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Introduction
In this work we analyze and compare policy gradient methods, which offer novel solutions to the re-
inforcement learning problem. In this setting, an agent interacts with an environment at each stage by
performing an action that can change the current state of the environment, producing a reward signal
and taking the environment to a next state. Environments are formally modeled as Markov Decision
Processes (MDPs).

Figure 1: The agent-environment interface in an MDP. Source: Sutton & Barto [4]

We consider episodic control tasks were the agent’s objective is to learn a stochastic policy π(a | s)
that maximizes the expected accumulated reward signal throughout successive interactions with the
environment:

J(π) = Es0:∞
a0:∞

 ∞∑
t=0

r(st, at)

 , where at ∼ π(· | st), st+1 ∼ P (· | st, at).

The Policy Gradient Approach
Policy gradient methods allows one to reduce the reinforcement learning problem to that of stochastic
optimization by considering smoothly parameterized stochastic policies: {πθ; θ ∈ Rd}. By directly
parameterizing the policy, these methods can handle large, continuous state and action spaces in com-
bination with deep learning models.

Figure 2: Policy parameterization using multilayer perceptrons for continuous and discrete action spaces, from left to
right, respectively; Sampling nodes consist of parameterized multivariate normal and categorical distributions.

The policy gradient theorem provides the basis for these methods: an expression for the gradient of
performance that can be sampled from experiences:

g = Es0:∞
a0:∞

 ∞∑
t=0

Aπ(st, at)∇θ log πθ(at | st)

 ,
where the advantage function is the difference between the action and state values induced by the
policy and MDP: Aπ(s, a) = Qπ(s, a) − V π(s). This allows them to be combined with advanced
stochastic optimization methods such as the Adam algorithm to find approximately optimal policies.
This simple use of the gradient g is usually called the Vanilla Policy Gradient method.

0 20 40 60 80

20

40

60

80

100

120

140

160

180

200

Adam

SGD

CartPole­v0 Learning Curves

Iteration

A
ve
ra
ge
 R
et
ur
n

Figure 3: (left) A pole is attached by an un-actuated joint to a cart, which can only move left or right. Reward is
given as long as the pole stays balanced. (right) The learning curves obtained using stochastic gradient descent and the
momentum-based Adam algorithm.

Reinforcement Learning and Information Geometry
A policy πθ and an MDP together induce a probability distribution over trajectories, i.e. given a
trajectory τ = (s0, a0, s1, . . . , sn−1, an−1, sn), the probability distribution over τ given πθ is:

Pr(τ | πθ) = P (s0)

n−1∏
t=0

P (st+1 | st, at)πθ(at | st).

The set of all such distributions defines a statistical manifold, where each choice of policy parameters
θ correspond to a probability distribution over trajectories. In this setting, the Fisher information
matrix gives a local approximation of the Kullback-Leiber (KL) divergence between trajectory distri-
butions:

DKL
(
Pr(· |πθold) ‖ Pr(· |πθ)

)
≈ (θ − θold)

ᵀ
F (θold)(θ − θold),

F (θold) = Es∼πθold
[
∇2
θDKL

(
πθold(· | s) ‖ πθ(· | s)

)]
.

The natural policy gradient is the steepest ascent direction of the performance measure J when dis-
tances are measured by KL divergence on the trajectory distribution manifold:

g̃ = F (θ)−1g.

This gives the same direction in the space of policies, regardless of the parameterization used to de-
fine them! Most notably, using this direction instead of the vanilla gradient can substantially increase
performance in tasks where positive rewards are few and far between.
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Figure 4: (left) A car starts in a valley and reward is given if it reaches the flag on the right hill. The agent must learn to
build momentum, given that its engine is too weak. (right) A comparison between the Vanilla and Natural Policy Gradient
methods; both methods start with a policy which manages to reach the top occasionally, however only the Natural Policy
Gradient method manages to learn and replicate the behaviour.

Reducing Learning to Numerical Optimization
Trust Region Policy Optimization (TRPO) [3] treats the learning problem at every iteration as the
following constrained optimization problem:

max
θ

Lπθold(πθ) = Es,a∼πθold

[
πθ(a | s)
πθold(a | s)

Aπθold(s, a)

]
s.t. Es∼πθold

[
DKL

(
πθold(· | s) ‖ πθ(· | s)

)]
≤ δ

The intuition behind this formulation is that, if policies are sufficiently close to one another, we can
pessimistically predict the performance of a new policy πθ with data sampled from the current one,
πθold, using a surrogate objective function. TRPO solves the problem above using a linear approxima-
tion to the objective and a quadratic approximation to the constraint:

Lπθold(πθ) ≈ g
ᵀ
(θ − θold),

Es∼πθold
[
DKL

(
πθold(· | s) ‖ πθ(· | s)

)]
≈ (θ − θold)

ᵀ
F (θold)(θ − θold).

The solution is a natural policy gradient step, scaled to take into account the trust region constraint,
keeping successive policies in a reasonable neighborhood. This approach is much more efficient than
the previous methods, allowing one to tackle high-dimensional control problems such as navigation
in robotics.
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Figure 5: A 3D-quadruped robot, with 29 state dimensions and 9 actuated degrees of freedom. TRPO with deep learning
models enables learning of stable walking animations. The policies took about 5 hours to train on a dual core laptop.

Materials and Methods
Policies and algorithms were implemented using the PyTorch deep learning framework [2]. The envi-
ronments were supplied by the OpenAI Gym toolkit for reinforcement learning research [1]. Funding
provided by the CNPq-PIBIC undergraduate research program.

Conclusions
Policy gradient methods offer solutions for reward-related learning problems which enable integration
of reinforcement learning theory with deep learning methods and models. Thus, these can be applied
to more realistic tasks, when compared with other reinforcement learning solutions. However, there’s
still a lot of room for improvement in regards to sample efficiency and hyperparameter tuning.
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