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Abstract—Development teams for mobile applications can
receive thousands of user reviews daily. At the same time, these
developers use different communication channels, such as the
GitHub issue tracker. Although GitHub issues are accessible and
manageable for developers, their content often differs starkly
from what users write in app reviews. Issues may lack steps to
reproduce bugs or insights that justify the priority of new feature
requests. The sheer volume of user reviews for a popular app,
combined with their heterogeneity and varying quality, makes
manual integration into issue trackers unfeasible.

We present an approach that automatically augments GitHub
issues with informative user reviews to bridge the gap between
user feedback and developer-managed issues. Using a state-of-
the-art large language model (LLM), our approach automatically
retrieves user reviews with high semantic textual similarity
(STS) to the issue content and suggests reviews that augment
developers’ understanding of the issue. In this paper, we present
large-scale quantitative and qualitative analyses to assess the
feasibility of enriching development workflows with user-written
information. Using over 37,000 issues and 750,000 reviews from
19 popular Free/Libre/Open Source Software (FLOSS) mobile
applications, our approach augments 3,017 (8%) issues with 7,287
(1%) potentially informative reviews. In addition to providing
insights into user-reported bugs and feature requests, the infor-
mation from these matches points toward a novel and promising
way to leverage user reviews for concerted app evolution.

Index Terms—Semantic Textual Similarity, User Feedback
Mining, GitHub Issues, Information Retrieval, Software Reposi-
tory Mining
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With over 1.5 million apps,1 the Google Play Store is not
only home to software products but also a repository for
millions of user reviews posted daily. Previous works have
explored classifying, understanding, and using these reviews to
support app development [5], [24], [26], but the sheer volume
of reviews presents both a curse and a blessing to software
engineers. The abundant user input constitutes a potential
source of valuable insights rarely elicited by the experience
of a single user. These insights might never be found in a
pool of millions of messages, reviews, and comments.

To enhance the information available to developers with the
users’ perspective, some teams openly expose users to their
backlogs by integrating service desks into their workflows.2

Other teams encourage users to file inquiries directly in their
issue trackers [10], often with a high technical entry barrier.

1https://www.appbrain.com/stats/number-of-android-apps
2https://docs.gitlab.com/user/project/service desk/

These solutions ignore the immense volume of reviews
that users willingly and collectively provide for popular apps.
Consequently, these reviews remain overlooked in app stores.

The potential of user review integration in development
workflows is still largely untapped, but before developers can
use the contents of such reviews in actionable ways, two
problems need to be addressed. First, valuable information
might be hidden among mountains of irrelevant noise [24],
[37]. Second, there is a disconnect between the language
of users in reviews and the one developers use to write
issues in trackers [14], [40]. Making informative reviews
promptly available to developers allows to augment issues with
additional details. For example, for a bug-fixing task, reviews
might provide information for a specific software and hardware
configuration [32], [40]. Similarly, a feature request [12] could
benefit from insights directly from the intended audience.

We propose a novel approach that leverages the growing
potential of dense vector embeddings for information re-
trieval [16], [22] to automatically augment issues with related
reviews on a large scale. Our approach extracts all potential
connections between issues and reviews by computing seman-
tic textual similarity (STS) [2] based on the distance between
their dense vector embeddings, obtained using a state-of-the-
art Large Language Model (LLM) [34].

We evaluated our approach on a diverse dataset to un-
derstand how STS-based retrieval can be tailored to support
software maintenance and evolution. Based on the DATAR
dataset [1], we analyzed 19 Free/Libre/Open Source Software
(FLOSS) mobile apps from different categories (e.g., tools,
games, media players), each with over 10,000 reviews and
100 issues.

Additionally, we performed a qualitative analysis with two
objectives: (i) To determine whether high similarity scores
correspond to reviews highly pertinent to an issue and (ii) to
investigate whether the highest similarity matches contain
valuable information to augment the corresponding issues. A
case study with the Brave browser Android app illustrates how
informative matches can complement both bug reports and
feature requests.

Our approach excels at identifying related user reviews,
achieving a precision of 88% for matches above a threshold
of 85% of similarity. One in every three issues is matched
with reviews deemed informative. Our analyses confirm the
feasibility of supporting software maintenance tasks by auto-
matically augmenting issues with informative reviews.

https://www.appbrain.com/stats/number-of-android-apps
https://docs.gitlab.com/user/project/service_desk/


II. BACKGROUND AND MOTIVATION

The potential of augmenting issues with information from
user reviews relies on the assumption that user reviews contain
information useful for the development process. While man-
ageable for small apps, manually reading and filtering user
reviews can be unprofitable or simply unfeasible for teams
maintaining apps receiving thousands of them weekly. In a
survey by van Oordt and Guzman [37], 83% of practitioners
reported analyzing user feedback manually, and 70% of the
study participants agreed that analyzing feedback is a time-
consuming task. We aim to automate the retrieval part by
selecting the relevant reviews among the others.

Part of the complexity of analyzing user reviews comes from
their varying quality. Not all user reviews contain valuable
information for the developers. Previous works have found
that only around 33% of user reviews can be of immediate
value to development teams [24], and that only around 35%
of them contain meaningful information [5]. Hence, the design
of an automatic retrieval approach must take into account the
different grades of usefulness any review might have.

A. Related, Pertinent, and Informative Reviews

We propose three classes, depicted in Figure 1, to charac-
terize the relationship between an issue and a review.

Related

InformativePertinent

Fig. 1. Euler diagram with the review classes we propose.

We define reviews as related if they pertain to one of
the topics mentioned in the issue. For instance, considering
an issue about the authentication mechanism of an app, any
review describing actions such as signing up, logging in, or
logging out is related.

In practice it is common to find issues at a narrow and
well defined intersection of different topics. Accordingly, we
define reviews as pertinent if they are closely related to all
the topics mentioned in an issue. For example, an issue about
the occurrence of a crash when a user interacts with any text
field would be related to reviews commenting on problems
occurring after interacting with a text field after a fresh install.
As shown in Figure 1, any pertinent review is also related to
the same issue.

Different developers perceive the relatedness between issues
and reviews with varying strength. To partially mitigate the
subjective measure of pertinence as the strength of perceived
relatedness, we prefer the use of relevance for a partial overlap
of a broader topic and pertinence when a narrower focus is
present in both reviews and issues.

Finally, we define informative reviews as those related to an
issue and containing meaningful information absent from the
issue title and description. We hypothesize that the majority
of the informative reviews are also pertinent to the issue, we
verify this hypothesis in Section V. However, a partly related
but not pertinent review can still be informative, containing
details that developers could abstract into useful insights. Not
only is it common to find user reviews with incomplete infor-
mation [37], [40], but developers might also gain unexpected
insights while reading reviews on related topics. For example,
two crashes happening for different actions might have a
common root cause in the same malfunctioning user interface
component.

Ultimately, the new insights present in informative reviews
can augment the issue and support developers to tackle and
resolve it. Consequently, any approach that intends to
augment issues must be capable of automatically retrieving
potentially informative reviews. While there is no quanti-
tative metric to how informative a review is, we argue that
pertinence itself is a metric of semantic similarity and that a
high pertinence is a necessary condition for being informative.
As such, we obtain informative reviews by retrieving those
highly pertinent to the issue, by leveraging text embeddings.

B. Related Work

While our approach uses text embeddings to bring to light
the insights present in informative reviews, previous works
have explored eliciting insights from the distribution of large
amounts of user comments into categories and topics. There
are methods to aggregate reviews of similar usefulness for
the developers [17], [26], [33]. Others cluster reviews by the
mentioned topics, supporting the identification of recurring
trends among large sets of reviews [5], [9], [24], [28], [30].

In particular, Chen et al. [5] proposed AR-MINER, which
clusters reviews about the same topic, filtering and ranking
reviews by how “informative” they are. While our definition
of informative consists of reviews that augment issues with
new information, Chen et al. use the same term to characterize
reviews that might simply contain actionable information, with
no links to any issue in particular.

Panichella et al. [27] presented AR-DOC, which classifies
app reviews using feature extraction and sentiment analysis.
Similarly, Scalabrino et al. [30] proposed CLAP, a tool that
suggests possible emergent user insights through fine-grained
review clustering. Wang et al. [39] advance the study on
app review clustering using their BERT+Attr-CRF approach,
which leverages advanced deep learning techniques and the
BERT model [7] for feature extraction.

Previous work has also explored different techniques that
augment development issues, for example by analyzing and
supporting issue comprehension [8], [10], [12]. Hooimeijer
and Weimer [13] and Zimmerman et al. [40] investigated the
characteristics that assist the comprehension and resolution of
bug reports. Other works studied how artifacts such as issue
links [19] and tags [31] reflect themselves on how a project
is developed.



Li et al. [20] analyzed the impact of issue templates, and
Kuramoto et al. [18] studied whether visual elements (images,
videos) influence how long developers take to close an issue.

Palomba et al. [25] proposed CRISTAL, an approach
matching reviews, pre-filtered as informative, with issues and
commits. Their approach identifies links using the dates of
reviews and issues and the asymmetric Dice similarity coef-
ficient [3] on their texts. However, using dates to filter out
relevant issues can hide valuable insights on recurring bugs
and requests, which our approach can capture.

Recent work has started exploring how text embeddings
might support software maintenance. Haering et al. [11] pro-
posed the DEEPMATCHER approach that, although restricted
to using only issue titles and pre-filtered bug reports, was
the first to bring the use of text embeddings to look for
links between app reviews and bug reports. DEEPMATCHER
identifies related reviews and issues describing a problem only
using the embeddings of the nouns found in the review. Our
approach, in comparison, uses a unified embedding for each
review and issue, is unrestricted on user feedback type, and
focuses on identifying informative reviews.

Also using text embeddings for matching bug reports and
app reviews, Tang et al. proposed BUGRMSYS to support col-
laborative bug finding [35]. Under the premise that apps of the
same category often suffer from common bugs, BUGRMSYS
uses text embeddings to search for resolved bug reports from
similar apps with high similarity to reviews from a target app.

Other authors studied the potential of text embeddings for
identifying related artifacts in different contexts. Liu et al. [21]
used text embeddings to identify links between app reviews
and app release notes. Meanwhile, Tizard et al. [36] used
the embeddings generated by the Universal Sentence Encoder
(USE) [4] model to identify links between forum posts, issue
tracker entries, Frequently Asked Questions (FAQs), and other
documentation sources.

It is still unclear how embeddings-based artifact retrieval can
be affected by factors such as the project size or the target au-
dience. Similarly, no previous study has investigated whether
STS can be used to retrieve reviews that are sufficiently related
to an issue while still containing new and valuable information
it might lack. Our work investigates whether highly pertinent
reviews are as informative as those partially pertinent. We
analyze if there is any tendency of highly pertinent reviews
to be informative more frequently. In this case, an approach
identifying highly pertinent reviews could provide a reliable
automation for retrieving the informative ones.

Text Embeddings: The recent popularization and ensuing
evolution of Large Language Models (LLMs) have fostered
the use of a new mathematical representation for the semantic
value of words and sentences: Dense vector embeddings,
popularly known as text embeddings.

Domain analysis and topic modeling techniques have been
widely used to identify reviews that pertain or relate to one
another [5], [9], [30]. Vector representations such as Term
Frequency-Inverse Document Frequency (TF-IDF) [29] were
used to quantify the similarity between app reviews [33].

However, these techniques fail to account for semantically
equivalent expressions (synonyms) [16], which, paired with the
language gap between the vocabulary used by users and that
of developers [14], [40], constitutes a challenge to bridging
texts produced by the two groups.

The mathematical representations internally used by LLMs
have recently become an attractive alternative for supporting
natural language processing tasks with heavy emphasis on
semantics [11], [36]. As LLMs encode their inputs, each
text fragment is embedded into a dense vector composed of
hundreds to thousands of floating-point values.

The dense vector embeddings adequately store semantic
values, so that words or fragments with similar meanings are
encoded onto neighboring vectors [15], [16]. As such, the
proximity between embeddings can be used to quantify, with
a value ranging from 0 to 1, the Semantic Textual Similarity
(STS) between words, sentences, or documents [22].

Following the popularization of the self-attention mecha-
nism [38] and of bidirectional encoders, such as BERT [7],
the text embeddings computed by LLMs have become a
straightforward and reliable means of manipulating semantic
information. Models implementing both mechanisms compute
contextualized embeddings. After an embedding is computed
for each token (text fragment), the attention mechanism up-
dates the embeddings using the values of surrounding input
tokens, imbuing the embedding of each token with the context
in which it appears. Contextualized embeddings overcome the
barriers of synonyms and word sense ambiguity [16].

III. RETRIEVING PERTINENT USER REVIEWS

In Figure 2, we show an overview of our approach to iden-
tify pertinent reviews and augment GitHub issues. We estimate
the Semantic Textual Similarity (STS) between app reviews
and software repository issues via their text embeddings.

The first step is to collect all the project issues from the
issue tracking system of the repository, in this case GitHub
Issues. We filter issues based on parameters such as labels
and tags (e.g., consider issues on AndroidOS in case of multi-
OS repositories). We gather titles and bodies and perform a
textual cleaning step (e.g., removing said tags when used for
filtering). We remove markdown syntax elements, including
attachments and typesetting marks (e.g., bold, italics). Besides
shortening the content for the embedding context, this step
reduces spurious semantic similarities due to recurring patterns
in the markdown syntax. In parallel, we gather all English
written reviews from the app page on the Google Play Store.

Next, we concatenate issue title and body in a single
text and compute the text embedding of every review and
issue using a specialized encoder, which computes a sin-
gle embedding for every document. For our implementation
we referred to the MTEB benchmark3 [22] and chose the
jina-embeddings-v3 [34] model, a multi-lingual model
based on XLM-RoBERTa [6].

3https://huggingface.co/spaces/mteb/leaderboard legacy

https://huggingface.co/spaces/mteb/leaderboard_legacy


Issues

Issue

Cleaning 

Reviews

Compute 

Embeddings

Compute 

Matches

Pertinent

Reviews

Augmented

Issues

Fig. 2. Approach Overview.

At the time of the study, the model appeared in the
MTEB benchmark as the second highest ranked model in
the English written datasets of the STS task. We chose
jina-embeddings-v3 instead of the highest ranked model
(bilingual-embedding-large4) because of its longer
context length, capable of embedding issue bodies or even
whole discussions with up to 8,194 tokens, and due to its
multi-lingual capabilities, not being restricted to English or
French, to explore potential benefits for the different languages
used by users and developers.

The time taken to compute all embeddings grows signif-
icantly with the project popularity (number of reviews) and
development history (issues), so we store them in a vector
database, where each document is indexed by its embedding.
The database supports efficient lookups of similar embeddings
when given a metric to compute similarity. For every issue, we
obtain highly pertinent reviews by retrieving the five reviews
with the highest cosine similarity to the issue.

Ideally, the retrieved reviews are presented to the developer
tackling the chosen issue, along with data such as app ver-
sion and review publication date. In a completely automated
context, the approach could include the potentially informative
reviews directly on the GitHub issue description or discussion.
Then, the developer could also use the reviews to understand
and solve the issue at hand.

IV. RESEARCH DESIGN AND EMPIRICAL EVALUATION

As informative reviews can only augment issues they are
related to, a mechanism that fails to identify related reviews
cannot be used to augment issues automatically. Similarly,
if highly pertinent reviews are rarely informative, then a
mechanism that reliably retrieves pertinent matches will also
fail at automatically augmenting issues.

Our approach relies on two assumptions: STS can be used
to retrieve pertinent reviews, and highly pertinent reviews are
informative. To validate the feasibility of our approach, we
derive the two research questions that guide our empirical
evaluation:

RQ1: What is the relationship between the similarity score
and the frequency of pertinent matches?

RQ2: How often are highly pertinent reviews also infor-
mative?

4https://huggingface.co/Lajavaness/bilingual-embedding-large

Our evaluation aims to identify where reviews with high
STS lie on the Euler diagram from Figure 1. Moreover, part
of our analysis investigates how the classes shown in the
diagram interact and intersect one another. We analyze these
questions on a varied sample to test if they apply to apps of
different categories, project sizes, and popularity. Additionally,
we are also interested in observing how these factors impact
the approach results.

A. Data Collection

We start from a set of popular apps with openly available
issue trackers. While there are alternative app repositories
exclusively dedicated to FLOSS apps, such as F-Droid,5 they
rarely support user reviews. Moreover, these alternative app
repositories commonly lack popular FLOSS apps present on
the Google Play Store.6

Since there is no category or filter on the Google Play Store
for retrieving FLOSS apps, we start from lists of FLOSS
Android apps using a dataset published by Abedini et al.,
DATAR [1]. The dataset contains over 1,300 apps, including
the GitHub repository identifier, Android package name, and
number of Play Store reviews of each app.

While DATAR includes apps from hundreds to millions of
users, our approach is designed to support the maintenance
of apps with a high volume of incoming user feedback.
Therefore, we progressively filter the dataset entries until we
obtain a small collection of large enough apps.

We filter based on the number of reviews. To exclude
apps with a low influx of user comments, we chose to filter
only apps with at least 10,000 English-written reviews. Since
the DATAR dataset includes the number of reviews on all
languages, we had to collect each app’s reviews to obtain those
written in English.7 We obtained a potential sample of 21 apps.

We collected open and closed GitHub issues from the
remaining apps and excluded two projects with fewer than
100 issues, resulting in a final dataset of 19 projects (Table I).

After having obtained the dataset of apps for our analyses,
we removed issues written in languages other than English.

5https://f-droid.org/
6https://gitlab.com/fdroid/fdroiddata/
7To conservatively account for the possible outdatedness of the DATAR

statistics, we screened all the apps (193) with at least 100 user reviews
worldwide according to DATAR, some of which we found to have an effective
number of reviews one order of magnitude higher than the reported one [1].

https://huggingface.co/Lajavaness/bilingual-embedding-large
https://f-droid.org/
https://gitlab.com/fdroid/fdroiddata/


TABLE I
DESCRIPTIVE STATISTICS OF THE APPS IN THE ANALYZED DATASET.

App Category Reviews Issues Commits Contributors

A1 DuckDuckGo Private Browser Tools 235,741 664 5,308 92
A2 PPSSPP - PSP emulator Games 104,652 331 42,309 397
A3 Quran for Android Books 69,637 1,052 4,629 71
A4 Sky Map Reference 45,683 228 666 35
A5 Barcode Scanner Tools 41,555 1,201 3,823 129
A6 Kodi Video Players 41,109 189 67,628 899
A7 WordPress - Website Builder Productivity 31,424 8,758 96,786 214
A8 Proton VPN: Private, Secure Tools 27,904 122 3,279 19
A9 lichess • Free Online Chess Games 20,125 2,017 6,965 78
A10 K-9 Mail Communication 17,204 4,769 15,178 410
A11 AnkiDroid Flashcards Education 16,961 8,101 20,262 465
A12 SMS Backup+ 8 Tools 16,309 874 1,788 53
A13 Shattered Pixel Dungeon Games 14,362 1,882 8,036 2
A14 Loop Habit Tracker Productivity 13,093 700 2,535 64
A15 Olauncher. AF Launcher Personalization 12,317 427 890 26
A16 Mindustry Games 12,177 1,189 18,698 655
A17 AntennaPod Music & Audio 11,695 4,215 9,036 298
A18 Bitwarden Password Manager Productivity 10,618 974 3,998 38
A19 Sabbath School & PM Books 10,109 114 2.102 8

As a consequence of the predominance of English in technical
issues, this restriction had a weak impact on the size of our
dataset: Out of the 54,957 issues, only 713 (1.3%) had titles
written in languages other than English.

A manual inspection of the GitHub repositories from the
19 projects revealed that four of them were shared for targets
other than Android. Based on information from the issue
templates and labels, we were able to identify 16.437 issues
that only affected desktop or IOS users. The 19 selected
apps comprise a total of 37,807 issues and 752,675 reviews,
all of which are shared in our replication package.9 Table I
shows the apps we used for the evaluation, along with their
number of issues, commits, contributors, reviews, and category
as reported from the Google Play Store. It is worth noting
that our dataset includes apps from 10 different categories, as
well as three different orders of magnitude in the number of
commits and contributors. Representing 1.5% of the projects
from the original DATAR dataset, our sample is specific to
the app popularity that we sought to encompass. Our sample
is diverse [23] enough to favor reflections on how the approach
may generalize to other projects of similar popularity.

B. Study Methodology
Both RQ1 and RQ2 involve quantitative and qualitative

aspects. Our large sample offers our quantitative analysis
insights on how the STS computed by the approach may
change from project to project. Subjective aspects such as how
pertinent or informative a review is require manual qualitative
analysis: Our study consists of two different parts.

First, we applied the approach to the 19 apps from our
dataset, storing the five reviews with higher STS for every
issue. Our replication package includes all 189,035 review
suggestions and the computed STS value.

8SMS Backup+ is currently unavailable on Google Play and F-Droid as its
maintainers adapt to the loss of a core maintainer.

9https://figshare.com/s/4d65282d72bb47c22ec3

Then, we conducted a qualitative analysis over the suggested
reviews. Following RQ1 and RQ2, our analysis must first
assess, for every issue in the sample, whether each suggested
review is related, pertinent, and informative.

At an average of 2 minutes per issue, an estimate found with
a preliminary pilot experiment, reviewing all 189k matches
suggested for the dataset would take over 2,520 hours. Instead,
we adopt a statistically significant sample of randomly selected
issues. Our sample includes 400 issues and grants our analyses
a confidence level of 95% with a margin of error of less than
5%. We preserved the proportion of issues per project constant
between the original population and our sample.

A survey presents the reviews found for each issue to two
different respondents, the first author and 1 of 10 external
participants, comprising 7 mobile application developers and
3 software engineering researchers. Every external participant
was given a stratified sample of 40 issues. After reading the
title, description, and timeline of an issue, the respondents read
the five user reviews with highest STS to the issue. For every
review registered as related, the respondents checked whether
the issue is informative and chose a value on a 5-point rating
scale to indicate its pertinence to the issue.

We consider as informative only the reviews that were
marked as informative by both respondents. A single perti-
nence score is attributed to each review by the arithmetic mean
of the pertinence scores of the respondents that reviewed it. If
the respondent marked the review as unrelated, this score is
0. Otherwise, it corresponds to the pertinence value between
1 and 5 as chosen by the respondent.

The pertinence score provides a rough gauge to how in-
tensely a review pertains to a related issue. We expect a notable
number of minor disagreements between respondents as each
subconsciously develops their own criteria. A review with a
pertinence score of 5 for one might be only scored a 4 from
another.

https://figshare.com/s/4d65282d72bb47c22ec3


Fig. 3. Distribution of STS values for the matches of different projects.

Scores given on opposite ends of the pertinence scale,
however, indicate a major difference between the participants’
opinions, as a highly pertinent review to one might become a
slightly pertinent review to another.

We observed disagreements on whether some reviews were
highly or slightly pertinent and, simultaneously, whether they
were informative. For these cases, one of the other authors
served as a third respondent. Each review with such dis-
agreements was considered informative if 2 out of the 3
respondents marked it as informative. The pertinence score
for the conflicted reviews corresponds to the mean of the 2
closest pertinence values given, which necessarily fit the same
side of the 5 point rating scale.

V. EVALUATION RESULTS

Despite the inherent subjectivity of the perception of per-
tinence, the respondents disagreed on no more than 2 points
on the pertinence scale for 78.9% of all the 2,000 reviews.
Similarly, they agreed on whether the reviews were informative
or not in 85.9% of the cases. Only 83 (4.2%) reviews had
substantial disagreements and were reviewed thrice.

After the third review for disagreements, 69 (3.5%) reviews
were marked as informative by two respondents in 56 issues
(14.0%), but a total of 282 (14.1%) reviews were marked as
informative by at least one respondent. Although our analyses
consider only the reviews marked as informative twice, the
number of informative reviews could be up to four times larger.

After pondering the factors that may influence the distribu-
tion of similarity values, we use the results of our quantitative
and qualitative analyses to answer our two research questions.

A. Overall Metrics

Figure 4 depicts the histogram for the similarity values of all
matches, including every issue and review from our dataset.

We note its close resemblance to the bell shape typical of
normally distributed variables.

Fig. 4. Histogram of similarity scores on matches from our dataset.

The normality of the similarity values is confirmed with
a statistic of 0.999 on the Shapiro-Wilk test. Although the
similarity value could, in theory, range from 0 to 100%,
the mean of the similarity distribution for the top-5 matches
was not centered on the interval middle point. The matches
suggested by the approach have a mean similarity of 70.5%
and a standard deviation of 6.4% similarity.

We analyzed tendencies of the similarity distribution in each
project and characteristics such as the number of commits,
contributors, issues, and app reviews. Figure 3 contains the
similarity distribution for the 19 apps in our dataset, ordered
by decreasing number of app reviews from left to right. While
the variance of the similarity values appears to differ from
project to project, most projects have a similar mean.



We used our extensive dataset to investigate the relationships
between issue and review length and the similarity values
computed by our approach. We observed the top matches, re-
vealing no significant correlation between the length of issues
or reviews and the similarity values of the matches. Similarly,
no correlation was found between the similarity scores and the
differences in length between issues and reviews. This lack of
meaningful correlation suggests that the STS computed for
these artifacts does not exhibit a clear tendency to increase or
decrease as the length of the reviews and issues varies.

When analyzing our dataset for correlations with the project
mean similarity values, most variables exhibit very weak
correlation. These include the number of reviews (0.18),
commits (0.13), and contributors (-0.19). All accounting for
small Pearson correlation coefficients.

The only significant correlation we have identified is be-
tween the mean similarity value for an app and its number
of issues (0.57). The number of projects in our sample is
sufficient to identify a tendency for those with more issues
to have a higher average similarity for their suggestions.

The standard deviation of the project similarities is strongly
correlated with two other project variables: The number of
contributors (-0.72) and the mean issue length (-0.67). Projects
with more contributors or longer issues tend to have more
predictable similarity values for their matches.

Overall Metrics: Key Results

R1 The similarity of the top-5 highest matches follows a
normal distribution with mean of 70.5% similarity.

R2 Issue and review length appear to have little to no
effect on increasing or decreasing the STS values.

R3 Projects with more issues tend to have a higher mean
similarity for their matches.

R4 The variance of the similarities tends to decrease for
projects with more contributors or longer issues.

B. RQ1: What is the relationship between the similarity score
and the frequency of pertinent matches?

With a 0.478 Pearson correlation coefficient, we identify
a moderate positive correlation between match similarity and
the pertinence perceived by the participants. We proceed to
analyze how many reviews were considered highly pertinent,
with a score of 4 or 5 by both respondents, on different levels
of similarity. If we consider intervals of 5% (0.05) similarity,
we obtain the values depicted in Figure 5.

Beyond the moderate correlation between the pertinence
score and the review similarity, we observe that reviews with
high similarity are more frequently considered pertinent by the
participants. Specifically, only 9% of reviews with a similarity
score between 65% and 70% were highly pertinent. However,
the percentage of pertinent matches rises exponentially with
higher similarity values, increasing from 20% to 89% between
75% and 90% similarity.

Fig. 5. Percentage of highly pertinent reviews across similarity.

RQ1: Key Results

R5 There is a moderate (0.478) correlation between the
similarity value and the match pertinence scores.

R6 The percentage of pertinent reviews grows significantly
with increases in similarity.

C. RQ2: How often are highly pertinent reviews also infor-
mative?

We observe a clear tendency for highly pertinent reviews
to be informative more often than slightly pertinent ones, as
shown in Figure 6.

Fig. 6. Percentage of informative reviews across pertinence scores.

Only 2.3% of reviews with a pertinence score of 3 were
marked as informative, with respect to the 25% of reviews
with the highest pertinence score. The percentage of informa-
tive reviews is directly proportional to the pertinence score
assigned by the respondents.

A similar phenomenon is observed on the similarity values
computed by the approach for informative and non-informative
reviews: We found that reviews marked as informative had a
higher average similarity than those not marked as informative.



Over 75% of non-informative reviews had less than
75% similarity to the corresponding issue, while 75% of
informative reviews had at least 71% similarity to the issue.
The short overlap between the two classes suggests the
feasibility of using a similarity threshold to differentiate
between them.

RQ2: Key Results

R7 Highly pertinent matches are significantly more fre-
quently informative than low pertinence matches.

R8 Informative reviews tend to have higher similarity to
the issue than non-informative ones.

VI. INFORMATIVE REVIEWS IN PRACTICE

Although our empirical evaluation has demonstrated that
our approach can retrieve informative reviews, it has not
assessed how these reviews complement the information in the
matched issues. To validate whether reviews with informative
matches can augment the information present in an issue, we
manually reviewed the highest similarity matches for a single
project. We chose to conduct this separate case study with a
project not included in the DATAR dataset to further test the
generalizability of our approach. We chose the Brave browser
Android app,10 a popular FLOSS application with more than
100 million downloads on the Google Play Store.11

We collected all the GitHub issues of the app (9,800)
and 184,000 reviews written in English, and computed
the text embeddings of every review and issue using the
jina-embeddings-v3 model [34]. We observed the
matches found for the 100 issues with the highest top-1 sim-
ilarity. Sorting matches by decreasing similarity, we included
the first 100 unique issues matched.

We present two examples with their top-3 scoring matching
reviews to show that they are not only pertinent but also infor-
mative, as they add meaningful information for the developers.

A. A Prematurely Closed Bug Report

In Figure 7, we show the matches for issue #29130.12 This
bug report describes the repeating occurrences of crashes after
the users tap a search bar.

The top three matches are pertinent to the issue, as they
all mention the browser crashing after interacting with search
bars. The author of the oldest matching review mentions that
the problem also happens for other text input fields, not only
search bars. This information is missing from the issue text
and discussion, hinting at a potentially latent related bug.
Considering that the issue was closed 14 months after it
was opened, for being stale, the temporal distribution of the
matching reviews is interesting.

10https://github.com/brave/brave-browser
11https://play.google.com/store/apps/details?id=com.brave.browser
12https://github.com/brave/brave-browser/issues/29130

Continous crashing while using search bar ... [#29130]

  - Use google as default search engine in settings
  - perform any search on brave
  - try clicking search bar of google.com search engine to change the query
  - immefiately [Ed.: original typo] brave will crash

[...] I'm searching things 
and images, but 
sometimes (almost 
everytime) I click on 
some search bars etc 
and my Brave shuts 
down [...]

I'm facing a big issue, the 
app crashs 4 times out of 
10 whenever i click on a 
search bar in any 
website, it's a very 
terrible experience for 
me. [...] 

[...] I uninstalled and 
reinstalled the browser 
and the problem still 
persists. Whenever I hit 
the text box on search or 
anything, the browser 
force closes. [...]

01/240.837 03/240.873 08/240.835

Created on 03/23 Closed on 05/24

03/23 09/23 03/24 09/24

Issue Lifetime

Fig. 7. Issue #29130 (bug report). Lifetime and top-3 relevant reviews.

The first review appears 10 months after the issue was
opened, yet the occurrence of crashes for other text input
fields is missing in the issue contents and discussion. The
second review in order of time, and highest ranking, reports
the problem 3 weeks before the issue was closed. The third
match found by our approach reports the occurrence of crashes
related to search bars 4 months after the issue was closed, also
mentioning searching images as causing crashes. The user tried
uninstalling and reinstalling the app, thus implying having the
most up-to-date version, letting the developers infer that the
bug is still present in the current version, at least for some
hardware, software, and OS configurations.

B. A Frequently Requested Feature

In Figure 8, we show the issue #25863.13 This contains a
feature implementation proposal for the option to toggle on or
off the behavior of opening links with external apps (actually, a
feature already present in Brave for the iOS operating system).

All top-scoring relevant reviews revolve around the expected
behavior for opening links in external apps, the core topic of
the issue. Each review brings a new insight into how or why
the developers should implement the feature.

The oldest matching review proves that the feature has been
desired for more than 10 months before the issue was opened.
The second one brings a concern about the configurability of
the default external apps and a misconfiguration, overriding
global phone settings. Finally, the most recent review asks
for a possible change in the behavior of the feature after
the developers have already implemented it, questioning the
default value chosen for the feature. The matched reviews
come from different moments in time, all outside the lifetime
of the issue, each one providing useful information to inform
and affect the development process and decisions.

13https://github.com/brave/brave-browser/issues/25863

https://github.com/brave/brave-browser
https://play.google.com/store/apps/details?id=com.brave.browser
https://github.com/brave/brave-browser/issues/29130
https://github.com/brave/brave-browser/issues/25863


[...] Enable "Allow app 
links to open in apps 
outside of Brave" They 
should enable that 
option by default, it also 
confused me [...]

[...] there's no option to 
change what app to open 
links with. Changing it 
from the phone's settings 
does not override brave's 
in built, forced settings.

Could you please add a 
toggle on/off feature like 
in Firefox to prevent 
websites from opening 
apps (Open Links in App)?
[...]

01/220.803 02/220.809 08/230.874

01/22 07/22 01/23 07/23

Add setting for blocking Android app links  [#25863]

iOS already has a setting to allow block universal links from opening in 
external apps. We should bring over this feature to Android. universal 
links are called app links on Android. [...] 

Created on 10/22 Closed on 06/23

Issue Lifetime

Fig. 8. Issue #25863 (feature request). Lifetime and top-3 relevant reviews.

VII. DISCUSSION

Overall, our findings seem to confirm the potential and
generality of our approach. The results of our quantitative
analysis (R1, R2, R3, R4) hint at how the approach results may
differ for apps based on their popularity and size.

The normal distribution of the similarity values (R1) pro-
vides predictable results of the number of matches filtered
when thresholding based on similarity, and allows practical
comparisons with other normally distributed variables. The
repeating pattern for the similarity distribution of our projects,
as seen in Figure 3, illustrates how little difference there is
between projects of same popularity.

Although our sample of apps did not identify any correlation
between the number of reviews of an app and the mean
similarity value for its matches, we presume this correlation
could still exist, much like is the case for apps with more
issues (R3). Possibly, an even larger sample including apps
with hundreds or millions of reviews could help highlighting
this tendency.

The increased similarity variance for projects with longer
issues (R4), coupled with the absence of a notable correlation
between issue or review length and similarity values (R2),
indicates that the embeddings from the model used might be
sensitive and unstable for long issues. Intricate issue templates
or long stack traces seem to impact the reliability of the
embeddings produced, consequently affecting the STS values.
Future improvements of the approach should tackle this hurdle
by removing meaningless or generic information from issue
descriptions prior to the embedding process.

Our qualitative analysis, supported by the evaluation of our
survey respondents, was essential to answering RQ1 and RQ2.
Its positive results consolidate the feasibility of using STS
to augment issues with informative reviews. Following the
assumptions that based our research questions, RQ1 results
(R5 and R6) attest that the STS based on text embeddings
can be used to filter pertinent reviews.

Comparing the number of suggestions considered related to
that found by Haering et al. [11], our approach offered re-
lated suggestions more frequently. Suggesting three candidate
bug reports for each user comment, Haering et al.’s DEEP-
MATCHER offered 167 related suggestions out of 600 (27.8%).
Considering exclusively the first three reviews our approach
suggests for each issue, we identified 520 related suggestions
out of the 1200 (43.3%) top-three reviews with highest similar-
ity to each issue. While this may be due to the model we chose
being more capable, it is fair to note that the previous authors
experimented with a smaller sample of issues and reviews, and
included only bug reports on their evaluation.

Similarly to previous work, such as [11], our findings
support the assumption that STS values tend to be higher
for pertinent user reviews. However, our results go one step
further by quantifying the relation between higher similarity
and higher perceived relatedness (pertinence).

The results for RQ2 (R7) prove these highly pertinent
reviews are more likely to contain informative matches,
thus validating our approach. In particular, the finding that
informative matches tend to have higher similarity values (R8)
justifies a key aspect of our approach: The addition of a
minimum similarity threshold for the matches suggested to any
given issue. The existence of such a threshold dramatically
reduces the number of low pertinence reviews incorrectly
suggested to the developers. This, in turn, will increase the ap-
proach precision and improve its helpfulness when integrated
into development workflows. At the same time, this increase
in precision would allow to extract a subset of issues with
reliably pertinent and informative suggestions.

Filtering Suggestions By Similarity

Experimenting with possible values for the minimum simi-
larity threshold alongside the dataset annotated in our survey,
we can observe changes in how many informative reviews are
left in the approach top-5 matches.

Fig. 9. Precision, recall, and F1 score of varying minimum similarity
thresholds on the informative reviews of our annotated dataset.



In Figure 9, we show how different thresholds would impact
the approach precision, recall, and F1 score. Choosing a value
for the similarity threshold that maximizes the F1 score, we
pick 81.6% similarity, which corresponds to a F1 score of 0.2.
With our minimum similarity threshold candidate set at 81.6%,
we can use it to deepen our quantitative analysis on the full
set of 37,000 issues. Out of the over 750,000 reviews, 7,287
(1%) satisfy the threshold, which would pertain to 3,017 (8%)
different issues.

Back to the annotated subset of issues, our similarity
threshold would filter pertinent matches for 35 of the 400
issues, out of which 13 would include informative matches.
In other words, we expect the given similarity threshold to
augment over 37% of issues with pertinent matches.

We argue that augmenting 8% of issues with reviews
that have a high potential to be informative is an encour-
aging result. Choosing a lower similarity threshold would
severely reduce the precision of the approach in identifying
informative reviews, requiring further manual analysis by
developers and thus defeating its purpose of automatically aug-
menting GitHub issues. The recurring occurrence of internal
or excessively technical issue descriptions, coupled with the
rarity of useful user reviews, makes augmenting 8% of issues
with pertinent and potentially informative user reviews an
achievement that could merit a follow-up study with project
developers, which we will consider as future work.

Besides adequately filtering out the noise of thousands of
useless user reviews with praise or no actionable information
[24], our approach has overcome the language differences
between the technical writing of developer issues and users
reviews [14], [40]. We hypothesize that this could be a
consequence of our choice of a multi-lingual model.

The Brave case study shows that the highest-ranking
matches can bring new insights to support the developers’
comprehension of the context of an issue. The most pertinent
matches to a bug report often include additional information on
the context in which the bug manifests itself. Similarly, for new
feature requests, the most pertinent matches contain insights
on what might better suit the users interests and needs. This
case study also highlights the importance of presenting issues
and reviews with proper contextual information (e.g., dates on
a timeline) to ease and speed up assessing the usefulness and
insights provided by the suggested reviews. Ultimately, our
evaluation serves as a guide to future applications that might
use STS to support software evolution, and supports the as-
sumption that STS serves as a good basis for filtering highly
pertinent reviews and supporting development workflows
with user-written information.

VIII. THREATS TO VALIDITY

Construct Validity. Our results might differ from the
ones of using different LLMs for computing text embed-
dings. Although our implementation of the approach used
the jina-embeddings-v3 model [34], changing it for
other mechanisms could affect the mean, variance, and overall
distribution of the similarity values used for our analyses.

Internal Validity. The inherent subjectivity of pertinence
and informativeness constitutes the main threat to our analyses.
Factors such as the varying prior experience on software
development and the lack of prior knowledge about the
projects analyzed reflect on the number of disagreements
of our survey. To mitigate this threat, we measured review
pertinence following practices of previous works that also
measured text relatedness to decrease the influence of biases
and external factors on the pertinence value chosen by the
respondents. Our choice of a 6-valued pertinence score follows
the interface typically adopted by annotations and experiments
that capture human-rated text relatedness [2]. Similarly, our
choice of only considering informative the reviews that the
respondents agreed on reduces the influence of individual
biases.

As another consequence of the subjective measurement of
review pertinence and informativeness, our choice of a simi-
larity threshold done in Section VII could be affected by our
participants’ biases and how we chose to treat their disagree-
ments. To mitigate this threat in practice, the implementation
of our approach into a team’s development workflow should
automatically adjust the minimum threshold following the
developers feedback to the suggested matches.

The choice of issue templates adopted by the development
teams could also exert a non negligible influence on the STS
values. While, overall, longer templates could correspond with
more varied STS distributions, factors such as how strictly the
maintainers adhere to the template or what fields it contains
could influence the similarity values in a currently unexplored
manner. Our analysis circumvents this threat by evaluating
only broad tendencies from our complete set of projects.

External Validity As we have devised our approach as a
means to support the development of popular apps, how it
could generalize to apps with fewer reviews is out of scope of
the current study. However, the choice of restricting ourselves
to the DATAR dataset [1] could impact how our approach
generalizes to even more popular FLOSS projects.

The restriction of conducting our analysis on a set of
projects with openly accessible issue trackers could also have a
significant impact on generalizability, due to the fundamentally
different usage of issue trackers in closed-source software and
industrial environments.

IX. CONCLUSION

We presented a novel approach that augments the compre-
hension of issues by complementing them with information
from automatically identified pertinent reviews. Using the
embeddings produced by an LLM, our approach identifies
pertinent reviews with high semantic textual similarity.

Our quantitative and qualitative analyses demonstrate that
similarity-based retrieval can be used to identify highly perti-
nent reviews that have a high probability of being informative.
Coupled with the Brave case study, our evaluation shows
the potential of our approach at automatically augmenting
GitHub issues with information from user reviews, partially
overcoming technical and non-technical language differences.



Future extensions to our approach and evaluation will
explore how different embedding models and issue cleaning
techniques can impact the similarity values computed. It might
be relevant to investigate how the boilerplate used for some
types of issues (e.g., bug report templates) could be used
to extract the most important sections of each issue body.
Moreover, future studies should continue exploring how to
effectively present the insights from the user reviews in a
clear, automated, and informative manner to the developers,
magnifying the issue augmentation potential. For example, the
similarity values and dates involved play a significant role
in decoding and utilizing the information presented in the
matches suggested.

While our results demonstrate the generalizability of the ap-
proach for large and popular repositories – starting with those
containing tens of thousands of reviews – its straightforward
design provides a foundation for other mechanisms aimed
at supporting software maintenance. Ultimately, our study
sheds light on a promising approach to enriching development
workflows with timely and cost-effective insights derived from
the collective wisdom of millions of user reviews.

REPLICATION PACKAGE

Our replication package contains the issues, reviews, em-
beddings, and matches collected and computed by our im-
plementation of the approach for the 19 projects used in our
analyses. Additionally, the package contains all survey answers
produced for our qualitative analysis, along with the source
code used for our analyses. We also share the issues, reviews,
and matches we found for the Brave app case study.

The replication package is accessible at:
B https://figshare.com/s/4d65282d72bb47c22ec3
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