UNIVERSITY OF SA0 PAuLo
INSTITUTE OF MATHEMATICS AND STATISTICS
BACHELOR OF COMPUTER SCIENCE

Algebraic Algorithm for
Maximum Matching

Antonio Marcos Shiro Arnauts Hachisuca

FINAL EssAy

MAC 499 — CAPSTONE PROJECT

Supervisor: Prof. Marcel K. de Carli Silva

S30 Paulo
2024

The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

Antonio Marcos Shiro Arnauts Hachisuca. Algoritmo algébrico para emparelha-
mento maximo. Monografia (Bacharelado). Instituto de Matematica e Estatistica, Uni-
versidade de Sao Paulo, Sdo Paulo, 2024.

O problema do emparelhamento maximo, que busca encontrar o maior conjunto possivel de arestas néo
adjacentes em um grafo, é um desafio fundamental na teoria dos grafos que tem impulsionado inovagdes
algoritmicas por décadas. Em 2009, Nicholas J. A. Harvey alcan¢ou um avango significativo ao desenvolver
um algoritmo probabilistico que resolve o emparelhamento maximo em tempo O(n®) para grafos arbitrarios,
onde n é o nimero de vértices e w é o expoente da multiplicacdo de matrizes. Seu algoritmo atinge este
limite ao combinar de forma engenhosa conceitos da teoria algébrica dos grafos com uma estratégia de
implementacéo eficiente que emprega atualizacdes “lazy” e técnicas de divisdo e conquista. Este trabalho

fornece uma analise abrangente e implementacédo do algoritmo de Harvey.

Palavras-chave: Grafos. Emparelhamentos. Algoritimos probabilisticos.

Abstract

Antonio Marcos Shiro Arnauts Hachisuca. Algebraic Algorithm for Maximum
Matching. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics,
University of Sdo Paulo, Sdo Paulo, 2024.

The Maximum Matching problem, which seeks to find the largest possible set of non-adjacent edges
in a graph, is a fundamental challenge in graph theory that has driven algorithmic innovation for decades.
In 2009, Nicholas J. A. Harvey made a significant breakthrough by developing a randomized algorithm
that solves maximum matching in O(n®) time for arbitrary graphs, where n is the number of vertices and
o is the matrix multiplication exponent. His algorithm achieves this bound by ingeniously combining
concepts from algebraic graph theory with an efficient implementation strategy that employs lazy updates
and divide-and-conquer techniques. This work provides a comprehensive analysis and implementation

of Harvey’s algorithm.

Keywords: Graphs. Matchings. Probabilistic algorithms.

List of Figures

31

3.2
34
3.3

4.1
4.2
4.3
4.4
4.5

Perfect Matching benchmark with all test cases where the input number

represents the number of vertices.

Perfect Matching benchmark with 10 and 20 vertices.

Perfect Matching benchmark with 100 vertices and 200 vertices.

Perfect Matching benchmark with 50 vertices.

Maximum Matching benchmark with all test cases.

Maximum matching benchmark with smaller graphs.

Maximum matching benchmark with 50 vertices.

Maximum matching benchmark with 100 vertices.

Maximum matching benchmark with 200 vertices.

List of Programs

2.1
2.2
3.1
3.2
3.3
4.1

NAIVEALGORITHM

RANK-TWO UPDATE ALGORITHM

Harvey’s algorithm: DELETEEDGESCROSSING

Harvey’s algorithm: DELETEEDGESWITHIN

Harvey’s algorithm: PERFECT MATCHING

Maximum Matching algorithm

18
18
18
19

23
23
24
24
24

13
14
15
21

iii

Contents

Introduction

1 Preliminaries

2

3

4

1.1
1.2
1.3

Graphtheory.
Linearalgebra

Matrix Algorithms

Perfect matchings

2.1

2.2
2.3

Tutte Matrix L
2.1.1 Probabilistic representation of a Tutte Matrix
Naive algorithm

Rank-two update algorithm 0 0oL

Harvey’s algorithm

3.1

3.2

Algorithm
3.1.1 DivipelNTwo
3.1.2 DEeLETEEDGESCROSSING
3.1.3 DEeLETEEDGESWITHIN
3.14 PERFECTMATCHING v v it it e e e i
Experimental Analysis
3.21 Methodology
322 Results

Extension to Maximum Matching

4.1
4.2

Maximum Matching algorithm
Experimental Analysis
42.1 Methodology
422 Results.

W o N

o 0 3 N

11
11
11
11
14
15
16
16
17

20
20
21
22
23

iv

5 Conclusion

References

25

26

Introduction

The Maximum Matching problem is a fundamental problem in graph theory. Key
milestones include:

« In 1965, Edmonds [4] introduced an O(n*m) algorithm that solves this problem using
graph theory techniques;

« In 1989, Rabin and Vazirani [11] developed a probabilistic O(n“*') algorithm that
solves the problem through algebraic methods;

« In 2009, Harvey [6] created a probabilistic O(n“) algebraic algorithm using a divide-
and-conquer approach with lazy updates.

These developments show how researchers have progressively improved algorithms to
solve the Maximum Matching problem, reducing computational complexity over time.

The primary objective of this work is to implement the algorithm developed by Harvey
[6]. We present a C++ implementation of the algorithm, available in the open-source
repository at github/antoniomsah/algebraic-max-matching. The dissertation is structured
as follows:

1. Chapter 1 covers the fundamental concepts necessary for understanding the subse-
quent work;

2. Chapter 2 explores Tutte matrices and algebraic methods for solving perfect matching
problems;

3. Chapter 3 presents a detailed explanation of Harvey’s algorithm;

4. Chapter 4 shows how to extend perfect matching algorithms to maximum matching
scenarios.

https://github.com/antoniomsah/algebraic-max-matching/tree/main/code

Chapter 1

Preliminaries

The purpose of this chapter is to introduce key concepts related to the maximum
matching algorithm. The chapter covers important topics such as the definition of graph
maximum matching, the Sherman-Morrison-Woodbury formula, and skew-symmetric
matrices. These concepts are fundamental for understanding the algorithm’s correctness
and time complexity.

1.1 Graph theory

Definition 1.1.1 (Graph). A graph G is a pair (V,E) such that

(i) V is a finite set, whose elements are called vertices;
(ii) E is set of unordered pairs of vertices, whose elements are called edges;

The vertex set of a graph G is denoted as V; or V(G). The edge set of a graph G is denoted
as E; or E(G). If {u, v} € E(G), then u and v are the ends of e and e incides in both u and
v. When the context is clear, {u, v} may be abbreviated to uv.

Definition 1.1.2 (Matching). For a graph G := (V,E), a subset M C E is a matching of G
if no two edges in M share an end. A vertexv € V is M-covered if some edge of M incides in v,
and it is said that M covers v; otherwise, v is M-exposed. A matching M is:

« maximal, if there is no edge e € E\ M such that M U {e} is a matching of G;
« maximum, if for every matching M’ of G one has |M| > |M’|;
. perfect, if |V| = 2|M]|, i.e., every vertex of G is M-covered.

The matching number of G, denoted as v(G), is the size of a maximum matching of G.
Definition 1.1.3 (Essential edges). Let G := (V, E) be a graph that has a perfect matching.

An edge e € E is essential if the graph (V, E \ {e}) does not have a perfect matching. An edge
is inessential if it is not essential.

Now, the following problem can be introduced.

1.2 | LINEAR ALGEBRA

MAXIMUM MATCHING

Given a graph G, find a maximum matching of G.

1.2 Linear algebra

Definition 1.2.1 (Submatrix). Let M be a matrix, we say that M’ is a submatrix of M if
we can obtain M’ by removing zero or more rows and/or columns from M.

Let M be a matrix. For any sets of indices R and C, we write My or M[R, C] to denote the
submatrix of M formed by keeping only the rows indexed by R and columns indexed by
C. Furthermore, we use M[R, | or Mg to represent the submatrix containing all rows
indexed by R and all columns of M (resp., M[*, C]).

Definition 1.2.2 (Schur complement). Let M be a square matrix of the form

A B
v=(e o)
where D is a square matrix. Then, if D is non-singular, the matrix A— BD™'C is the Schur
complement of D in M. The Schur complement has the following property:

(1.1) det(M) = det(D) det(A — BD'C).

Theorem 1.2.3 (Sherman-Morrison-Woodbury formula). Suppose that M is non-singular.
Then

(1) M +UV?T is non-singular if and only if I + VIM~'U is non-singular;
(2) If M + UV is non-singular, then

M+UVHT =M - MIUT+VIMIU)VIML

I v
asl]

Proof. For (1), let

Note that the Schur complement of the block M of the matrix A is I + VIM™'U and that

I vl _[1 ol[I vt
-U M| |-U I||lo M+UVT|"
Then, by (1.1), one has

det(M) det(I + VIMU) = det(A)

AR I
“CUl-u 1llo Mm+uUVT

= det(I) det(M + UV") = det(M + UV?).

1.3 | MATRIX ALGORITHMS

Thus, (1) is proven. For (2), it suffices to verify that
M+UVDHWM ' -=MUI +VIMU)Y WM™ =1
Let A := (I + VIM'U), then

M+UVDWM ' —=MUI +VIMIU) WWIM™)
=M+UVDHWM ' =MTUAVIMTY
=(I-UAVIM)Y+OVIM? —UVIM'UATVIM™)
=(I+UVIMY) —UA VM +UVIMIUATWVIM™)
=(I+UVIM Y -UI+VIMUY(AVIMTY
=(I+UVM Y -UAAVIM!
=I+UVIM?'—UVIM =1 O

Corollary 1.2.4 (Harvey [6, Corollary 2.1]). Let M be a non-singular square matrix, let
N := M and let S be a subset of rows from M. Let M be a matrix that which is identical to
M except that Mss # Mss and A := Mss — Mss. If M is non-singular, then

M™ =N — N, (I + ANgs)'AN5,.

Proof. Letk :=1S]. Let U" be the nxk matrix that selects the S columns from an nxn matrix,
i.e. for an n x n matrix M, one has MU = M, . Let VT := AU". Then, by Theorem 1.2.3,

M*'=M+UvhH)™?
= N — NU(I + AU'NU)'AU'N
= N — N.s(I + AU'NU) AN,
= N — N, 5(I + ANss) *ANg.,. O

Definition 1.2.5 (Skew-symmetric matrix). A matrix M is skew-symmetric if M = —M".

Fact 1.2.6 (Inverse of a skew-symmetric matrix). Let M be a skew-symmetric matrix. If M
is non-singular, then M~" is also skew-symmetric.

1.3 Matrix Algorithms

Definition 1.3.1 (Matrix multiplication exponent). The matrix exponent multiplication
exponent, denoted by w, is the infimum of the exponent over all matrix multiplication
algorithms. That is there is a known algorithm that solves matrix multiplication in O(n®+°(V)
field operations.

! Every column should be a canonical basis vector from S.

1.3 | MATRIX ALGORITHMS

Here are some milestones related to the matrix multiplication exponent throughout the
years.

Year Author(s) Bound on omega
1969 Strassen [12] 2.8074

1990 | Coppersmith and Winograd [2] 2.3755

2024 Alman et al. [1] 2.371339

The following algorithms can be done in O(n®):

1. Matrix inversion, see CLRS [13, Theorem 28.2];
2. Matrix rank, see [7].

Chapter 2

Perfect matchings

The initial section introduces fundamental algebraic techniques, focusing on Tutte
matrices and their probabilistic representation. Then, a simple algorithm is presented,
demonstrating an algebraic strategy for matching problems. The chapter ends with an
enhanced version of the simple algorithm that uses rank-two matrix update techniques.

2.1 Tutte Matrix

Definition 2.1.1 (Indeterminates). An indeterminate is a variable that is not assigned a
specific value. It represents a symbolic placeholder that never assumes a value.

Definition 2.1.2 (Tutte Matrix). Let G be a graph and let n := |V;|. For each edge uv € Eg
associate an indeterminate t,,. The Tutte matrix is the n x n skew-symmetric matrix such that
T = %ty if uv € Eg and 0, otherwise. The sign is chosen such that T is skew-symmetric. The
Tutte matrix of G is denoted as Tg.

For a Tutte matrix T, its Pfaffian, denoted Pf(T), is a polynomial whose complete
mathematical definition involves some algebraic concepts beyond our current scope.
However, two properties of the Pfaffian are crucial:

1. The Pfaffian Pf(T) has a monomial for every perfect matching in the underlying
graph of T;

2. There exists a fundamental relationship between the Pfaffian and the determinant
of a Tutte matrix: det(T) = Pf(T)?.

For a comprehensive treatment of this polynomial and its properties, we refer the
reader to Godsil [5, Chapter 7].

Fact 2.1.3 (Tutte [14]). A graph G has a perfect matching iff T; is non-singular.
Proof. Direct from the property det(T) = Pf(T)>2. O

While this property of Tutte matrices is powerful, it presents a computational challenge
for algorithmic applications. The issue stems from the relationship det(T) = Pf(T)?, and

2.1 | TUTTE MATRIX

that Pf(T) contains a monomial for each perfect matching in graph G. Since a graph may
contain exponentially many perfect matchings, symbolic computation becomes infeasible.

2.1.1 Probabilistic representation of a Tutte Matrix
Fortunately, a probabilistic solution was proposed by Lovasz [8]:
+ Replace the non-zero entries of T with random values from a sufficiently large field.
This provides a computationally feasible approach.
Lemma 2.1.4 (Schwartz-Zippel). Let F be a field, and let p(x;, x;, ..., x,) be a non-zero

polynomial in F[xy, x, ..., x,] of total degree d. Suppose S C F is a finite subset of the field F.
If the variables x,, X, ..., x, are chosen independently and uniformly at random from S, then

Pr [p(xl,xz, ey Xp) = 0] < %

Proof. See Motwani and Raghavan [10, Theorem 7.2].]

According to Lemma 2.1.4, selecting a sufficiently large field significantly reduces the
probability of failure. Hence, the rank of a Tutte matrix with random values is preserved
with high probability.

Selecting a sufficiently large field

Constructing such a field is straightforward. For any prime number p, the set of integers
modulo p, denoted as Z,, forms a field of size p.

Implementation Overview

Let G be a graph. The following assumption is used for the algorithm pertaining
Tutte matrices:

« For each edge uv € E(G), the matrix entry t, (since Tutte matrices are skew-
symmetric, t,, is also fixed) is randomly selected from the finite field Z,. These
values are not altered throughout the subsequent algorithmic procedures and can
be accessed in O(1) time complexity.

In the pseudocode, the following functions related to Tutte matrices are used:

1. TutTEMATRIX(G): Builds a Tutte matrix of graph G with random values;

2. REMOVEEDGE(T, uv): Assigns T, < 0 and T,, « 0;

3. E(T): Returns every edge uv € E(G) such that T,, # 0, i.e. the edges that were not
removed from G.

2.2 | NAIVE ALGORITHM

2.2 Naive algorithm

Now, a naive algorithm can be implemented. Let G := (V, E). The idea is, for each edge
e € E, check using Fact 2.1.3 if the graph (V, E \ {e}) has a perfect matching.

1. If it does not have a perfect matching, then e is essential;
2. Else,let G = (V,E \ {e}).

Then, after iterating through each edge in E, only the essential edges remain in G, i.e. a
perfect matching. Thus, we have the following algorithm.

Program 2.1 NAIVEALGORITHM

1 FUNCTION NAIVEALGORITHM(G)
2 T < TuTTEMATRIX(G)
3 if T is singular then © G does not have a perfect matching.
4 return @
5 for each uwv € E(G) do
6 t « T, © Save the matrix entry before removing it.
7 REMOVEEDGE(T, uv)
8 if T is singular then © By Fact 2.1.3, edge uv is essential.
9 T,y <t D Reverse the change.
10 Ty, < —t
11 return E(T)

Time complexity

Let f(n) be the running time of NAIVEALGORITHM when |V;| =: n.

+ Line 2: Since a graph has at most ('2’), there are O(n?) iterations;
« Line 4: Checking if a matrix is singular can be done in O(n®) (Section 1.3).

Thus, the running time can be expressed as:

f(n) = 0(n")O(n) = O(n“"™).

2.3 Rank-two update algorithm

The bottleneck of the previous algorithm is the necessity to recompute the whole
matrix inverse after each iteration. An improvement from the previous algorithm was
achieved by using Corollary 2.3.2 to quickly check essential edges and Theorem 2.3.1 to
update the inverse in O(n*) time rather than O(n®).

Theorem 2.3.1 (Rank-two update). Let G be a graph. Let T := T;. Let N := T~ '. Let
S C {u, v} such that u,v € V(G) and Tss # 0. Let T be a matrix which is identical to T except

2.3 | RANK-TWO UPDATE ALGORITHM

that Tes = 0. Let A := T —T. If T is non-singular, then

= (1/(1+ TupNyy) 0 A
=N+ N < 0 11+ TN,) 8

Proof. By Corollary 1.2.4, it suffices to prove that

I+ ANs,s)_l = <1/(1 +Tu,UNu,v) 0) .

0 1/(1+T,,N,.)

Then, one has

T and N are skew-symmetric

_ (14 T,,N,, 0
N 0 1+T,,N,. /)~

Finally,
-1
-1 _ l + Tu,yNu,l) 0
I+ ANS,S) = (0 1+T,uN,u
_ (1/(1 + T,,N,,) 0
(2.1) - < 0 1/ + Tv,qu,u)> '

Thus, it is proven.

Corollary 2.3.2 (Edge removal condition). Let G be a graph, T be the Tutte matrix of G

and N :=T7'. An edgeij € E(G) is essential if and only if N;; = —1/T; ;.

Proof. Direct from Equation (2.1).

The idea is similar to the simple algorithm. Let G := (V,E) be a graph. For each
e € E, check if e is essential. However, rather than temporarily removing e from G, we
use Corollary 2.3.2 to quickly decide if e is essential. If e is inessential, then we use
a rank-two update instead of completely recomputing the inverse. Thus, we have the

following algorithm.

Program 2.2 RANK-TWO UPDATE ALGORITHM

1 FUNCTION RANKTWOALGORITHM(G)
2 T <« TuTTEMATRIX(G)

3 N <771

4 for each uwv € E(G) do

cont —

2.3 | RANK-TWO UPDATE ALGORITHM

—> cont
if N,, # —1/T,, then ©> By Corollary 2.3.2, this edge is inessential.
S «—{u,v}
N < RaANKTwWOUPDATE(S,T,N) © Theorem 2.3.1.
REMOVEEDGE(T, uv)
return E(T)

©O© 0 N O U

Time complexity

First, let t(n) be the running time of RANKTWOUPDATE when |V;| =: n. Note that

1/(1 + TM,UNM,I)) 0
0 1/(1 + T,,N,.)

is a 2 x 2 matrix. Consequently,
t(n) = 0(2n*) = O(n?).
Then, let g(n) be the running time of RANKTWOALGORITHM when n =: [V|. Since a

rank-two update is performed for each removed edge and it is necessary to compute the
matrix inverse, we have the following running time.

g(n) = mt(n) + O(n®) = mO(n*) + O(n®) = O(n’m) + O(n®).

10

Chapter 3

Harvey’s algorithm

This chapter presents the probabilistic algorithm proposed by Harvey [6] that finds a
perfect matching in general graphs with time complexity O(n®).

3.1 Algorithm

The main bottleneck in the previous algorithm was the need to update the entire
inverse matrix at each step. Harvey’s algorithm addresses this limitation by employing a
divide-and-conquer strategy combined with lazy updates. After each recursive step, only
the necessary portions of the inverse matrix are updated. As a result, Harvey’s algorithm
has a time complexity of O(n®).

For a graph G and n = [V(G)|, the algorithm maintains two matrices, T and N, that
are initialized as

1. T := a Tutte matrix where the entries were randomly chosen, see Section 2.1.1;
2. N =T

It relies on two recursive functions: DELETEEDGESCROSSING and DELETEEDGESWITHIN.

3.1.1 DivipelInTwo

D1viDEINTWO(A) is a function that divides a set A in two parts, R and S, such that
RUuS=A,RnS =@and |R| - |S| < 1. This function has time complexity O(n) and can
be implemented through integer indexing the set.

3.1.2 DELETEEDGESCROSSING

DELETEEDGESCROSSING(R, S): receives two disjoint sets of vertices R and S and deletes
inessential edges with an end in R and the other in S. The following invariant must be
preserved:

« DELETEEDGESCROSSING(R, S): initially has N[RUS,Ru S| = T"'[RuU S,R U S] and
this property is restored after each call of DELETEEDGESCROSSING(R;, S;).

11

12

3.1 | ALGORITHM

To maintain this invariant the following updates are done.

Theorem 3.1.1 (Update 1'). Let R, S be two disjoint sets of vertices such that IR| =S| = 1.
Let N :=T7',r € Rands € S. If{r, s} is inessential, let T be the Tutte matrix of G without

edgers, then one has
T71 = r,s/(l + Tr,sNr,s)

and
T, =]Vs,r/(l + Tr,sNr,s) = _Trjsl‘

S,r

Proof. Let RS := RU S andlet A := TRS,RS — Trs.rs- By Corollary 1.2.4, one has:

TR_S{RS = NRS,RS - NRS,RS(I + AI\IRS,RS)_IA]\]RS,RS

-1

1+ T, sN, s 0

= Ngs,rs — Ngsrs 0 1+ T, N, ANgs s by (2.1)
1/(1+ T, ,N, 0

= Ngsrs — Ngsrs [/ 0 oNes) 1/(1+ T, Nr,s)] ANgs rs

_ N + O Nr,sTs,rNr)s/(l + TF,SNV,S)

TR TN TN, /A + TN,) 0

_ 0 N.o/(1 + T, sN.s) O

B N‘)‘,I’/(l + Tr,sM,s) 0 '

Theorem 3.1.2 (Update 2). Let R, S be two disjoint set of vertices. Let T be T after removing
some (possibly zero) edges from G with an end in R; and another in S;. Let N :=T™" and
A :=T—T. Then

T7'[RUS,RUS] = Ngusrus — Nrus.rus;(I + ANgus; us;)~ ANRus) rus-

Proof. Direct from Corollary 1.2.4. Update the whole matrix with 1.2.4 and select only the
desired submatrix. O

We have the following algorithm.

! This update is different from the one in Harvey [6].

3.1 | ALGORITHM

Program 3.1 Harvey’s algorithm: DELETEEDGESCROSSING

1 FUNCTION DELETEEDGESCROSSING(R, S) © R and S are disjoint sets of vertices.
2 if |[R| = 0 or |S| = 0 then return ©> There are no edges.
3
4 if |[R| = 1 and |S| = 1 then © There is at most one edge.
5 Letr inR
6 Letsin$S
7 if T,; # 0 and N, ; = —1/T, s then ©> Corollary 2.3.2.
8 Nys < N.s/(1 +T,sN,5) > Theorem 3.1.1.
9 Ni, < =N,

10 REMOVEEDGE(T, rs)

11 return

12

13 RS «<RUS

14 Ri, R; <« D1viDeINTwWO(R)

15 51, Sy < D1vIDEINTWO(S)

16 for iin {1, 2} do

17 for jin {1, 2} do

18 T/, N’ «<T,N > Save current T and N states

19 DELETEEDGESCROSSING(R;,)

20 A <T[RUS;,RUS;]-T'[R;US;,R; US|]

21 Ngsrs < Nis s = Nis pus; (I + ANgus, rus))” ANgus,rs > Theorem 3.1.2.

Time complexity

Let f(r,s) be the running time for DELETEEDGESCROSSING(R, S) when |R| = r and || = s.

Let n = r + s. The base cases are O(1). Otherwise, a line-by-line analysis:

Dividing in half (Lines 14 and 15): Takes O(n) time;
Saving the states (Line 18): Takes O(n?) time;
Recursive call (Line 19): Recurrence is f(r/2,s/2);
Delta (Line 20): Matrix subtraction is O(n?);

Update submatrix (Line 21): Takes O(n®).

G W

Combining these steps, we have

f(r,s) = 0(1) + O(1) + O(n®) + 4(0(n®) + f(r/2,s/2) + O(n°))
= 40(n*) + 4f(r/2,s/2) + 40(n®)
=4f(r/2,s/2) +40(n®).

Now, applying the master theorem [13, Theorem 4.1] for recursions, i.e.
T(n) = aT(n/b) + f(n).

In this case, T(n) = t(r,s),a = 4, b = 2 and f(n) = O(n), then if v > log,a = 2 the
complexity is dominated by O(n®). From Section 1.3, the best currently known matrix

13

14

3.1 | ALGORITHM

multiplication algorithm has w > 2. Thus, the complexity is dominated by O(n”) and

(3.1) f(r,s) =4f(r/2,s/2) + 40(n”) = 80(n”) = O(n®).

3.1.3 DELETEEDGESWITHIN

DELETEEDGESWITHIN: receives a set of vertices S and deletes inessential edges that
have both ends in S. The following invariant must be preserved:

 DELETEEDGESWITHIN(S): initially has NS, S] = T7'[S, S] and this property is re-
stored after each call of DELETEEDGESWITHIN and DELETEEDGESCROSSING.

To maintain this invariant the following update is done.

Theorem 3.1.3 (Update 3). Let S C Vg, let T be T after removing some (possibly zero) edges
from G with both ends in S. Then, let N :=T ' and A :=T —T, one has

Ts_,s} = NS,S — NS,Si(I + ANS,-,Si)_lANSi,&

Proof. Direct from Corollary 1.2.4. Update the whole matrix using 1.2.4 and select only
the desired submatrix. O

We have the following algorithm.

Program 3.2 Harvey’s algorithm: DELETEEDGESWITHIN

FUNCTION DELETEEDGESWITHIN(S)
if |§ = 1 return

1

2

3

4 51,52 « D1vipeINTwo(S, 2)

5 for iin {1, 2} do

6 T/ N’ «<T,N © Save current T and N states.

7 DELETEEDGESWITHIN(S;)

8 A <Tss — TS/i,Si

9 Nss <N’ = Ngs (I +AN{) "'AN{ g ©> Theorem 3.1.3.
10 DELETEEDGESCROSSING(S1, So)

Time complexity

Let g(n) be the running time of DELETEEDGESWITHIN(S) when |S| = n. The base case is
direct. Then, through a line-by-line analysis we have

DivideInTwo (Line 4): Takes O(n) times;

Saving the states (Line 6): Takes O(n?) time;
Recursive call (Line 7): Takes g(n/2) time;

Delta (Line 8): Takes O(n?);

Update 3 (Line 9): Takes O(n®) time;
DeleteEdgesCrossing (Line 10): Takes f(n/2,n/2).

A e

15

3.1 | ALGORITHM

Now, combining these steps:
g(n) = O(n) +220(n*) + g(n/2) + O(n®)) + f(n/2,n/2)

= 0(n) + 2(20(n*) + g(n/2) + O(n®)) + O(n®) by (3.1)
=2g(n/2) +30(n®).

Similarly to (3.1), we have

(3.2) g(n) =2g(n/2) +30(n”) = O(n®).

3.1.4 PERFECTMATCHING

PERFECTMATCHING: Receives a graph G and finds a perfect matching, or returns @ if
one does not exist. It creates a Tutte Matrix of G with random entries. Note that calling
DeLETEEDGESWITHIN(V(G)) is equivalent to deleting every inessential edge from G. Thus,
after this call, the graph only has essential edges, i.e. edges from the perfect matching.
Consequently, there is the following implementation:

Program 3.3 Harvey’s algorithm: PERFECT MATCHING

1 FUNCTION PERFECTMATCHING(G)

2 T « TurTEMATRIX(G)

3 if Tis singular then return @ ©> The graph has no perfect matching.
4 N «T!

5 DELETEEDGESWITHIN(V)

6 return E(T)

Time complexity

Let T(n) be the running time of PERFECTMATCHING(G) when |[V| = n. A line-by-line
comparison:

Building a TutteMatrix (Line 2): Takes O(n?) time;

Checking if a matrix is singular (Line 3): Takes O(n®) time;
Calculating a matrix inverse (Line 4): Takes O(n®) time;
DeleteEdgesWithin (Line 5): From (3.2), takes g(n) = O(n®) time;
Returning the matching (Line 6): Takes O(n?) time.

M S

Combining these steps, we have:

(3.3) T(n) = O0(n*) + O(n®) + O(n®) + O(n®) + O(n?) = O(n®).

3.2 | EXPERIMENTAL ANALYSIS

Probability of failure

Let § be the probability of failure. From Lemma 2.1.4, deciding if an edge can be deleted
fails with probability n/q where q is the size of the field. Since there are ('21) edges, then

5 < (Z)n/q <n’/q.

Correctness

To prove the algorithm’s correctness, it suffices that for every edge uv € E(G), when
evaluating whether uv can be removed (using Corollary 2.3.2), one has N,, = T,;!. This
equality is guaranteed by the invariants. Since the updates ensure that the invariants are
maintained throughout the algorithm, we can conclude that the edge removal decisions
are correct.

3.2 Experimental Analysis

This section compares Harvey’s algorithm with two perfect matching algorithms:

1. The rank-two algorithm described in Section 2.3;
2. An implementation of the Edmonds-Blossom algorithm made by Delfino [3].

The naive algorithm was not compared due to its poor performance. For reference, its
performance is at least 100 times slower than the Rank-two algorithm in all cases.

3.2.1 Methodology

The implementations were evaluated using randomly generated graph instances created
with the Erd6s-Rényi model. For each vertex count, 10 test graphs were generated, varying
the probability of edge creation between each pair of vertices. Each test case number
corresponded to a specific probability of edge creation between vertex pairs, as defined in
Table 3.1. A verification system was implemented to validate the correctness of all outputs.

Test number | Probability
0.10
0.20
0.25
0.50
0.50
0.50
0.75
0.75
0.75
1.00

—

O 0 1 N U1 N

—_
[e)

Table 3.1: Edge creation probability for each Perfect Matching test case number.

16

3.2 | EXPERIMENTAL ANALYSIS

Each of the 50 test cases was executed 50 times to account for machine performance
variability, resulting in 2,500 total executions.

Hardware specifications

The benchmark was executed in a computer with the following specifications:

CPU | Intel(R) Core(TM) i7-9750H
RAM 32GB

Algorithms tested

The fast matrix multiplication algorithm was not implemented since its threshold
is too high for application purposes. Instead the trivial O(n*) algorithm was used, thus
the tested algorithms have the following time complexities, where n is the number of
vertices and m is the number of edges.

Algorithm Time complexity
Rank-two algorithm O(n*m + n®)
Harvey’s algorithm o(n®)

Edmonds-Blossom algorithm O(n*m)

3.2.2 Results

In Figure 3.1 provides an overview of the algorithms performance throughout all test
cases. Even though the Edmonds-Blossom worst-case time complexity is theoretically
worse than Harvey’s algorithm, when m > n (which is true for all test cases with n =
200), it demonstrates superior performance in all cases. Nonetheless, Harvey’s algorithm
outperforms the Rank-two algorithm for bigger graphs demonstrating a considerable
improvement.

A more detailed case by case analysis follows. In Figure 3.2, the Rank-two algorithm
outperforms Harvey’s algorithm with small n, likely due to its lower constant factor.

However, as the test sizes increase, Harvey’s algorithm shows progressive improvement
relative to the Rank-two algorithm. This trend becomes evident in Figure 3.3, where the
performance gap narrows significantly; And, for the complete graph (e.g. the last test case),
the Rank-two algorithm is outperformed by Harvey’s algorithm.

In Figure 3.4, Harvey’s algorithm ultimately achieves better overall performance than
the Rank-two algorithm. Notably the Rank-two algorithm exhibits significant performance
variability, which can be attributed to its update frequency being directly tied to the
number of edges removed from the graph. In contrast, Harvey’s algorithm maintains
consistent performance by executing a fixed number of updates, independent of the edge
count. This behavior makes Harvey’s algorithm more predictable in terms of execution
time, particularly for larger graphs.

3.2 | EXPERIMENTAL ANALYSIS

Perfect Matching benchmark across all test cases

7000

6000 1

5000 4

4000 1

3000 4

Average Time (ms)

20004

1000

Algorithms.
® Blossom
® Harvey

@ RankTwo

Figure 3.1: Perfect Matching benchmark with all test cases where the input number represents the
number of vertices.

Average Time for 10 Vertices Average Time for 20 Vertices

Average Time (ms)

Algorithms
= Blossom 35 N
\ - Harvey N
m— RankTwo

Average Time (ms)

Agorithms.
= slossom
- Harvey
= RankTwo

Test Cases

Test Cases

Figure 3.2: Perfect Matching benchmark with 10 and 20 vertices.

Average Time for 100 Vertices

Average Time for 200 Vertices

Average Time (ms)

Algorithms 7000 Agorithms
= Blossom y = glossom
Harvey K - Harvey
= RankTwo e = RankTwo

6000

5000

Average Time (ms)

2000

1000

2
Test Cases Test Cases

Figure 3.4: Perfect Matching benchmark with 100 vertices and 200 vertices.

18

3.2 | EXPERIMENTAL ANALYSIS

Average Time for 50 Vertices

359

Algorithms
B Blossom
EEE Harvey

Average Time (ms)

Test Cases

Figure 3.3: Perfect Matching benchmark with 50 vertices.

19

Chapter 4

Extension to Maximum Matching

This chapter shows how to extend the perfect matching algorithms to solve the max-
imum matching problem.

4.1 Maximum Matching algorithm

The extension to maximum matching is based on the following theorem.

Theorem 4.1.1 (Lovasz and Plummer [9]). Let G be a graph and let T be the Tutte Matrix
of G. Then, rank(T;) = 2v(G).

Proof. See Rabin and Vazirani [11, p. 560]. O]

According to Theorem 4.1.1, the number of unmatched vertices can be directly com-
puted as:

[V(G)| — rank(T).

To address these unmatched vertices, we can construct an augmented graph by introducing
new vertices connected to all existing vertices. Specifically, for each unmatched vertex in
the original graph, we add a new vertex with connections to every vertex in the original
graph. This transformation ensures that every previously unmatched vertex now has an
adjacent vertex, thus ensuring the existence of a perfect matching.

20

4.2 | EXPERIMENTAL ANALYSIS

Program 4.1 Maximum Matching algorithm

1 FUNCTION MAXIMUMMATCHING(G)
2 T < TutTEMATRIX(G) © Tutte matrix of G with random values.
3 G <G
4 for i < 0;i<|V(G)] - RANK(G); i «i+1
5 U <« new vertex
6 V(G) < V(G)u{w}
7 for u € V(G) do
8 E(G") « E(G) U {uv}
9 M’ « PERFECTMATCHING(G')
10 M <@
11 for uv € M’ do
12 if u € E(G) and v € V(G) then > If this edge exists in the original graph.
13 M «— M u {uv}
14 return M

Time complexity

Let t(G) be the total running time of MAXIMUMMATCHING(G) and f(G) be the running
time of PERFECTMATCHING(G). Then, we have

« Augmented Graph creation (Lines 4 to 10): The algorithm identifies unmatched
vertices and adds corresponding new vertices. Since there are at most n unmatched
vertices and each new vertex connects to n vertices, this phase requires O(n?) time;

« Perfect Matching in the augmented graph (Line 11): The augmented graph
has at most 2n vertices. By Equation (3.3), this step has a time complexity f(G’) =
O((2n)*) = 0(2°n”) = O(n);

« Maximum Matching recovery (Lines 13 to 17): Checking whether a vertex
belongs to the original graph can be implemented in O(1) time by using integer
indexing. The overall complexity for this verification across all vertices is O(n).

Combining these steps, the total time complexity is:

(4.1) t(G) = O(n®) + f(G") + O(n*) = O(n®) + O(n®) + O(n*) = O(n®).

4.2 Experimental Analysis

This section compares Harvey’s algorithm with two maximum matching algorithms:

1. The rank-two algorithm described in Section 2.3;
2. A Edmonds-Blossom algorithm implementation made by Delfino [3].

The naive algorithm was not compared due to its poor performance. As a reference, its
performance is at least 100 times slower than the Rank-two algorithm in all cases.

21

22

4.2 | EXPERIMENTAL ANALYSIS

4.2.1 Methodology

The implementations were evaluated using randomly generated graph instances cre-
ated with the Erdos-Rényi model. To establish upper bounds on the matching number, the
generated graphs were constrained to include odd components. For example, if the desired
matching number was k, then at least n/2 — k odd components were contained in the gen-
erated graph. For each vertex count, 10 test graphs were generated, varying the probability
of edge creation between each pair of vertices. Each test case number corresponded to a
specific probability of edge creation between vertex pairs, as defined in the Table 4.1. A
verification system was implemented to validate the correctness of all outputs.

Test number | Probability
0.10
0.20
0.25
0.50
0.50
0.50
0.75
0.75
0.75
1.00

—

O 00 N N U W

—_
(]

Table 4.1: Edge creation probability for each Maximum Matching test case number.

Each of the 100 test cases was executed 50 times to account for machine performance
variability, resulting in 5,000 total executions.

Hardware specifications

The benchmark was executed in a computer with the following specifications:

CPU | Intel(R) Core(TM) i7-9750H
RAM 32GB

Algorithms tested

The fast matrix multiplication algorithm was not implemented since its threshold is
too high for application purposes. Instead the trivial O(n*) algorithms were implemented,
thus the tested algorithms have the following time complexities, where n is the number
of vertices and m is the number of edges.

Algorithm Time complexity
Rank-two algorithm O(n’m + n®)
Harvey’s algorithm o(n?)

Edmonds-Blossom algorithm O(n*m)

4.2 | EXPERIMENTAL ANALYSIS

4.2.2 Results

Figure Figure 4.1 illustrates the algorithmic performance across test cases, where the
first input number represents the number of vertices and the second represents the upper
bound on the matching number. The Edmonds-Blossom algorithm demonstrated superior
performance compared to the alternative approaches.

Maximum Matching benchmark across all test cases

Agorithms
o Blossom kd
o~

o Harvey
17500 ® RankTwo o './

15000
12500
i

10000

Average Time (ms)

g
g

o a_see
el ks
/i

5000 /
/ i

pos |

2500 !
Peovoseses 4 /

, \
09 900000 e)
e R ettt

SRR RS
e L e P P PO P P e (ot Lo oo oo,

Input

Figure 4.1: Maximum Matching benchmark with all test cases.

Similarly to the perfect matching algorithm, in small graphs (Figure 4.2) the Rank-two
algorithm outperforms the Harvey’s algorithm.

Average Time for 10 Vertices with Matching Number <= 2 Average Time for 20 Vertices with Matching Number <= 5

- Algorithms
T = lossom
= Harvey

\ = RankTwo 2

Algorithms
= slossom
- Harvey
= RankTwo

Average Time (ms)
Average Time (ms)

Test Cases Test Cases

Figure 4.2: Maximum matching benchmark with smaller graphs.

In Figure 4.3, the impact of matching number on algorithm performance becomes
evident through the augmented graph. The left plot shows both algorithms maintaining
stable, similar performance, likely due to the augmented graph’s almost doubling the
number of vertices. Conversely, the right plot exhibits behavior reminiscent of the perfect
matching algorithm, attributed to fewer added vertices in the augmented graph.

24

4.2 | EXPERIMENTAL ANALYSIS

Average Time for 50 Vertices with Matching Number <= 10 Average Time for 50 Vertices with Matching Number <= 20

Algorithms.
120 . = Blossom

120 . - Harvey
= RankTwo

E w0 g
e S
E 13
£ 5
S 5
g g
H H
w©
20 Algorithms
= Blossom
- Harvey
=== RankTwo

Test Cases

Test Cases

Figure 4.3: Maximum matching benchmark with 50 vertices.

In Figure 4.4 and Figure 4.5, Harvey’s algorithm outperforms the Rank-two algo-
rithm. The performance trend observed in Figure 4.3 recurs: as the graph’s matching

number increases, algorithm performance varies significantly due to augmented graph
characteristics.

Average Time for 100 Vertices with Matching Number <= 10

Average Time for 100 Vertices with Matching Number <= 50
Algorithms.
T = Harvey //
2000 400 | = RankTwo Vi
0 o
= £
T Algorithms .
E == Blossom E
5 = rarvey 5
g = RankTwo 2
§ 1000 § 200
2 2
500 100
o o
o 2 6 8 10
Test Cases Test Cases
Figure 4.4: Maximum matching benchmark with 100 vertices.
Average Time for 200 Vertices with Matching Number <= 50 Average Time for 200 Vertices with Matching Number <= 100
Algorithms 7000 Agorithms
= Blossom = lossom ,
17500 | mmm Harvey - Harvey S
s RankTwo mm RankTwo 4
4 12500 =
B £
. :
E E
= 10000 I3
-3 &
g g
: :
2 7500 z
o0
0

Test Cases Test Cases

Figure 4.5: Maximum matching benchmark with 200 vertices.

Chapter 5

Conclusion

In this paper, we implemented the randomized maximum matching algorithm intro-
duced by Harvey [6]. The algorithm’s approach leverages algebraic graph theory, contrast-
ing with traditional methods like the Edmonds-Blossom [4] algorithm. While Harvey’s
algorithm achieves a superior theoretical time complexity of O(n®) (where n represents
the number of vertices and w is the matrix multiplication exponent), our implementation
analysis in Section 3.2.2 and Section 4.2.2 reveals significant practical limitations. The
high constant factor in the complexity makes the algorithm less efficient for smaller
graphs. Theoretically, a performance threshold exists where this approach surpasses the
Edmonds-Blossom algorithm, but this threshold was neither found nor tested.

Nonetheless, when considering the implementation aspects, Harvey’s algorithm offers

notable advantages. Setting aside the mathematical foundations behind the updates (e.g.

Theorem 3.1.1), the algorithm provides a significantly more intuitive and straightforward
implementation compared to the Edmonds-Blossom algorithm. This simplicity makes it
particularly valuable for applications involving larger graphs or scenarios where absolute
computational efficiency is not the primary concern.

25

26

References

[1] J. Alman et al. More Asymmetry Yields Faster Matrix Multiplication.
2024. arXiv: 2404 .16349 (cit. on p. 5).

[2] D. Coppersmith and S. Winograd. “Matrix multiplication via arithmetic
progressions”. In: Journal of Symbolic Computation 9.3 (1990). Computational
algebraic complexity editorial, pp. 251-280. 1SsN: 0747-7171 (cit. on p. 5).

[3] G. Delfino. Emparelhamento em grafos: Algoritmos e
aplicagoes. 2017 (cit. on pp. 16, 21).

[4] J.Edmonds. “Paths, Trees, and Flowers”. In: Canadian Journal of
Mathematics 17 (1965), pp. 449-467 (cit. on pp. 1, 25).

[5] C.D. Godsil. Algebraic Combinatorics. Chapman & Hall, 1993 (cit. on p. 6).

[6] N.J. A.Harvey. “Algebraic Algorithms for Matching and Matroid Problems”. In:
SIAM Journal on Computing 39.2 (2009), pp. 679-702 (cit. on pp. 1, 4, 11, 12, 25).

[7] O.H. Ibarra, S. Moran, and R. Hui. “A generalization of the fast LUP
matrix decomposition algorithm and applications”. In: Journal of
Algorithms 3.1 (1982), pp. 45-56. 1ssN: 0196-6774 (cit. on p. 5).

[8] L.Lovasz. “On determinants, matchings and random algorithms”.

In: vol. 79. Jan. 1979, pp. 565-574 (cit. on p. 7).
[9] L.Lovasz and M. D. Plummer. Matching Theory. Annals of Discrete
Mathematics. North Holland, 1986. 1sBN: 9780080872322 (cit. on p. 20).
[10] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995 (cit. on p. 7).
[11] M. O. Rabin and V. V. Vazirani. “Maximum matchings in general
graphs through randomization”. In: Journal of Algorithms 10.4
(1989), pp. 557-567. 1SsN: 0196-6774 (cit. on pp. 1, 20).
[12] V. Strassen. “Gaussian elimination is not optimal”. In: Numer. Math.
(Heidelb.) 13.4 (Aug. 1969), pp. 354-356 (cit. on p. 5).
[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms,
Third Edition. 3rd. The MIT Press, 2009. 1sBN: 0262033844 (cit. on pp. 5, 13).
[14] W. T. Tutte. “The Factorization of Linear Graphs”. In: Journal of the London

Mathematical Society s1-22.2 (1947), pp. 107-111 (cit. on p. 6).

https://arxiv.org/abs/2404.16349

	Introduction
	Preliminaries
	Graph theory
	Linear algebra
	Matrix Algorithms

	Perfect matchings
	Tutte Matrix
	Probabilistic representation of a Tutte Matrix

	Naive algorithm
	Rank-two update algorithm

	Harvey's algorithm
	Algorithm
	DivideInTwo
	DeleteEdgesCrossing
	DeleteEdgesWithin
	PerfectMatching

	Experimental Analysis
	Methodology
	Results

	Extension to Maximum Matching
	Maximum Matching algorithm
	Experimental Analysis
	Methodology
	Results

	Conclusion
	References

