect
to the expected return, with a penalty on large deviations from the current policy. The resulting
algorithm has a strong theoretical foundation and, given a large enough batch size, outperforms the
other algorithms seen so far on a variety of problems.

4.1 Policy Improvement Bounds
The approach to optimizing a policy considered so far can be seen as an instance of generalized

policy iteration, where every iteration of the algorithm consists of two phases. The first is evaluating
the policy by collecting data obtained from following it, from which quantities such as the advantage
for each state-action pair observed will be estimated. The second is taking the policy improvement
step by shifting the parameters in the direction that is believed to produce the best improvement
to the policy, with respect to the expected return criterion. In general, it is desirable to take only
a small step in the direction of improvement, since both the vanilla and natural gradients are only
local approximations to the objective function. However, this doesn’t take into account all the
information about the learning problem, and as it turns out, there’s more insight into how much of
an improvement one can expect depending on the size of the change in the policy.

As usual, we consider an mdp (S,A,P,R, ρ0). For now, consider the general problem of trying
to find the best policy in general, not restricted to a parameterized policy class Π = {πθ; θ ∈ Rd},
where J(π) = Es0:∞,a0:∞

[∑∞
t=0 γ

tR(st, at)
]
is the expected return following policy π. In the context

of generalized policy iteration, one seeks to find the best policy π̃ given information about the
current policy π. The following identity is due to Kakade & Langford (2002) and provides useful
insight into the expected return of policy π̃ using the advantage function of π:

J(π̃)− J(π) = J(π̃)− Es0 [V π(s0)]

= J(π̃) + Es0:∞
a0:∞

 ∞∑
i=1

γiV π(si)−
∞∑
j=0

γjV π(sj)

= J(π̃) + Es0:∞

a0:∞

[∞∑
t=0

γt+1V π(st+1)− γtV π(st)

]

= Es0:∞
a0:∞

[∞∑
t=0

γtR(st, at) + γt+1V π(st+1)− γtV π(st)

]

33

34 TRUST REGION POLICY OPTIMIZATION 4.1

= Es0:∞
a0:∞

[∞∑
t=0

γtAπ(st, at)

]
=
∑
s∈S

ρπ̃(s)
∑
a∈A

π̃(a | s)Aπ(s, a); (4.1)

where the last line follows from the previous since the expectation is with respect to s0 ∼ ρ0,
at ∼ π̃(· | st) and st+1 ∼ P(· | st, at) for t ≥ 0, taking ρπ̃ as in definition 3. While this identity would
allow one to evaluate the expected return of π̃ given Aπ and ρπ̃, the dependency on the latter makes
this difficult to optimize in practice, since it would require trajectories sampled by following π̃.

Trust Region Policy Optimization (trpo) considers the following approximation to the expres-
sion of J(π̃) given above:

Lπ(π̃) = J(π) +
∑
s∈S

ρπ(s)
∑
a∈A

π̃(a | s)Aπ(s, a). (4.2)

This formula is easier to optimize in practice, since it replaces the dependency on the state visita-
tion frequencies of π̃ with that of π, requiring only trajectories sampled from π. Moreover, if the
policies considered belong to a smoothly parameterized policy class Π = {πθ; θ ∈ Rd}, then the
approximation above matches (4.1) to first order, i.e., for any θ′ ∈ Rd,

Lπθ′ (πθ′) = J(πθ′)

∇θLπθ′ (πθ)|θ=θ′ = ∇θJ(πθ)|θ=θ′ ,
(4.3)

where the first line follows by noting that the expected advantage for each state is 0, leaving only
J(πθ′), and the second follows immediately by noting that

∑
s∈S ρπθ(s)

∑
a∈A∇πθ(a | s)Aπθ(s, a)

is the policy gradient using V π(s) as the baseline. This indicates that a sufficiently small change in
the parameters that increases Lπθ will also increase J . However, it is not clear by how much one
can change the current policy and still guarantee an improvement in J .

Schulman et al. (2015a) address this issue by providing an explicit lower bound on the perfor-
mance of policy π̃ based on the value of Lπ and a distance measure between π̃ and π. Specifically,
the authors consider the maximum kl divergence between the policies, defined as

Dmax
KL (π ‖ π̃) = max

s∈S
DKL (π(· | s) ‖ π̃(· | s)) , (4.4)

and the maximum advantage of π̃ relative to π:

ε = max
s∈S

∣∣Ea∼π̃(· | s) [Aπ(s, a)]
∣∣ . (4.5)

The following result gives a lower bound on the performance of π̃ based on the surrogate objective
Lπ(π̃) and the two previous definitions. We defer the proof to the original paper since it is very
involved and out of the scope of this text1.

Theorem 4: Policy improvement bounds

Let Dmax
KL (π ‖ π̃) denote the maximum kl divergence and ε denote the maximum advantage

between the policies π̃ and π. Then the following equation holds:

J(π̃) ≥ Lπ(π̃)− 2εγ

(1− γ)2
Dmax

KL (π ‖ π̃) . (4.6)

Theoretically, a simple policy optimization procedure based on Theorem 4 would work as follows:

1. pick an initial policy π0;
1The results in the original paper are with respect to the expect discounted cost objective, which is

equivalent to minimizing the expected negative return

4.2 TRPO UPDATE 35

2. for iteration k = 1, 2, . . . do

(a) compute all the advantages Aπk(s, a);

(b) solve the penalized optimization problem:

πk+1 = arg max
π

Lπk(π)− 2εγ

(1− γ)2
Dmax

KL (πk ‖ π) ;

which is guaranteed to generate a sequence of monotonically improving policies J(π0) ≤ J(π1) ≤
J(π2) ≤ This can be shown by letting Mπk(π) = Lπk(π)− 2εγ

(1−γ)2
Dmax

KL (πk ‖ π) and noting that

J(π) ≥Mπk(π) by Theorem 4,
J(πk) = Mπk(πk), therefore

J(πk+1)− J(πk) ≥Mπk(πk+1)−Mπk(πk).

This means that by maximizing Mπk(π) at every iteration, the expected return of consecutive
policies in non-decreasing. The next Section discusses trpo, an algorithm that approximates this
procedure, and how the ideas discussed so far can be implemented in practice.

4.2 trpo update
We now return to the problem of finding approximately optimal policies within a smoothly

parameterized policy class Π = {πθ; θ ∈ Rd}. Since a policy πθ ∈ Π can be identified by its
parameter vector θ, we overload the notation of the previous Section by substituting θ for πθ,
therefore the optimization problem at every iteration becomes

θk+1 = arg max
θ

Lθk(θ)− 2ε

(1− γ)2
Dmax

KL (θk ‖ θ) . (4.7)

However, the expression above poses two problems: (a) as γ → 1, the penalty becomes large,
therefore the maximum kl divergence between the policies must be too small in order to guarantee
improvement; (b) the maximum kl constraint is difficult to estimate in practice, since it involves a
maximization over the entire state space.

trpo addresses these concerns by substituting the penalty in 4.7 by a constraint on the average
kl divergence between the policies, resulting in the following approximation to the optimization
problem:

θk+1 = arg max
θ

Lθk(θ)

subject to DKL (θk ‖ θ) ≤ δ,
(4.8)

where
DKL (θk ‖ θ) = Es [DKL (πθk(· | s) ‖ πθ(· | s))] , s ∼ dπθk ,

denotes the average kl divergence between the policies. In the context of non-linear optimization,
the constraint in 4.8 defines a trust region in which the surrogate objective Lθk(θ) can be used as
an approximation to J(θ). This formula is more convenient since the constraint is defined as an
expectation over states sampled by following πθk , which is easier to estimate in practice.

In order to define a solution to problem 4.8, trpo uses a linear approximation to the objective
and a quadratic approximation to the constraint, following the Taylor expansions:

Lθk(θ) ≈ Lθk(θk) + (∇θLθk(θ)|θ=θk)
ᵀ

(θ − θk), (4.9)

DKL (θk ‖ θ) ≈ DKL (θk ‖ θk) +
(
∇θDKL (θk ‖ θ) |θ=θk

)ᵀ
(θ − θk) +

1

2
(θ − θk)

ᵀ∇2
θDKL (θk ‖ θ) |θ=θk(θ − θk). (4.10)

36 TRUST REGION POLICY OPTIMIZATION 4.3

Using the approximations above, the problem becomes finding θk+1 such that

θk+1 = arg max
θ
g
ᵀ
(θ − θk)

subject to
1

2
(θ − θk)

ᵀ
F (θk)(θ − θk) ≤ δ,

(4.11)

where g is the policy gradient of πθk , which follows from equation (4.3), and F (θk) is the Fisher
information matrix, which follows from Equation (3.9). The problem above is equivalent to searching
for the vector dθ = θ − θk which maximizes the inner product with the policy gradient of πθk ,
constrained by the value of dθᵀF (θk)dθ. Then, the Lagrangian function of this problem is defined
as

L(dθ, λ) = −gᵀdθ − λ
(
δ − 1

2dθ
ᵀ
F (θk)dθ

)
, λ ∈ R.

Thus, any solution dθ must satisfy the kkt conditions: for some λ ∈ R,

∇dθL(dθ, λ) = 0,(
δ − 1

2dθ
ᵀ
F (θk)dθ

)
≥ 0,

λ
(
δ − 1

2dθ
ᵀ
F (θk)dθ

)
= 0,

λ ≥ 0.

(4.12)

Assuming θk is not a stationary point of J and F (θk) is positive definite, then dθ must be of the
form

−λdθ = F (θk)
−1g 6= 0 =⇒ δ = 1

2dθ
ᵀ
F (θk)dθ.

Therefore the unique solution satisfying these constraints is given by dθ = βs, where s = F (θk)
−1g

and
δ = 1

2βs
ᵀ
F (θk)βs = β2 1

2s
ᵀ
F (θk)s

⇐⇒ β =

√
2δ

sᵀF (θk)s
.

Thus, the update in policy parameters at iteration k is given by

θk+1 = θk +

(√
2δ

g̃ᵀF (θk)g̃

)
g̃, (4.13)

where g̃ is the natural gradient of J(θk) as given by Equation (3.11). Thus, as alluded to in the
beginning of this chapter, trpo provides a principled way of choosing the step size along the
natural policy gradient direction. This also means that it benefits from all the advantages of using
this search direction, discussed in the previous chapter. It is important to note, however, that the
policy optimization method of trpo is not an instance of stochastic optimization method, but an
approximation to the non-linear optimization problem discussed in Section 4.1.

4.3 Practical Algorithm
In real applications, one does not have access to the advantage values Aθk(s, a) for each state

and action or the objective function J , therefore these quantities must be estimated (again, we
overload notation by replacing πθ with θ to reduce clutter). Since the term J(θk) in the definition

4.4 EXPERIMENTS I 37

of Lθk(θ) is constant, one only needs to estimate the second term:

∑
s∈S

ρθk(s)
∑
a∈A

πθ(a | s)Aθk(s, a) = Es0:∞

[∞∑
t=0

∑
a∈A

πθ(a | st)Aθk(st, a)

]

= Es0:∞
a0:∞

[∞∑
t=0

πθ(at | st)
πθk(at | st)

Aθk(st, at)

]

≈ 1

N

N∑
n=1

πθ(an | sn)

πθk(an | sn)
Aθk(sn, an),

where the expectations are with respect to trajectories sampled by following πθk and n indexes
over all timesteps in a batch of episodes collected by following πθk . Section 3.5 already discusses
a method of estimating the Fisher information matrix, which is adopted here as well. Finally, the
advantages can be estimated by any advantage estimation algorithm, e.g., Generalized Advantage
Estimation.

trpo also uses a line search in order to compute the final step in the parameters. This is done
for two reasons: (a) because of estimation errors, the step computed by (4.13) might violate the kl
divergence constraint; (b) The actual improvement in the surrogate objective Lθk(θ) might be too
small, either because the policy is near optimal or due to estimation errors in the search direction.
Algorithm 4 implements a backtracking line search in order to address theses concerns. Note that
the algorithm computes exponentially decaying step sizes along the direction computed by trpo,
with an upper bound U on the number of iterations. In line 3, M is a sufficiently large constant so
that whenever the constraint is violated the negative term dominates the rest.

Algorithm 5 outlines the Trust Region Policy Optimization approach discussed so far, which
may be combined with Generalized Advantage Estimation .

Algorithm 4 Line Search for trpo
Input: Initial step ∆θ, backtrack ratio α, accept ratio ε, max. backtracks U
1: for i = 0, 1, 2, . . . , U do
2: θ ← θk + αi∆θ
3: Compute f(θ) = Lθk(θ)−M max{DKL (θk ‖ θ)− δ, 0} using sample estimates
4: if f(θ)− Lθk(θk) ≥ εgᵀ(θ − θk) then
5: return αi∆θ
6: end if
7: end for
8: return 0

4.4 Experiments I
The experiments in this Section had in mind the following objectives:

• Briefly compare the performance of policies obtained with trpo with those obtained by the
previous methods in the classical control environments used so far.

• Test this policy optimization approach on larger problems and analyze its effectiveness.

38 TRUST REGION POLICY OPTIMIZATION 4.4

Algorithm 5 trpo
Input: Parameterized policy πθ, trust region constraint δ
1: Initialize policy parameter vector θ0 ∈ Rd

2: for k = 1, 2, 3, . . . do
3: Collect a set of trajectories following πθk
4: Compute Ân for all timesteps using any advantage estimation algorithm
5: Estimate the natural policy gradient g̃ using cg algorithm
6: Estimate the initial step ∆θ =

(√
2δ

g̃ᵀF (θk)g̃

)
g̃

7: Use Algorithm 4 to compute the final step ∆̃θ and update

θk+1 ← θk + ∆̃θ

8: end for

Figure 4.1: Renderings of the BipedalWalker-v2 and LunarLanderContinuous-v2 environ-
ments respectively from left to right

4.4.1 Task Details
Continuous Control in Box2D

The Box2D module from gym offers continuous control problems using the physics simulator of
the same name2, an engine designed for 2-dimensional games. These are larger problems than the
ones from the classical control module, specifically in the number of dimensions of state and
action representations. The BipedalWalker-v2 and LunarLanderContinuous-v2 environment
were selected among these in order to analyze the performance of the learning process using trpo
with generalized advantage estimation.

In BipedalWalker-v2, the agent controls a simple 2-legged robot by adjusting the motor torque
in each of the 4 joints. Reward is given by moving forward, reaching a total +300 up to the far end,
and -100 reward is given if the robot falls to the ground. A small penalty is incurred depending on the
amount of torque used. The state feature vector consists of the robot’s hull angle speed, angular ve-
locity, horizontal speed, vertical speed, position of joints and joints angular speed, legs contact with
ground, and 10 Lidar rangefinder measurements, important for the BipedalWalkerHardcore-v2
environment, a version with added obstacles in the robot’s path. There are no coordinates in the
state vector, totaling 24 dimensions. The documentation claims the Lidar observations are less
useful in this simpler version. This could be a problem because of the added state dimensionality,
which incurs a heavier computational cost and possibly more variance. We couldn’t, however, run

2http://box2d.org

http://box2d.org

4.4 EXPERIMENTS I 39

Figure 4.2: Renderings of the RoboschoolHalfCheetah-v1 and RoboschoolAnt-v1 environ-
ments respectively from left to right

trials without these features, seeing that each trial took about 45 minutes, making it difficult to
test every configuration twice for this purpose.

In LunarLanderContinuous-v2, the agent controls a lander (spaceship) with 2 landing pads by
controlling the thrust of the main and lateral engines. A landing pad is always present in coordinates
(0, 0) (center of the display), while the terrain surrounding it may vary between episodes. The lander
starts at the top center of the display. A penalty is incurred by moving away from the landing pad,
landing without crashing gives 100 reward, crashing gives -100 and each leg contact with the ground
gives 10. The action is a 2-dimensional real vector with values in the range [−1, 1] (higher values are
clipped). The first coordinate controls the main engine, where negative values result in no throttle
and values in [0, 1] throttle from 50% to 100% of the engine’s power. The second coordinate controls
the lateral engines, with the only options being on and off, where values in [−1,−0.5] fire the left
engine, [0.5, 1] fire right engine and [−0.5, 0.5] turn both off. There is no fuel limit. The state
feature vector consists of the lander’s position, velocity, angle, angular velocity and two binary
values indicating whether each landing pad is in contact with the ground or not, totaling 8 state
features.

Figure 4.1 shows renderings of the bipedal walker and lunar lander tasks. The timestep limits for
the episodes of each task are 1600 for the former and 1000 for the latter. The tasks are considered
solved when a reward of +300 and +200, respectively, is achieved.

Simulated Robot Control

We also considered simulated robotics environments implemented in the open-source Roboschool3

module from gym. The RoboschoolHalfCheetah-v1 and RoboschoolAnt-v1 environments were
selected to see if it’s possible to obtain good results using trpo generalized advantage estimation.

In both environments the objective is to make the robot run as fast as possible without falling.
RoboschoolHalfCheetah-v1 is considered the easier of the two because the agent controls a
cheetah-like robot restricted to 2 dimensions, hence the name halfcheetah, and has real-valued state
and action vectors with 25 and 5 dimensions respectively. The timestep limit for each episode is
1000 and the task is considered solved when a reward of 3000 is achieved over 100 consecutive
episodes. On the other hand, RoboschoolAnt-v1 has a fully 3-dimensional robot with four legs
and real-valued state and action vectors with 27 and 7 dimensions respectively. The timestep limit
for each episode is 1000 and the task is considered solved once a reward of 2500 is achieved in 100
consecutive episodes.

Figure 4.2 shows renderings of the two roboschool environments. Not much is known in terms
of what each state and action feature mean in each task, other than joint torques, due to a lack

3A brief description of roboschool can be found here: https://blog.openai.com/roboschool/

https://blog.openai.com/roboschool/

40 TRUST REGION POLICY OPTIMIZATION 4.4

Line search configurations
accept ratio 0.1

backtrack ratio 0.8
max. backtracks 15

Table 4.1: Configurations for Algorithm 4

MountainCar CartPole Bipedal LunarLander Cheetah Ant
Iterations 100 100 1000 500 5000 5000
Batch size 20 2000 10000 10000 10000 10000
Num. Envs. 10 8 16 16 16 16
δ constraint 0.001 0.001 0.001 0.001 0.001 0.001

Table 4.2: Configurations for each environment. A more conservative kl constraint was chosen
than the one used in the original trpo paper.

of documentation. Although the ant robot is similar to the 3D quadruped used by Schulman et al.
(2015b), the roboschool version used here is a re-tuned, heavier variant that encourages the robot
to keep 2 or more legs on the ground, therefore it is unclear whether or not the reward functions
described in the paper apply here. Nevertheless, these environments provide a good testing ground
to show what’s possible to do using Trust Region Policy Optimization.

4.4.2 Experimental Setup
The mountain car task used the same configurations as the experiments in sections 2.3 and

4.4, with linear policy architectures. Moreover, the policies used the same initial seeds for each
trial, therefore all methods started with equal policies in corresponding trials. Similarly, the same
configurations for the experiments with the Adam algorithm in Section 2.5 were used for the cartpole
balancing task, with the exception that the policy architecture used with trpo had one hidden layer
of 32 units with elu activations. This was done in order to test whether the more advanced policy
optimization procedure could do better than the Adam algorithm with a simpler network.

The same policy architecture was used for both Box2D tasks, consisting of three hidden layers
with 100, 50 and 25 units respectively and elu activations. Also for both tasks, 7 trials were collected
for each combination of generalized advantage estimation parameters.

For the simulated robotics tasks, several policy architectures were considered, as these choices
produced substancially different results. These tasks took considerably more time to run, therefore
only a few trials were possible.

Specific hyperparameters for each task are given in Table 4.2. The configurations used for the
line search part of trpo are given in Table 4.1 and were used across all tasks.

4.4.3 Experiment Results
Classical control tasks

Trust Region Policy Optimization proved to be an outstanding method for the simple, classi-
cal control problems considered in the last two chapters. Figure 4.3 (left) shows how this method
manages to beat the vanilla policy gradient method with the Adam optimizer across several com-
binations of generalized advantage estimation parameters. Moreover, the difference in the learning
curves for trpo was so little that the standard error is almost imperceptible in the plot. This can
be a bit misleading, as the standard error divides the sample standard deviation by the square root
of the sample size, therefore the difference between the results of different trials is a bit larger than

4.4 EXPERIMENTS I 41

0 20 40 60 80

20

40

60

80

100

120

140

160

180

200

vanilla w/ Adam:1e2

trpo

CartPolev0

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

−150

−100

−50

0

50

100

natural w/SGD

vanilla w/SGD

trpo

MountainCarContinuousv0

Iteration

A
ve
ra
ge
R
et
ur
n

0 20 40 60 80

0.6

0.8

1

1.2

1.4

trpo

vanilla

natural

MountainCarContinuousv0 average entropy curves

Iteration

En
tr
op
y

Figure 4.3: Top left: comparison of algorithms 2 and 5 in the cartpole task over multiple trials, 7
for each combination of γ and λ at the values 0.97, 0.98, 0.99, 1. Results show the mean and standard
error over all combinations for each algorithm. Top right: average returns for individual trials of
the three algorithms in the mountain car task, all using the same policy architecture, initial seeds
and number of episodes per iteration. gae was not used in this task. Bottom: means and standard
errors of the average entropy per iteration for different algorithm, taken from the same experiment
on the top right plot.

the image suggests. Nevertheless, this showcases how robust the algorithm is to different hyperpa-
rameters.

In the MountainCar problem, the difference in relation to the previous methods is even more
pronounced, as shown in Figure 4.3 (right). Surprisingly, even though all methods started with the
same policies for each trial, trpo managed to achieve positive average return across all trials, even
those with initial policies that didn’t reach the flag in the first batch of episodes. By analyzing the
average entropy over time obtained with the different algorithms, it is evident that trpo was more
conservative in its updates, therefore the policies remained exploratory for a greater amount of
time. This is probably what allowed the car to occasionally reach the flag on the hill and therefore
replicate the behaviour. It is also worth noting that all but one of the trials managed to solve the
problem, obtaining an average return of +90.

Box2D tasks

These tasks took considerably more time to run, with each trial of the bipedal walker task taking
about 45 minutes on a dual core laptop and each of the lunar lander ones taking about 50 minutes
on an eight-core machine, albeit with a lower clock-speed (precise clock speeds were not available).
We searched for the best combinations of gae parameters among the values of γ = 0.98, 0.99
and λ = 0.97, 0.98, 0.99. Figure 4.4 shows the average results for each of the tasks and parameter

42 TRUST REGION POLICY OPTIMIZATION 4.4

0 200 400 600 800

−100

−50

0

50

100

150

200

250

Iteration

A
ve
ra
ge
R
et
ur
n

0 200 400 600 800

−100

−50

0

50

100

150

200

Iteration

A
ve
ra
ge
R
et
ur
n

0 100 200 300 400

−250

−200

−150

−100

−50

0

50

100

150

Iteration

A
ve
ra
ge
R
et
ur
n

0 100 200 300 400

−250

−200

−150

−100

−50

0

50

100

150

Iteration

A
ve
ra
ge
R
et
ur
n

Figure 4.4: Learning curves using trpo and gae in the bipedal walker and lunar lander tasks.

0 200 400 600 800
−10

−8

−6

−4

−2

0

BipedalWalkerv2

Iteration

Ex
pl
ai
ne
dV
ar
ia
nc
e

0 100 200 300 400
−5

−4

−3

−2

−1

0

1
LunarLanderContinuousv2

Iteration

Ex
pl
ai
ne
dV
ar
ia
nc
e

Figure 4.5: Average explained variances of the baselines in the bipedal walker (left) and lunar
lander tasks (right), taken from the same experiments of Figure 4.4

4.4 EXPERIMENTS I 43

0 1000 2000 3000 4000

0

200

400

600

800

1000

1200

1400

1600

Mlp:1005025:tanh

Mlp:6464:elu

RoboschoolAntv1

Iteration

A
ve
ra
ge
R
et
ur
n

0 1000 2000 3000 4000

0

200

400

600

800

1000

1200

1400

1600

1800

Mlp:1005025:elu

Mlp:25664:tanh

RoboschoolHalfCheetahv1

Iteration

A
ve
ra
ge
R
et
ur
n

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RoboschoolAntv1

Iteration

Im
pr
ov
em
en
tR
at
io

Figure 4.6: Top left and right: average returns over time for the half cheetah and ant robots, from
left to right, respectively. Bottom: ratio between the actual improvement in the surrogate objective
and the one predicted by the linear approximation (line 4 of Algorithm 4)

combinations. It is interesting to see that the best results were achieved, in general, with lower
values of γ and higher ones of λ, contrary to what was observed by Schulman et al. (2015b) in their
paper introducing generalized advantage estimation. Figure 4.5 shows evidence of what might have
caused this issue.

Analyzing the average explained variance of the baselines for the bipedal walker experiments,
it was found that the ones used were not a good fit to the data, either due to their architecture
or to the optimization method used to fit the returns. This could explain why higher values of λ
achieved better results, since the degree of bootstrapping is lower and thus the influence of the
value function approximator on the results. The lower values of γ may have helped compensating
this issue by reducing the variance of the discounted advantage estimates. Unfortunately, only one
trial managed to solve the environment, with hyperparameters γ = 0.98 and λ = 0.97.

The baselines in the lunar lander task showed the same issue, albeit less severe than in the
bipedal walker task, as far as the explained variance can tell. In this setting, the contrast in the
standard error of the results between the experiments with different values of γ is evidence of its
role in reducing the variance of the gradient estimates. Unfortunately, none of the trials achieved
an average return enough to solve the environment. The best performing policy used γ = 0.98 and
λ = 0.99 and achieved an average return of 184. Many of the best performing policies managed to
land the spaceship safely, although at times not on the landing pad.

Simulated robotics tasks

These experiments were the most time consuming ones by far, with each trial of the ant robot
taking about 5 hours and the half cheetah one taking 4.5 and 3 hours for the two trials. The

44 TRUST REGION POLICY OPTIMIZATION 4.5

difference in time of the half cheetah trials is due to the robot falling to the ground a lot, which in
turn causes the episode to reset. It turns out that the more resets occur during the sampling part of
the algorithm, the longer it takes to run. This is due to resets being more costly, as the environment
has to reset and store information about the episode such as its length and total reward. This is
not as pronounced in the previous tasks as those are computationally cheaper.

Figure 4.6 (top) shows the average returns over time obtained in both environments. Both
took two attempts to achieve reasonable results, albeit far from the requirements for solving the
environments. Looking at the average return curves for the half cheetah tasks, it’s unclear whether or
not running the experiment with the best result for additional iterations would have yielded better
results. It is also mysterious why the change in policy architecture yielded a substantially better
result. This highlights some of the strengths and weaknesses of deep learning in general: impressive
results can be achieved in practice, but the computational cost and amount of hyperparameters to
adjust is large and difficult to manage. Nevertheless, the best performing policy actually learned a
running animation stable enough that the robot would not fall.

For the ant-like robot, the first attempts at solving the environment used the same architecture
proposed by Schulman et al. (2015b) in their experiments with the 3D-quadruped. However, here
we opted for a smaller batch size and larger number of iterations (see Table 4.2). Again, a change in
policy architecture yielded substantially better results. Even with different initial policies, the two
trials with the aforementioned policy architecture yielded strikingly similar results. Switching to a
shallower architecture (smaller number of hidden layers) produced better results, quickly converging
to a plateau from which no noticeable improvement in the average return was obtained. Analyzing
why this might have happened, it was found that the line search returned a step size of zero after
iteration ∼ 1200. Figure 4.6 (bottom) shows the improvement ratio between the surrogate objective
and the linear approximation of the improvement:

Lθk(θ)− Lθk(θk)

gᵀ(θ − θk)
,

where 0 is recorded whenever all the iterations of the line search fail, i.e., the improvement in the
surrogate objective isn’t large enough in relation to the one predicted by the linear approximation.
Therefore, the algorithm achieved what is probably a local maximum, where no direction provided
substantial improvement. These are all approximations and speculations, of course, as the functions
and variables computed by the algorithm are sample approximation to the true ones. Nevertheless,
the best policy made the robot walk steadily, alternating between pulling itself with one and two
legs.

4.5 Experiments II

4.5.1 Motivation and Settings

LunarLander Ant
Iterations 500 1000
Batch size 10000 5000/10000
Num. Envs. 16 16
δ constraint 0.01 0.01

Table 4.3: Configurations for each environment. A more liberal kl constraint was chosen than the
one used in Table 4.2.

A few potential problems were noticed after the experiments of the previous section: (a) the kl
constraint used might have been too small to allow progress in a reasonable number of iterations;
(b) the architectures used might have been too large for the problems considered.

4.5 EXPERIMENTS II 45

0 100 200 300 400

−200

−100

0

100

200

Iteration

A
ve
ra
ge
R
et
ur
n

0 200 400 600 800

0

500

1000

1500

2000
10000

5000

RoboschoolAntv1

Iteration

A
ve
ra
ge
R
et
ur
n

Figure 4.7: Left: means and standard errors over 7 trials of the average returns obtained in the
lunar lander task. Right: average returns for individual trials of the ant robot task, labeled by the
batch size used. All trials used gae values of γ = 0.99 and λ = 0.98 and the same initial seed.

Thus, we ran the additional experiments for the lunar lander and ant robot tasks using the
hyperparameters from Table 4.3. The architectures used were one with a single hidden layer of 32
units and one with two hidden layers of 32 units each for the lunar lander and ant robot tasks
respectively. Both configurations used elu activations.

4.5.2 Experiment Results
As it turned out, using a more liberal kl constraint in the lunar lander task further separated

the best trials from the worst ones. Figure 4.7 (left) illustrates this, when contrasted with the
corresponding plot in Figure 4.4. This was to be expected, since a larger trust region implies more
reliance on the quality of the approximations made by Algorithm 5, therefore bad steps have a
larger impact. However, it’s important to note that the experiments in this Section used a simpler
network, which might have played a role in the differences between experiments. Most notably, the
larger step sizes allowed the best trials to quickly achieve an average reward of +200, successfully
solving the environment.

Using a simpler policy architecture and larger trust region constraint also produced better results
in the ant-like walker environment. However, an important issue was noted in these experiments:
running the same configuration multiple times produced different results. This includes setting the
seeds for the random number generators used by the policy and environment. Figure 4.7 (right)
shows the results for several runs of the same configurations, which only differ by batch size used per
iteration. This might be an issue with the Roboschool environments, since all the other experiments
were repeatable under the same configurations.

Nevertheless, a lot of the results obtained using these configurations achieved average returns
far above the observed in the previous Section under a smaller number of iterations. Interestingly,
the only trial which managed to achieve an average return of +2000 used a smaller batch size of
5000 samples. This is probably an outlier, as the trials with smaller batch sizes produced worse
policies in general. Nevertheless, the best policy produced a steady gait in which the robot used all
four legs to move itself.

Chapter 5

Conclusions

Policy gradient methods offer solutions for reward-related learning problems which enable inte-
gration of reinforcement learning theory with deep learning methods and models. Thus, these can
be applied to more realistic tasks when compared with other reinforcement learning solutions. In
this work, we studied and analyzed three policy gradient methods:

• Vanilla Policy Gradient, which allows one to reduce the reinforcement learning problem to
that of stochastic optimization by providing an expression for the gradient of the performance
function that can be sampled from experiences;

• Natural Policy Gradient, which explores the underlying structure of the parameter space,
defining a new gradient direction that takes into account divergences between trajectory
distributions induced by policies and is invariant to reparameterization;

• Trust Region Policy Optimization (trpo), which takes a different approach from the pre-
ceding ones by making approximations to a monotonically improving policy optimization
procedure, improving upon the properties of the previous methods.

Although the first two were introduced in the late 90’s and have fallen out of favor in the modern
deep learning era; studying these methods and the underlying theory behind them provides the
fundamentals of the policy gradient approach. Moreover, these ideas are still present in modern
techniques such as trpo, acktr and a2c. The third algorithm, trpo, serves as an entry point to
the more advanced methods that followed it in recent years, bridging the gap between them and
the fundamental theory behind policy gradient methods.

The Vanilla and Natural Policy Gradient methods were not suitable to the more complicated
tasks included in the Box2D and Roboschool modules from OpenAI Gym, i.e., there was no sta-
ble improvement in the average return per iteration obtained using these methods. Therefore the
comparison between the three methods was constrained to the simple environments CartPole-v0
and MountainCarContinuous-v0. The Vanilla method outperformed the Natural in the cartpole
task, achieving higher average returns over multiple trials using the same number of iterations,
batch size, and Generalized Advantage Estimation parameters. This difference can be explained by
the sensitivity of the Natural method to the learning rates used to update the policy parameters,
i.e., small differences in learning rate may cause large divergences between successive policies. Since
learning rates have to change over the course of stochastic gradient ascent algorithms, the Natural
method is too unstable to be straightforwardly applied. On the other hand, this method outper-
formed the Vanilla in the mountain car task, obtaining positive average returns while the latter was
never able to do the same. This task showed that the Natural method can find good policies even
if rewards and the states in which they occur are rare in the beginning when the policies are more
exploratory. Trust Region Policy Optimization outperformed both previous methods in both tasks
while also showing itself to be more robust to different hyperparameter choices, generally yielding
steady improvement in average return per iteration. Moreover, it was easier to achieve the average
return requirements for solving each task using this algorithm.

47

48 CONCLUSIONS

TRPO was also effective in more complicated tasks where state and action spaces have a
larger number of dimensions than in the simpler classical control environments mentioned above.
In the tasks provided by the Box2D (LunarLanderContinuous-v2 and BipedalWalker-v2) and
Roboschool (RoboschoolHalfCheetah-v1 and RoboschoolAnt-v1) gym modules, stable pol-
icy improvement (w.r.t. average returns) was observed for many hyperparameter combinations.
Its trust region approach helps to prevent large drops in performance, observed occasionally in
previous methods, since changes in the trajectory distribution are kept to a reasonable neighbor-
hood. However, approximately maximizing the average return is a laborious task, as there are no
clear signs that indicate whether or not the maximum return has been achieved for a particular
policy architecture and hyperparameter combination. Our experiments showed that, in general,
complicated architectures were not necessary for solving the LunarLanderContinuous-v2 and
RoboschoolAnt-v1 environments. Unfortunately, we couldn’t test this hypothesis in the other
tasks as these experiments take hours to run each.

Other considerations involve the cost of implementing and running these algorithms in practice.
The Vanilla method is the cheapest to implement and run in practice, meaning it requires the least
amount of code and computation (only one gradient evaluation by backpropagation) per batch of
data collected. Both the Natural method and trpo require approximating the average Hessian of
kl divergence of the policy; a process that requires multiple gradient evaluations for a single policy
update. Compared to the Natural method, trpo only adds the cost of computing the stepsize
via a line search. Given the instability of the former and the impressive results of the latter, trpo
asserts itself as the superior method. One might consider using the Vanilla method over it in smaller
problems given its simplicity and lower computational costs. However, trpo is substantially more
efficient in high-dimensional problems.

Appendix A

Proofs

A.1 Proof of Theorem 1
To keep the notation simple, we leave it implicit that π is a function of θ, and all gradients are

implicitly with respect to θ. First, note that the derivative of the state value function is given by

∇V π(s) = ∇
∑
a∈A

π(a|s)Qπ(s, a) (eq. 1.8)

=
∑
a∈A

[Qπ(s, a)∇π(a|s) + π(a|s)∇Qπ(s, a)]

=
∑
a∈A

[
Qπ(s, a)∇π(a|s) + π(a|s)∇

(
R(s, a) + γ

∑
s′∈S
P(s′ | s, a)V π(s′)

)]
(eq. 1.9)

=
∑
a∈A

[
Qπ(s, a)∇π(a|s) + γπ(a|s)

∑
s′∈S
P(s′ | s, a)∇V π(s′)

]
. (?)

Thus, the gradient of J(θ) can be written as

∇J(θ) = ∇Es0:∞
a0:∞

[∞∑
t=0

γtR(st, at)

]

= ∇
∑
s∈S

ρ0(s)Es1:∞
a0:∞

[∞∑
t=0

γtR(st, at)

∣∣∣∣s0 = s

]
=
∑
s∈S

ρ0(s)∇V π(s) (eq. 1.6)

=
∑
s∈S

ρ0(s)
∑
a∈A

[
Qπ(s, a)∇π(a|s) + γπ(a|s)

∑
s′∈S
P(s′ | s, a)∇V π(s′)

]
...

=
∑
s∈S

∞∑
t=0

γtP(st = s)
∑
a∈A

Qπ(s, a)∇π(a|s)

after repeated unrolling of (?). Using definition 3, we obtain

∇J(θ) =
∑
s∈S

ρπ(s)
∑
a∈A

Qπ(s, a)∇π(a|s)

=
∑
s′∈S

ρπ(s′)
∑
s∈S

ρπ(s)∑
s′∈S ρπ(s′)

∑
a∈A

Qπ(s, a)∇π(a|s)

49

50 APPENDIX A

=
1

1− γ
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇π(a|s),

for γ ∈ (0, 1) and

∇J(θ) = T
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇π(a|s),

for the episodic undiscounted case, since returns after reaching a terminal state are zero.

A.2 Proof of Proposition 2
Note that for any function f(st, at) where 0 ≤ t < n:

∑
τ∈T n

Pr(τ |π)f(st, at) =
∑
s0∈S

∑
a0∈A

∑
s1∈S

∑
a1∈A

· · ·
∑

an−1∈A

∑
sn∈S

ρ0(s0)

n−1∏
i=0

P(si+1 | si, ai)π(ai | si)f(st, at)

=
∑
s0∈S
· · ·
∑
at∈A

∑
st+1∈S

ρ0(s0)

t∏
i=0

P(si+1 | si, ai)π(ai | si)f(st, at)

=
∑

τ∈T t+1

Pr(τ |π)f(st, at),

since f(st, at) doesn’t depend on later states and actions and, given st+1,

∑
at+1∈A

· · ·
∑
sn∈S

n−1∏
j=t+1

P(sj+1 | sj , aj)π(aj | sj) = 1.

Expanding upon the expected return definition, note that we can add a final state to the expectation
without changing its value, therefore:

E s0:n
a0:n−1

[
n−1∑
t=0

γtR(st, at)

]
=
∑
s0∈S

∑
a0∈A

∑
s1∈S

∑
a1∈A

· · ·
∑

an−1∈A

∑
sn∈S

ρ0(s0)

n−1∏
i=0

P(si+1 | si, ai)π(ai | si) · · ·

(R(s0, a0) + γR(s1, a1) + · · ·+ γnR(sn−1, an−1))

=
n−1∑
t=0

∑
τ∈T t+1

Pr(τ |π)γtR(st, at)

=
1− γn

1− γ
∑
τ∈T n+

Prγ(τ |π)R(s|τ |−1, a|τ |−1),

and thus

lim
n→∞

E s0:n
a0:n−1

[
n−1∑
t=0

γtR(st, at)

]
=

1

1− γ
Eτ∈T n+

[
R(s|τ |−1, a|τ |−1)

]
.

A.3 Proof of Theorem 3
For simplicity, we leave it implicit that π is a function of θ and that all derivations are with

respect to θ. The fisher information metric on the manifold of probability distributions over trajec-
tories of length n is defined as

Fn(θ) = Eτ∈T n
[
∇ logPr(τ0:n |π)∇ logPr(τ |π)

ᵀ]

PROOF OF THEOREM ?? 51

= −Eτ∈T n
[
∇2 logPr(τ |π)

]
= −

∑
τ∈T n

Pr(τ |π)∇ (∇ logPr(τ |π))
ᵀ

= −
∑
τ∈T n

Pr(τ |π)∇

(
n−1∑
t=0

∇ log π(at | st)

)ᵀ

= −
∑
τ∈T n

Pr(τ |π)

n−1∑
t=0

∇2 log π(at | st).

Where the second line follows from the first by equation 3.7 and the fourth follows by substituting
definition 4 for Pr(τ |π) and noting that P(· | st, at) does not depend on θ. We can then rewrite the
sum over all trajectories probabilities as∑
xn∈S

∑
an−1∈A

· · ·
∑
x1∈S

∑
a0∈A

∑
x0∈S

ρ0(x0)︸ ︷︷ ︸
P(s0=x0)

π(a0 |x0)P(x1 |x0, a0)

︸ ︷︷ ︸
P(s1=x1)

· · ·π(an−1 |xn−1)P(xn |xn−1, an−1)

︸ ︷︷ ︸
P(sn=xn)

,

which, substituted for
∑

τ∈T n Pr(τ |π) above gives

Fn(θ) =

n−1∑
t=0

∑
s∈S

P(st = s)
∑
a∈A

π(a | s)
∑
s′∈S

P(sn = s′ | st = s, at = a)
(
−∇2 log π(a | s)

)
=

n−1∑
t=0

∑
s∈S

P(st = s)
∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
= n

∑
s∈S

dπ(s)
∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
.

If all episodes terminate in n timesteps or less, this gives an appropriate metric on the tangent
space. For the discounted infinite horizon formalism, consider the formulation of the expected return
with respect to the discounted trajectory distribution given in proposition 2. We define the fisher
information metric with respect to this distribution and take the limit as trajectory lengths tend
to infinity:

Fn,γ(θ) = Eτ∈T n+
[
−∇2 logPrγ(τ |π)

]
=

1− γ
1− γn

∑
τ∈T n+

Prγ(τ |π)

|τ |−1∑
t=0

(
∇2 log π(at | st)

)
=

1− γ
1− γn

n∑
k=1

∑
τ∈T k

γk−1Pr(τ |π)
k−1∑
t=0

(
∇2 log π(at | st)

)
=

1− γ
1− γn

n∑
k=1

γk−1Fn(θ)

=
1− γ
1− γn

n∑
k=1

γk−1
k−1∑
t=0

∑
s∈S

P(st = s)
∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
=
∑
s∈S

1− γ
1− γn

n∑
k=1

γk−1
k−1∑
t=0

P(st = s)︸ ︷︷ ︸
?

∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
.

52 APPENDIX A

As n→∞, the term ? becomes

(1− γ)
(
P(s0 = s) + γ (P(s0 = s) + P(s1 = s)) + γ2(P(s0 = s) + P(s1 = s) + P(s2 = s)) + · · ·

)
= (1− γ)

(
P(s0 = s)(1 + γ + γ2 + · · ·) + P(s1 = s)(γ + γ2 + γ3 + · · ·)+

P(s2 = s)(γ2 + γ3 + γ4 + · · ·) + · · ·
)

= (1− γ)
(
P(s0 = s)(1

1−γ) + P(s1 = s)(γ
1−γ) + P(s2 = s)(γ2

1−γ) + · · ·
)

=

∞∑
t=0

γtP(st = s),

and thus

lim
n→∞

Fn,γ(θ) =
∑
s∈S

∞∑
t=0

γtP(st = s)
∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
=

1

1− γ
∑
s∈S

dπ(s)
∑
a∈A

π(a | s)
(
−∇2 log π(a | s)

)
.

Bibliography

Amari(1998) Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276. Cited in page 27

Amari & Nagaoka(2007) Shun-ichi Amari & Hiroshi Nagaoka. Methods of information geometry,
volume 191. American Mathematical Soc. Cited in page 26, 28

Bagnell & Schneider(2003) J Andrew Bagnell & Jeff Schneider. Covariant policy search. In
IJCAI, volume 18, pages 1019–1024. Citeseer. Cited in page 27, 31

Baird(1995) Leemon Baird. Residual algorithms: Reinforcement learning with function approxi-
mation. In Machine Learning Proceedings 1995, pages 30–37. Elsevier. Cited in page 6

Bertsekas & Tsitsiklis(2000) Dimitri P Bertsekas & John N Tsitsiklis. Gradient convergence in
gradient methods with errors. SIAM Journal on Optimization, 10(3):627–642. Cited in page 8

Brockman et al.(2016) Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang & Wojciech Zaremba. Openai gym, 2016. Cited in page 13

Kakade & Langford(2002) Sham Kakade & John Langford. Approximately optimal approximate
reinforcement learning. In ICML, volume 2, pages 267–274. Cited in page 33

Kakade(2002) Sham M Kakade. A natural policy gradient. In Advances in neural information
processing systems, pages 1531–1538. Cited in page 25, 27

Kingma & Ba(2014) Diederik P Kingma & Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980. Cited in page 20

Mnih et al.(2015) Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski
et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529. Cited in

page 6

Paszke et al.(2017) Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga & Adam Lerer. Automatic differ-
entiation in pytorch. In NIPS-W. Cited in page 14

Schulman et al.(2015a) John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan & Philipp
Moritz. Trust region policy optimization. In ICML. Cited in page 31, 33, 34

Schulman et al.(2015b) John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan & Pieter
Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438. Cited in page 12, 17, 19, 21, 40, 43, 44

Sutton & Barto(2018) Richard S Sutton & Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press. Cited in page 2, 17, 19

53

54 BIBLIOGRAPHY

Sutton et al.(2000) Richard S Sutton, David A McAllester, Satinder P Singh & Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation. In Advances in
neural information processing systems, pages 1057–1063. Cited in page 9

Szepesvári(2009) Csaba Szepesvári. Reinforcement learning algorithms for mdps. Dept. of Com-
puting Science Report TR09-13, University of Alberta, Ca. Cited in page 4

Williams(1992) Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229–256. Cited in page 11, 12

Wright & Nocedal(1999) Stephen Wright & Jorge Nocedal. Numerical optimization. Springer
Science, 35(67-68):7. Cited in page 27, 29

	Preliminaries
	Agent-Environment Interface
	Theory of mdps
	Classical Solutions and their Limitations
	Policy Gradient based Solutions

	Vanilla Policy Gradient
	reinforce update
	Practical algorithm
	Simple Experiments
	Environments Details
	Experimental Setup
	Experimental Results

	Actor-critic Methods and Generalized Advantage Estimation
	Experiments with gae
	Experiment Settings
	Experiment Results

	Natural Policy Gradient
	Trajectory Distribution Manifold
	Natural Gradient
	Fisher Information Metric
	Natural Policy Gradient
	Practical Considerations
	Experiments

	Trust Region Policy Optimization
	Policy Improvement Bounds
	trpo update
	Practical Algorithm
	Experiments I
	Task Details
	Experimental Setup
	Experiment Results

	Experiments II
	Motivation and Settings
	Experiment Results

	Conclusions
	Proofs
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 3

	Bibliography

