
University of São Paulo

Institute of Mathematics and Statistics

Bachelor of Computer Science

Offline RL: Approaching Reinforcement
Learning in a data-driven manner

Artur Magalhães Rodrigues dos Santos

Final Essay

mac 499 — Capstone Project

Supervisor: Prof. Dr. Denis Deratani Mauá

São Paulo

December 10, 2021

The content of this work is published under the CC BY 4.0
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

i

Acknowledgment

Pass on what you have learned.

— Master Yoda

I would like to thank every professor and colleagues that helped through my graduation.

Professors José Coelho, Nina Hirata, Carlos Ferreira and Elisabeti Kira for the thoughtful

conversations and discussions on the hallways of IME-USP. Professor Denis Maua, who

advised me on this work, for the opportunities and knowledge shared.

Also my friends who were always by my side on the good and the bad times, Andrew

Ijano Lopes, Pedro Almeida and Eduardo Laurentino. In the library, on IME-USP desks or

on C-block, they always provided help and support, and shared many cups of coffee.

Additionally, my beloved family, who always encouraged me to continue my studies

and not give up. And my sweetheart, Natalia Morita, who is always by my side, giving me

support and cheering for my accomplishments.

Resumo

Artur Magalhães Rodrigues dos Santos. Aprendizado por reforço offline: Abordando
Aprendizado por reforço orientado a dados. Monografia (Bacharelado). Instituto de

Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Este trabalho consiste em uma visão geral do Aprendizado por Reforço Offline, área de pesquisa que faz

parte de Aprendizado por Reforço. Abordamos técnicas modernas de Aprendizado por Reforço, que usam

apenas dados online, até algoritmos completamente offlines. Recentemente, a área tem ganhado atenção

devido ao seu uso de dados estáticos. Apresentaremos, discutiremos e compararemos os algoritmos de

Aprendizado por Reforço offline, fornecendo uma revisão da literatura para futuras discussões.

Palavras-chave: Aprendizado por reforço. Aprendizado por reforço offline. Aprendizado de Máquina.

Inteligência Artificial.

Abstract

Artur Magalhães Rodrigues dos Santos. Offline RL: Approaching Reinforcement
Learning in a data-driven manner. Capstone Project Report (Bachelor). Institute of

Mathematics and Statistics, University of São Paulo, São Paulo, 2021.

This work consists in an overview on Offline Reinforcement Learning, research area which is part of

Reinforcement Learning. We go through modern RL approaches, which only use online data, up to full

offline RL algorithms. Recently, the field has gained attention due to its usage of static data. We present,

discuss and compare the Offline RL algorithms, providing a literature review for future discussions.

Keywords: Offline Reinforcement Learning. Reinforcement Learning. Machine Learning. Artificial Intelli-

gence.

vii

List of abbreviations

RL Reinforcement Learning

IME Institute of Mathematics and Statistics

USP University of São Paulo

MC Monte Carlo

NLP Natural Language Processing

MDP Markov Decision Process

KL Kullback–Leibler divergence

DDPG Deep Deterministic Policy Gradient

List of symbols

𝜋 policy

𝜋𝜃 policy parametrized by a set of weights 𝜃

𝜋𝛽 behavior policy

𝐷 dataset

ix

Contents

1 Introduction 1

2 Preliminaries 5
2.1 The Reinforcement Learning problem . 6

2.2 On-policy and Off-policy . 7

2.3 Model-free and Model-based . 7

2.4 Recent research . 8

2.4.1 Q-learning . 8

2.4.2 Policy gradient . 9

2.4.3 Actor Critic . 10

2.4.4 DDPG . 12

3 Offline Reinforcement Learning 15
3.1 Definitions . 16

3.2 Model-free approach . 17

3.2.1 CQL . 18

3.2.2 AWAC . 20

3.3 Model-based approach . 23

3.3.1 MOPO . 24

3.3.2 MORel . 27

4 Conclusion 31

References 33

1

Chapter 1

Introduction

Reinforcement Learning, as defined by R.S. Sutton and Barto, 2018, is "learning what
to do—how to map situations to actions—so as to maximize a numerical reward signal". The

framework consists of an agent interacting with an environment and receiving some kind

of reward. The agent must discover and learn about the environment on its own, choosing

between the available actions. Basically, as described before, the RL framework contains:

an environment, an reward, actions and observations.

Generally, the environment is where the agent act upon. The agent, with its set of

available actions - which may vary depending on the problem been approached - decides

which one to choose, given what is has learned from those previous interactions. It collects

observations that describe what the environment looks like after taking an action (and

going to a new state), which them are used on the learning process.

The reward is one of the most important parts of the learning loop, due to its effect

on the agent behavior. It is the base metric to inform the agent if it has performed well

or badly given it took an specific action on the current state. An environment modeled

with rewards that don’t match the expected agent behavior may lead to the agent having

a poor performance. For example, rewarding a agent when it loses a match or a challenge

would incentivize it to do so, an odd scenario when we actually want it to perform better -

more score, goals etc.

This research area has grown over time, specially after the emergence of deep learning

techniques, which use deep neural networks for function approximation (Mnih et al.,
2015). Many works have established remarkable results in tasks which humans were

thought to be unbeatable, such as Go, Starcraft, and many more. Besides its applications

related to gaming , reinforcement learning is used in robotics (Levine, Finn, et al., 2016),

recommendation systems (Covington et al., 2016) and more.

Algorithms may vary between being on-policy and off-policy, which information

they use to estimate values - state-action pairs or just the state -, on how they balance

exploration and exploitation - which is chosen between acting greedily or allowing short

term losses for the sake of having new interactions - and many more.

Off-policy algorithms (we will discuss them on Chapter 2, section On-policy and

2

1 | INTRODUCTION

Off-policy), which act without following its target policy, can in theory use a collection

of transitions, stored in a dataset, to learn. But researchers show that empirically these

algorithms haven’t performed well (Kumar, Fu, et al., 2019). Given the restrictions imposed

by the fixed dataset, and without the ability to correct - by interacting with the environment

- sub-optimal behavior, off-policy algorithms have a degraded performance, as we will see

in Offline Reinforcement Learning.

Offline Reinforcement Learning, also known as Batch Reinforcement Learning

(Lange S., 2012), is a data-driven approach to the reinforcement learning problem setting.

Differently from the standard reinforcement learning framework, Offline RL makes use

of a fixed dataset containing observations of states, actions, and rewards, derived from

previous interactions, random interactions, human demonstrations, or demonstrations

from related tasks and an agent interacts with this data to gain knowledge on the task at

hand.

It basically removes the online interactions procedure, where the agent actively acts

on the environment to verify or assert its assumptions - was this a good state or action? -

and makes use of only what is contained on the dataset. One may find easier to think of it

as in the supervised learning approach, where we want to infer or predict values based on

a previously collected dataset.

In many real world problems, collecting new data can be cumbersome, both in terms

of cost and required labor. Some particular tasks require human labor to produce data,

and have limitations on experimentation time, like training self-driving cars (Sallab et al.,
2017) and robotic tasks (OpenAI et al., 2019). Also, some settings may require restrictions

on safety, such as healthcare applications (Gottesman et al., 2018), which testing with

patients may not be viable.

Offline Reinforcement Learning is notably interesting for approaching these scenarios.

Furthermore, other research areas, such as NLP (Chelba et al., 2014) and Computer Vision

(Deng et al., 2009), rely on models that were previously trained on huge datasets that are

refined for solving particular tasks. Hereupon, Offline RL relates to these other research

area and bring those ideas of using trained models and only refining them for different

tasks into RL.

The main challenges posed by Offline RL are mainly on how to use the data properly,

that is, learn from the dataset but being able to generalize the behavior outside the dataset.

In most cases, the dataset contains data that may be not reliable (partially complete

interactions, sub-optimal behavior), posing a more challenging situation to the learning

problem. We will discuss further how these problems emerge and are approached on

previous research.

Additionally, most Offline RL algorithms don’t obtain much improvement when learn-

ing from an offline dataset and fine-tuning with an online environment (Levine, Kumar,

et al., 2020, Nair et al., 2021). Problems related to fitting a behavior model, which is modeled

after the offline data and its imperfections, may occur due to the algorithms being over

conservative or optimistic. Thus, when the behavior model is inaccurate, it may become

too conservative or too optimistic over new data and it isn’t able to improve much over

online interactions on the environment, leading to poor improvements and slow learning

1 | INTRODUCTION

3

(Nair et al., 2021).

Some established works bridge this gap between Offline RL - which tends to be over

conservative but has advantages on data usage and collection - and RL - which is able

to learn on a online setting balancing exploration and exploitation on the interactions

it takes - combining these 2 approaches to accelerate the learning process. Others may

approach this problem being fully offline, only relying on what’s on the dataset. We will

discuss both of them in Offline Reinforcement Learning.

In our work, we will discuss and dive deep on Offline RL techniques in a broader

range, explaining the challenges and state-of-the-art approaches. We will walk through

the main differences between Online and Offline Reinforcement Learning, and why it is

an interesting topic and research area. We will give a quick overview on the fundamentals

of Reinforcement Learning and on some established algorithm architectures.

The objective is to provide students and researches a first step on understanding
Offline Reinforcement Learning, with both theoretical discussions and showing
some state-of-the-art algorithms.

5

Chapter 2

Preliminaries

Online Reinforcement Learning (R.S. Sutton and Barto, 2018), or just Reinforcement

Learning, is a learning framework where an agent interacts with an environment, looking

to maximize its expected future (discounted) reward, based on which actions and decisions

it took.

To exemplify this interactions, lets proceed with a simple example: a puppy discovering

the world around it. As it progresses through its life, it gets better on deciding what’s good

- maybe a crunchy snack - and what’s bad - eating the furniture around the house.

In the Reinforcement Learning framework, the agent is the puppy, the environment

is where it lives and runs around, it decides what to do by taking actions, and it learns a

good behavior by the "rewards" collected from its interaction with the environment.

Reinforcement Learning has achieved remarkable results, specially on the last couple

years, along with the advancements on Deep Learning (LeCun et al., 2015). The devel-

opment of new techniques and algorithms, capable of beating the best players on games

where humans thought to be the best (Silver et al., 2017), providing insights and solutions

to problems in biology, engineering, robotics, health, and many others, has shown the

potential of this research area.

The field of Deep Learning, which makes use of Deep Neural Networks, enabled the

construction of better agents, more skilled and perceptive on its surroundings. It also

leveraged using high dimensional data, such as images, on the Reinforcement Learning

process. Deep Neural Networks are fundamental piece on building better agents because

they are more robust on approximating functions than shallow networks (with few hidden

layers) (Mhaskar et al., 2017).

Although the Online Reinforcement Learning setting remains the same, with its classic

interaction loop, how the agent learns varies significantly across different techniques. An

agent may learn a value function, trying to quantify the quality of a state or state-action pair.

It may try to learn a policy directly, using policy gradient methods, or combining these 2

approaches, with Actor Critic methods. We will investigate them in Recent research.

Each one of them have differences on how they update its values, on following or

not its current behavior policy, and many more. Another difference worth mentioning is

6

2 | PRELIMINARIES

between techniques which are based on learning a model from the environment, through

a parametrized transition model, and those who are not. These are called model-based and

model-free methods, respectively. We will discuss their differences further, as they are also

important for our Offline Reinforcement Learning scenario.

2.1 The Reinforcement Learning problem

We will proceed defining the notation and necessary terms. Along this work, they will

be needed for understanding the learning process. This definition is broadly known, and it

follows Levine, Kumar, et al., 2020 and R.S. Sutton and Barto, 2018. The Reinforcement

Learning problem can be defined as a Markov Decision Process (MDP):

Given a set of states 𝑆 (state 𝑠 ∈ 𝑆), a set of actions 𝐴 (action 𝑎 ∈ 𝐴), a reward function

𝑟(𝑠, 𝑎) where 𝑟 ∶ 𝑆𝑥𝐴 −→ 𝑅, a scalar discount factor 𝛾 ∈ (0, 1] and a conditional probability

distribution 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) over a state 𝑠𝑡 and action 𝑎𝑡 , we define a Markov Decision Process

(MDP) as 𝑀 = (𝑆, 𝐴, 𝑝, 𝑟 , 𝛾). The case where we have a partially observable MDP is omitted,

but it follows in the same way.

To exemplify, you may think of some classic Gym (Brockman et al., 2016) environments.

Cartpole, an environment where a cart needs to balance a pole over a frictionless track has

a state 𝑠 defined as the cart’s position and velocity, and pole angle and angular velocity, a

tuple with 4 values. The actions are discrete, going left or right. The reward value is 1 for

every step - this promotes the agent’s behavior to balance the pole more timesteps.

With our MDP defined, our main goal is to learn a policy 𝜋 , more precisely, 𝜋(𝑎|𝑠) - it

tells us what action to take on a given state, that maximizes the cumulative discounted

return:

𝑉𝜋 (𝑠) = 𝐸𝑎∼𝜋 [

𝐻

∑

𝑡=0

𝛾
𝑡
𝑟(𝑠𝑡 , 𝑎𝑡)] (2.1)

Under policy 𝜋 when starting from a state 𝑠, where 𝐻 may be finite or infinite. This

defines our Value Function. Similarly, our cumulative discounted reward may also be

over a state-action pair, so we define it as:

𝑄𝜋 (𝑠, 𝑎) = 𝐸𝑎∼𝜋 [

𝐻

∑

𝑡=0

𝛾
𝑡
𝑟(𝑠𝑡 , 𝑎𝑡)] (2.2)

Defining our Action-value function, also known as Q-function.

Following Levine, Kumar, et al., 2020, we define the overall state visitation frequency

averaged over time steps 𝑑
𝜋
(𝑠) and 𝑑

𝜋

𝑡
(𝑠𝑡) the state visitation frequency at time step 𝑡 . The

notation related to Offline RL will be elaborated afterwards, on Definitions section.

2.2 | ON-POLICY AND OFF-POLICY

7

In other words, the traditional online problem consists of the iterative approach of

an agent interacting with the environment, performing an action on it, and collecting

what happened afterwards: what are the rewards? what’s my next state? Then, it can use

this information to learn - for example, estimating how good a state or state-action tuple

was - and perform better on a possible next decision. It reasons about what’s better to do

next.

We will see that the offline setting, although similar, differs in the interaction loop:

actually, there’s no interaction, and we are left only with a dataset 𝐷 of transition tuples.

We will investigate further on Offline Reinforcement Learning.

2.2 On-policy and Off-policy

As mentioned before, reinforcement learning methods may vary on how they update

their respective estimate of state (or state-action) values which changes the agent’s behavior.

For the difference between on-policy and off-policy, is important to recall what the agent’s

behavior policy is. It is the policy the agent uses to interact with the environment, or in

other words, the one it uses to choose actions over states.

On-policy approaches update its values based on the current behavior policy. The

agent interacts with the environment, choosing an action 𝑎𝑡 and getting to a new state 𝑠𝑡+1

with a reward 𝑟𝑡 , and uses them to update its current policy 𝜋 .

It improves on the same policy it is following, so the behavior policy is the same as the

policy used for taking actions. SARSA (R.S. Sutton and Barto, 2018), PPO (Schulman

et al., 2017) are examples of on-policy algorithms.

By contrast, off-policy methods don’t necessarily update its values based on current

behavior policy. This means a off-policy algorithm may collect data and only use it for

learning afterwards. Q-learning (Watkins and Dayan, 1992), DDPG (Lillicrap et al., 2019)

and SAC (Haarnoja et al., 2018) are examples of off-policy algorithms.

Generally, this data is stored on a replay buffer, a common data structure used to store

collected transitions (more about it on DDPG). Or it may improve over another policy,

which is the case of taking 𝑚𝑎𝑥 - greedy policy - on Q-learning (equation on Q-learning),

making it a off-policy method. As we will see, off-policy methods can indeed be used for

offline training, but have noticeable drawbacks (Kumar, Fu, et al., 2019).

It is important to delimit the difference between each of them as in the offline scenario

they have peculiarities and special considerations, due to their nature and how the Offline

RL problem is formulated. In the Offline Reinforcement Learning section we will investigate

them in more detail.

2.3 Model-free and Model-based

Another difference between Reinforcement Learning techniques is if they learn a model

of the environment or not. In the Reinforcement Learning setting, we don’t have all the

8

2 | PRELIMINARIES

information available for the MDP, specially the reward function 𝑅 and the transition

function 𝑇 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡).

Model-based methods try to model these functions, the environment dynamics. With

this learned model, it can make predictions on the expected next state and reward and query

the model. Dyna (Richard S. Sutton, 1990) is an example of model-based algorithm.

On the other hand, model-free methods don’t do so. They derive a policy by learning

from experience, without using predictions on the upcoming states and rewards, relying

on their own interaction with the environment. Q-learning (Watkins and Dayan, 1992) is

an example of model-free RL algorithms, as they rely on interacting and improving upon

it.

Model-based and model-free are not to be confused to using function approximators

or not. A reinforcement learning algorithm which uses neural networks for function

approximation, as we will see further, may be model-free or not.

In Offline Reinforcement Learning, we will discuss different approaches on offline

reinforcement learning with the perspective of model-free and model-based methods.

2.4 Recent research
We will now discuss about recent research on Reinforcement Learning, going through

Q-learning, policy gradient and Actor Critic concepts, and presenting Deep Deterministic

Policy Gradient (Lillicrap et al., 2019), an off-policy model-free reinforcement learning

algorithm.

2.4.1 Q-learning
Q-learning (Watkins and Dayan, 1992) is one of the most traditional reinforcement

learning methods. It consists of learning Q-values through a Q-function, a value function

based on state-action pairs, therefore, it is a value function method. Also, because it

doesn’t rely on modeling the environment transition function 𝑇 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡), it is a model-

free algorithm.

Given a policy 𝜋 , the classical Q-function consists of:

𝑄
𝜋
(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗ 𝐸𝑠𝑡+1∼𝑝(𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡),𝑎𝑡+1∼𝜋(𝑎𝑡+1 |𝑠𝑡+1)

[𝑄(𝑠𝑡+1, 𝑎𝑡+1)] (2.3)

In summary, it says that our state-action estimate, which is what helps our agent

to learn, is a result of the present reward 𝑟(𝑠𝑡 , 𝑎𝑡) and a expected discounted cumulative

sum of rewards following the possible next steps. It can be derived from the value based

function 𝑉 (𝑠) for a given state 𝑠 (R.S. Sutton and Barto, 2018).

Given that we want to maximize our return, for the update equation, we interpret the

expectation term as a 𝑚𝑎𝑥 over the future:

𝑄
𝜋
(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗ ∑(max

𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1)) (2.4)

2.4 | RECENT RESEARCH

9

And we update our estimates on state-action pair with the temporal difference update,

approaching 𝑄
∗
, the optimal Q-value for a given state-action pair:

𝑄
𝜋
(𝑠𝑡 , 𝑎𝑡) = 𝑄

𝜋
(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗ 𝑚𝑎𝑥(𝑄(𝑠𝑡+1, 𝑎𝑡+1)) − 𝑄(𝑠𝑡 , 𝑎𝑡)) (2.5)

For update in Equation 2.5, Q-learning is off-policy, as it uses the max function, and

not actually learning on the current policy it is following.

The Q-learning algorithm pseudocode is presented below:

Algorithm 1 Q-learning pseudocode

𝛼 ∈ (0, 1] and 𝜖 > 0

Initialize 𝑄(𝑠, 𝑎)

for episode e = 1, 2, ..., E do
for t = 0, 1, ... do

Choose action 𝑎 from 𝑠 using Q (e.g. 𝜖-greedy)

Take 𝑎 and get (𝑠
′
, 𝑟)

Update 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 max𝑎 𝑄(𝑠
′
, 𝑎) − 𝑄(𝑠, 𝑎))

𝑠 = 𝑠
′

end for
end for

2.4.2 Policy gradient
Policy gradient methods, introduced in Richard S Sutton et al., 2000, rely on the idea of

learning a policy 𝜋 directly, meaning we adjust the policy, now a parametrized function 𝜋𝜃 ,

according to the direction - gradient of the policy - that makes it better - results in higher

rewards. This direction is taken using the gradients regarding this policy, commonly, using

gradient ascent.

The objective function defined for policy gradient, opening the expectation term in

regard of 𝜋(𝑠|𝑎):

𝐽 (𝜃) = ∑

𝑠∈𝑆

𝑑
𝜋
(𝑠)𝑉

𝜋
(𝑠)

= ∑

𝑠∈𝑆

𝑑
𝜋
(𝑠)∑

𝑎∈𝐴

𝜋𝜃 (𝑎|𝑠)𝑄
𝜋
(𝑠, 𝑎)

Vanilla policy gradient, also know an REINFORCE (Monte Carlo Policy Gradient)

(Richard S Sutton et al., 2000), the most simple policy gradient estimation, first calculates

an estimate after timestep 𝑡 :

𝐺𝑡 =

∞

∑

𝑘=0

𝛾
𝑘
𝑅𝑡+𝑘+1 (2.6)

10

2 | PRELIMINARIES

And given that 𝑄 can be stated in terms of:

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝐸𝜋 [𝐺𝑡 |𝑠𝑡 , 𝑎𝑡] (2.7)

Thus calculates the gradient of the objective function, in terms of the expectation:

∇𝜃 𝐽 (𝜃) = 𝐸𝜋 [𝐺𝑡∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] (2.8)

Differently from value based RL, policy gradient methods don’t need to learn a value

function, which may be helpful, specially when modeling a complex value function is

expensive and cumbersome. One remarkable result from policy gradients is being able

to learn stochastic policies - probabilities over actions -, expanding on what kinds of

environments an agent is able to learn.

More recent methods also work efficiently with high dimensional and continuous

action spaces. Policy gradient methods rely on the Policy Gradient Theorem (Richard

Sutton et al., 2000) which states:

Theorem 2.4.1 (Policy Gradient Theorem). For any differentiable policy 𝜋𝜃 (𝑠, 𝑎), for any
policy objective function 𝐽 , the policy gradient is

∇𝜃 𝐽 (𝜃) = 𝐸𝜋 [∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝑄
𝜋𝜃
(𝑠, 𝑎)]

Nonetheless, when done naively, problems like converging to local optima and inef-

ficient policy evaluation, due to high variance, may arise. Even when collecting a full

trajectory before updating the policy weights, the difficulty of knowing which action

provided more reward and thus is better persists.

The vanilla policy gradient algorithm is presented below:

Algorithm 2 Vanilla Policy Gradient pseudocode

Policy parameters 𝜃

for t = 1, ..., T do
Collect 𝑠1, 𝑎1, 𝑠2, ..., 𝑠𝑇 , 𝑎𝑇

end for
for t = 1, 2, ..., T do

Estimate 𝐺𝑡 = ∑
∞

𝑘=0
𝛾
𝑘
𝑅𝑡+𝑘+1

Update 𝜃 = 𝜃 + 𝛼𝛾
𝑡
𝐺𝑡∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)

end for

2.4.3 Actor Critic
Constructing upon Policy Gradient, we reach Actor Critic methods. It introduces the

idea of a Critic to estimate the action-value function 𝑄𝑤 ∼ 𝑄
𝜋𝜃 (𝑠, 𝑎), one step further

from Policy Gradient methods as it also learns a explicit value function with a function

2.4 | RECENT RESEARCH

11

approximator. Thereby, it assists on the policy update, reducing the gradient variance

when comparing to a simple policy gradient algorithm.

Actor Critic methods rely on having 2 function approximators: one for the Actor, one

for the Critic. In recent research, they are usually implemented as Deep Neural Networks

(Lillicrap et al., 2019, Haarnoja et al., 2018).

As the name suggests, the Actor is responsible for taking actions based on a given

state 𝑠 and is modeled as 𝜋𝜃 (𝑎|𝑠). The Critic evaluates those states, solving the policy

evaluation problem. It is usually modeled as 𝑄𝜙(𝑎, 𝑠). It follows the approximate policy

gradient defined by:

∇𝜃 𝐽 (𝜃) ∼ 𝐸𝜋𝜃
[∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝑄𝜙(𝑠, 𝑎)] (2.9)

𝛿𝜃 = 𝛼∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝑄𝜙(𝑠, 𝑎) (2.10)

We saw that Policy Gradient can have high variance, specially for Vanilla Policy

Gradient, and Actor Critic handles it by using an advantage function, defined as:

𝐴
𝜋𝜃
(𝑠, 𝑎) = 𝑄

𝜋𝜃
(𝑠, 𝑎) − 𝑉

𝜋𝜃
(𝑠, 𝑎) (2.11)

The reasoning behind it is to measure how much better (more reward) than usual we

can be by taking a specific action. It is the difference between the state-action and state

value functions. It builds up on the idea of subtracting a baseline function 𝐵(𝑠) from the

policy gradient:

𝐸𝜋𝜃
[∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝐵(𝑠)] = ∑

𝑠∈𝑆

𝑑
𝜋𝜃
(𝑠)∑

𝑎

∇𝜃𝜋𝜃 (𝑠, 𝑎)𝐵(𝑠) (2.12)

= ∑

𝑠∈𝑆

𝑑
𝜋𝜃
𝐵(𝑠)∇𝜃 ∑

𝑎∈𝐴

𝜋𝜃 (𝑠, 𝑎)

= 0

The baseline function has the benefit of reducing variance without changing expecta-

tion. Recall that we don’t need to calculate both 𝑄 and 𝑉 because the temporal difference

error (as in Equation 2.11) is an unbiased estimate of the advantage function 𝐴 and can be

used to derive it.

The vanilla Actor Critic algorithm pseudocode is presented below:

12

2 | PRELIMINARIES

Algorithm 3 Vanilla Actor Critic pseudocode

Critic 𝑄𝜃 , Actor 𝜇𝜙

Replay buffer 𝐷

for t = 1, ..., T do
Get 𝑎𝑡 = 𝜇𝜙(𝑠𝑡)

Execute 𝑎𝑡 and collect transition (𝑠, 𝑎, 𝑠
′
, 𝑟)

Update (Actor) policy parameters 𝜙 = 𝜙 + 𝛼𝑄𝜃 (𝑠, 𝑎)∇𝜙 ln 𝜇𝜙(𝑎|𝑠)

Compute temporal difference error: 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄
′

𝜃
(𝑠𝑡+1, 𝜇

′

𝜙
(𝑠𝑡+1)) −

𝑄𝜃 (𝑠, 𝑎)

Update Critic: 𝜃 = 𝜃 + 𝛼𝛿𝑡∇𝜃𝑄𝜃 (𝑠, 𝑎)

end for

2.4.4 DDPG
A established Deep RL method, DDPG (Lillicrap et al., 2019) combines using Q-

learning along with policy gradients, as it is an Actor Critic method. It also derives some

concepts from DQN (Mnih et al., 2015), using replay buffers and target networks. It is an

off-policy and model-free algorithm. We will dive deep on it.

For Deep Deterministic Policy Gradient, the Actor network 𝜋𝜇(𝑎𝑡 |𝑠𝑡) receives the state

𝑠𝑡 as input and outputs an action 𝑎𝑡 . The Critic network 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡) receives both states and

actions (which the Actor outputs) and evaluates them with a Q-value as the output.

It seems straightforward to learn with these architecture, but it is necessary to recall

some important aspects on why DDPG works. The usage of replay buffers and target

networks, advancements elaborated on DQN paper, are essential contributions that stabilize

the learning process.

Basically, the replay buffer is a structure where transitions are stored and can be

queried by the agent afterwards. The target networks are function approximators and

their weights are copies of the weights of the Actor and the Critic after 𝑛 time steps.

Replay buffer

First, the replay buffer. It is used for taking random samples of observations (also called

transitions), which were collected by the agent, and it is applied during learning. At each

time step, a mini batch of transitions is collected and stored on the replay buffer, to be used

by the Actor and Critic. Its objective is to break temporal correlation between training

episodes.

If we used sequential transitions, we would introduce more variance on approximating

the Q-value. The temporal difference equation compounds over the introduced variance,

leading to poor performance. When the replay buffer is full, the oldest samples are discarded.

It can be compared to a cache from the agent transitions.

Given the replay buffer, which contains random samples from transitions previously

experienced by the agent, DDPG is considered an off-policy algorithm, as it may use

experiences from an outdated policy. This isn’t a concern since the Bellman equation

update doesn’t care which transitions - at specific time steps - are under evaluation.

2.4 | RECENT RESEARCH

13

Target networks

Regarding target networks, they provide more stability to the algorithm. During the

calculation of the temporal difference error, directly updating the Actor and Critic weights

(𝜇 and 𝜃) may lead to divergence. This idea comes from Mnih et al., 2015, where the authors

suggest that updating 𝑄(𝑠𝑡 , 𝑎𝑡) would often increase 𝑄(𝑠𝑡+1, 𝑎), thus leading to oscillations

and divergence on the policy.

Using a previous set of parameters - weights from target networks, which have a delay

to the actual Actor and Critic networks, reduces this problem. One noticeable difference

for DDPG is that it does soft-updates, meaning the target network weights are updated

as:

𝜃
′
= 𝜏𝜃 + (1 − 𝜏)𝜃

′
, 𝜏 << 1

The authors recall that the slow change provided by the soft-update increases stability.

In addition, although the learning speed is reduced, due to the additional overhead of

having 2 more neural networks for the target networks, it further improves stability and

outweighs the negative speed effects.

The Actor update relates to the policy gradient update, where we apply the gradient

to the expected return with respect to the Actor parameters:

𝐸
𝑠𝑡∼𝜌

𝛽 [∇𝑎𝑄𝜃 (𝑠, 𝑎)𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)∇𝜙𝜇(𝑠)|𝑠=𝑠𝑡]

And the Critic update relates to minimizing the loss:

𝐿 =

1

𝑁

∑

𝑡

(𝑦𝑡 − 𝑄𝜃 (𝑠, 𝑎)|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)
)
2

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄
′

𝜃
(𝑠𝑡+1, 𝜇

′

𝜙
(𝑠𝑡+1))

DDPG also introduces batch normalization (Ioffe and Szegedy, 2015) to its neural net-

works. This technique, common for deep learning applications, normalizes each dimension

across the values from a mini batch, ensuring unit mean and variance.

In reinforcement learning, where different signals with distinct scales come from

an environment, its an effective approach. Besides helping on convergence, the authors

suggest that implementing batch normalization on the Actor and Critic layers allowed the

DDPG agent to learn more effectively across different tasks.

Furthermore, for dealing with exploration, they introduced an exploration policy,

the original policy added by a noise sampled from a noise process 𝑁 . The authors used

the Ornstein-Uhlenbeck process to generate temporally correlated exploration, leading

to:

𝜇
′
(𝑠𝑡) = 𝜇(𝑠𝑡 |𝜃

𝜇

𝑡
) + 𝑁

14

2 | PRELIMINARIES

The Deep Deterministic Policy Gradient pseudocode is presented below:

Algorithm 4 DDPG pseudocode

Critic 𝑄𝜃 , Actor 𝜇𝜙

Target networks 𝑄
′

and 𝜇
′

with weights 𝜃
′
←− 𝜃, 𝜙

′
←− 𝜙

Replay buffer 𝐷

for episode e = 1, 2, ..., M do
Random process 𝑁 for exploration

for t = 1, ..., T do
Get 𝑎𝑡 = 𝜇𝜙(𝑠𝑡) + 𝑁𝑡

Execute 𝑎𝑡 and store transition (𝑠, 𝑎, 𝑠
′
, 𝑟) on 𝐷

Sample 𝐷 for 𝑛 transitions

Critic target: 𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄
′

𝜃
(𝑠𝑡+1, 𝜇

′

𝜙
(𝑠𝑡+1))

Update Critic: 𝜃 = min
1

𝑁
∑

𝑡
(𝑦𝑡 − 𝑄(𝑠, 𝑎|𝜃

𝑄
)|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)

)
2

Update Actor: 𝐸
𝑠𝑡∼𝜌

𝛽 [∇𝑎𝑄𝜃 (𝑠, 𝑎)𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)
∇𝜙𝜇(𝑠)|𝑠=𝑠𝑡

]

Update Q’: 𝜃
′
= 𝜏𝜃 + (1 − 𝜏)𝜃

′

Update 𝜇
′
: 𝜙

′
= 𝜏𝜙 + (1 − 𝜏)𝜙

′

end for
end for

15

Chapter 3

Offline Reinforcement Learning

As introduced above in Introduction, the Offline Reinforcement Learning (Offline RL)

problem relates to using a fixed dataset 𝐷 for training an agent (it may also be referred as

Batch Reinforcement Learning). This dataset 𝐷 contains the transitions (𝑠
𝑖

𝑡
, 𝑎

𝑖

𝑡
, 𝑠

𝑖+1

𝑡
, 𝑟𝑡) that

our agent will use to learn a policy.

This research area has been gaining attention on recent years. The idea of using

huge collected datasets for training deep neural networks leveraged Artificial Intelligence

and Machine Learning fields, as Computer Vision (Deng et al., 2009), Natural Language

Processing (Chelba et al., 2014) and others.

The iteration process of an online reinforcement learning algorithm focuses on collect-

ing new experiences at every step, so the benefits that comes from using a large dataset is

missing. This is where Offline Reinforcement Learning comes in.

Besides leveraging datasets, some areas have domains which are costly to interact

with, for example, robotics (Levine, Finn, et al., 2016). For training reinforcement learning

algorithms, one must rely on simulators, training with many steps, and usually make use

of deep neural networks, which can incur in extra costs and time.

Another issue is that some domains are sensitive or even dangerous to permit errors,

for example, healthcare (Gottesman et al., 2018). It isn’t possible to train an agent that

mistakenly gives the wrong treatment to a patient, so again, researches must rely on simu-

lators or other kinds of environments that mitigate this risk. Offline RL allows the creation

of a dataset with heterogeneous transitions - expert, sub-optimal and random transitions -

which can be used for training an agent, without the risks of online interactions.

The main challenge with this approach is that when we learn from a dataset, which

follows a distribution, our agent will be evaluated when interacting with a test dataset, or

even in a online environment, with a distribution of state visitation which may be quite

different from the one we observed.

More formally, the learning agent on Offline RL needs, from just a subset of experiences

collected from a MDP 𝑀 , to be capable of learning a policy 𝜋 with the best performance -

largest expected cumulative reward - when interacting with 𝑀 . This is called distributional

shift, and we will discuss it later when discussing the algorithms.

16

3 | OFFLINE REINFORCEMENT LEARNING

Other particular problems arise from learning from a fixed dataset. First, we can’t

correct our behavior with exploration, relying only on dataset 𝐷. So if our dataset 𝐷 is

flawed, meaning it doesn’t contain sufficient transitions, they don’t contain high reward

regions or are concentrated in just one specific region of the environment, we may perform

badly (Kumar, Fu, et al., 2019, Wu et al., 2019, Kumar, Zhou, et al., 2020).

This is an important point for Offline RL, as we need to be able to generalize for what’s

outside 𝐷 and also because our dataset may contain transitions that are sub-optimal. If all

transitions in 𝐷 were already the best ones, probably it would make more sense to just

apply imitation learning.

Off-policy online reinforcement learning algorithms have been used with fixed data as

a way of approaching offline training. Particularly, standard Actor Critic and Q-learning

methods can learn from data collect outside the agent’s behavior policy 𝜋𝛽 , but are more im-

pacted by distribution shift than strictly offline methods (Kumar, Fu, et al., 2019, Fujimoto

et al., 2019).

Besides distributional shift, these methods, when used in the offline setting, tend to

overestimate the values learned, and perform poorly on real scenarios. Overestimation

is also a particular problem for the offline setting, where we don’t have the benefit of

interacting with the environment to correct our estimation (Wu et al., 2019).

There are different approaches for correcting overestimation. We may apply the con-

straints on the policy, leading to policy constraint methods. Also, we may approach this

problem constraining directly on the learned value function, known as policy penalty

methods. This nomenclature comes from Levine, Kumar, et al., 2020.

Finally, we may try to estimate the uncertainty of the learned values, known as uncer-

tainty estimation methods. We will also discuss the differences between model-free and

model-based algorithms when dealing with offline data.

Regarding implementation and code, Seno and Imai, 2021 provide a remarkable Python

interface, based on Pytorch (Paszke et al., 2019), with most state-of-the-art algorithms for

Offline Reinforcement Learning - and with the ones we will discuss below. It is versatile

and easy to use, and the implementation relies on the algorithm’s original paper. It is

worth considering it if one plan to use Offline RL.

3.1 Definitions

As stated before, the main goal of reinforcement learning is to learn a policy that

maximizes expected cumulative discounted reward in a MDP, defined by 𝑀 = (𝑆, 𝐴, 𝑝, 𝑟 , 𝛾).

For the offline reinforcement learning setting, it will be useful to have some more defini-

tions.

The behavior policy is defined by 𝜋𝛽(𝑎|𝑠), 𝐷 is a dataset with transitions (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡)𝑖 ,

𝑑
𝜋

𝛽
(𝑠) a discounted marginal state-distribution of 𝜋𝛽(𝑎|𝑠) and 𝑑

𝜋𝛽

𝑡
(𝑠𝑡) the marginal over

timestep 𝑡 .

3.2 | MODEL-FREE APPROACH

17

3.2 Model-free approach

Model-free algorithms, specially approximate dynamic programming methods try to

learn a value or state-action function which is then used to find the optimal policy (or

estimate the gradient of the expected return, in Actor Critic). As we mentioned before,

they can be used in the offline scenario, but with many flaws, distributional shift being a

noticeable one (Kumar, Fu, et al., 2019, Wu et al., 2019).

It affects the algorithm in different ways. First, regarding out-of-distribution states.

The state distribution 𝑑
𝜋
(𝑠) differs from the distribution of the dataset 𝐷 𝑑

𝜋𝛽
, and when

training, either using policy gradients - Actor Critic - or using a greedy policy - Q-learning

-, the learned policy can lead to overestimated values for states 𝑠 ∼ 𝑑
𝜋𝛽

.

Other possibility is to have action distributional shift, a result of out-of-distribution

actions, as the target values for the Bellman backups depend on action 𝑎𝑡+1 ∼ 𝜋(𝑎𝑡+1|𝑠𝑡+1).

When we compute the target values, for example, 𝑄, we depend on the action available

to us at training time. Thus, we may have overestimated values for actions outside our

training data (Levine, Kumar, et al., 2020).

Most online reinforcement learning algorithms can correct their errors interacting

directly with the environment, which is not the case for offline RL. So its important to

address those issues to have an effective offline algorithm.

Constraint types

Following Levine, Kumar, et al., 2020, policy constraint methods are those which

apply some restriction, either implicitly or explicitly, ensuring the distribution over actions

for 𝜋(𝑎
′
|𝑠
′
) is close - closeness usually defined by a divergence measure - to the behavior

distribution 𝜋𝛽(𝑎
′
|𝑠
′
). The intention is to allow the policy to improve over the behavior

policy, but reducing the deviations and errors due to distributional shift, by keeping 𝜋(𝑎
′
|𝑠
′
)

sufficiently close to 𝜋𝛽(𝑎
′
|𝑠
′
).

For uncertainty estimation methods, the idea is to estimate the uncertainty of value

function, via a uncertainty measure, to induce conservative target values, thus reducing

overestimation on out-of-distribution actions.

The algorithms we will discuss reside on the policy constraint category, which can be

further categorized in 4 types: (1) explicit 𝑓 -divergence constraints, (2) implicit 𝑓 -divergence

constraints, (3) integral probability metric and (4) policy penalty.

The 𝑓 -divergence constrains relate to a divergence measure, usually KL or total varia-

tion distance, which keeps the policy 𝜋 close to 𝜋𝛽 , given an 𝜖: 𝐷(𝜋, 𝜋𝛽) ≤ 𝜖. The restriction

can be applied explicitly, adding the constraint to the update of the policy, or implicitly, by

constructing a update that considers this divergence measure. Policy penalty relates to

adding a penalty term either on the target Q-value or in the reward function, with a penalty

term 𝛼𝐷(𝜋(.|𝑠)|𝜋𝛽(.|𝑠)), in the reward function case leading 𝑟 = 𝑟(𝑠, 𝑎) − 𝛼𝐷(𝜋(.|𝑠)|𝜋𝛽(.|𝑠)),

and in the target case:

18

3 | OFFLINE REINFORCEMENT LEARNING

𝑄̂
𝜋

𝑘+1
= 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝐸(𝑠,𝑎,𝑠′)∼𝐷[(𝑄(𝑠, 𝑎)− (3.1)

(𝑟(𝑠, 𝑎) + 𝛾 (𝐸𝑎′∼𝜋𝑘 (𝑎
′
|𝑠
′
)[𝑄̂

𝜋

𝑘
(𝑠

′
, 𝑎

′
)] − 𝛼𝐷(𝜋(.|𝑠)|𝜋𝛽(.|𝑠)))))

2
]

𝜋𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸𝑠∼𝐷[𝐸𝑎∼𝜋(𝑎|𝑠)[𝑄̂
𝜋

𝑘+1
] − 𝛼𝐷(𝜋(.|𝑠)|𝜋𝛽(.|𝑠))] (3.2)

We will not go into detail for integral probability metric, but in summary, it is another

possibility of applying a policy constraint with a divergence metric but having other

theoretical results that have some guarantees and properties.

𝑓 -divergences have the particular advantage of being simpler to implement when used

as policy penalty, because it needs just an alteration on the reward function with the

penalty term. Nonetheless, as discussed in Levine, Kumar, et al., 2020, Kumar, Fu, et al.,
2019 and Laroche et al., 2019 show that restrictions on the support of the learned and

behavior policy may lead to better expected agent behavior, exemplified in a 1D line world

environment, with an uniformly random distribution.

Distribution constrains, such as the KL-divergence, are unable to find an optimal policy,

producing a highly stochastic and sub-optimal policy. Support constrains have the benefit

of preventing out-of-distribution actions with more strong theoretical and empirical results

(Kumar, Fu, et al., 2019).

In Levine, Kumar, et al., 2020, the authors suggest that using the Maximum Mean

Discrepancy (MMD) measure can fit well in this case. We will not go in further detail, but

it is important to say that there is not one size fits all solution regarding policy constraints,

and making sure the right restrictions are applied can make a difference.

3.2.1 CQL

One algorithm that recently has shown great performance is Conservative 𝑄-Learning.

Proposed in Kumar, Zhou, et al., 2020, it consists of learning a conservative 𝑄-function

which contains a penalty term, thus avoiding overestimation for out-of-distribution actions

and reducing the impact of distributional shift.

Given a policy 𝜋 , the classical 𝑄-function consists of:

𝑄
𝜋
(𝑠, 𝑎) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗ 𝐸𝑠𝑡+1∼𝑝(𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡),𝑎𝑡+1∼𝜋(𝑎𝑡+1|𝑠𝑡+1)

[𝑄(𝑠𝑡+1, 𝑎𝑡+1)] (3.3)

or in terms of the Bellman operator 𝐵
𝜋
:

𝑄
𝜋
= 𝐵

𝜋
𝑄
𝜋

(3.4)

The algorithm for Q-learning, based on dynamic programming, takes the action that

maximizes over the next state 𝑠𝑡+1, leading to the equation:

3.2 | MODEL-FREE APPROACH

19

𝑄
∗
(𝑠, 𝑎) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗ 𝐸𝑠𝑡+1∼𝑝(𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡)

[max
𝑎𝑡+1

𝑄
∗
(𝑠𝑡+1, 𝑎𝑡+1)] (3.5)

It is common to use deep neural networks to parametrize the Q function, so we define

𝑄𝜃 . For policy evaluation, as described above, we will estimate Q for a given policy 𝜋 using

a dataset D, generated by the behavior policy 𝜋𝛽(𝑎|𝑠), adding a conservative penalty term.

It should mostly push down on Q-values for out-of-distribution actions for which the

Q-values are (potentially erroneously) high.

The equation has a minimization over the expected Q-values under state-action distri-

bution 𝜇(𝑎|𝑠) and a maximization over the data distribution 𝜋𝛽(𝑎|𝑠). Given the Q-function

is queried over unseen actions, 𝜇(𝑎|𝑠) is restricted to the state marginal of the dataset such

that 𝜇(𝑠|𝑎) = 𝑑
𝜋𝛽 (𝑠)𝜇(𝑠|𝑎).

Furthermore, it has a penalty - regularizer - term defined as 𝑅(𝜇), which for CQL(𝐻)

- a CQL variant discussed in Kumar, Zhou, et al., 2020 -, is 𝑅(𝜇) = −𝐷𝐾𝐿(𝜇, 𝜌) (the KL

divergence against distribution 𝜌). These variants can be derived by changing 𝑅, and they

lead to different objectives for training the Q-function. Finally, the equation for CQL(𝑅)

is:

𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝜇𝛼(𝐸𝑠∼𝐷,𝑎∼𝜇(𝑎|𝑠)[𝑄(𝑠, 𝑎)] − 𝐸𝑠∼𝐷,𝑎∼𝜋̂𝛽 (𝑎|𝑠)
[𝑄(𝑠, 𝑎)]) (3.6)

+

1

2

𝐸𝑠,𝑎,𝑠′∼𝐷[(𝑄(𝑠, 𝑎) − 𝐵̂
𝜋

𝑘
𝑄̂
𝑘
(𝑠, 𝑎))

2
] + 𝑅(𝜇) for iteration 𝑘

Given this equation, we are now able to introduce it in the learning procedure. For

CQL(𝐻), given the definition of 𝑅(𝜇) as the KL divergence, we get:

𝜇(𝑎|𝑠) ∝ 𝜌(𝑎|𝑠) exp(𝑄(𝑠, 𝑎)) (3.7)

Assuming 𝜌 = 𝑈𝑛𝑖𝑓 (𝑎), the first term of equation 3.6 is the same as a softmax of

the Q-values at any state s. The authors also discuss having other regularizers and 𝜌 as

the previous policy 𝜋̂
𝑘−1

, but claim CQL(𝐻) is more stable with high dimension action

spaces.

Then, we can define a minimization function, which will be used in the learning process

further, as:

min
𝑄

𝛼𝐸𝑠∼𝐷[log∑

𝑎

exp𝑄(𝑠, 𝑎) − 𝐸𝑎∼𝜋̂𝛽 (𝑎|𝑠)
[𝑄(𝑠, 𝑎)]]+ (3.8)

1

2

𝐸𝑠,𝑎,𝑠′∼𝐷[(𝑄(𝑠, 𝑎) − 𝐵̂
𝜋

𝑘
𝑄̂
𝑘
(𝑠, 𝑎))

2
]

With the formulation introduced above, CQL can be used as a Q-learning or Actor

20

3 | OFFLINE REINFORCEMENT LEARNING

Critic algorithm, as it relies on the minimization problem on 3.8. By modifying the objective

Q-function on a Actor Critic or Q-learning setting, with some small changes, it is already

good to go, which is a good advantage.

We discussed previously about the types of constraints used in Offline RL, and CQL fits

in the case of directly regularizing the value or Q function, introducing this new penalty

term on the Actor Critic update.

Another important aspect is that it doesn’t require modeling the behavior policy and

representing the policy explicitly, because it modifies the value function introducing a

penalty term that doesn’t need it.

And as the authors discuss in the paper, it is possible to apply different types of penalties,

such as CQL(𝜌) - uses KL-divergence regularizer - and CQL(var.) - mentioned as variance

regularized CQL - (Kumar, Zhou, et al., 2020).

The authors compare CQL performance with BEAR (Kumar, Fu, et al., 2019), BRAC (Wu

et al., 2019), SAC (Haarnoja et al., 2018) and behavior cloning (BC), using different domains

and datasets - where some use were generated by a random policy, expert examples and a

mix of them.

In Gym (Brockman et al., 2016) environments, they report 2x-3x performance over the

mentioned algorithms. On some D4RL benchmark environments (Fu et al., 2021), CQL and

its variants (CQL(𝐻)) report 2x-9x up performance over prior offline methods, showing

significant results even on more difficult tasks such as Adroit tasks.

The CQL algorithm pseudocode:

Algorithm 5 Conservative Q-Learning pseudocode (Actor Critic variant)

Dataset 𝐷 = {(𝑠, 𝑎, 𝑠
′
, 𝑟)𝑗}

Actor 𝜋𝜙 , Critic 𝑄𝜃

for iteration k = 1, 2, ... do
𝜃𝑘 = 𝜃𝑘−1 − 𝜈𝑄∇𝜃𝐶𝑄𝐿(𝑅)(𝜃) ⊳ Actor update

𝜙𝑘 = 𝜙𝑘 − 1 − 𝜈𝜋𝐸𝑠∼𝐷,𝑎 ∑𝜋𝜙 (.|𝑠)
[𝑄𝜃 (𝑠, 𝑎) − log 𝜋𝜙(𝑎|𝑠)] ⊳ Critic update

end for

3.2.2 AWAC
AWAC (Advantage Weighted Actor Critic), proposed by Nair et al., 2021, is an algorithm

that approaches the RL learning problem by using both offline and online learning. It

leverages large amounts of offline data, enabling using fixed datasets, and also enables

online fine-tuning, incorporating the online training. Its main objective is to pre-train

a model with a dataset 𝐷 and use online interactions - few as possible - to refine and

optimize the learned policy 𝜋 .

The algorithm is build as an Actor Critic algorithm, fitting in the model-free off-policy

methods. As describe in Actor Critic, they consist of an Actor, which acts (as the name

suggests) given state 𝑠, and a Critic, responsible for quantifying, commonly with 𝑄(𝑠, 𝑎),

3.2 | MODEL-FREE APPROACH

21

the action chosen. It maximizes returns by alternating in 2 phases, policy evaluation and

policy improvement.

As demonstrated by the authors, fine-tuning is performed off-policy, leading to a more

data efficient method, when comparing with other that opt for on-policy fine-tuning.

For on-policy fine-tuning, data reuse is less efficient on the online stage. Actor Critic

algorithms, given their off-policy nature, fit this problem setting of not wasting previously

collected data.

Nonetheless, standard Actor Critic methods have a hard time in the pure off-line setting.

Given 𝑄(𝑠
′
, 𝑎

′
), with 𝑎

′
∼ 𝜋 , is used to update 𝑄(𝑠, 𝑎), when 𝑎

′
is outside the data distribu-

tion, the target 𝑄(𝑠
′
, 𝑎

′
) will be inaccurate, which leads to error to accumulation.

Prior offline RL algorithms that incorporate the Actor Critic architecture require esti-

mating the behavior policy 𝜋𝛽 and applying explicit constraints on the policy improvement

step. The problem is that an accurate estimation of 𝜋𝛽 is difficult.

The constraint is implemented on the policy improvement step. Given a dataset 𝐷, 𝜋𝜃

is the Actor Critic update, 𝜋𝛽(𝑎|𝑠) the data generation distribution (offline and online data)

and a divergence measure :

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐸𝑠∼𝐷[𝐸𝜋𝜃 (𝑎|𝑠)
[𝑄𝜙𝑘

(𝑠, 𝑎)]] s.t. (𝜋𝜃 , 𝜋𝛽) ≤ 𝜖 (3.9)

𝜋𝛽 is not known and must be estimated from the data. Other offline algorithms fit

a parametric model to sample 𝜋𝛽 via maximum likelihood estimation, taking uniformly

random samples from it, leading to 𝜋̂𝛽 = max𝜋̂𝛽
𝐸𝑠,𝑎∼𝜋𝛽

[log 𝜋̂𝛽(𝑎|𝑠)].

An accurate estimation of 𝜋̂𝛽 is precisely where it is difficult to use standard Actor

Critic methods with offline pre-training and online fine-tuning.

Furthermore, pure offline RL methods that rely on explicit constraints struggle with

online fine-tuning. They tend to be over conservative and don’t gain much performance

with additional online steps (Nair et al., 2021). The authors mention that this challenge

can be attributed to fitting an accurate behavior model in the online process.

When they become inaccurate, the optimization step, which is explicitly constrained,

becomes over conservative. Thus, improvement is not so noticeable. As we will discuss

later, AWAC employs an implicit constraint on the optimization step, and mitigating the

burden generated by its necessity.

For AWAC, the policy evaluation step applies a off-policy temporal difference learning

update to estimate 𝑄
𝜋
(𝑠, 𝑎), and a unique policy improvement step. It learns a policy that

maximizes the Critic value in the policy evaluation via temporal difference bootstrapping,

also restricting the policy distribution over the data observed along the Actor update.

As mentioned before, this restriction is done implicitly, by deriving the optimization

problem.

22

3 | OFFLINE REINFORCEMENT LEARNING

Given advantage function 𝐴
𝜋
(𝑠, 𝑎) = 𝑄

𝜋
(𝑠, 𝑎) − 𝑄

𝜋
(𝑠, 𝑎

′
) where 𝑎

′
∼ 𝜋𝜃 (.|𝑠):

𝜋𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈Π𝐸𝑎∼𝜋(.|𝑠)[𝐴
𝜋𝑘
(𝑠, 𝑎)] s.t. 𝐷𝐾𝐿(𝜋(.|𝑠)||𝜋𝛽(.|𝑠)) ≤ 𝜖 (3.10)

The authors mention the derivation follows other previous works (Peng et al., 2019

and Peters et al., 2010).

To obtain an analytic solution it enforces the Karush-Kuhn-Tucker (KKT) conditions

for solving a non linear constrained optimization problem. The complete process can be

found in paper’s Appendix section. The closed form solution for the optimization problem

is:

𝜋
∗
(𝑎|𝑠) = 𝜋𝜃 (𝑎|𝑠)

1

𝑍(𝑠)

𝑒𝑥𝑝
(

1

𝜆

𝐴
𝜋𝑘
(𝑠, 𝑎)

)
(3.11)

where 𝑍(𝑠) = ∫
𝑎
𝜋𝛽(𝑎|𝑠) exp 1/𝜆𝐴

𝜋𝑘 (𝑠, 𝑎)𝑑𝑎.

This solution is then projected to the policy space, done by minimizing the KL diver-

gence of 𝜋𝜃 from the optimal non-parametric solution 𝜋
∗
. The authors mention using the

forward KL direction as a key advantage, allowing to optimize 𝜃 as a maximum likelihood

with expectation over the replay buffer 𝛽 , not sampling action from the policy 𝜋𝛽 , which

may be out of distribution.

The policy improvement step is defined as:

𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐸𝑠,𝑎∼𝛽
[
log 𝜋𝜃 (𝑎|𝑠)

1

𝑍(𝑠)

𝑒𝑥𝑝
(

1

𝜆

𝐴
𝜋𝑘
(𝑠, 𝑎)

)]
(3.12)

It is worth mentioning the authors ignore 𝑍(𝑠) in their implementation, affirming

it leads to worth behavior. Also, using 𝑄
𝜋

to estimate the advantage 𝐴
𝜋𝑘

improves on

efficiency when comparing to AWR (Peng et al., 2019), another method that is similar with

AWAC.

This improvement step doesn’t require modeling previously observed data and avoids

the need of learning a behavior model, which reduces pure offline RL methods to learn

from offline and online fine-tuning. Thus, AWAC performs better, as it is less conservative

and more efficient on online fine-tuning.

The policy evaluation step, performed by the Critic, follows the traditional Bellman

equation:

𝐵
𝜋
𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝐸𝑝(𝑠′ |𝑠,𝑎)[𝐸𝜋(𝑎′ |𝑠′)[𝑄

𝜋
(𝑠

′
, 𝑎

′
)]] (3.13)

Which is minimized with respect to the Critic neural network parameters 𝜙𝑘 :

𝜙𝑘 = 𝑎𝑟𝑔 min
𝜙

𝐸𝐷[(𝑄𝜙(𝑠, 𝑎) − (𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′,𝑎′[𝑄𝜙𝑘−1
(𝑠

′
, 𝑎

′
)]))

2
] (3.14)

3.3 | MODEL-BASED APPROACH

23

With this formulation, AWAC is able to be data efficient, using an off-policy Critic, and

avoids the bootstrap error accumulation, using a constrained Actor which doesn’t need

behavior policy estimation. The main point is that it enables learning faster than other

methods, as it can use both online and offline data.

The AWAC algorithm pseudocode:

Algorithm 6 AWAC pseudocode

Dataset 𝐷 = {(𝑠, 𝑎, 𝑠
′
, 𝑟)𝑗}

Replay buffer 𝛽 = 𝐷

Define 𝑛𝑢𝑚_𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒_𝑠𝑡𝑒𝑝𝑠

Actor 𝜋𝜃 , Critic 𝑄𝜙

for iteration k = 1, 2, ... do
Sample batch (𝑠, 𝑎, 𝑠

′
, 𝑟) ∼ 𝛽

𝜙𝑘 = argmin𝜙 𝐸𝐷[(𝑄𝜙(𝑠, 𝑎) − (𝑟(𝑠, 𝑎) + 𝛾𝐸𝑠′,𝑎′[𝑄𝜙𝑘−1
(𝑠, 𝑎)])

2
] ⊳ Critic

update

𝜃𝑘 = argmax𝜃 𝐸𝑠,𝑎∼𝛽
[
log 𝜋𝜃 (𝑎|𝑠)

1

𝑍(𝑠)
𝑒𝑥𝑝

(

1

𝜆
𝐴
𝜋𝑘−1(𝑠, 𝑎)

)]
⊳ Actor

update

if 𝑖 > 𝑛𝑢𝑚_𝑜𝑓 𝑓 𝑙𝑖𝑛𝑒_𝑠𝑡𝑒𝑝𝑠 then
𝜏1, ..., 𝜏𝑘 ∼ 𝑝𝜋𝜃

(𝜏) ⊳ Collect trajectories

𝛽 = 𝛽 ∪ 𝜏1, ..., 𝜏𝑘 ⊳ Add trajectories to 𝛽

end if
end for

3.3 Model-based approach
Model-based Reinforcement Learning is a term which relates to methods that explicitly

learn the transition or dynamics function 𝑇𝜓 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡), parametrized by 𝜓 . This learned

model allows for the agent to gain information on its environment, and can be used for

planning or training a policy.

The transition model may also be defined from its relationship with dataset 𝐷, 𝑇 being

estimated from transitions in 𝐷. As a consequence, for the model-based scenario, we have

a MDP 𝑀̂ = (𝑆, 𝐴, 𝑇 , 𝑟 , 𝜇0, 𝛾), similar to the definition in Preliminaries, but adding 𝑇 .

The need of modeling the dynamics model with a function approximator, in general,

adds an overhead of time to model based algorithms, as it needs more compute power.

Model-free algorithms, even when using an Actor Critic structure which relies commonly

on 2 deep neural networks, don’t rely on approximating the dynamics model. The algo-

rithms we will discuss have another aspect that the implementation referred by the authors

use an ensemble strategy, where multiple models are constructed with a different set of

initialized weights and their results are averaged to obtain a more reliable result.

These multiple models also add an overhead, which again, need to be considered when

thinking about model-based methods in the context of deep neural networks. This doesn’t

mean model-free methods are always and inevitably faster. Given they vary architectures,

24

3 | OFFLINE REINFORCEMENT LEARNING

how they estimate state or state-action values, the theoretical guarantees they have, they

may be compute intensive as well.

Regarding Offline Model Based RL, a different set of challenges emerge. Although some

of them are common to the model-free ones, like distributional shift, they can suffer from

model exploitation and have other peculiarities. We will discuss them and also bring an

algorithm that exemplifies how researches are approaching these challenges.

When dealing with a model, which is queried for a given state 𝑠 ∼ 𝑑
𝜋
(𝑠), where 𝜋

is the resultant policy generated by planning under the model, distributional shift may

arise. Given 𝑑
𝜋
(𝑠) ≠ 𝑑

𝜋𝛽 (𝑠), being 𝜋𝛽(𝑠) the behavior policy generated by dataset 𝐷, in other

words, the difference between state visitation distribution for the learned and the behavior

policy, the model may fall in distributional shift problem (Yu et al., 2020).

Given we optimize our policy using the model, we may have erroneous values for out

of distribution states and actions. Since the dataset may not have the entire state-action

space, the model has an inherent inaccuracy (Kidambi et al., 2021). Thus, planning using

this model without any restrictions leads to what’s called model exploitation. We may

be too optimistic and be penalized when dealing with the real MDP, leading to worse

performance than expected.

Nonetheless, model-based RL methods suit the offline setting even without many

modifications from their original online approach, as we will see further when talking

about MOPO (Yu et al., 2020) and MORel (Kidambi et al., 2021). In some cases, they

outperform online model-free methods and even some already modified for the offline

setting.

Most offline model-based methods approach the problem with adding some kind of

conservative measure to how the values are calculated. There are different ways, such

as modifying the MDP under the learned model or even the reward function, as this is

usually related to uncertainty estimation. By assessing how our estimation is truthfully

when compared to the "real" scenario, we can penalize our measurement, enforcing a more

conservative behavior.

This relationship with uncertainty estimation poses new challenges, which in some

cases can be hard. Furthermore, model-based reinforcement learning have difficulties when

modeling high dimensional MDPs and long horizon estimates.

Note that one may see some differences on notation between the next sections and the

original papers. The notation has been standardized across this work, so some modifications

from the originals was required.

3.3.1 MOPO
To bring up the set of challenges and discuss offline model-based methods, lets discuss

MOPO (Yu et al., 2020) (Model-based Offline Policy Optimization). The main ingredient

of this algorithm is to use an existing model-based method called MBPO (Janner et al.,
2019), incorporating conservative behavior based on an estimate of the model error.

This is accomplished by applying rewards artificially penalized, thus modifying the

3.3 | MODEL-BASED APPROACH

25

underlying MDP reward function, using an uncertainty measure of the model.

Uncertainty estimation really is a main point for MOPO and it is what drives the

algorithm and leverage its performance. The measure is in terms of an error oracle - an

admissible error estimator - 𝑢(𝑠, 𝑎) which estimates the accuracy of the model for (𝑠, 𝑎).

The oracle needs to satisfy, given a divergence measure 𝐷(., .);

𝐷(𝑇𝜓 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)||𝑇 (𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)) ≤ 𝑢(𝑠, 𝑎) (3.15)

Then, it is possible to apply a conservative behavior on the modified reward function,

penalizing uncertainty:

𝑟(𝑠, 𝑎) ∶= 𝑟(𝑠, 𝑎) − 𝜆𝑢(𝑠, 𝑎) (3.16)

And finally, we model an uncertainty-penalized MDP 𝑀̃ = (𝑆, 𝐴, 𝑇 , 𝑟 , 𝜇0, 𝛾).

The goal is to be better than what’s on the data, but at the cost of becoming inaccurate.

This inaccuracy cannot be corrected, as online data is not available. More precisely, there

is a trade-off between gaining performance by also learning what’s outside the behavior

distribution with the risk of overfitting for regions where we know little about.

The solution the authors propose is to bound the return using the penalized MDP we

discussed above, measuring the uncertainty of the model. This provides a policy which

penalizes states where its likely to be incorrect but also maximizing this return.

The authors provide a number of theoretical guarantees for performance, showing

bounds between the model-based estimate of the policy’s performance and the true perfor-

mance on the real MDP. Nonetheless, the implementation has some differences from the

theoretical formulation, as the experiment showed that some aspects matter more than

others, and some guarantees were loosen.

The practical implementation is basically MBPO with some distinctions, regarding

uncertainty quantification. The dynamics is modeled using a neural network that outputs

Gaussian distribution over next state and reward, as the reward function is unknown. An

ensemble of 𝑁 dynamics models are learned, each trained independently:

Dynamics model: 𝑇𝜃,𝜙(𝑠𝑡+1, 𝑟 |𝑠𝑡 , 𝑎𝑡) =  (𝜇𝜃 (𝑠𝑡 , 𝑎𝑡), Σ𝜙(𝑠𝑡 , 𝑎𝑡))

Ensemble: {𝑇
𝑖

𝜃,𝜙
=  (𝜇

𝑖

𝜃
, Σ

𝑖

𝜙
}

The error estimator - error oracle - is designed as the maximum standard deviation

of the models in the ensemble. This estimator doesn’t rely directly on the theoretical

guarantees, as the authors discuss on the paper, but has achieved good performance in

practice:

26

3 | OFFLINE REINFORCEMENT LEARNING

𝑢(𝑠, 𝑎) =

𝑁

max
𝑖=1

||Σ
𝑖

𝜙
(𝑠, 𝑎)||

And the uncertainty penalized reward function 𝑟 with a penalty coefficient 𝜆 is:

𝑟 = 𝑟 − 𝜆 max
𝑖=1,...,𝑁

||Σ
𝑖

𝜙
(𝑠, 𝑎)|| where 𝑟 is the mean of the predicted reward for 𝑇

The comparison made by the authors relate to BEAR (Kumar, Fu, et al., 2019, BC

(Behavior Cloning), MBPO (Janner et al., 2019), SAC (Haarnoja et al., 2018) and BRAC

(Wu et al., 2019) using D4RL benchmarks (Fu et al., 2021), but they do not compare it to

CQL or AWAC, discussed above at Model-free approach.

This is generally not true for both CQL and AWAC, as they are constructed already

considering this question and have shown state of the art results for the Gym environments

presented in MOPO paper.

It is interesting and also commented by the authors that model-based methods, even

with small or no changes to their default online implementations, exceed vanilla model-free

methods. They suggest that model-based algorithms are more resilient to overestimation

and overfitting than off-policy model-free RL algorithms.

In the experiments performed by the authors, MOPO shows great results. They test the

algorithm using mixed datasets - collected by random policy, a policy trained with SAC,

mix of fully and partially trained policy (medium-mixed) - and demonstrate that MOPO

exceeds on 5 of 12 environment and dataset combinations. They affirm the most notable

results are when using mixed and medium-mixed datasets.

The pseudocode for MOPO:

3.3 | MODEL-BASED APPROACH

27

Algorithm 7 MOPO pseudocode

Require: reward penalty coefficient 𝜆, rollout horizon ℎ, rollout batch

size 𝑏.

Dataset 𝐷 = {(𝑠, 𝑎, 𝑠
′
, 𝑟)𝑗}

Train on 𝐷 an ensemble of N probabilistic dynamics {𝑇
𝑖
(𝑠

′
, 𝑟 |𝑠, 𝑎) =

𝑁 (𝜇
𝑖
(𝑠, 𝑎),∑

𝑖

(𝑠, 𝑎))} for 𝑖 = 1, ..., 𝑁

Replay buffer 𝛽 = ∅

Policy 𝜋

for epoch e = 1, 2, ... do
for t = 1, 2, ..., b do

Sample 𝑠𝑡 ∼ 𝐷 to initialize rollout

for j = 1, 2, ... h do
𝑎𝑗 ∼ 𝜋(𝑠𝑗)

Randomly pick 𝑇 from {𝑇
𝑖
}
𝑁

𝑖=1

Sample 𝑠𝑗+1, 𝑟𝑗 ∼ 𝑇 (𝑠𝑗 , 𝑎𝑗)

Compute 𝑟𝑗 = 𝑟𝑗 − 𝜆max
𝑁

𝑖=1
|| ∑

𝑖

(𝑠𝑗 , 𝑎𝑗)||

𝛽 = 𝛽 ∪ (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1)

end for
end for
Draw samples from 𝐷 ∪ 𝛽 , update 𝜋 with SAC

end for

3.3.2 MORel

MORel (Model-based Offline Reinforcement Learning), proposed by Kidambi et al.,
2021, is, as the name suggests, an model-based approach to Offline RL. It was developed

concurrently with MOPO, showing some similarities to it, and also has state-of-the-art

results in many benchmark tasks, as we will see.

The main ingredient is constructing a uncertainty penalized MDP, but differently

from MOPO, it measures uncertainty by partitioning the state space into "known" and

"unknown" regions. Them, it can penalize the agent, using negative rewards, for unknown

regions. The construction of this pessimistic MDP, referred as P-MDP, is a key idea in

MORel.

The ability and necessity on having a form of penalizing unknown states helps on

learning and policy evaluation, because as we mentioned earlier, the learned model may

be severely impacted by model exploitation.

For MORel, uncertainty is measured through a function called 𝛼-USAD (Unknown

state-action detector). It tells how confident the model is on a given state-action pair and

it uses the total variation distance between 𝑇 and 𝑇 : 𝐷𝑇𝑉 = (𝑇 (.|𝑠, 𝑎), 𝑇 (.|𝑠, 𝑎)), and its

defined as:

28

3 | OFFLINE REINFORCEMENT LEARNING

𝑈
𝛼
(𝑠, 𝑎) =

{

𝐹𝑎𝑙𝑠𝑒 if 𝐷𝑇𝑉 = (𝑇 (.|𝑠, 𝑎), 𝑇 (.|𝑠, 𝑎)) ≤ 𝛼 can be guaranteed

𝑇𝑟𝑢𝑒 otherwise

(3.17)

The authors recall that for MORel to be effective is needs to have data points suffi-

ciently close from where it is querying data and quality of the representations. They also

suggest that larger datasets may enable stronger results, something that can be related to

supervised learning as well, where having more data available may in general be better

for performance, specially when using neural networks as function approximators.

The P-MDP is then constructed based on the learned dynamics model and this uncer-

tainty measure USAD. The approximate dynamics model can be learned in different ways,

using maximum likelihood estimation and other standard techniques.

Given USAD penalization, unknown states where the dynamics model, learned through

a standard model-based procedure, are penalized thus limiting both distribution shift and

model exploitation impacts.

The modified MDP 𝑀̂ is then defined by the authors as 𝑀̂ = (𝑆 ∪ 𝐻𝐴𝐿𝑇 , 𝐴, 𝑟𝑝 , 𝑇 , 𝜇̂0, 𝛾).

𝑆 represents states, 𝐴 represents actions, 𝐻𝐴𝐿𝑇 an absorbing state, 𝜇̂0 the initial state

distribution fro𝐷, 𝛾 is the discount factor. The transition 𝑇 and reward function 𝑟𝑝 as:

𝑇 (𝑠
′
|𝑠, 𝑎) =

{

𝛿(𝑠
′
= 𝐻𝐴𝐿𝑇) if 𝑈

𝛼
(𝑠, 𝑎) = 𝑇𝑅𝑈𝐸or 𝑠 = 𝐻𝐴𝐿𝑇

𝑇 (𝑠
′
|𝑠, 𝑎) otherwise

(3.18)

𝑟𝑝(𝑠, 𝑎) =

{

−𝜅 if 𝑠 = 𝐻𝐴𝐿𝑇

𝑟(𝑠, 𝑎) otherwise

(3.19)

Here, 𝛿(𝑠
′
= 𝐻𝐴𝐿𝑇) is the Dirac delta function, forcing the transition to the absorbing

state in the case of the state-action pair being possibly unknown or when 𝑠 already is the

absorbing state.

The theoretical results which enable the construction of MORel reside on bounding the

learned policy behavior. The authors show that the sub-optimality of the learned policy

can be bounded, and also that is able to improve over the behavior policy as well - essential

for an algorithm that needs to generalize and perform outside dataset 𝐷.

One point also worth mentioning is that having a broad dataset with more examples is

important. The model can be more accurate and reliable when it has more information on

the environment, because it can’t interact online with it.

The implementation of MORel uses Gaussian dynamics models  (𝜇𝜃 (𝑠, 𝑎), Σ𝜙(𝑠𝑡 , 𝑎𝑡)),

same as MOPO. USAD is used in uncertainty quantification along with ensembles of the

Gaussian models, where multiple models are learned, each with different initialized weights,

3.3 | MODEL-BASED APPROACH

29

and then measuring a disagreement measure, defined as 𝑑(𝑠, 𝑎) = max𝑖,𝑗 ||𝜇𝜃𝑖
(𝑠, 𝑎)−𝜇𝜃𝑗

(𝑠, 𝑎)||2.

USAD is finally defined as:

𝑈𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙(𝑠, 𝑎) =

{

𝐹𝑎𝑙𝑠𝑒 if 𝑑(𝑠, 𝑎) ≤ 𝜖

𝑇𝑟𝑢𝑒 otherwise

(3.20)

𝜖 is a hyperparameter

The experiments provided by the authors were based on benchmark tasks from MuJoCo

(Todorov et al., 2012) and Gym (OpenAI et al., 2019). They use 5 types of datasets - collected

by different policies - each with 1 million of timesteps, following the same procedure of

collection used in Wu et al., 2019.

It exceeds BEAR (Kumar, Fu, et al., 2019), BCQ (Fujimoto et al., 2019) and BRAC (Wu

et al., 2019) on 12 out of 20 environments, mostly notably on MuJoCo walking tasks -

where agents need to move efficiently through the environment.

Another interesting comparison the authors show is regarding D4RL benchmarks (Fu

et al., 2021). It had the best score on 5 of 12 domains, and the next best algorithm was

CQL, with 3 of 12. MOPO resulted in 2 of 12, along with a variation of BRAC. These shows

that they are very competitive and can achieve good results. More details on the scores,

number of iterations and other specifics can be found on the original paper (Kidambi et al.,
2021).

Algorithm 8 MORel pseudocode

Require: dataset 𝐷

Train on 𝐷 an ensemble of N probabilistic dynamics

{𝑇
𝑖
(𝑠

′
, 𝑟 |𝑠, 𝑎) = 𝑁 (𝜇

𝑖
(𝑠, 𝑎),∑

𝑖

(𝑠, 𝑎))} for 𝑖 = 1, ..., 𝑁

Construct uncertainty measure 𝛼-USAD 𝑈
𝛼

with 𝐷

Construct modified MDP 𝑀̂

Construct policy 𝜋 with a planner using 𝑀̂ and 𝜋𝛽

31

Chapter 4

Conclusion

Offline Reinforcement Learning offers a different view on Reinforcement Learning.

By using datasets with lots of data, as Computer Vision, Natural Language Processing

areas did in the recent years, it opens Reinforcement Learning to new possibilities and

capabilities, such as having robust models which can be further refined on special tasks,

dealing with sensitive fields where real interaction is not allowed or too expensive.

Although not new as a research area, in the last couple of years, powerful algorithms

have emerged and expanded the range of domains and environments were Offline RL

can be applied. Also, they provide new ideas on how to approach the challenges inherent

of this area, the most noticeable being distributional shift, as we discussed in the last

chapter.

We saw 4 state-of-the-art algorithms that surpass over 2 different areas of Reinforce-

ment Learning - model free and model based algorithms. AWAC and CQL leverage the use

of a fixed dataset through changes in the formulation of the Actor Critic architecture - and

recall CQL can also be used as a Q-learning algorithm - enabling efficient learning.

For CQL, it shows remarkable results when in classic MuJoCo environments (Todorov

et al., 2012) when comparing to SAC (Haarnoja et al., 2018), BEAR Kumar, Fu, et al.,
2019), BRAC (Wu et al., 2019) and its variants. It offers a practical implementation which

leverages the Actor Critic architecture, by not explicitly using policy constraints, that with

only small changes enables to use a fixed dataset.

In the case of AWAC, it goes a step further to also allow for online fine-tuning, which

by the results presented by the authors, exceed the learning speed when comparing to

methods such as BRAC (Wu et al., 2019), SAC (Haarnoja et al., 2018), ABM (Siegel et al.,
2020), and others in MuJoCo benchmark tasks.

As for MOPO and MORel, although similar, they emphasize the importance of uncer-

tainty estimation under model based offline methods.

In MOPO, by also using an uncertainty penalized reward function, which introduces

the desired conservative behavior when an agent has to decide what to do when it doesn’t

have much "information" - meaning a low uncertainty measure - on a given state (or

state-action pair).

32

4 | CONCLUSION

For MORel, it enforces the uncertainty estimation in a different manner, with a hard

threshold to differentiate known and unknown states. Both of them tackle model exploita-

tion, a particular issue for model-based methods when applied offline.

Another important aspect that leveraged recent Offline and Online Reinforcement

Learning algorithms is the use of Deep Neural Networks as function approximators in

Actor Critic architecture, calculating Policy Gradient and Value Functions. In the model-

based approach, they also enable creating a model which has more capabilities of learning

a bigger number of features in a given environment.

Of course, adding a non linear estimator with more complex data has its own set of

challenges that need to be considered to make the algorithms reliable, but the benefit

of having powerful neural networks has shown its benefits, as we also discussed in the

previous chapters.

Offline Reinforcement Learning offers new perspectives, as new methods and algo-

rithms are coming out, each one tackling a different aspect, challenge or domain. It is

exciting to see the progress on performance for each of them, and also, as we saw with

AWAC, using both offline and online scenarios to train an agent that tries to bring the

best of both worlds. There is a lot of space left to make agents perform even better, as the

current ones can struggle with balancing distributional shift and generalization outside

the dataset.

The objective of this work was to give an broad view on this research area, showing

state-of-the-art algorithms along with the reasoning behind them. The intention is to be a

revision over the different approaches and how each of them handles the common set of

problems for Offline RL. We also discussed the basics of Online Reinforcement Learning,

going through Q-learning, Policy Gradients, and Actor Critic methods.

33

References

[Brockman et al. 2016] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540
[cs.LG] (cit. on pp. 6, 20).

[Chelba et al. 2014] Ciprian Chelba et al. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. 2014. arXiv: 1312.3005 [cs.CL] (cit. on

pp. 2, 15).

[Covington et al. 2016] Paul Covington, Jay Adams, and Emre Sargin. “Deep neu-

ral networks for youtube recommendations”. In: Proceedings of the 10th ACM
Conference on Recommender Systems. RecSys ’16. Boston, Massachusetts, USA:

Association for Computing Machinery, 2016, pp. 191–198. isbn: 9781450340359.

doi: 10.1145/2959100.2959190. url: https://doi.org/10.1145/2959100.2959190
(cit. on p. 1).

[Deng et al. 2009] Jia Deng et al. “Imagenet: a large-scale hierarchical image database”.

In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–

255. doi: 10.1109/CVPR.2009.5206848 (cit. on pp. 2, 15).

[Fu et al. 2021] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey

Levine. D4RL: Datasets for Deep Data-Driven Reinforcement Learning. 2021. arXiv:

2004.07219 [cs.LG] (cit. on pp. 20, 26, 29).

[Fujimoto et al. 2019] Scott Fujimoto, David Meger, and Doina Precup. Off-Policy
Deep Reinforcement Learning without Exploration. 2019. arXiv: 1812.02900 [cs.LG]
(cit. on pp. 16, 29).

[Gottesman et al. 2018] Omer Gottesman et al. Evaluating Reinforcement Learning
Algorithms in Observational Health Settings. 2018. arXiv: 1805.12298 [cs.LG]
(cit. on pp. 2, 15).

[Haarnoja et al. 2018] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey

Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learn-
ing with a Stochastic Actor. 2018. arXiv: 1801.01290 [cs.LG] (cit. on pp. 7, 11, 20,

26, 31).

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1312.3005
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1812.02900
https://arxiv.org/abs/1805.12298
https://arxiv.org/abs/1801.01290

34

REFERENCES

[Ioffe and Szegedy 2015] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015.

arXiv: 1502.03167 [cs.LG] (cit. on p. 13).

[Janner et al. 2019] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.

When to Trust Your Model: Model-Based Policy Optimization. 2019. arXiv: 1906.08253
[cs.LG] (cit. on pp. 24, 26).

[Kidambi et al. 2021] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and

Thorsten Joachims. MOReL : Model-Based Offline Reinforcement Learning. 2021.

arXiv: 2005.05951 [cs.LG] (cit. on pp. 24, 27, 29).

[Kumar, Fu, et al. 2019] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine.

Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. 2019. arXiv:

1906.00949 [cs.LG] (cit. on pp. 2, 7, 16–18, 20, 26, 29, 31).

[Kumar, Zhou, et al. 2020] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey

Levine. Conservative Q-Learning for Offline Reinforcement Learning. 2020. arXiv:

2006.04779 [cs.LG] (cit. on pp. 16, 18–20).

[Lange S. 2012] Riedmiller M. Lange S. Gabel T. “Batch reinforcement learning”. In:

Reinforcement Learning 12 (2012). url: https://doi.org/10.1007/978-3-642-27645-
3_2 (cit. on p. 2).

[Laroche et al. 2019] Romain Laroche, Paul Trichelair, and Rémi Tachet des

Combes. Safe Policy Improvement with Baseline Bootstrapping. 2019. arXiv: 1712.
06924 [cs.LG] (cit. on p. 18).

[LeCun et al. 2015] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-

ing”. In: nature 521.7553 (2015), pp. 436–444 (cit. on p. 5).

[Levine, Finn, et al. 2016] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-End Training of Deep Visuomotor Policies. 2016. arXiv: 1504.00702
[cs.LG] (cit. on pp. 1, 15).

[Levine, Kumar, et al. 2020] Sergey Levine, Aviral Kumar, George Tucker, and Justin

Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open
Problems. 2020. arXiv: 2005.01643 [cs.LG] (cit. on pp. 2, 6, 16–18).

[Lillicrap et al. 2019] Timothy P. Lillicrap et al. Continuous control with deep rein-
forcement learning. 2019. arXiv: 1509.02971 [cs.LG] (cit. on pp. 7, 8, 11, 12).

[Mhaskar et al. 2017] Hrushikesh Narhar Mhaskar, Qianli Liao, and Tomaso A. Pog-

gio. “When and why are deep networks better than shallow ones?” In: AAAI. 2017

(cit. on p. 5).

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/2005.05951
https://arxiv.org/abs/1906.00949
https://arxiv.org/abs/2006.04779
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://arxiv.org/abs/1712.06924
https://arxiv.org/abs/1712.06924
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1509.02971

REFERENCES

35

[Mnih et al. 2015] Volodymyr Mnih et al. “Human-level control through deep rein-

forcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836.

url: http://dx.doi.org/10.1038/nature14236 (cit. on pp. 1, 12, 13).

[Nair et al. 2021] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine.

AWAC: Accelerating Online Reinforcement Learning with Offline Datasets. 2021.

arXiv: 2006.09359 [cs.LG] (cit. on pp. 2, 3, 20, 21).

[OpenAI et al. 2019] OpenAI et al. Learning Dexterous In-Hand Manipulation. 2019.

arXiv: 1808.00177 [cs.LG] (cit. on pp. 2, 29).

[Paszke et al. 2019] Adam Paszke et al. “Pytorch: an imperative style, high-performance

deep learning library”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url:

http : / /papers .neurips . cc /paper / 9015 - pytorch - an - imperative - style - high -
performance-deep-learning-library.pdf (cit. on p. 16).

[Peng et al. 2019] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine.

Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement
Learning. 2019. arXiv: 1910.00177 [cs.LG] (cit. on p. 22).

[Peters et al. 2010] Jan Peters, Katharina Mülling, and Yasemin Altün. “Relative

entropy policy search”. In: AAAI Conference on Artificial (2010), pp. 1607–1612

(cit. on p. 22).

[Sallab et al. 2017] AhmadEL Sallab, Mohammed Abdou, Etienne Perot, and Senthil

Yogamani. “Deep reinforcement learning framework for autonomous driving”.

In: Electronic Imaging 2017.19 (Jan. 2017), pp. 70–76. issn: 2470-1173. doi: 10.2352/
issn.2470-1173.2017.19.avm-023. url: http://dx.doi.org/10.2352/ISSN.2470-
1173.2017.19.AVM-023 (cit. on p. 2).

[Schulman et al. 2017] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal Policy Optimization Algorithms. 2017. arXiv:

1707.06347 [cs.LG] (cit. on p. 7).

[Seno and Imai 2021] Takuma Seno and Michita Imai. d3rlpy: An Offline Deep Rein-
forcement Learning Library. 2021. arXiv: 2111.03788 [cs.LG] (cit. on p. 16).

[Siegel et al. 2020] Noah Y. Siegel et al. Keep Doing What Worked: Behavioral Modelling
Priors for Offline Reinforcement Learning. 2020. arXiv: 2002.08396 [cs.LG] (cit. on

p. 31).

[Silver et al. 2017] David Silver et al. Mastering Chess and Shogi by Self-Play with
a General Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815 [cs.AI]
(cit. on p. 5).

http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/1808.00177
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1910.00177
https://doi.org/10.2352/issn.2470-1173.2017.19.avm-023
https://doi.org/10.2352/issn.2470-1173.2017.19.avm-023
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2111.03788
https://arxiv.org/abs/2002.08396
https://arxiv.org/abs/1712.01815

36

REFERENCES

[R.S. Sutton and Barto 2018] R.S. Sutton and A.G. Barto. Reinforcement Learning,
second edition: An Introduction. Adaptive Computation and Machine Learning

series. MIT Press, 2018. isbn: 9780262352703. url: https://books.google.com.br/
books?id=uWV0DwAAQBAJ (cit. on pp. 1, 5–8).

[Richard Sutton et al. 2000] Richard Sutton, David Mcallester, Satinder Singh, and

Yishay Mansour. “Policy gradient methods for reinforcement learning with

function approximation”. In: Adv. Neural Inf. Process. Syst 12 (Feb. 2000) (cit. on

p. 10).

[Richard S Sutton et al. 2000] Richard S Sutton, David A McAllester, Satinder P

Singh, and Yishay Mansour. “Policy gradient methods for reinforcement learn-

ing with function approximation”. In: Advances in neural information processing
systems. 2000, pp. 1057–1063 (cit. on p. 9).

[Richard S. Sutton 1990] Richard S. Sutton. “Integrated architectures for learning,

planning, and reacting based on approximating dynamic programming”. In: Ma-
chine Learning Proceedings 1990. Ed. by Bruce Porter and Raymond Mooney.

San Francisco (CA): Morgan Kaufmann, 1990, pp. 216–224. isbn: 978-1-55860-

141-3. doi: https://doi.org/10.1016/B978-1-55860-141-3.50030-4. url: https:
//www.sciencedirect.com/science/article/pii/B9781558601413500304 (cit. on p. 8).

[Todorov et al. 2012] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A
physics engine for model-based control. 2012. doi: 10.1109/IROS.2012.6386109
(cit. on pp. 29, 31).

[Watkins and Dayan 1992] Christopher JCH Watkins and Peter Dayan. “Q-learning”.

In: Machine learning 8.3-4 (1992), pp. 279–292 (cit. on pp. 7, 8).

[Wu et al. 2019] Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized
Offline Reinforcement Learning. 2019. arXiv: 1911.11361 [cs.LG] (cit. on pp. 16,

17, 20, 26, 29, 31).

[Yu et al. 2020] Tianhe Yu et al. MOPO: Model-based Offline Policy Optimization. 2020.

arXiv: 2005.13239 [cs.LG] (cit. on p. 24).

https://books.google.com.br/books?id=uWV0DwAAQBAJ
https://books.google.com.br/books?id=uWV0DwAAQBAJ
https://doi.org/https://doi.org/10.1016/B978-1-55860-141-3.50030-4
https://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/1911.11361
https://arxiv.org/abs/2005.13239

	Introduction
	Preliminaries
	The Reinforcement Learning problem
	On-policy and Off-policy
	Model-free and Model-based
	Recent research
	Q-learning
	Policy gradient
	Actor Critic
	DDPG

	Offline Reinforcement Learning
	Definitions
	Model-free approach
	CQL
	AWAC

	Model-based approach
	MOPO
	MORel

	Conclusion
	References

