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Abstract

Image operators have a great deal of applications in many different areas, ranging from
document analysis to medical imaging and so forth. However, the manual design of such
operators is very difficult and time consuming, while also being highly prone to human
errors. Therefore, an automatic design of image operators is extremely desirable and many
previous works have been done on this task. One interesting approach is the automatic design
of W -operators that are locally defined within a determined region. The main disadvantage
of previous methods of automatic constructing a W -operator is a limitation on the size of
the predetermined region. We propose a novel approach on the stablished method of learning
a W -operator from pairs of input-output images, with the goal of enabling the use of larger
windows on the learning method. We do this by extracting a feature from the region, so we
can summarize the important information from it while also discarding unnecessary values.
We validate our assumptions by comparing operators learned by the already stablished
method with the operators learned using our implemented features. The results shows that,
although the stablished method (described in this monograph as the Raw feature) is a well-
rounded learning technique for every dataset, specific combinations of feature and dataset
can produce similar accuracy while significantly decreasing the feature vector size on the
training method.
Keywords: image processing, morphological operators, feature extraction, image operator
learning.
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Chapter 1

Introduction

One of the main applications of image processing in several areas revolve around image
operators that transform an image into another, such as segmentation or binarization of an
object of interest. For instance, some diseases, such as diabetic retinopathy, can be detected
and classified by the amount of ramification in the blood vessels of the retina of a patient.
However, detecting the blood vessels from a digital image of a retina is a hard task and
the result differs even amongst specialists. Therefore, the design of an image operator that
performs the segmentation of the blood vessels in these images can help the diagnosis of
such diseases.

Amidst these operators, a particular interesting and extensive field of research is the study
on Mathematical Morphology, and more specifically, the morphological operators (Soille
(2002)). Although these operators are generally used on binary images, they are not restricted
to it. Famous examples of such operators are erosion and dilation of images.

Manual design of morphological operators is a hard task, and it is usually done through
a trial and error approach, consuming a great amount of time and effort from the specialist.
It is also completely dependent on the expertise of the specialist, which makes it prone to
human errors. In order to prevent that, many researches were done on automating the task
of designing an image operator from a set of pairs of images that represents an input and
an output.

One of the methods of learning image operators can be seen in the pioneering work
by Junior Barrera (1997), and many works were done on improving such framework. This
method consists on learning an image operator by defining a local function that, given a
region on the input image, returns the value of a pixel in the output image. This technique
requires the definition of a windowW that is used as the region of input to the local function.
One of the main disadvantages of this method is that it restricts the size of W , due to the
proposed process being unfeasible on a large W (Nina (2009)). Therefore, the learned local
function cannot have information on large regions of the image.

In this monograph we propose a novel approach that enables the use of large regions on
the process of learning the image operator, without falling on the curse of dimensionality. Our
approach is to extract some useful information from the region while discarding unneeded
ones. By doing so, the dimensionality of the training process can be heavily diminished. We
also tried to improve the accuracy of the previous used technique with this feature extraction
step.

Chapter 2 describes in more details the method of learning image operators used in this
project, while also introducing the necessary mathematical background and the notation used
throughout this monograph. After that, Chapter 3 describe all of the 6 features implemented
and tested in this project and it also provides references for each one of them, so the interested
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2 INTRODUCTION 1.0

reader can easily investigate them further. Chapter 4 depicts the experiments made with all
features, describing the datasets used, the code, the language and the library used, and
all metrics calculated in order to compare each one of the features in each dataset. It also
contains all results of every feature in each dataset. Finally, Chapter 5 contains our final
remarks on this project, and provides some thoughts on possible future works on this area.



Chapter 2

Image Operator Learning

In this project, we are concerned about the problem of learning, from pairs of input-
output images, how to transform the input image into the output one. This problem is
modeled as the learning of an image operator that, when applied to an input image, performs
the desired task. An example of such pair of images can be seen in Figure 2.1.

(a) Input image

→ Ψ→

(b) Output image

Figure 2.1: Example of input-output images

The method used in this project(Montagner et al. (2016b)) is based on the pioneering
work by Junior Barrera (1997), where the learning of image operators is modeled as the
learning of local transformations. More specifically, we are concerned about learning mor-
phological operators that are translation invariant and locally defined within a window W .
Operators that respect those two properties are called W -operators.

Automatic design of aW -operator is still a challenging problem and many researches are
being done about novel methodologies that perform this task or improvement in already sta-
blished techniques, like Montagner et al. (2016a) and Dornelles e Hirata (2015). The method
used in this project is based on extracting information from a neighboring region of a pixel,
and then, classifying that pixel with that information. We restrict ourselves to the case where
the output image is binary, because those image operators can be simpler to train while still
representing important transformations, such as segmentation and object detection. This
method is further described in section 2.2.

A problem on this technique arises when we use large sizes of window W , as the most
common information extracted from the region is a vector with the intensity values of every
pixel within that neighborhood. Therefore, a large window leads to large feature vectors,
and, the higher the dimensionality of the feature vector, more infeasible the training of the
classifier becomes.

Many attempts to overcome this issue were proposed throughout the years. Enhance-
ments on the selection of the windowW (Dornelles e Hirata (2015)), use of different machine
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4 IMAGE OPERATOR LEARNING 2.1

learning techniques, like Convolutional Neural Networks (D. Julca-Aguilar e Hirata (2017))
and multilevel training (Nina (2009)), are some examples of such improvements.

In this work, we propose a novel approach where the information extracted from that
region creates a smaller feature vector than the original one. To achieve this, we build a
set of different feature extractors, each one based on a technique that is commonly used on
image processing or computer vision systems, and then apply it to every pixel on the image.
The classifier, then, is trained on the resulting feature vectors.

2.1 Background
Although grayscale digital images are only defined on a finite set of points, we assume

that the image function f is defined on the discrete grid E = Z2. Therefore, a grayscale
digital image with pixel depth k can be described by a function f : E → K, where K =
{0, 1, ..., k − 1}. The set of all digital images with gray-levels in K is denoted as KE, so
KE = {f |f : E→ K}.

An image operator is a function Ψ of the form Ψ : KE → KE, i.e., is a function that takes
an image as input and transforms it into another image. Note that the set of digital binary
images is contained in the set of grayscale images. Thus, this definition allows transformations
of gray level images into binary ones. Accordingly, the value of [Ψ(f)](p) is the gray level
intensity value of the pixel on position p of the transformed image.

In this project, we are concerned about W -operators, thus, we need to define transla-
tion invariance and local definition propertios of an operator Ψ. For more information on
morphological operators, the reader can refer to Heijmans (1994).

Translation Invariance

The translation of an image f by q is denoted fq and is defined as fq(p) = f(p− q). An
example of the translation of a binary digital image by a vector q can be seen in Figure 2.2.

(a) Image f (b) Vector q = (1, 1) (c) Image fq

Figure 2.2: Example of translation

Operator Ψ is said to be translation invariant if, for any f ∈ KE and q ∈ E

[Ψ(f)]q = Ψ(fq). (2.1)

In other words, operator Ψ is translation invariant if applying Ψ on image f translated
by q results in the same image as applying Ψ on image f and then translating the resulting
image by q. Detection of external or internal contours are examples of operators that are
translation invariant.
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Local Definition

An operator Ψ is locally defined if there exists a limited region W ⊂ E such that

[Ψ(f)](p) = [Ψ(f |Wp)](p) ∀p ∈ E (2.2)

where f |Wp is defined as the image where every pixel within region Wp has the same value
as the correspondent pixel in f , and every pixel that is not in Wp has value 0. The region
Wp is the window W translated by p.

W

Wp

(a) Window W and Wp (b) f |Wp

Figure 2.3: Local definition

In other words, the value of each pixel in the resulting image Ψ(f) only depends on the
surrounding neighborhood W on image f .

W -operators

W -operators are interesting for image operator learning because any W -operator Ψ can
be characterized by a local function ψ : KW → K, as shown in Heijmans (1994) Thus, for
each pixel p of image f :

[Ψ(f)](p) = ψ(f−p|W ) (2.3)

Therefore, the problem of designing a W -operator can be reduced to the problem of
estimating a local function that performs the same transformation. Even more, estimating
a local function can be seen as a pattern classification problem, where the pattern is con-
strained to W and the classes are the possible values on the output image (0 or 1, in the
case of binary output images).

2.2 Learning Method
In order to formulate the learning process, it is necessary to define some function to be

optimized, like an error or a cost function. Thus, we are going to define the Mean Absolute
Error (MAE) of an operator and the optimal operator for this error function. Then, we
describe the training approach used to estimate this optimal operator from the pairs of
images on the training set. The interested reader can refer to Junior Barrera (1997) for
further information.

2.2.1 Mean Absolute Error (MAE)

We assume that an image f is a realization of a random process F . Thus, an input-
output pair (f, g) is a realization of a random process pair (F,G) with some joint distribution
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P (F,G). Under these assumptions, the objective of the learning process is to find an operator
Ψ that, when applied to F , returns a random process Ψ(F ) that is as close to G as possible.
We can calculate this distance between Ψ(F ) and G by the MAE. Considering ψ as being
the local function that characterizes the operator Ψ, the MAE can be calculated at any point
p ∈ E by:

MAE(Ψ) = E[|ψ(f |W ′
p
)− g(p)|] (2.4)

As W -operators are translation invariant and locally defined, f |W ′
p
can be represented by

a random vector Xp and g(p) as a random variable yp. Considering the stationarity of those
random process the position p is irrelevant, and equation 2.4 can be written as:

MAE(Ψ) = E[|ψ(X)− y|] (2.5)

To minimize the distance between Ψ(F ) and G we need to estimate a function ψ that
minimizes the MAE in equation 2.5. Since we are concerned about binary output images,
the possible values of y are 0 and 1. Then, let us expand equation 2.5 in order to determine
the optimal function ψ for the binary case.

MAE(ψ) = E[|ψ(X)− y|]

=
∑
(X,y)

P (X, y)(|ψ(X)− y|)

=
∑
(X,y)

P (X)P (y|X)(|ψ(X)− y|)

=
∑
X

P (X)[P (0|X)ψ(X) + P (1|X)(1− ψ(X))]

(2.6)

It is clear, from equation 2.6, that the optimal estimator ψ that minimizes the MAE is
the following local function:

ψ(X) =


1, if P (1|X) > P (0|X)

0, if P (0|X) > P (1|X)

0 or 1, otherwise
(2.7)

Therefore, if we know the joint probability distribution of the input-output processes
(F,G), defining an estimator that minimizes the MAE measure is straightforward. However,
given only a set of input-output images, the joint probability distribution is not known.
Hence, our approach is to estimate these probability distributions by the given pairs of
images.

2.2.2 Training Process

The method used to estimate this local function consists of three main steps: Feature
Extraction, Observed Patterns Decision and Generalization. Each one of these steps is de-
scribed considering as an example the input-output images of Figure 2.4, and a 3x3 window
W centered at the pixel’s position.
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(a) Input (b) Output

Figure 2.4: Input-output pair of images

Feature Extraction

Let (f, g) be pair of images from the given input-output process. For every image f of
the training set, slide window W centered at each pixel of the image and record a feature
extracted from that window jointly with the value of the correspondent pixel in image g. In
other words, considering Φ a feature extractor, i. e., a function of the form Φ : KW → Rn

where n is defined by the feature extractor, record the pair (Φ(fp|W ), g(p)) for each pixel p
of image f .

In the example (figure 2.5) function Φ just returns the values of each pixel within window
W .

→
.
.
.

→
.
.
.

Figure 2.5: Example of Feature Extraction step. Each color indicates a training sample (X, y)

Observed Patterns Decision

For each recorded pattern X = Φ(fp|W ), decide the value of ŷ = ψ̂(Φ(fp|W )) to be:

ŷ = ψ̂(X) =

{
1 if P̂ (y = 1|X) > P̂ (y = 0|X)

0 otherwise
(2.8)

where P̂ is the estimated joint distribution.
If all possible patterns were observed, the operator ψ could be fully determined by equa-

tion 2.8. Usually that is not the case, therefore, a method to generalize the estimated operator
ψ̂ is necessary.

An example of this step on the image learning process can be seen in figure 2.4.
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ψ̂( ) = 0
.
.
.

ψ̂( ) = 1

Figure 2.6: Example of estimated ψ̂

Generalization

Generalizing operator ψ̂ can be done by different techniques. Some previous works, such
as Nina (2009) used algorithms for minimization of boolean functions while others, like
D. Julca-Aguilar e Hirata (2017), approached this as a classification problem using machine
learning techniques. The latter is also used in this work.

Learning the image operator ψ is modeled as a binary classification problem, where
the inputs are the feature extracted from the first step and the expected outputs are the
ones decided in the second step. Therefore, any machine learning technique for solving a
classification problem can be used. In this work, we used Decision Trees.

Figure 2.7 shows the entire pipeline of the image operator learning process.
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... . . .

Φ

X y

(X, y)

Estimate class for patterns
observed multiple times

Supervised
Learning
Method

ψ

Figure 2.7: Pipeline of learning the image operator





Chapter 3

Local Features

As stated in Chapter 2, feature extraction is an important step in machine learning algo-
rithms. Extracting the most important information from the input can impact significantly
the accuracy of the classifier, can reduce the dimensionality of the feature vector and it can
provide a better understanding of the underlying process that generated the data.

Feature extraction and feature selection in machine learning are important areas of re-
search and many techniques to find the most relevant ones from an input were proposed
throughout the years. Consider the following example that shows how different features can
impact machine learning algorithms.

Suppose that we have a dataset that can be classified in two different categories and,
for each sampled data, a pair of real values (x, y) can be extracted from it. Suppose also
that plotting this pair (x, y) for each sample data generates the graph on Figure 3.1. In this
dataset, no linear classifier can separate both categories in an efficient manner.

Figure 3.1: Example where a linear classifier cannot separate both classes

If, instead of directly using the values extracted from the dataset, we calculate the corre-
spondent value in polar coordinates for each pair (x, y), our dataset generates the graph on
Figure 3.2. Unlike the first figure, this graph can perfectly separate both categories in our
dataset.

Therefore, using a different feature vector to represent the data in this example will
increase significantly the accuracy of our classifier. For other aspects and further research in
the area of feature selection and feature extraction the reader can refer to Guyon e Elisseeff
(2003).

AsW -operators are locally defined within a finite neighbourhoodW , we restrict ourselves

11



12 LOCAL FEATURES 3.2

Figure 3.2: Figure 3.1 after a change in coordinates, where a linear classifier can easily separate
both classes

to the extraction of local features, i. e., features that only extract information from within
this window W . Therefore, an important hyperparameter of the learning process of this
project is the size and shape of the window W . Aside from that, each feature can have its
own hyperparameters.

The rest of this Chapter is dedicated to explain the 6 features that were implemented
and the main idea and theory behind each one of them. Results of our experiments and
comparisons between each feature are displayed on Chapter 4.

3.1 Feature Raw
The feature extractor that extracts the Raw feature was already implemented at

TRIOSlib. This feature consists of extracting the intensity values of surrounding pixels
within the window W , and it builds a feature vector by flattening this window. An example
of this extraction can be seen in Fig. 3.3.

75 75 75

50 50 50

25 25 25

Image

75 75 75 50 50 50 25 25 25

Feature vector

Figure 3.3: Example of the Raw feature extractor

This feature vector was the most used in previous works related to W -operator learning.
Therefore, the operators learned using this feature extractor will be used as a baseline to
our experiments on Chapter 4.

One major problem with this feature is that it limits the size of W , since it consists of
every single pixel within the window. Therefore, the use of large windows become computa-
tionally impractical.
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3.2 Feature Local Binary Pattern (LBP)
A different feature implemented in this project is based on the texture descriptor Local

Binary Pattern (LBP), proposed by Ojala et al. (1994). In his article, Ojala evaluates the
performance of many different texture descriptors in classification problems, some descriptors
that were already used in various applications and some new approaches such as the LBP
descriptor. The latter is based on a simplified version of the texture analysis model based on
texture units, introduced by Wang e He (1990), in which the main idea is that 2D surface
texture can be represented by two measures: local spatial pattern and gray scale contrast.

The original LBP, as described by Ojala in 1994, labeled each pixel using the following
algorithm:

1. Threshold the 3x3 neighborhood of the pixel by it’s intensity value

2. Multiply the thresholded pixels by the weight given to each correspondent pixel

3. Sum all the values of the thresholded neighborhood multiplied by the weights to obtain
the texture unit

Figure 3.4 shows an example of the LBP descriptor algorithm. In the example, image
3.4a is thresholded into image 3.4b and then multiplied by image 3.4c. The result image is
shown in 3.4d and the texture unit of the central pixel is the sum of all pixels in the result
image, which is 143.

75 75 75

50 50 50

25 25 25

(a) Image

→
1 1 1

1 1

0 0 0

(b) Thresholded

→
1 2 4

128 8

64 32 16

(c) Weigths

→
1 2 4

128 8

0 0 0

(d) Result

Figure 3.4: Main algorithm of LBP descriptor

LBP is gray scale invariant and locally defined, therefore it can be useful in our ap-
proach to learn W -operators. One of the disadvantages of this descriptor is that it only
recognizes textures patterns that can be seen in a 3x3 neighborhood. This descriptor is also
rotation variant, which can be undesirable in many applications. To surpass those problems,
many different LBP variations were created throughout the years. For further details, the
reader can refer to Pietikäinen et al. (2011), where it can be found an extensive list of LBP
variations and many applications of this descriptor.

In our approach, we use the original LBP descriptor to create a feature vector for each
pixel in the image. First, we use the LBP main algorithm to create a second image, where
the value of each pixel is the correspondent texture unit. Then, for each pixel, we extract
the correspondingW neighborhood in the image created by the LBP descriptor. The feature
vector for that pixel is the flattened version of this neighborhood W .

3.3 Feature Moments
Both previous features extract information pixel by pixel within the window W . The

Raw feature uses the intensity values of every pixel within the neighbourhood W and the
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LBP feature is extracted by calculating a descriptor for every pixel inside the region. The
Moments feature takes a different approach, based on image moments. Let us first describe
what is an image moment:

The nth-order moment of a continuous function f(x, y) is defined as:

µpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (3.1)

where n = p+q. Therefore, if we consider the image as a function of two variables (x, y) and
discretize the integral by replacing them with summations, the image moments of nth-order
can be defined as:

Mpq =
∞∑
x=0

∞∑
y=0

xpyqf(x, y). (3.2)

Moments of a function are particularly interesting because of the uniqueness theorem,
proved by Hu (1962). This theorem states that, if the function f(x, y) is piecewise continuous
and has nonzero values only in the finite part of the xy-plane, then moments of all orders
exists and the moments sequence is uniquely determined by f(x, y) and, conversely, the
function f(x, y) is uniquely determined by the moments sequence.

Image moments can be used to calculate some properties of the image, such as area and
centroid. The area of a binary image can be calculated by the zero-th moment, and the
centroid in the x-axis and y-axis can be calculated by x̄ = µ10

µ00
and ȳ = µ01

µ00
respectively.

Other properties of the image such as skewness and kurtosis can also be calculated by using
moments of higher orders, but this is out of the scope of this project.

In our project we created a feature extractor that is based on the moments of an image.
For each pixel, this feature extractor calculates all the moments of order n and lower, where
n is a parameter previously given to the feature extractor with n ≥ 1. To acquire translation-
invariance, this feature extractor considers the position of the central pixel as being (0, 0).
Therefore, the pixel on the left of the central one is at position (0,−1), the pixel right below
the central is at position (−1, 0) and so forth. The feature extractor also calculates the x-axis
and y-axis of the centroid, and creates the following feature vector:

M = [f(x, y), x̄, ȳ, µ00, µ01, ..., µpq] (3.3)

The following figure presents an example of our feature extractor based on moments:

75 75 75

50 50 50

25 25 25

(a) Image

µ00 = 450

µ01 = −375

µ10 = 225

:

(b) Moments

x̄ =
µ10

µ00

= −0.83

ȳ =
µ01

µ00

= 0.5

(c) Centroids

50 -0.83 0.5 450 ...

(d) Feature Vector

Figure 3.5: Moments Feature

In the example, Figure 3.5a shows a windowW from an example image, fig. 3.5b displays
the calculated moments of order 0 and 1, 3.5c the calculated centroid and the feature vector
created for the central pixel of the example image is displayed on Figure 3.5d.
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3.4 Feature Fourier
A signal is defined as a function that varies in time or space. The Fourier Transform is a

transformation that takes as input a signal and decomposes that signal into sums of sines and
cosines. This output is called the representation of the signal in the frequency domain. More
information on the use of Fourier Transform in images can be seen in Gonzalez e Woods
(2002).

Considering f as a signal, its Fourier Transform is defined as:

F (u) =

∫ ∞
−∞

f(x)e−i2πuxdx

=

∫ ∞
−∞

f(x)(cos(2πux)− isin(2πux))dx

(3.4)

where each point u represents a particular frequency contained in the spatial domain and the
value of F (u) represents how much the frequency u is present in function f . This operation
is commonly used in signal processing and can be also applied in image processing, if we
consider the image as a signal of two dimensions that varies in the space domain. The
generalization of the Fourier Transform for two dimensions is:

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ux+vy)

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)(cos(2π(ux+ vy))− isin(2π(ux+ vy)))dxdy

(3.5)

Digital images are defined only on discrete points, therefore, function f of equation 3.5
is not continuous and the Fourier Transform of it needs to be sampled. Substituting the
integrals for summations in equation 3.5 results in the DFT (Discrete Fourier Transform),
that can be used to find the representation of a digital image in the frequency domain.

F (u, v) =
N∑
j=0

M∑
k=0

f(j, k)e−i2π(uj+vk) (3.6)

Nyquist-Shannon sampling theorem applies when using the sampled version of the
Fourier Transform (further details on this theorem and on sampling theory can be found
on Proakis e Manolakis (2007)). This theorem states that, given a function f(t) with no
frequencies higher than B, this function is completely determined by discrete points spaced
by 1/(2B). An important consequence of this theorem is that it gives a threshold, called
Nyquist frequency, where any frequency higher than that threshold cannot be perfectly rep-
resented in the sampling. Therefore, given an image of size NxM , vertical frequencies higher
than N/2 and horizontal frequencies higher than M/2 cannot be represented in the Fourier
Transform.

An example of the DFT applied in an image can be seen in Figure 3.6. Figure 3.6a shows
an image from the DRIVE dataset(described in more details in Chapter 4), and Figure 3.6b
shows the same figure in the frequency domain. In the figure of the frequency domain, each
pixel represents a frequency, and its intensity value represents how much of that frequency is
present in the original image. For a better visualization, the pixel representing the frequency
zero is shifted to the center of the image.

We create a feature extractor based on the Fourier Transform in the following manner.



16 LOCAL FEATURES 3.5

(a) Image from DRIVE dataset (b) Spectrum of magnitude

Figure 3.6: Example of an image in the spatial and frequency domains

For each pixel p = (x, y) and a predetermined window W centered at (x, y), calculate the
Fourier Transform of that region. For each coefficient cuv found, where cuv = a+ bi calculate
the absolute value (|cuv| =

√
a2 + b2). Then, create a feature with the first NM/4 coefficients,

from c00 to cN
2

M
2
, resulting in:

F = [|c00|, |c01|, |c02|, ..., |c0N
2
|, |c10|, |c11|, ..., |cN

2
M
2
|]. (3.7)

Because of the Nyquist-Shannon sampling theorem, we only use the coefficients for the
frequencies between 0 and N/2 and between 0 and M/2.

3.5 Feature Sobel
Previous researches in computer vision focused mainly in the detection of edges and

corners. One of the most basic and most used edge detectors is the Sobel operator. The
Sobel operator uses two kernels 3x3, defined as follow:

1 2 1

0 0 0

-1 -2 -1

(a) Horizontal Sobel mask

1 0 -1

2 0 -2

1 0 -1

(b) Vertical Sobel mask

Figure 3.7: Sobel masks

This masks are convolved with the image, each one creating a different output. Let Gy be
the resulting image from the convolution of the horizontal sobel mask with the input image
and Gx be the resulting image from the convolution with the vertical sobel mask, the result
of the Sobel operator is calculated as:

S =
√
G2
x +G2

y (3.8)
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(a) DIBCO image (b) Result image

Figure 3.8: Example of the Sobel Operator

An example of the Sobel operator can be seen in Figure 3.8. Figure 3.8a shows an image
from the DIBCO dataset (described in Chapter 4), and Figure 3.8b shows the result of the
application of the Sobel Operator in image 3.8a.

Our feature extractor based on this technique applies the Sobel operator in the whole
image, and, for each pixel, extract the values of the pixels on the surrounding region and
creates a feature vector with these values.

3.6 Feature Histogram of Oriented Gradients (HoG)
Histogram of Oriented Gradients (HoG) is a feature descriptor commonly used in object

detection. It was first described in a pattent application by McConnell (1986), but its use in
computer vision was only popularized by Dalal e Triggs (2005), where the feature descriptor
was used for detection of pedestrian in images.

Extraction of HoG from an image consists of three steps. First, the gradient of the image
is computed through the point discrete derivative masks in horizontal and vertical directions
(Figure 3.9).The image is then divided in cells. For each cell, all the pixels within it calculates
a weighted vote for an orientation, and these votes are accumulated in orientation bins that
are evenly spread over 0 to 180 degrees. The last step is the normalization, where cells are
grouped into blocks and each block is normalized separately. The HoG descriptor of a region
on the image is the orientation bins of all the cells within that region.

-1 0 1

(a) Horizontal derivative mask

1

0

-1

(b) Vertical derivative mask

Figure 3.9: Derivative masks

We considered the region W too small to be further divided into blocks, therefore, our
approach to create a feature extractor based on HoG is to calculate the gradient of the
image, and, then, for each pixel, calculate the orientation bins in the surrounding region W .
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After that, the bins were normalized, and the result is our feature vector. We tested two
different normalizations methods, both described in equation 3.9.

L1-sqrt: f =

{√
v
||v||1 if ||v||1 > 0

0 otherwise

L∞: f =

{
v

max(v)
if max(v) > 0

0 otherwise

(3.9)

Image Orientation of pixels Orientation bins

Figure 3.10: Overview of the HoG feature extractor



Chapter 4

Experiments

The implementation of the features described in Chapter 3 were made on top of
TRIOSlib, a toolbox implemented on Cython that contains state-of-art techniques on image
operator learning. All of the features were tested on four different datasets, two that contains
binary images and two of grayscale images. More details of the TRIOSlib library and of the
datasets can be seen in sections 4.1 and 4.2.

The experiments were done with these two hyperparameters:

1. Window size: 3x3, 5x5, 7x7, 9x9 and 11x11

2. Classifier: Decision Trees

For each combination of these hyperparameters, the image operator was trained with
the 6 implemented features in the training set of a specific dataset. Afterwards, the learned
operator was applied to every image of the test set and the resulting image was saved. Every
pixel of each image was then compared to the ground truth and classified in one of these
four different classes:

• True positive: If both the classified pixel and the corresponding ground truth pixel
have the value 1.

• True negative: If both the classified pixel and the corresponding ground truth pixel
have the value 0.

• False positive: If the pixel was classified as 1 but the ground truth pixel has value 0.

• False negative: If the pixel was classified as 0 but the ground truth pixel has value 1.

The amount of pixels in each one of these four different classes (hereafter referred to as
TP, TN, FP and FN, respectively) were used to calculate the five different evaluation metrics,
that is, Precision, Recall, Specificity, F1-score and the Mean Absolute Error (MAE). All of
these evaluation metrics are described in more detail on Section 4.3.

4.1 Training Image Operators from Samples (TRIOSlib)
TRIOSlib is a library implemented in Cython that contains state-of-art methods in image

operator learning. This library was developed by many researchers throughout the years in
the eScience group of the Institute of Mathematics and Statistics of the University of São
Paulo.

19
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TRIOSlib is open source and the full code is available at http://github.com/trioslib/trios.
Currently in its second version, this library is implemented in Cython in order to have the
expressiveness of Python while still having the efficiency of C. It also has the advantage of
being easily integrated with many of today’s most popular scientific library such as NumPy
and SciPy.

There were a few feature extractors implemented in the library, but the Raw feature was
the mainly used one in previous works. Therefore, this feature will be used in the experiments
as a baseline for all of our results.

More details of this library are available at https://trioslib.github.io/, and a tutorial
about using TRIOSlib with some experiments and results can be found at Montagner et al.
(2016b).

4.2 Datasets
All of the datasets used in these experiments are public and can be downloaded from the

main page of this project. The datasets used were:

• Dataset Character Segmentation;

• Dataset Text Segmentation;

• Digital Retinal Images for Vessel Extraction;

• Document Image Binarization Competition.

The rest of this section describes each dataset in more detail and displays some sample
images from each one.

4.2.1 Dataset Character Segmentation (CharS)

(a) Input image (b) Output image

Figure 4.1: Input-output pair from the CharS dataset

This dataset was obtained from scanned images of the book "Tipos Psicológicos", from
Jung (1967). It consists of 20 pages such as the one in Figure 4.1a and the correspondent
20 images of output such as in Figure 4.1b. In the experiments of this project, 10 different
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images were used to the training process of the operator and the other 10 images were used
in test the learned operator. Previous results of image operator learning using this dataset
can be seen in Montagner et al. (2016b). In the rest of this monograph this dataset will be
referred as CharS.

The main goal of this dataset is to extract the ’s’ characters in all of the images. An
example of a typical input-output pair is displayed in Figure 4.1. Figure 4.1a shows a page
of Jung’s book and Figure 4.1b displays the same page, but with only the lower case ’s’
characters appearing.

CharS is the simplest dataset amongst the four used as it contains only binary images
of a relative small size (375 x 313 pixels). Therefore, the training processes for this dataset
are usually fast and very accurate.

4.2.2 Dataset Text Segmentation (TexRev)

(a) Input (b) Output

Figure 4.2: Input-output pair of the TexRev dataset

The dataset used for text segmentation (referred, from now on, as TexRev) was obtained
from the Veja magazine "Computador - o micro chega às casas" from December of 1995.
The main objective of this dataset is to be able to eliminate every part of an image that is
not a text. Figure 4.2 displays an example of an input-output pair of this dataset.

Like the CharS, this dataset contains only binary images of different sizes, but smaller
than 800 x 1100 pixels. While this dataset contains larger images than CharS, TexRev con-
sists of only 10 pairs of input-output images. For the experiments, 5 images were used to
train the operator and the remaining 5 were used to test the learned image operator.

This dataset was also used on Montagner et al. (2016b) and some previous results in
operator learning using the raw feature are displayed there. However, in order to perform a
more robust comparison between all different features, the experiments on Section 4.4 were
all done using the same version of TRIOSlib instead of using previous obtained results.
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4.2.3 Digital Retinal Images for Vessel Extraction (DRIVE)

(a) Original image (b) Ground-Truth

Figure 4.3: Input-output pair of the DRIVE dataset

Digital Retinal Images for Vessel Extraction database (DRIVE, for short) is a well estab-
lished dataset used for segmentation of blood vessels in retinal images and can be found in
many state-of-art researches in this area. This dataset was constructed by Staal et al. (2004)
to compare different methods of retinal vessel segmentation. The blood vessels of each image
were manually segmented and the resulting image is treated as our ground truth. Figure 4.3
displays an example of an image and its ground truth that can be found on this database.

The DRIVE database is composed of 40 colored images, each one with a size of 565 x
584 pixels. To train the image operator we used 10 different images and to test the operator
we used 20 other images. Even though the DRIVE database contains colored images, we
decided to use a grayscale version of it to train our operators in order to be compliant to
our previous defined features.

It’s important to note that the DRIVE dataset, unlike the other ones, doesn’t need to
train and classify the whole image because of the existent margin between the circular retina
and the rectangular matrix of the image. The DRIVE database constructed by Staal contains
a mask for each image that defines where the retina is within it, thus, our image operator
was trained and tested within the region determined by the masks.

4.2.4 Dataset Document Image Binarization Competition
(DIBCO)

The Document Image Binarization Competition (DIBCO) is an annual contest, organized
in conjunction with ICDAR (International Conference on Document Analysis and Recogni-
tion) and ICFHR (International Conference on Frontiers in Handwriting Recognition) that
aims to identify the progress that are made in document image binarizations. Each year, the
organizers of the contest provide sample images of documents and its correspondent ground
truth image. The registered participants, then, submit their method of binarization back
to the organizers, where the methods will be evaluated. After that, the organizers publicly
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(a) Original image (b) Ground-Truth

Figure 4.4: Input-output pair of the DIBCO dataset

release the candidate methods, the testing set and the evaluation software. Previous results
of the DIBCO contests can be seen in Ntirogiannis et al. (2014) and Pratikakis et al. (2016).

Figure 4.4 displays an example of a typical handwritten document image and its ground
truth that can be found on DIBCO’s training and testing set. This dataset contains images
of varying sizes, ranging from around 900 x 600 to 2900 x 1060 pixels. For the experiments
of this project, images from the 2016 and 2014 contests were taken, totalizing 10 images in
the training set (6 from 2016’s contest and 4 from the contest of 2014) and 7 images on the
test set (4 from 2016 and 3 from 2014).

Just like the DRIVE dataset, DIBCO contains colored images but we decided to use the
grayscale versions of it. This dataset was the largest one used in this experiments in terms
of sizes of the image, thus, it was the most expensive in terms of memory and processing
time.

It’s important to note that the output of DIBCO’s images have different values than the
other dataset, i.e., the positive classification has value 0 and the negative has value 1. In
order to have a proper meaning for the evaluation metrics, the values of FP and TP were
changed with FN and TN, respectively.

4.3 Metrics
In each one of our experiments we calculated five different evaluation metrics, the pre-

cision, recall, sensitivity, F1-score and the mean absolute error. This section is dedicated to
describe all these different metrics used. Here, classifying a pixel positively means that the
value predicted by our operator was 1 (0 in the case of DIBCO’s dataset), and a negative
value means that our operator predicted the pixel as 0 (1 in the DIBCO’s case).

4.3.1 Precision

The precision (also called positive predictive value) of a classification algorithm is calcu-
lated as:

P =
TP

TP + FP
. (4.1)
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This value shows the percentage of correctly positive predicted values over all the values
that the classifier predicted as positive. If the precision of a classifier is 1, it means that,
every pixel classified as positive is really positive, but doesn’t mean anything about the
amount of positive pixels on the image.

Precision is a really important evaluation metric, but its value alone can be very mislead-
ing. Suppose, for instance, that a classifier correctly predicts one pixel of positive value, but
wrongly classifies every other pixel of the image as negative. The precision of this classifier
will be 1, but it’s not a really good classifier. Therefore, other metrics are needed to get a
more accurate evaluation of the classifiers.

4.3.2 Recall

The recall of a classification algorithm is calculated as follows:

R =
TP

TP + FN
(4.2)

The recall value shows the percentage of correctly positive classified pixels from all the
positive pixels in the ground truth. A high value of recall means that the classifier can predict
most of the positive values, but it doesn’t inform anything about the negative values or the
wrong positive predictions.

Just like the precision, the recall metric can be misleading. Suppose that a classifier
predicts every pixel of the image as a positive one. Therefore there will be no false negative
pixels and the value of recall will be 1.

4.3.3 Specificity

Specificity is an evaluation metric calculated as:

S =
TN

TN + FP
(4.3)

The specificity value, sometimes called as true negative rate, calculates the percentage
of correctly negative classified pixels, i. e., the amount of pixels that are truly negative
among all the pixels that the classifier predicted as negative. This metric is similar to the
recall value, but, instead of calculating the percentage of positive pixels, it calculates the
percentage of negative pixels.

4.3.4 F1-Score

F1-Score is an interesting metric that calculates an harmonic average of the precision
and recall, in order to minimizes the misleading aspects of those two metrics. It is calculated
as follows:

F1 = 2 ∗ P ∗R
P +R

(4.4)

where P is the precision and R is the recall value.
The F1 value reaches its best at 1 and its worst at 0, where 1 means perfect values of

precision and recall.
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4.3.5 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is one of the most common measures of accuracy. It
measures the percent of miscalculated values among of them in the predicted image. In other
words, is calculated as:

MAE =
FP + FN

FP + FN + TP + TN
(4.5)

MAE is a very important evaluation metric as it calculates a percent of the wrong
predictions. One of the problems of this metric appears when the resulting image has a bias
towards one of the values, positive or negative. For instance, the output images of the CharS
dataset have considerably more amount of negative values than positive ones. If a classifier
predicts all of the pixels as being of negative value, it will have a good value of MAE, but
it will be a useless classifier.

While the other metrics have it’s perfect state (that is, the value that a perfect classifier
would get) at 1, the opposite occurs with the MAE value, where the perfect classifier would
have a MAE value of 0.

4.4 Results
Experiments showed a large disparity between the results of different datasets, i. e.,

features that resulted in a great performance in some datasets did not perform very well in
the others. For that reason, the results of this section are separated by datasets.

CharS

Figure 4.5: Results of CharS

CharS is a dataset with relative small
images and the patterns to be recognized
are not large. The goal of this dataset is
to extract, from a binary textbook image,
all the ’s’ characters. As the image is rela-
tively small, deciding if the pixel belongs to
a ’s’ character can be done by using only
a small region around it. Therefore, it’s ex-
pected that the features will perform really
well even with small windows sizes.

Figure 4.5 displays a chart with the MAE
in the Y-axis and the size of one side of win-
dowW in the X-axis (that is, 3 in the X-axis
means that, using a 3x3 window resulted in
an operator with the correspondent MAE on
the Y-axis).

The best features were Raw and LBP,
and increasing the window size didn’t im-
prove that MAE value significantly. That
was expected as the texture of the characters are small enough to be described by the
LBP.

Although the MAE values on the chart indicate that all features performed really well
in this dataset, the value of the Sobel feature is misleading. The operator learned with this
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Window Size Feature Extractor MAE Precision Recall Specificity F1-value
Raw 0.0587 0.7647 0.0751 0.9985 0.1365
Lbp 0.0188 0.8741 0.8136 0.9923 0.8424

3x3 Moments 0.0998 0.2350 0.2732 0.9417 0.2521
Fourier 0.0620 0.0000 0.0000 1.0000 0.0000
Sobel 0.0620 0.0000 0.0000 1.0000 0.0000
Hog 0.0443 0.6917 0.5107 0.9851 0.5872
Raw 0.0142 0.8796 0.8933 0.9919 0.8861
Lbp 0.0117 0.8956 0.9174 0.9930 0.9061

5x5 Moments 0.0998 0.2350 0.2732 0.9417 0.2521
Fourier 0.0620 0.0000 0.0000 1.0000 0.0000
Sobel 0.0620 0.0000 0.0000 1.0000 0.0000
Hog 0.0485 0.6106 0.6041 0.9744 0.6066
Raw 0.0107 0.9027 0.9270 0.9934 0.9145
Lbp 0.0112 0.8993 0.9224 0.9932 0.9104

7x7 Moments 0.0998 0.2350 0.2732 0.9417 0.2521
Fourier 0.0620 0.0000 0.0000 1.0000 0.0000
Sobel 0.0620 0.0000 0.0000 1.0000 0.0000
Hog 0.0689 0.4465 0.4562 0.9625 0.4501
Raw 0.0113 0.8994 0.9210 0.9932 0.9099
Lbp 0.0108 0.9062 0.9211 0.9937 0.9132

9x9 Moments 0.0998 0.2350 0.2732 0.9417 0.2521
Fourier 0.0654 0.4650 0.3768 0.9714 0.4160
Sobel 0.0620 0.0000 0.0000 1.0000 0.0000
Hog 0.0898 0.2812 0.2886 0.9512 0.2841
Raw 0.0118 0.8916 0.9226 0.9926 0.9066
Lbp 0.0108 0.9062 0.9211 0.9937 0.9132

11x11 Moments 0.0998 0.2350 0.2732 0.9417 0.2521
Fourier 0.0834 0.3427 0.3787 0.9521 0.3592
Sobel 0.0620 0.0000 0.0000 1.0000 0.0000
Hog 0.0975 0.2294 0.2426 0.9460 0.2349

Table 4.1: Results of CharS experiments

feature returned an all black image, therefore, a worthless operator. As the output image
contains more black pixels than white ones, this operator acquired a deceptive MAE value.

To enable further inspections on the operators learned in this dataset, the values of MAE,
Precision, Recall, Specificity and F1-measure are displayed in Table 4.1.

TexRev

Figure 4.6: Results of TexRev

TexRev is also a binary dataset,
but with patterns that were not
easily discriminated by small re-
gions. In this dataset, the main
goal is to select only the text of an
image from a magazine page. As
in the results of the operators for
the CharS dataset, Figure 4.6 dis-
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plays a chart with the MAE value
of the operators learned with dif-
ferent features.

Just like the CharS dataset, the
operator learned with the Sobel
feature for the TexRev dataset returned black images, and the Raw and LBP feature per-
formed really well.

The interesting result in this dataset is the operator learned with the Fourier feature.
The window size on this feature was crucial to its performance, improving almost 30%
between the 5x5 window and the 11x11 window. The good performance of this feature can
be explained by the difference of frequencies between an image and a character, since a
letter of a text contains higher frequencies than an image in the TexRev dataset. Due to
the Nyquist Frequency, in order to recognize a pattern on the frequency domain of a region,
the size of W must be considerably large, what explains the improvement between 5x5 and
11x11 windows.

Table 4.2 displays all the results from the experiments with the TexRev dataset.
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Window Size Feature Extractor MAE Precision Recall Specificity F1-value
Raw 0.1064 0.8538 0.8452 0.9189 0.8467
Lbp 0.0813 0.9353 0.8378 0.9648 0.8818

3x3 Moments 0.0747 0.9416 0.8559 0.9636 0.8954
Fourier 0.3699 0.0000 0.0000 1.0000 0.0000
Sobel 0.3699 0.0000 0.0000 1.0000 0.0000
Hog 0.1289 0.9127 0.7111 0.9601 0.7976
Raw 0.0551 0.9523 0.8939 0.9729 0.9212
Lbp 0.0512 0.9639 0.8962 0.9798 0.9280

5x5 Moments 0.0747 0.9416 0.8559 0.9636 0.8954
Fourier 0.3699 0.0000 0.0000 1.0000 0.0000
Sobel 0.3699 0.0000 0.0000 1.0000 0.0000
Hog 0.1081 0.9048 0.7798 0.9546 0.8366
Raw 0.0451 0.9663 0.9118 0.9808 0.9378
Lbp 0.0477 0.9668 0.9033 0.9816 0.9334

7x7 Moments 0.0747 0.9416 0.8559 0.9636 0.8954
Fourier 0.2001 0.7294 0.6979 0.8499 0.7104
Sobel 0.3699 0.0000 0.0000 1.0000 0.0000
Hog 0.1210 0.8793 0.7689 0.9413 0.8193
Raw 0.0378 0.9714 0.9282 0.9827 0.9490
Lbp 0.0467 0.9674 0.9057 0.9820 0.9349

9x9 Moments 0.0747 0.9416 0.8559 0.9636 0.8954
Fourier 0.1091 0.8949 0.7977 0.9442 0.8423
Sobel 0.3699 0.0000 0.0000 1.0000 0.0000
Hog 0.1414 0.8468 0.7370 0.9278 0.7865
Raw 0.0347 0.9736 0.9359 0.9829 0.9541
Lbp 0.0467 0.9674 0.9057 0.9820 0.9349

11x11 Moments 0.0747 0.9416 0.8559 0.9636 0.8954
Fourier 0.0443 0.9670 0.9154 0.9781 0.9402
Sobel 0.3699 0.0000 0.0000 1.0000 0.0000
Hog 0.1482 0.8361 0.7251 0.9238 0.7746

Table 4.2: Results of TexRev experiments

DRIVE

Figure 4.7: Results of DRIVE

DRIVE is a dataset where
the goal is the segmentation of
blood vessels in digital retinal im-
ages. Distinct from the previous
datasets, the DRIVE dataset con-
tains grayscale images and the im-
ages from DRIVE are also larger
than the images from CharS. Thus,
it is expected that learning the im-
age operator on this dataset is a
harder problem than in the previ-
ous ones.

The operators trained on the
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DRIVE dataset presented the
worst results amongst all the
datasets. The task itself is a hard
one, as many specialists do not
agree on the segmentation of the
vessels. One of the difficulties on
DRIVE is the small contrast between the vessels and the background, which makes it diffi-
cult to separate both.

Figure 4.7 displays the results obtained from the experiments on this dataset. Apart from
the Sobel feature, all the features had a significant decrease on the performance compared to
the accuracy obtained on the binary datasets. Like the previous datasets, Raw had the best
performance amongst all of the features, but the other features had diverse results. Sobel
feature performed considerably better on the grasycale dataset, while the LBP feature, that
previously had a performance similar to Raw, was considerably worse.

Similar to the previous shown results, table 4.3 displays the measures calculated from
the experiments on this dataset.

DIBCO

Figure 4.8: Results of DIBCO

The objective on the DIBCO dataset
is the segmentation of text from a docu-
ment image. Although the images on this
dataset are larger than the other ones, the
task on this dataset is considerably easier
than DRIVE due to the large contrast be-
tween the segmentation target and the back-
ground.

As can be seen in Figure 4.8, Raw and
Moments had similar MAE and they were
the best performing features in this dataset.
The other features also had similar results,
around 0.13 of MAE on the 11x11 region.

Although this dataset had better results
than the DRIVE dataset, the memory and
time consumption on DIBCO was consider-
ably larger and, at sometimes, the training of the operator almost became unfeasible. This
happened due to the size of the images on this dataset, that were the largest of all the four
datasets.

Table 4.4 displays the calculated measures of all features in all trained windows, in order
to enable further inspections.
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Window Size Feature Extractor MAE Precision Recall Specificity F1-value
Raw 0.1604 0.3966 0.4785 0.8923 0.4303
Lbp 0.1633 0.3746 0.4240 0.8969 0.3969

3x3 Moments 0.2449 0.1338 0.1675 0.8408 0.1480
Fourier 0.1273 0.0000 0.0000 1.0000 0.0000
Sobel 0.1377 0.4633 0.4843 0.9175 0.4707
Hog 0.1731 0.3280 0.3431 0.8975 0.3341
Raw 0.1166 0.5419 0.6133 0.9230 0.5712
Lbp 0.1537 0.4091 0.4677 0.9015 0.4352

5x5 Moments 0.2449 0.1338 0.1675 0.8408 0.1480
Fourier 0.1273 0.0000 0.0000 1.0000 0.0000
Sobel 0.1344 0.4784 0.5714 0.9086 0.5182
Hog 0.1663 0.3595 0.3919 0.8982 0.3737
Raw 0.1064 0.5775 0.6469 0.9298 0.6064
Lbp 0.1528 0.4125 0.4744 0.9017 0.4401

7x7 Moments 0.2449 0.1338 0.1675 0.8408 0.1480
Fourier 0.1386 0.3651 0.1189 0.9697 0.1777
Sobel 0.1258 0.5070 0.5971 0.9147 0.5457
Hog 0.1612 0.3792 0.4178 0.9002 0.3961
Raw 0.1044 0.5843 0.6555 0.9308 0.6140
Lbp 0.1544 0.4070 0.4693 0.9005 0.4348

9x9 Moments 0.2449 0.1338 0.1675 0.8408 0.1480
Fourier 0.1491 0.4269 0.4829 0.9046 0.4504
Sobel 0.1238 0.5136 0.6017 0.9163 0.5517
Hog 0.1633 0.3725 0.4133 0.8984 0.3905
Raw 0.1039 0.5865 0.6553 0.9314 0.6153
Lbp 0.1544 0.4070 0.4693 0.9005 0.4348

11x11 Moments 0.2449 0.1338 0.1675 0.8408 0.1480
Fourier 0.1534 0.4115 0.4597 0.9030 0.4315
Sobel 0.1238 0.5134 0.6018 0.9163 0.5517
Hog 0.1695 0.3502 0.3874 0.8951 0.3666

Table 4.3: Results of DRIVE experiments
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Window Size Feature Extractor MAE Precision Recall Specificity F1-value
Raw 0.0900 0.4622 0.7334 0.9288 0.5348
Lbp 0.1405 0.2633 0.4477 0.8967 0.3108

3x3 Moments 0.0906 0.4722 0.6591 0.9311 0.5201
Fourier 0.1140 0.0026 0.0009 0.9677 0.0013
Sobel 0.1527 0.2842 0.6130 0.8756 0.3541
Hog 0.1704 0.2209 0.4545 0.8670 0.2736
Raw 0.0895 0.4638 0.7454 0.9291 0.5387
Lbp 0.1322 0.2863 0.4687 0.9042 0.3337

5x5 Moments 0.0906 0.4722 0.6591 0.9311 0.5201
Fourier 0.1140 0.0026 0.0009 0.9677 0.0013
Sobel 0.1397 0.3086 0.6331 0.8872 0.3790
Hog 0.1576 0.2550 0.5249 0.8754 0.3177
Raw 0.0878 0.4681 0.7465 0.9306 0.5437
Lbp 0.1310 0.2891 0.4671 0.9057 0.3350

7x7 Moments 0.0906 0.4722 0.6591 0.9311 0.5201
Fourier 0.1607 0.1950 0.3336 0.8869 0.2226
Sobel 0.1262 0.3405 0.6546 0.8998 0.4116
Hog 0.1485 0.2661 0.5371 0.8838 0.3320
Raw 0.0869 0.4720 0.7434 0.9315 0.5467
Lbp 0.1313 0.2892 0.4664 0.9054 0.3349

9x9 Moments 0.0906 0.4722 0.6591 0.9311 0.5201
Fourier 0.1294 0.3234 0.6127 0.8961 0.3921
Sobel 0.1209 0.3535 0.6668 0.9038 0.4261
Hog 0.1436 0.2679 0.5180 0.8906 0.3316
Raw 0.0860 0.0288 0.2562 0.0680 0.0503
Lbp 0.1314 0.2890 0.4664 0.9053 0.3347

11x11 Moments 0.0906 0.4722 0.6591 0.9311 0.5201
Fourier 0.1254 0.3241 0.5379 0.9072 0.3810
Sobel 0.1169 0.3641 0.6715 0.9077 0.4381
Hog 0.1411 0.2679 0.4923 0.8955 0.3266

Table 4.4: Results of DIBCO experiments





Chapter 5

Conclusion and Future Works

In this project we studied the use of different features and representations in the process
of learning image operators. Although the framework of this task was studied and improved
in many previous works, one problem still remains, and that is the curse of dimensionality
in the features extracted from the training images. The use of different features with smaller
sizes and similar accuracy could enable the framework to learn image operators from larger
regions than before.

We studied and manually implemented many features, in order to be consistent with
TRIOSlib, a library that was implemented for the task of image operator learning. For the
experiments we searched and utilized public datasets so all of our experiments can be easily
reproduced by any interested reader. The code for TRIOSlib and every feature implemented
in this project are available at github. All test images can be seen in the project’s page.

The experiments showed that, while the raw feature provide the best overall accuracy,
different features provide similar results in specific datasets with smaller sizes of vectors. For
instance, the Fourier feature is a quarter of the size of the Raw feature and it performed
nearly the same on the TexRev dataset.

This diversity of results produced by the different features showed that, given a dataset,
one particular feature can be used to minimize the dimensionality of the training data while
still having a reasonable performance on the resulting operator. The study of the best feature
to be used in a dataset and the automatic selection of the features are some of the problems
that can be tackled in future works.

Future works that can be done in this project include the study of combination of the
features extracted from the training images. Such combination can improve the accuracy on
some datasets or even decrease the size of feature vectors. Previous works on this subject
included the combination of different windows and it obtained a significantly improvement
on previous results.

Project’s page: https://linux.ime.usp.br/~augustocms/mac0499/.
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