
Functional vs. Object-Oriented: Comparing how Programming
Paradigms affect the architectural characteristics of systems

Briza Mel Dias de Sousa

Capstone project

presented to MAC0499

Supervisors:
Prof. Dr. Alfredo Goldman

M.Sc. Renato Cordeiro Ferreira

São Paulo, December 2024

Contents

1 Introduction 2
1.1 Objective . 2
1.2 Research Questions . 2
1.3 Proposal Structure . 4

2 Methodology 5
2.1 Proof of Concept . 5
2.2 Qualitative Analysis . 6
2.3 Quantitative Analysis . 7
2.4 Analysis Discussion . 7
2.5 Threats to Validity . 7

2.5.1 Programming languages . 7
2.5.2 Qualitative analysis . 7

3 Programming Paradigms Concepts 8
3.1 Object-Oriented Programming . 8
3.2 Functional Programming . 9

4 Requirements 10
4.1 Wallet Management . 10
4.2 Investment Customization . 11
4.3 Transaction Lifecycle Management . 11
4.4 Other minor requirements . 12

5 System 13
5.1 Models . 13

5.1.1 Wallet . 13
5.1.2 Subwallet . 14
5.1.3 Transaction . 15
5.1.4 Journal Entry . 16
5.1.5 Investment Policy . 17

5.2 Services . 18

6 Qualitative Analysis 20
6.1 Extensibility . 20
6.2 Reusability . 24

ii

CONTENTS iii

6.3 Error handling and propagation . 29
6.4 The Batch Processing With Atomicity Requirement 31
6.5 Testability . 50
6.6 Readability . 57

7 Quantitative Analysis 63
7.1 Results . 63

7.1.1 Question #1 . 63
7.1.2 Question #2 . 65
7.1.3 Question #3 . 66
7.1.4 Question #4 . 67

8 Discussion 69
8.1 Extensibility . 69
8.2 Reusability . 69

8.2.1 Error Handling and Propagation . 70
8.2.2 Testability . 70
8.2.3 Readability . 70

9 Conclusion 72
9.1 Main results . 72
9.2 Future work . 73

A Survey 74
A.1 Questionnaire . 74

A.1.1 Question #1 . 74
A.1.2 Question #2 . 76
A.1.3 Question #3 . 79
A.1.4 Question #4 . 81

A.2 Background Questions . 85

Bibliography 86

iv CONTENTS

Abstract

After decades of dominance by object-oriented programming (OOP), functional programming
(FP) is gaining increasing attention in the software industry (Finley). This study compares the
impact of OOP and FP on the architectural characteristics of software systems. Specifically, it ex-
amines the design and implementation of a Digital Wallet system, developed in Kotlin (representing
OOP) and Scala (representing FP). The comparison is made through both qualitative and quantita-
tive analyses to explore how each paradigm influences the system’s architectural characteristics. The
qualitative analysis examined the implementation of specific functionalities within the paradigms.
Each architectural characteristic was meticulously compared, revealing the strengths and weak-
nesses of each paradigm for a given functionality. The quantitative analysis applied a survey to
gather feedback from developers with diverse backgrounds. Together, these approaches provided a
comprehensive understanding of how OOP and FP shaped the architectural characteristics of the
Digital Wallet system.

Keywords: Object-oriented Programming, Functional Programming, Software Architecture, Pro-
gramming Paradigms.

Chapter 1

Introduction

After decades of dominance of object-oriented programming (OOP), the functional programming
(FP) paradigm is gaining significant attention in the software industry (Finley). This shift is a
response to growing complexities in software systems, the demand for better scalability, and the
need for more predictable, robust, and maintainable codebases. According to Scalfani in 2022, one
of the clearest indications of this shift is the increasing incorporation of functional features into
mainstream programming languages.

As the software industry embraces FP concepts to address these challenges, evaluating how FP
affects critical aspects such as extensibility, reusability, error handling, error propagation, testability
and readability compared to OOP is essential to understand the future of software development. By
examining this transition and its implications, this research aims to contribute with valuable insights
into how programming paradigms influence architectural characteristics in software systems. This
understanding will help developers and organizations make informed decisions about the paradigms
best suited for their projects.

1.1 Objective

Compare how object-oriented programming and functional programming paradigms impact the
architectural characteristics of systems.

1.2 Research Questions

RQ1: What are the architectural characteristics for a system that can be used to compare
the functional and object-oriented paradigms?

According to Mark Richards (2020), architectural characteristics are all the things the software
must do that is not directly related to the domain functionality. The first question aims to establish
a well-defined set of architectural characteristics to guide the comparison between object-oriented
and functional programming paradigms. These architectural characteristics should encompass func-
tionalities that highlight the differences between the paradigms, facilitating the evaluation of their
strengths and limitations in various aspects of software development. This approach will enable
a focused comparison of how each paradigm approaches key areas of development and emphasize

2

1.3 RESEARCH QUESTIONS 3

their unique characteristics.

RQ2: How do functional and object-oriented paradigms impact different architectural char-
acteristics of a system?

The second question aims to understand the differences that arise when a system is developed
using a functional paradigm compared to an object-oriented paradigm. This analysis focuses on
observing how each paradigm influences critical aspects of software development, providing insights
into which approach better supports it.

sRQ1: How do functional and object-oriented paradigms impact error handling, error prop-
agation, and the overall robustness of a system?

The first subquestion explores how each paradigm handles and propagates errors, impacting
the overall robustness of the system. Object-oriented and functional paradigms embody distinct
philosophies in error representation and management, with each approach offering unique mecha-
nisms that may enhance or challenge system reliability. This analysis aims to determine how these
differences influence error-handling effectiveness and whether one paradigm naturally contributes
to building a more reliable system.

sRQ2: How do functional and object-oriented paradigms impact the testability of a system?

The second subquestion aims to understand how functional and object-oriented paradigms might
facilitate the testing process, examining whether one paradigm results in more comprehensive test
coverage or impacts the complexity of the tests themselves.

sRQ3: How do functional and object-oriented paradigms impact the legibility of a system?

The third subquestion seeks to answer how functional and object-oriented paradigms influence
the readability and clarity of the system. The distinct structures and conventions of each paradigm
may enhance or hinder the ease with which developers can understand and reason about the code.

sRQ4: How do functional and object-oriented paradigms impact the maintainability of a
system?

The fourth subquestion explores how functional and object-oriented paradigms support the
long-term maintainability of a system by enabling the development of modular, reusable, and easily
extendable code.

4 CHAPTER 1. INTRODUCTION 1.3

1.3 Proposal Structure

The remaining of this proposal is structured as follows. Chapter 2 outlines the methodology
employed to conduct this research. Chapter 3 introduces essential paradigm concepts used through-
out the work. Chapter 4 defines the requirements that the study object must fulfill. Chapter 5
describes a language- and paradigm-agnostic architecture for the study object. Chapter 6 presents
the author’s comparative analysis of the paradigms. Chapter 7 supplements the qualitative analysis
with a quantitative analysis. Finally, Chapter 8 discusses the outcomes of the research and their
implications.

Chapter 2

Methodology

This chapter details the methodology employed to bring the proposed work to reality, outlining
how the research questions are going to be answered. A Digital Wallet System will serve as the
primary study object, enabling detailed comparison of object-oriented and functional paradigms.
Through this approach, the research will examine how each paradigm approaches key architectural
characteristics, providing insight into their benefits and drawbacks.

2.1 Proof of Concept

The initial step in addressing the research questions is to build a system that will serve as the
foundation of this research. A Digital Wallet System was chosen as the domain for this system due
to its multifaceted functionality, which includes transaction management, balance tracking, batch
processing, and support for multiple wallet and transaction types. These core operations demand
intricate data handling, state management, and consistency, each of which can be approached dif-
ferently within object-oriented and functional programming paradigms. By implementing a system
with these features, the research allows for a meticulous exploration of how each paradigm addresses
different types of architectural characteristics, including:

• Extensibility: The Digital Wallet System could be incremented with several new function-
alities, which might require the extension of the existing models, such as wallets and transac-
tions. The research also explores how object-oriented and functional paradigms contribute to
building a system that is easy to expand.

• Reusability: Reusability is a fundamental goal in software design, offering flexibility and
reducing the need for further redesign. However, as Erich Gamma observes in Design Patterns:
Elements of Reusable Object-Oriented Software, achieving reusability is challenging as it
requires the definition of relationships that are both specific to current needs and adaptable
for future requirements. This characteristic of software architecture will also be examined
in the context of the Digital Wallet System, exploring how object-oriented and functional
paradigms promote code reusability.

• Error handling and propagation: The Digital Wallet System supports end-to-end trans-
action processing, from creation to settlement. Throughout this lifecycle, transactions may

5

6 CHAPTER 2. METHODOLOGY 2.3

encounter validation or unexpected errors that need to be identified and managed to main-
tain system consistency. This aspect of the system presents an opportunity to explore how
the object-oriented and functional paradigms handle error detection, management, and prop-
agation, demonstrating how they influence the robustness and reliability of the Digital Wallet
System.

• Testability: The Digital Wallet System involves several components that must be tested to
ensure the correctness of its functionalities, such as transaction processing, wallet manage-
ment, and record-keeping. This provides an opportunity to explore the ease of testing code
written in object-oriented versus functional paradigms.

• Readability: he Digital Wallet System supports multiple wallet and transaction types, each
governed by different rules. Understanding how these components interact can be challenging
for the reader. This offers an opportunity to explore which paradigm better expresses the
business logic, making the system’s flow and interactions more transparent and easier to
understand.

To make the comparison of paradigms possible, the Digital Wallet System will be developed
twice with the aim of producing a study object for the object-oriented paradigm and another study
object for the functional paradigm.

The object-oriented version of the Digital Wallet System will be based on Kotlin programming
language. Kotlin is a modern language that offers strong support for classic object-oriented principles
such as inheritance, encapsulation, polymorphism, and abstraction. The developer can define classes
in a straightforward manner, enabling the structuring of data and behavior through objects.

The functional version of the Digital Wallet System will be based on Scala programming lan-
guage. Scala is a modern language that supports many functional programming constructs such as
higher-order functions, immutable data structures, pattern matching, and monads. It provides the
ability of developing with emphasis on immutability and pure functional constructs, aligning with
the core principles of functional programming.

The initial step in creating both study objects is to establish a set of functional requirements
that will guide the development of both the functional and object-oriented versions of the Digital
Wallet System. These functional requirements should be paradigm and language agnostic, ensuring
they are defined independently of any specific characteristics or limitations of the chosen paradigms
or languages.

2.2 Qualitative Analysis

Once the Digital Wallet System is implemented in both Kotlin and Scala, a qualitative com-
parison will be done to assess how each version addresses the challenges a Digital Wallet System is
designed to solve.

To conduct this qualitative analysis, code snippets from both the Kotlin and Scala implemen-
tations that perform the same tasks will be carefully selected to form the basis of the qualitative
analysis. The analysis will evaluate the extensibility, reusability, error handling, error propagation,
testability and readability of the Digital Wallet System.

2.5 QUANTITATIVE ANALYSIS 7

2.3 Quantitative Analysis

The quantitative analysis will be conducted through survey research. This survey will consist
of five questions, each presenting code snippets from the Kotlin and Scala implementations of the
Digital Wallet System that perform the same task. Respondents will be asked to evaluate each
snippet based on the following criteria: extensibility, reusability, error handling, error propagation,
testability and readability. A Likert scale format will be employed for these evaluations, providing
a standardized framework for assessing each criterion.

Additionally, the survey will collect information about the participants’ backgrounds to provide
context for their evaluations. These background questions can be found in Appendix A.

The background questions provide essential context for interpreting the survey responses. Par-
ticipants’ experiences, familiarity with programming paradigms, and expertise in Kotlin or Scala
can significantly influence how they understand and evaluate the code snippets.

2.4 Analysis Discussion

The analysis discussion step involves combining the results of both the qualitative and quantita-
tive analyses to discuss their findings. This discussion will identify whether one paradigm performed
better in specific criteria, such as readability or testability, and highlight any notable differences
between the Kotlin and Scala implementations. The goal is to determine if one paradigm offered
significant advantages over the other, answering the research question RQ2.

2.5 Threats to Validity

Assessing threats to validity is essential to ensure the solidity of this research and to acknowledge
potential limitations that might influence the interpretation of the results.

2.5.1 Programming languages

The evaluation of programming paradigms in this research may be influenced by the choice of
programming languages representing each paradigm. Kotlin and Scala were chosen as modern, multi-
platform languages that run on the Java Virtual Machine (JVM), ensuring a level of comparability.

Despite Kotlin supports functional programming features and Scala supports object-oriented de-
sign, the research intentionally limits Kotlin to object-oriented programming principles and Scala to
functional programming principles. This restriction aims to focus the comparison on the paradigms
themselves rather than on language-specific capabilities.

2.5.2 Qualitative analysis

The qualitative analysis conducted in this research may reflect biases influenced by the author’s
background and expertise. To address this, a mixed-methods approach will be employed, incorpo-
rating quantitative analysis to complement the qualitative findings. Feedback from professionals
with diverse backgrounds will be collected, ensuring a wider range of perspectives and reducing the
potential impact of individual biases.

Chapter 3

Programming Paradigms Concepts

Understanding the fundamental principles of Object-Oriented Programming (OOP) and Func-
tional Programming (FP) is essential for any meaningful comparison between these paradigms.
Both paradigms have distinct philosophies, strengths, and limitations that significantly influence
how software systems approach architectural characteristics.

This chapter introduces OOP and FP concepts that are essential to understand the comparisons
discussed in this study.

3.1 Object-Oriented Programming

According to Martin (2017), object-oriented programming is the proper admixture of encapsu-
lation, inheritance and polymorphism. Any OOP programming language must support these three
characteristics.

Encapsulation

Effective encapsulation of data and functions ensures that a clear boundary is established around
a cohesive set of data and behaviors. Within this boundary, data is hidden and protected from direct
external access, while only specific functions are exposed to interact with the data. This approach is
commonly seen in object-oriented programming through private data members and public methods
in classes.

Inheritance

Inheritance is the process of reusing and extending a group of variables and functions defined in
one scope within another. In object-oriented programming, this often means that a new class (called
a subclass) can inherit properties and behaviors (variables and methods) from an existing class
(called a superclass). This allows the subclass to reuse, override, or expand existing functionality
without redefining it entirely.

Polymorphism

Polymorphism is the ability of a method to behave differently based on the context in which it
is used. Polymorphism unblocks dependency inversion by allowing high-level modules to depend

8

3.2 FUNCTIONAL PROGRAMMING 9

on abstractions rather than concrete implementations. It decouples implementation details from
the modules that depend on them through interfaces, allowing dependencies to be reversed.

3.2 Functional Programming

According to Paul Chiusano (2014), functional programming is based on the premise of writing
programs using only pure functions.

Pure functions

Pure functions are functions without side effects. A function has side effects if it does something
other than returning a result, such as modifying a variable, throwing an exception or printing to
the console.

High-order functions

In functional programming, functions are values. They can be assigned to variables, stored in
data structures, and passed as arguments to functions.

When writing purely functional programs, it is often useful to write a function that accepts
other functions as arguments. This is called a higher-order function (HOF).

Chapter 4

Requirements

The Digital Wallet System is the object of study used in this work to establish the comparison
between the object-oriented and the functional programming paradigms. Although it models a
real-world problem, the Digital Wallet System was not developed for production, but rather was
designed to provide examples of functionalities that highlight the differences between the paradigms.
Therefore, the project ignores some typical concerns for this type of system, such as data security
and auditability.

The functional requirements outlined for the Digital Wallet System are listed below.

4.1 Wallet Management

The system should support wallet management by providing each user with three types of
wallets:

• Real Money Wallet, representing a real-world checking account owned by the customer.
This wallet is the entry and exit point of the Digital Wallet System, where the customer
can deposit from or withdraw to an external bank account. It is modeled to be a temporary
allocation of the customer’s funds until they are moved to another wallet;

• Investment wallet, representing a portfolio of investment options where customers can
allocate their funds. Funds are invested by transferring funds from the Real Money Wal-

let to the Investment Wallet, and are liquidated by transferring from the Investment

Wallet to the Real Money Wallet. Investments and liquidations can be initiated at any
time, but will only settle on the next business day;

• Emergency Funds Wallet, representing a deposit insurance where customers can allocate
funds without taking the risks of the Investment Wallet. Funds are deposited into and
withdrawn from the Emergency Funds Wallet through instant transfers to and from the
Real Money Wallet.

10

4.3 INVESTMENT CUSTOMIZATION 11

4.2 Investment Customization

Figure 4.1: The figure illustrates an InvestmentPolicy that allocates a given amount as
follows: 50% to stocks, 30% to real estate, 15% to bonds, and 5% to cryptocurrency.

The system should support investment and liquidation customization by letting customers define
the participation of each investment option under an Investment Wallet. The participation
should be measured as a percentage of the total invested, and the customer should have real-time
control over it. This requirement includes the capacity of setting the percentage to zero for undesired
investments, or even selecting a single investment.

4.3 Transaction Lifecycle Management

Figure 4.2: Deposit and Withdrawal represent an interaction of the Real Money Wallet
with the external world. Transfer is intended to instantly transfer funds between Real Money
Wallet and Emergency Funds Wallet. Hold reserves funds within Real Money Wallet or
Investment Wallet for future use. TransferFromHold instantly transfer the reserved funds.

The system should support the creation, validation and execution of transactions between wal-
lets. Transactions represent a money movement inside the Digital Wallet System which might
succeed or fail. Providing customers with all the functionalities they need embraces the following
types of transactions:

• Deposit, which represents a deposit to the Real Money Wallet, modeling the inflow of
funds into the system;

• Withdrawal, which represents a withdrawal from the Real Money Wallet, modeling
the outflow of funds from the system;

• Transfer, representing an instant transfer to or from the Real Money Wallet. While
the Digital Wallet System is not required to handle transfers directly with real-world bank
accounts, it should integrate with a third-party API to enable this functionality;

12 CHAPTER 4. REQUIREMENTS 4.4

• Hold, representing a reserved amount within the wallet, crucial for non-instant money move-
ments. This transaction blocks a specified portion of funds for a future purpose, ensuring
availability when the associated movement settles;

• Transfer from hold, representing an instant release and transfer of funds previously re-
served in a Hold transaction. This transaction finalizes the settlement of a Hold transaction,
completing the intended fund movement.

Every transaction should be validated prior to execution. Deposit and Withdrawal transac-
tions are restricted to Real Money Wallet. Transfer transactions are permissible only between
Real Money Wallet and Emergency Funds Wallet. A Hold can be placed exclusively on
Real Money Wallet and Investment Wallet, while TransferFromHold transactions are
limited to be executed between Real Money Wallet and Investment Wallet. Additionally,
all transactions — except for Deposit — require a balance check to ensure sufficient funds are
available to complete the operation.

The system is also expected to manage transaction failures as part of the transaction lifecycle.
Transactions failing validation should be marked as permanently failed, while those that fail during
execution should be eligible for retry. In general, validation should capture expected, unrecoverable
errors, such as insufficient funds. Execution errors, though unlikely after successful validation, may
still occur due to internal issues or third-party API instabilities. In such cases, the system should
provide a mechanism to retry the transaction.

4.4 Other minor requirements

Financial Tracking

The system must provide means of tracking all financial transactions to maintain accurate
account balances and ensure data integrity.

Investment and Liquidation settlement

The system should support a mechanism to settle all investment and liquidation requests initi-
ated on the previous business day.

Batch Processing of Transactions

The system should support batch processing of transactions with atomicity. This means that
in any given batch, all transactions must either complete successfully or, if any transaction fails,
the entire batch must be rolled back. This ensures data integrity and prevents partial updates that
could disrupt the financial record-keeping system.

Chapter 5

System

The architecture of the Digital Wallet System was designed to embrace all proposed require-
ments, providing a high-level overview of the system’s components and their interactions.

This chapter presents a description that focuses on the structure and communication flows
between components, independent of specific programming languages or paradigms.

5.1 Models

The requirements introduced some key concepts of the Digital Wallet System, such as wallets
and the ability of performing money movements through transactions. This section presents core
data structures representing these business concepts within the Digital Wallet System. They form
the foundation of the system’s functionality, modeling entities such as Wallet, Transaction,
InvestmentPolicy and JournalEntry.

5.1.1 Wallet

Figure 5.1: The Real Money Wallet serves as the primary interface with the external world,
enabling deposits and withdrawals of funds. It can allocate funds to the Emergency Funds Wallet
for insurance purposes or to the Investment Wallet for investment opportunities. The Emergency
Funds Wallet can transfer funds back to the Real Money Wallet when needed. Similarly, the
Investment Wallet may liquidate investments, transferring the funds back to the Real Money
Wallet.

The Wallet model serves as an account structure where customer funds are held and managed.
It functions as the starting or ending point for all financial transactions, allowing money to be
deposited, withdrawn, or transferred to other destinations. The system provides three types of
wallets for each customer:

13

14 CHAPTER 5. SYSTEM 5.1

• Real Money Wallet: This wallet represents a real-world checking account which can be
deposited or withdrawn. It is the only wallet type that directly interacts with external bank
accounts, serving as a channel for funds entering and leaving the system. Additionally, the
Real Money Wallet can transfer funds to the Investment Wallet for investment
purposes and to the Emergency Funds Wallet to allocate funds intended for preservation;

• Investment Wallet: This wallet is an abstraction of the customer’s investment portfolio.
The Investment Wallet holds funds allocated in up to four types of investments: stocks,
bonds, real estate, and cryptocurrency. The total balance of the Investment Wallet is
calculated as the sum of the funds distributed among these investment options, providing an
abstracted view of the customer’s investment assets. For liquidation purposes, the Invest-

ment Wallet can transfer funds back to the Real Money Wallet, enabling access to
liquidity when needed. However, no interactions with the Emergency Funds Wallet are
allowed, ensuring that designated emergency reserves remain separate from investment assets;

• Emergency Funds Wallet: This wallet is designed to hold funds intended to remain secure
and free from investment risks. The Emergency Funds Wallet can transfer to the Real

Money Wallet as needed, enabling quick access to liquidity in case of urgent situations.

While transactions dictated the flow of funds between wallets, the wallets themselves are unaware
of the transactions’ existence. Their role is solely to model and hold customer funds within the
system; they are not responsible for determining the validity of incoming or outgoing transactions.
This separation of concern ensures that wallets focus on balance management without handling
transaction logic.

5.1.2 Subwallet

The Subwallet concept is introduced to represent the distribution of funds within the same
wallet.

Figure 5.2: Wallet types and corresponding Subwallet types.

The Real Money Wallet has only one Subwallet where funds can be allocated: the Real

Money Subwallet. In practice, having a single Subwallet means that, for record-keeping pur-
poses, funds in the Real Money Wallet are not divided in any way. Similarly, the Emergency

5.1 MODELS 15

Funds Wallet consists solely of the Emergency Funds Subwallet. The relevance of the Sub-

wallet becomes evident in the Investment Wallet, where funds are allocated across various
investment options. Introducing a new investment option involves adding a corresponding Subwal-

let within the Investment Wallet.

5.1.3 Transaction

A Transaction represents an attempt to change the state of a Wallet. Each transaction
specifies an amount, as well as originator and beneficiary entities, which can either be a Wal-

let (and its designated Subwallet) or an external entity. Each transaction has also a status
representing its current phase in processing. Possible statuses include Processing, Failed, Transient
Error, and Completed.

Transaction status

Transactions are created with the Processing status, indicating that they have not yet gone
through validation or execution. The Failed status is a terminal state, representing a permanent
failure with no possibility for retry. Similarly, Completed is a terminal status, meaning that all
validations and execution steps succeeded, the transaction has settled and the involved Wallet(s)
was updated. The Transient Error status indicates a recoverable error occurred during transac-
tion processing, such as a failure in a third-party API call. Transactions with this status are eligible
for retry.

Transaction validation

Transactions must be validated to ensure they adhere to the internal rules of the Digital Wallet
System, as some transactions may be faulty. For instance, specific transaction types can only be
initiated on a Real Money Wallet, but not on an Investment Wallet. Additionally, transac-
tions must respect the restriction that prevents any interaction between the Investment Wallet

and the Emergency Funds Wallet, so these wallets should not interact or even be aware of
each other’s existence. Some transactions are also subject to a balance validation to verify that the
initiating wallet has sufficient funds for the transfer, ensuring it will not be overdrafted.

Transaction types

A Transaction can be classified as a Deposit, Withdrawal, Hold, Transfer, or Trans-

ferFromHold. Each transaction type represents a standard operation that modifies the state of
a Wallet.

A Deposit transaction represents an increase in a Real Money Wallet’s balance, resulting
from an external source adding funds to the system. Deposits do not require balance validation,
as they only involve incoming funds and do not reduce the wallet’s balance. Conversely, a With-

drawal transaction decreases the Real Money Wallet balance by transferring funds out of the
system to an external recipient. Withdrawals require balance validation to ensure there are sufficient
funds to cover the transaction; if the balance is less than the requested amount, the transaction will
fail permanently.

16 CHAPTER 5. SYSTEM 5.1

Completing a Deposit or Withdrawal transaction authorizes funds to enter or leave the
system. These transaction types are exclusive to the Real Money Wallet, as it is the only
wallet that interacts with the external world.

A Transfer transaction moves funds from a source wallet to a target wallet. Transfers are
allowed between the customer’s Real Money Wallet and Emergency Funds Wallet, and
balance validation is required to confirm that the source wallet has sufficient funds to continue pro-
cessing the transfer. Once a Transfer transaction passes all validations, it proceeds to execution,
initiating the actual transfer of funds within the system. The Digital Wallet System delegates this
transfer operation to a third-party API, which instantly moves funds between the Real Money

Wallet and the Emergency Funds Wallet as needed. This transaction type is designed to
provide customers with quick access to their insured funds when necessary.

While transfers are permanently marked as failed if they do not pass validation, they are eligible
for retry if an error occurs after successfully completing validation. This flexibility allows the system
to recover from issues such as third-party API instabilities, preventing customers from experiencing
errors directly or even needing to initiate a new transfer.

Unlike Deposit, Withdrawal, and Transfer transactions, a Hold transaction does not
involve moving money from one place to another; it simply reserves a specified amount of funds
within the same Wallet. Reserved funds can either be released, making them available again,
or transferred to another Wallet through a TransferFromHold transaction. A Transfer-

FromHold transaction allows movement of reserved funds, which do not appear in the available
balance and, therefore, are not accessible by standard Transfer transactions.

Hold transactions require balance validation to ensure that the amount reserved does not
exceed the current available balance. Although this validation occurs when placing the Hold,
TransferFromHold transactions also check that enough reserved funds are available to cover
the transfer amount. This is necessary because there is not a strict one-to-one relationship between
Hold transactions and TransferFromHold transactions; any portion of the reserved funds can
be transferred as long as it does not exceed the total amount held in reserve.

5.1.4 Journal Entry

A JournalEntry serve to document the effects of a Transaction on a Wallet. They track
changes in the Wallet’s balance and provide a detailed history of all financial activities. By listing
all journal entries linked to a Wallet, it is possible to ascertain its current state accurately.

Journal entries are always created in pairs to represent the origin and destination of funds being
moved. To accurately reflect changes in a Wallet’s state, a JournalEntry must include the
following:

• Source or Target Wallet ID: This identifies the Wallet involved in the transaction. It
can be absent to indicate interactions with the external world for Deposit and Withdrawal

transactions.

• Subwallet ID: This specifies the Subwallet under the main Wallet. It may also be absent
to represent the external world.

• Amount: A positive amount indicates that money is being added to the Subwallet, while
a negative amount signifies a deduction from the Subwallet.

5.2 MODELS 17

• Balance Type: This can be Internal, Available, or Holding. Internal represents funds being
sent to or received from the external world. Available indicates funds being added to or
deducted from the available balance of a Subwallet. Holding indicates funds being added
to or deducted from the reserved balance of a Subwallet.

The ledger gathers all journal entries created by the Digital Wallet System. Each completed
transaction results in a pair of journal entries being recorded in the ledger. The figure below displays
the corresponding journal entries for each transaction type.

Figure 5.3: Journal entries posted for each transaction type.

5.1.5 Investment Policy

An InvestmentPolicy defines the allocation of an investment portfolio by associating each
Subwallet with a specific percentage, representing its share of the total portfolio. Only subwallets
within the Investment Wallet are permitted to be included in an InvestmentPolicy.

18 CHAPTER 5. SYSTEM 5.2

5.2 Services

The Digital Wallet System relies on a set of core services that operate collectively to serve
the functionalities described by the requirements. Each service plays a distinct role, supporting
processes such as wallets management, transactions processing, record-keeping, integrations with
third-party APIs and investments and liquidations management.

The LedgerService is responsible for intermediating the interactions between other services
and the Digital Wallet System’s ledger. It essentially provides two functionalities:

• Posting journal entries

• Querying the ledger for balances: Aggregates JournalEntries to compute the balance
of a specific Wallet.

The TransactionsService provides functionalities to fulfill each step of a transaction lifecycle.
It creates, validates and processes transactions, encapsulating the business logic for each transaction
type. This service also guarantees that the ledger is accurately updated upon transaction completion,
maintaining consistency across the system.

Although the TransactionsService is responsible for managing different transaction types,
it remains agnostic to their specific purposes. Its role is to ensure that all transactions are processed
correctly and that the ledger remains consistent.

The WalletsService is responsible for managing and initiating transactions within wallets.
It encapsulates the business logic needed to translate money movements initiated by the customer
into a series of transactions that fulfill these requests. The types of requests handled by the Wal-

letsService include:

• Deposit Request: Deposits funds into the Real Money Wallet.

• Withdraw Request: Withdraw funds from the Real Money Wallet.

• Emergency Allocation Request: Withdraw funds from the Real Money Wallet.

• Emergency Release Request: Transfers funds from the Emergency Funds Wallet

back to the Real Money Wallet.

• Investment Request: Allocates funds from the Real Money Wallet to the Investment

Wallet, distributing the amount across investment options based on the InvestmentPol-

icy.

• Liquidation Request: Withdraws funds from the Investment Wallet to the Real

Money Wallet, proportionally liquidating investments according to the InvestmentPol-

icy.

The InvestmentService is dedicated to handling investment and liquidation requests, which
involve multiple steps and do not settle instantly like other transaction types. This service knows
how to effectively use an InvestmentPolicy to initiate and manage the transactions required to
complete an investment or liquidation.

The diagram below illustrates the communication flow between services:

5.2 SERVICES 19

Figure 5.4: The services that compose the Digital Wallet System.

Chapter 6

Qualitative Analysis

This chapter presents the qualitative analysis of the Digital Wallet System for both Kotlin and
Scala versions. The qualitative analysis compares code snippets from each version of the Digital
Wallet System that perform the same task, evaluating them according to the following criteria:

• Readability: How easy it is to understand its intended behavior.

• Maintainability: How easy it is to change its current behavior.

• Extensibility: How easy it is to add new behavior.

• Testability: How easy it is to test it.

• Reusability: How easy it is to apply it in a new use case.

• Error Handling: How easy it is to understand errors handled by it.

• Error Propagation: How easy it is to understand errors propagated by it.

This chapter seeks to reveal how the functional and object-oriented paradigms perform with
respect to the criteria listed above.

6.1 Extensibility

To analyze the extensibility, this section examines how the Kotlin and Scala versions of the
Digital Wallet System model the concept of a Wallet.

1

2 // Wallet superclass

3 abstract class Wallet(

4 val id: String,

5 val customerId: String,

6 val policyId: String,

7) {

8 abstract fun getAvailableBalance(ledgerService: LedgerService) : BigDecimal

9 }

10

11 // RealMoneyWallet subclass

20

6.1 EXTENSIBILITY 21

12 class RealMoneyWallet(

13 id: String,

14 customerId: String,

15 policyId: String,

16) : Wallet(id, customerId, policyId) {

17 override fun getAvailableBalance(ledgerService: LedgerService): BigDecimal {

18 val ledgerQuery = listOf(

19 LedgerQuery(

20 subwalletType = SubwalletType.REAL_MONEY,

21 balanceType = BalanceType.AVAILABLE,

22)

23)

24

25 return ledgerService.getBalance(this.id, ledgerQuery)

26 }

27 }

28

29 // EmergencyFundsWallet subclass

30 class EmergencyFundsWallet(

31 id: String,

32 customerId: String,

33 policyId: String,

34) : Wallet(id, customerId, policyId) {

35 override fun getAvailableBalance(ledgerService: LedgerService): BigDecimal {

36 val ledgerQuery = listOf(

37 LedgerQuery(

38 subwalletType = SubwalletType.EMERGENCY_FUND,

39 balanceType = BalanceType.AVAILABLE,

40)

41)

42

43 return ledgerService.getBalance(this.id, ledgerQuery)

44 }

45 }

46

47 // InvestmentWallet subclass

48 class InvestmentWallet(

49 id: String,

50 customerId: String,

51 policyId: String,

52) : Wallet(id, customerId, policyId) {

53 override fun getAvailableBalance(ledgerService: LedgerService): BigDecimal {

54 val ledgerQueries = listOf(

55 LedgerQuery(

56 subwalletType = SubwalletType.BONDS,

57 balanceType = BalanceType.AVAILABLE,

58),

59 LedgerQuery(

60 subwalletType = SubwalletType.STOCK,

61 balanceType = BalanceType.AVAILABLE,

62),

63 LedgerQuery(

64 subwalletType = SubwalletType.REAL_ESTATE,

22 CHAPTER 6. QUALITATIVE ANALYSIS 6.1

65 balanceType = BalanceType.AVAILABLE,

66),

67 LedgerQuery(

68 subwalletType = SubwalletType.CRYPTOCURRENCY,

69 balanceType = BalanceType.AVAILABLE,

70)

71)

72

73 return ledgerService.getBalance(this.id, ledgerQueries)

74 }

75 }

In the Kotlin implementation of the Digital Wallet System, the Wallet model is structured
using object-oriented programming principles, including inheritance and polymorphism. The ab-
stract class Wallet serves as a blueprint for all specific wallet types: Real Money Wallet,
Investment Wallet and Emergency Funds Wallet.

Figure 6.1: The Wallet model depicted using Unified Modeling Language (UML).

The Wallet abstract class defines the shared attributes and behavior common to all wallet
types. These attributes include:

• A unique wallet identifier.

• The customer identifier to associate the wallet with its owner.

• An optional policy identifier governing the rules for money movement within the wallet.

Additionally, the class declares an abstract method, getAvailableBalance, which is in-
tended to encapsulate the logic for querying balances from the ledger. By declaring getAvailableBalance
as an abstract method, the design enforces that all subclasses must implement their specific logic
for computing balances. This ensures consistency across wallet types while allowing each subclass

6.1 EXTENSIBILITY 23

to customize its behavior to meet its unique requirements. This approach leverages polymorphism,
where the behavior of the getAvailableBalance method depends on the subclass being used.

The Kotlin version of the Digital Wallet System structured the Wallet model by using con-
cepts of object-oriented programming such as inheritance and polymorphism. A future requirement
demanding a new wallet type could be achieved by simply adding a new subclass that inherits
from the Wallet abstract class. This subclass automatically gains access to the shared attributes
defined in the Wallet class while also being required to implement the getAvailableBalance
method, enabling it to define its specific balance-query behavior.

1 case class Wallet(

2 val id: String,

3 val customerId: String,

4 val policyId: Option[String],

5 val walletType: WalletType

6)

In the Scala implementation of the Digital Wallet System, the Wallet is represented as a
case class, emphasizing immutability and ease of use. Unlike the Kotlin implementation, the Scala
model includes an additional field: walletType. This field is an enumeration (WalletType) that
distinguishes the wallet derivations within the system.

1 object WalletType extends Enumeration {

2 type WalletType = Value

3 val RealMoney, Investment, EmergencyFunds = Value

4 }

Unlike Kotlin, which employs inheritance to represent different wallet derivations, Scala relies
on an unified approach: all other fields, regardless of the walletType, are consolidated within a
single Wallet model.

Instead of overriding the getAvailableBalance method in subclasses as Kotlin does, Scala
defines a single getAvailableBalance function. This function uses pattern matching on the
walletType field to differentiate the balance computation logic for each wallet type. For every
variant of the WalletType enumeration, the function specifies a corresponding list of ledger queries
to compute the available balance, providing behavior tailored to each wallet type without requiring
separate models.

1 def getAvailableBalance(wallet: Wallet): BigDecimal = {

2 val ledgerQuery = wallet.walletType match {

3 case WalletType.RealMoney =>

4 List(

5 LedgerQuery(

6 subwalletType = SubwalletType.RealMoney,

7 balanceType = BalanceType.Available

8)

9)

10 case WalletType.Investment =>

11 List(

12 LedgerQuery(

24 CHAPTER 6. QUALITATIVE ANALYSIS 6.2

13 subwalletType = SubwalletType.Bonds,

14 balanceType = BalanceType.Available,

15),

16 LedgerQuery(

17 subwalletType = SubwalletType.Stock,

18 balanceType = BalanceType.Available,

19),

20 LedgerQuery(

21 subwalletType = SubwalletType.RealEstate,

22 balanceType = BalanceType.Available,

23),

24 LedgerQuery(

25 subwalletType = SubwalletType.Cryptocurrency,

26 balanceType = BalanceType.Available,

27)

28)

29 case WalletType.EmergencyFunds =>

30 List(

31 LedgerQuery(

32 subwalletType = SubwalletType.EmergencyFunds,

33 balanceType = BalanceType.Available

34)

35)

36 }

37

38 ledgerService.getBalance(wallet.id, ledgerQuery)

39 }

In Scala, pattern matching is exhaustive, meaning that any unhandled enumeration variant
results in a compilation error. This feature ensures that all logic associated with WalletType

is revisited whenever a new variant is added to the enumeration to introduce a new wallet type.
Consequently, pattern matching enforces consistency across the system by guaranteeing that the
behavior for all wallet types is explicitly defined, minimizing the risk of missing cases.

Both Kotlin and Scala implementations promote extensibility, enabling the system to adapt
through localized code updates. In Kotlin, this is achieved by adding a new subclass to represent a
wallet type and implementing the specialized getAvailableBalance method for that class. In
Scala, extensibility is achieved by introducing a new variant to the WalletType enumeration.

These features also enforce the extension of existing specialized logic whenever a new wallet type
is introduced. While Kotlin requires the creation of a dedicated model and method implementation
for each new type, in Scala this can be achieved by simply adding a new enumeration variant and
updating the existing functions that centralize the behavior of all wallet types.

6.2 Reusability

To analyze the reusability, this section examines how the Kotlin and Scala versions implement
utilities commonly used throughout the Digital Wallet System.

6.2 REUSABILITY 25

Logging

The system leverages logs to track errors occurring at various points in the workflow. In the
Kotlin version, any service can declare a Logger to trace its errors:

1

2 private val logger = Logger()

fun handleException(

e: Exception,

status: TransactionStatus,

idempotencyKey: String,

): Transaction? {

val message = e.message.toString()

logger.error(message)

val filter = TransactionFilter(idempotencyKey = idempotencyKey)

val transaction = transactionsRepo.find(filter).firstOrNull()

transaction?.updateStatus(transactionsRepo, status)

return transaction

}

In the Kotlin implementation, the logging mechanism is utilized to ensure that errors are tracked
on transaction failures. For instance, in the handleException method, the error message from
the provided exception is extracted and logged using logger.error(message). This guarantees
that every invocation of handleException automatically logs the error, facilitating debugging
and monitoring.

However, if exceptions unrelated to transactions need to be logged, a separate method must be
created to incorporate the logging mechanism into the error-handling logic.

1

2 private val logger = Logger()

1 def maybeLogError[A, B](f: () => Either[A, B]): Either[A, B] = {

2 f() match {

3 case Left(e) =>

4 logger.error(e.toString)

5 Left(e)

6 case Right(result) => Right(result)

7 }

8 }

In the Scala implementation, a higher-order function, maybeLogError, is introduced to encap-
sulate error logging. This function takes a parameter f: () => Either[A, B], which represents
a function that returns an Either[A, B]. It behaviors as follows:

• If f returns a Right, the result is directly returned.

26 CHAPTER 6. QUALITATIVE ANALYSIS 6.2

• If f returns a Left, the error message is logged, and the error is returned.

The generality of the maybeLogError function dispenses the need for additional utility meth-
ods to handle errors. Any function returning an Either[A, B] can integrate with this higher-order
function, making it versatile and reusable.

1 def process(

2 transaction: Transaction

3): Either[ProcessError, ProcessTransactionTuple] = {

4 lib.maybeLogError(() => {

5 for {

6 validationResult <- validationService

7 .validateTransaction(transaction)

8 .left.map(e => ProcessError(e.message))

9 processTransactionTuple <- processTransaction(transaction)

10 .left.map(e => ProcessError(e.message))

11 } yield processTransactionTuple

12 })

13 }

In the example above, the process function, which handles transaction processing, uses a
for-comprehension to chain two operations:

• validateTransaction, which checks the validity of the transaction.

• processTransaction, which performs the transaction.

Both operations return an Either, and their errors are mapped to a ProcessError. By
wrapping the entire block inside maybeLogError, the error logging is applied automatically. If an
error occurs during validation or processing, the error is logged, and the Left value is returned.
Otherwise, the result is returned as Right. This approach promotes reusable error logging logic
while reducing boilerplate code.

Retrying a batch of transactions

Not all transaction failures within the Digital Wallet System are considered permanent. For
example, transactions that pass validation but fail during execution are eligible for retry.

1 suspend fun retryBatch(

2 batchId: String,

3 n: Int

4) {

5 val transactions = transactionsRepo.find(

6 TransactionFilter(

7 batchId = batchId,

8 status = TransactionStatus.TRANSIENT_ERROR

9)

10)

11 var allCompleted = true

12

13 for (transaction in transactions) {

6.2 REUSABILITY 27

14 var attempts = 0

15 var success = false

16

17 while (attempts < n && !success) {

18 attempts++

19 try {

20 transaction.process(

21 transactionsRepo,

22 ledgerService,

23 partnerService

24)

25 transaction.updateStatus(

26 transactionsRepo,

27 TransactionStatus.COMPLETED

28)

29 success = true

30 } catch (e: PartnerException) {

31 break

32 }

33 }

34

35 if (!success) {

36 allCompleted = false

37 }

38 }

39

40 if (allCompleted) {

41 val originalTransaction = transactionsRepo.find(

42 TransactionFilter(idempotencyKey = batchId)

43).firstOrNull()

44

45 originalTransaction?.updateStatus(

46 transactionsRepo,

47 TransactionStatus.COMPLETED

48)

49 }

50 }

The retryBatch method attempts to reprocess each transaction within a batch up to n times.
If any transaction fails while interacting with the partner API, the entire retryBatch operation
fails. Conversely, if all transactions are successfully processed, the batch is marked as successful.
The core of the retry mechanism is built around a while loop, leveraging a counter variable
(attempts) to track the number of retries for each transaction and a flag variable (success) to
indicate whether the transaction processing succeeded.

Although this implementation provides precise control over the transaction retry process, it lacks
the flexibility to be reused for other operations that could benefit from a generic retry mechanism.
Such a mechanism would be particularly valuable for handling calls to third-party APIs or managing
asynchronous processes in general.

1 def retryBatch(batchId: String): Either[TransactionServiceError, Unit] = {

2 transactionsRepo

28 CHAPTER 6. QUALITATIVE ANALYSIS 6.2

3 .find(

4 TransactionFilter(

5 batchId = Some(batchId),

6 status = Some(TransactionStatus.TransientError)

7)

8)

9 .traverse { t => process(t).left.map { e => ProcessError(e.message) }}

10 .flatMap { tuples =>

11 val failures = tuples

12 .map { tuple => lib.retry(() => execute(tuple), 3) }

13 .collect { case Left(error) => error }

14

15 if (failures.nonEmpty) {

16 Left(ExecutionError(s"Could not execute batch successfully."))

17 } else {

18 for {

19 originatingTransaction <- transactionsRepo

20 .find(TransactionFilter(idempotencyKey = Some(batchId)))

21 .headOption

22 .toRight(

23 TransactionServiceInternalError(

24 s"Could not find transaction with idempotency key $batchId"

25)

26)

27 } yield {

28 updateStatus(originatingTransaction.id, TransactionStatus.Completed)

29 }

30 }

31 }

32 }

The Scala implementation of the retryBatch function delegates the retry logic to a higher-
order function named retry:

1 def retry[A, B](f: () => Either[A, B], n: Int): Either[Unit, B] = {

2 require(n > 0, "n must be greater than 0")

3

4 @tailrec

5 def attempt(attemptsLeft: Int): Either[Unit, B] = {

6 f() match {

7 case Right(result) => Right(result)

8 case Left(_) if attemptsLeft > 1 => attempt(attemptsLeft - 1)

9 case Left(_) => Left(())

10 }

11 }

12

13 attempt(n)

14 }

The retry function takes a function f: () => Either[A, B] and an integer n as param-
eters. It attempts to execute f up to n times, early returning a Right containing the result if any
attempt succeeds. If all n attempts fail, it returns a Left. This design encapsulates retry logic into
a reusable function, providing this functionality to any function that needs to be retried.

6.3 ERROR HANDLING AND PROPAGATION 29

Conclusion

These two examples demonstrate how the concept of higher-order functions enables the reuse
of the same logic across multiple operations in the Scala implementation, eliminating the need to
replicate similar logic for different functions. By leveraging pattern matching and recursion, the
Scala implementation also achieves a more concise and expressive code structure compared to the
Kotlin version, which relies on loops and mutable variables to manage the retry flow.

6.3 Error handling and propagation

To analyze error handling and propagation, this section examines how Kotlin and Scala imple-
ment the logic to create investments.

An investment allocates funds from the Real Money Wallet to the Investment Wallet.
This operation consists essentially of a hold transaction that does not settle instantly.

1 class WalletsService(

2 private val walletsRepo: WalletsDatabase,

3 private val investmentPolicyRepo: InvestmentPolicyDatabase,

4 private val transactionsService: TransactionsService,

5 private val investmentService: InvestmentService,

6) {

7 suspend fun invest(request: InvestmentRequest) {

8 val wallet =

9 walletsRepo

10 .find(

11 WalletFilter(

12 customerId = request.customerId,

13 type = WalletType.REAL_MONEY,

14),

15).firstOrNull() ?: throw NoSuchElementException("Wallet not found")

16

17 val processTransactionRequest =

18 ProcessTransactionRequest(

19 amount = request.amount,

20 idempotencyKey = request.idempotencyKey,

21 originatorWalletId = wallet.id,

22 originatorSubwalletType = SubwalletType.REAL_MONEY,

23 type = TransactionType.HOLD,

24)

25

26 try {

27 transactionsService.processTransaction(processTransactionRequest)

28 } catch (e: ValidationException) {

29 transactionsService

30 .handleException(e, TransactionStatus.FAILED, request.idempotencyKey)

31

32 throw InvestmentFailed(e.message.toString())

33 } catch (e: PartnerException) {

34 transactionsService

35 .handleException(e,

36 TransactionStatus.TRANSIENT_ERROR,

30 CHAPTER 6. QUALITATIVE ANALYSIS 6.3

37 request.idempotencyKey

38)

39 }

40 }

41 }

In the Kotlin implementation, the hold transaction is created through the processTransaction
method, which can throw exceptions. These exceptions must be explicitly caught in the invest
method to map them to a corresponding WalletService exception. Additionally, within the
catch blocks, it is necessary to ensure the transaction transitions to the appropriate state.

However, if a new exception type arises in the future, developers must explicitly update the
try-catch block adding a new catch case, risking unhandled runtime exceptions if they forget.

Additionally, as a try-catch block might or not handle all the error cases, reasoning about
the program becomes more challenging since the code does not clearly express the potential failure
paths.

1 def invest(

2 request: InvestmentRequest

3): Either[InvestmentFailedError, Transaction] = {

4 val wallets = walletsRepo.find(

5 WalletFilter(

6 customerId = Some(request.customerId),

7 walletType = Some(WalletType.RealMoney)

8)

9)

10

11 wallets match {

12 case List(wallet) =>

13 for {

14 transaction <- transactionsService

15 .create(

16 CreateTransactionRequest(

17 amount = request.amount,

18 idempotencyKey = request.idempotencyKey,

19 originatorWalletId = wallet.id,

20 originatorSubwalletType = SubwalletType.RealMoney,

21 transactionType = TransactionType.Hold

22)

23)

24 .left.map { e =>

25 InvestmentFailedError(e.message)

26 }

27

28 processTransactionTuple <- transactionsService

29 .process(transaction)

30 .left.map { e =>

31 transactionsService.updateStatus(

32 transaction.id,

33 TransactionStatus.Failed

34)

35 InvestmentFailedError(e.message)

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 31

36 }

37

38 executedTransaction <- transactionsService

39 .execute(processTransactionTuple)

40 .left.map { e =>

41 InvestmentFailedError(e.message)

42 }

43 } yield executedTransaction

44

45 case _ =>

46 Left(

47 InvestmentFailedError(

48 s"None or multiple wallets found for customer ${request.customerId}"

49)

50)

51 }

52 }

Instead of using exceptions, Scala handles and propagates errors by treating them as values
with Either. This approach allows errors to be explicitly modeled as part of the method’s return
type, making it clear to developers that a method can fail. The use of Either enhances type safety
by enforcing that the caller must handle both success and failure cases, ensuring that no error
is missed during development. This type-safe nature of Either eliminates the risk of unhandled
runtime errors, promoting more predictable and reliable error handling within the system.

6.4 The Batch Processing With Atomicity Requirement

This section aims at examining how Kotlin and Scala implementations handled the batch pro-
cessing with atomicity requirement. This requirement must be upheld during both the investment
and liquidation of funds to ensure the wallets remain consistency. This section analyzes the invest-
ment operation.

32 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

Figure 6.2: The Digital Wallet System initiates an investment request by creating a Hold transaction
(1). In a subsequent step, the system creates TransferFromHold transactions to move the funds to the
Investment Wallet (2). If at least one transaction in the batch fails permanently, the entire batch must
fail permanently (3).

An investment request allocates funds from the Real Money Wallet to the Investment

Wallet, distributing the amount across investment options based on the customer’s Investment-

Policy.

1 class WalletsService(

2 private val walletsRepo: WalletsDatabase,

3 private val investmentPolicyRepo: InvestmentPolicyDatabase,

4 private val transactionsService: TransactionsService,

5 private val investmentService: InvestmentService,

6) {

7 suspend fun invest(request: InvestmentRequest) {

8 val wallet =

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 33

9 walletsRepo

10 .find(

11 WalletFilter(

12 customerId = request.customerId,

13 type = WalletType.REAL_MONEY,

14),

15).firstOrNull() ?: throw NoSuchElementException("Wallet not found")

16

17 val processTransactionRequest =

18 ProcessTransactionRequest(

19 amount = request.amount,

20 idempotencyKey = request.idempotencyKey,

21 originatorWalletId = wallet.id,

22 originatorSubwalletType = SubwalletType.REAL_MONEY,

23 type = TransactionType.HOLD,

24)

25

26 try {

27 transactionsService.processTransaction(processTransactionRequest)

28 } catch (e: ValidationException) {

29 transactionsService

30 .handleException(e, TransactionStatus.FAILED, request.idempotencyKey)

31

32 throw InvestmentFailed(e.message.toString())

33 } catch (e: PartnerException) {

34 transactionsService

35 .handleException(e,

36 TransactionStatus.TRANSIENT_ERROR,

37 request.idempotencyKey

38)

39 }

40 }

41 }

In the Kotlin implementation, the investment request is handled by the invest method in the
WalletService. This method begins by locating the customer’s Real Money Wallet, which
serves as the funding source for the investment operation. Once the wallet is identified, the method
invokes processTransaction on the transactionService to create a Hold transaction on
the Real Money Wallet, reserving the specified funds for the investment.

1 class TransactionsService(

2 private val transactionsRepo: TransactionsDatabase,

3 private val walletsRepo: WalletsDatabase,

4 private val ledgerService: LedgerService,

5 private val partnerService: PartnerService,

6) {

7 suspend fun processTransaction(request: ProcessTransactionRequest): Transaction {

8 val transaction = transactionsRepo.insert(request)

9 transaction.validate(walletsRepo, ledgerService)

10 transaction.process(transactionsRepo, ledgerService, partnerService)

11

12 return transaction

34 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

13 }

14

15 // [...]

16 }

In the Kotlin version, processing a transaction encompasses all three stages of the transaction
lifecycle: creation, validation, and processing. For investment requests, creating a Hold transaction
is necessary to reserve the specified amount in the Real Money Wallet, ensuring the funds
remain allocated until they are transferred to the Investment Wallet, preventing them from
being used for other purposes.

Similarly to the Wallet model, the Kotlin implementation of the Digital Wallet System lever-
ages inheritance and polymorphism to structure a Transaction handling, enabling flexibility and
reusability across different transaction types.

1 abstract class Transaction(

2 val id: String,

3 val batchId: String? = null,

4 val amount: BigDecimal,

5 val idempotencyKey: String,

6 val originatorWalletId: String,

7 val originatorSubwalletType: SubwalletType,

8 var status: TransactionStatus,

9) {

10 abstract fun validate(

11 walletsRepo: WalletsDatabase,

12 ledgerService: LedgerService

13)

14

15 fun validateExternalTransaction() {

16 if (originatorSubwalletType != SubwalletType.REAL_MONEY) {

17 throw ExternalTransactionValidationException("Invalid transaction")

18 }

19 }

20

21 fun validateBalance(

22 walletsRepo: WalletsDatabase,

23 ledgerService: LedgerService

24) {

25 val wallet = walletsRepo.findById(originatorWalletId)

26 ?: throw NoSuchElementException("Wallet not found")

27 if (amount > wallet.getAvailableBalance(ledgerService)) {

28 throw InsufficientFundsException("Insufficient funds")

29 }

30 }

31

32 fun updateStatus(

33 transactionsRepo: TransactionsDatabase,

34 newStatus: TransactionStatus,

35) {

36 transactionsRepo.update(id, status = newStatus)

37 status = newStatus

38 }

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 35

39

40 abstract suspend fun process(

41 transactionsRepo: TransactionsDatabase,

42 ledgerService: LedgerService,

43 partnerService: PartnerService,

44)

45 }

The Hold class extends the Transaction class, implementing the validate and process

methods. The validate method consolidates all the necessary validations for a Hold transaction,
while the process method encapsulates the logic required to execute it.

1 class Hold(

2 id: String,

3 batchId: String? = null,

4 amount: BigDecimal,

5 idempotencyKey: String,

6 originatorWalletId: String,

7 originatorSubwalletType: SubwalletType,

8 status: TransactionStatus,

9) : Transaction(

10 id,

11 batchId,

12 amount,

13 idempotencyKey,

14 originatorWalletId,

15 originatorSubwalletType,

16 status,

17) {

18 override fun validate(

19 walletsRepo: WalletsDatabase,

20 ledgerService: LedgerService,

21) {

22 if (this.originatorSubwalletType !in listOf(

23 SubwalletType.REAL_MONEY, SubwalletType.STOCKS,

24 SubwalletType.REAL_ESTATE, SubwalletType.BONDS,

25 SubwalletType.CRYPTOCURRENCY)) {

26 throw HoldNotAllowed("Hold not allowed")

27 }

28

29 validateBalance(walletsRepo, ledgerService)

30 }

31

32 override suspend fun process(

33 transactionsRepo: TransactionsDatabase,

34 ledgerService: LedgerService,

35 partnerService: PartnerService,

36) {

37 val journalEntries =

38 listOf(

39 CreateJournalEntry(

40 walletId = this.originatorWalletId,

41 subwalletType = this.originatorSubwalletType,

36 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

42 balanceType = BalanceType.AVAILABLE,

43 amount = -this.amount,

44),

45 CreateJournalEntry(

46 walletId = this.originatorWalletId,

47 subwalletType = this.originatorSubwalletType,

48 balanceType = BalanceType.HOLDING,

49 amount = this.amount,

50),

51)

52

53 ledgerService.postJournalEntries(journalEntries)

54

55 this.updateStatus(transactionsRepo, TransactionStatus.PROCESSING)

56 }

57 }

The validation of a Hold transaction includes the following steps:

• Verifying that the Subwallet is one of the following: REAL_MONEY, STOCKS, REAL_ESTATE,
BONDS, or CRYPTOCURRENCY.

• Ensuring that the Wallet has sufficient available funds to cover the requested hold amount.

Executing a Hold transaction does not involve interacting with third-party APIs since no funds
are actually moved. Instead, the funds are reserved within the Wallet to indicate their future
use. This is achieved by posting two journal entries to the ledger: one decreases the funds under
BalanceType.AVAILABLE, while the other increases the funds under BalanceType.HOLDING.
After these entries are recorded, the status of the Hold transaction transitions to PROCESSING,
indicating that the hold is in progress but not yet completed. The hold must be explicitly completed
at a later stage. In the example scenario, it will be completed once the reserved funds are successfully
transferred to the Investment Wallet, fulfilling the investment request.

Once the Hold is created for the investment request, the next step is to create TransferFromHold
transaction(s), which instantly move(s) the reserved funds to another wallet.

1 class TransferFromHold(

2 id: String,

3 batchId: String? = null,

4 amount: BigDecimal,

5 idempotencyKey: String,

6 originatorWalletId: String,

7 originatorSubwalletType: SubwalletType,

8 status: TransactionStatus,

9 private val beneficiaryWalletId: String,

10 private val beneficiarySubwalletType: SubwalletType,

11) : Transaction(

12 id,

13 batchId,

14 amount,

15 idempotencyKey,

16 originatorWalletId,

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 37

17 originatorSubwalletType,

18 status,

19) {

20 override fun validate(

21 walletsRepo: WalletsDatabase,

22 ledgerService: LedgerService,

23) {

24 val originatorWallet =

25 walletsRepo.findById(this.originatorWalletId)

26 ?: throw NoSuchElementException("Wallet not found")

27 val beneficiaryWallet =

28 walletsRepo.findById(this.beneficiaryWalletId)

29 ?: throw NoSuchElementException("Wallet not found")

30

31 val validTransferFromHold =

32 (originatorWallet is RealMoneyWallet &&

33 beneficiaryWallet is InvestmentWallet) ||

34 (originatorWallet is InvestmentWallet &&

35 beneficiaryWallet is RealMoneyWallet)

36

37 if (!validTransferFromHold) {

38 throw TransferFromHoldNotAllowed("Transfer not allowed between wallets")

39 }

40

41 val originatorSubwalletPendingBalance =

42 ledgerService.getBalance(

43 originatorWalletId,

44 listOf(

45 LedgerQuery(

46 subwalletType = originatorSubwalletType,

47 balanceType = BalanceType.HOLDING,

48),

49),

50)

51

52 if (this.amount > originatorSubwalletPendingBalance) {

53 throw InsufficientFundsException("Wallet has no sufficient funds")

54 }

55 }

56

57 override suspend fun process(

58 transactionsRepo: TransactionsDatabase,

59 ledgerService: LedgerService,

60 partnerService: PartnerService,

61) {

62 partnerService.executeInternalTransfer(this)

63

64 val journalEntries =

65 listOf(

66 CreateJournalEntry(

67 walletId = this.originatorWalletId,

68 subwalletType = this.originatorSubwalletType,

69 balanceType = BalanceType.HOLDING,

38 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

70 amount = -this.amount,

71),

72 CreateJournalEntry(

73 walletId = this.beneficiaryWalletId,

74 subwalletType = this.beneficiarySubwalletType,

75 balanceType = BalanceType.AVAILABLE,

76 amount = this.amount,

77),

78)

79

80 ledgerService.postJournalEntries(journalEntries)

81

82 this.updateStatus(transactionsRepo, newStatus = TransactionStatus.COMPLETED)

83 }

84 }

A TransferFromHold it goes through the same lifecycle every transaction does: creation,
validation and processing. The validation of a TransferFromHold transaction consists of:

• Verifying that the TransferFromHold is being executed between Real Money Wallet

and Investment Wallet;

• Ensuring that the Wallet has sufficient reserved funds to cover the requested transfer
amount.

Unlike a Hold transaction, a TransferFromHold involves the actual movement of funds be-
tween wallets, requiring a call to the executeInternalTransfer method, which interacts with
a third-party API. Once the partner fulfills the transfer, the ledger must be updated to reflect
the new wallet state. This is achieved by posting two journal entries: one reduces the funds under
BalanceType.HOLDING, and the other increases the funds under BalanceType.AVAILABLE
in the receiving wallet. Since a TransferFromHold is processed instantly, its status transitions
to COMPLETED at the end of the process method, indicating the successful completion of the trans-
action.

TransferFromHold transactions are created to complete investment requests after a Hold

transaction has been placed. They are created by a method called buyFunds, designed to be run
periodically by a cronjob.

1 class InvestmentService(

2 private val transactionsRepo: TransactionsDatabase,

3 private val walletRepo: WalletsDatabase,

4 private val investmentPolicyRepo: InvestmentPolicyDatabase,

5 private val transactionsService: TransactionsService,

6 private val ledgerService: LedgerService,

7) {

8 // [...]

9

10 suspend fun buyFunds() {

11 val transactions =

12 transactionsRepo.find(

13 TransactionFilter(

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 39

14 status = TransactionStatus.PROCESSING,

15 subwalletType = listOf(SubwalletType.REAL_MONEY),

16),

17)

18

19 for (investmentTransaction in transactions) {

20 val wallet =

21 walletRepo.findById(investmentTransaction.originatorWalletId)

22 ?: throw NoSuchElementException("Wallet not found")

23 val investmentPolicy =

24 investmentPolicyRepo.findById(wallet.policyId)

25 ?: throw NoSuchElementException("Policy not found")

26 val investmentWallet =

27 walletRepo

28 .find(

29 WalletFilter(

30 customerId = wallet.customerId,

31 type = WalletType.INVESTMENT,

32),

33).firstOrNull()

34 ?: throw NoSuchElementException("Wallet not found")

35

36 try {

37 executeMovementWithInvestmentPolicy(

38 InvestmentMovementRequest(

39 amount = investmentTransaction.amount,

40 idempotencyKey = investmentTransaction.id,

41 walletId = investmentTransaction.originatorWalletId,

42 targetWalletId = investmentWallet.id,

43 investmentPolicy = investmentPolicy,

44 transactionType = TransactionType.TRANSFER_FROM_HOLD,

45),

46 SubwalletType.REAL_MONEY,

47)

48

49 val transientErrorTransactions =

50 transactionsRepo.find(

51 TransactionFilter(

52 batchId = investmentTransaction.id,

53 status = TransactionStatus.TRANSIENT_ERROR,

54),

55)

56

57 if (transientErrorTransactions.isEmpty()) {

58 investmentTransaction

59 .updateStatus(transactionsRepo, TransactionStatus.COMPLETED)

60 }

61 } catch (e: TransactionFailed) {

62 val message = e.message.toString()

63 logger.error(message)

64 // validations failed for some transaction in the batch, but other

65 // transactions may have succeeded before and their funds are invested

66 // now! To solve this, we'd have to reverse the investment transaction

40 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

67 // partially or use manual remediation...

68 }

69 }

70 }

71

72 // [...]

73 }

The buyFunds method starts by finding all Hold transactions on Real Money Wallet’s
currently in progress within the Digital Wallet System. These Hold transactions were created by
the WalletsService to reserve funds for the investment operation. For each Hold transaction
found, buyFunds will:

• Find the Real Money Wallet that originated the investment request;

• Find the customer’s InvestmentPolicy;

• Execute a money movement based on the InvestmentPolicy by calling
executeMovementWithInvestmentPolicy;

• Complete the investment request, depending on the outcome of
executeMovementWithInvestmentPolicy, by updating the wallet status.

1 class InvestmentService(

2 private val transactionsRepo: TransactionsDatabase,

3 private val walletRepo: WalletsDatabase,

4 private val investmentPolicyRepo: InvestmentPolicyDatabase,

5 private val transactionsService: TransactionsService,

6 private val ledgerService: LedgerService,

7) {

8 // [...]

9

10 suspend fun executeMovementWithInvestmentPolicy(

11 request: InvestmentMovementRequest,

12 originatorSubwalletType: SubwalletType? = null,

13) {

14 for ((subwalletType, percentage) in

15 request.investmentPolicy.allocationStrategy) {

16 val processTransactionRequest: ProcessTransactionRequest =

17 when (request.transactionType) {

18 TransactionType.HOLD ->

19 buildHoldRequest(request, subwalletType, percentage)

20 TransactionType.TRANSFER_FROM_HOLD ->

21 buildTransferFromHoldRequest(

22 request,

23 originatorSubwalletType,

24 subwalletType,

25 percentage,

26)

27 else ->

28 throw IllegalArgumentException("Unsupported transaction type")

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 41

29 }

30

31 try {

32 transactionsService.processTransaction(processTransactionRequest)

33 } catch (e: ValidationException) {

34 transactionsService

35 .handleException(e,

36 TransactionStatus.FAILED,

37 request.idempotencyKey

38)

39

40 // problem: we cannot ensure atomicity as we might have executed

41 // transfers with the partner at this point. We'd have to call the

42 // partner again to reverse the transfers already executed

43 // in this batch and then reverse the journal entries posted to

44 // ledger, which sounds not the best design...

45

46 throw TransactionFailed("holdWithPolicy failed")

47 } catch (e: PartnerException) {

48 // this error can be retried; let's just ignore it

49

50 transactionsService.handleException(e,

51 TransactionStatus.TRANSIENT_ERROR,

52 request.idempotencyKey

53)

54 }

55 }

56 }

57

58 private suspend fun buildHoldRequest(

59 request: InvestmentMovementRequest,

60 subwalletType: SubwalletType,

61 percentage: BigDecimal,

62): ProcessTransactionRequest =

63 ProcessTransactionRequest(

64 amount = request.amount * percentage,

65 batchId = request.idempotencyKey,

66 idempotencyKey = "${request.idempotencyKey}_$subwalletType}",

67 originatorWalletId = request.walletId,

68 originatorSubwalletType = subwalletType,

69 type = TransactionType.HOLD,

70)

71

72 private suspend fun buildTransferFromHoldRequest(

73 request: InvestmentMovementRequest,

74 originatorSubwalletType: SubwalletType?,

75 beneficiarySubwalletType: SubwalletType,

76 percentage: BigDecimal,

77): ProcessTransactionRequest {

78 val subwalletType = originatorSubwalletType

79 ?: throw IllegalArgumentException("originatorSubwalletType not provided.")

80

81 return ProcessTransactionRequest(

42 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

82 amount = request.amount.multiply(percentage),

83 batchId = request.idempotencyKey,

84 idempotencyKey = "${request.idempotencyKey}_$beneficiarySubwalletType",

85 originatorWalletId = request.walletId,

86 originatorSubwalletType = subwalletType,

87 beneficiaryWalletId = request.targetWalletId,

88 beneficiarySubwalletType = beneficiarySubwalletType,

89 type = TransactionType.TRANSFER_FROM_HOLD,

90)

91 }

92

93 // [...]

94 }

For a Hold transaction reserving $100 in the Real Money Wallet and an InvestmentPol-

icy that splits this amount equally among all investment options (25% each for stocks, real estate,
bonds, and cryptocurrency), the method executeMovementWithInvestmentPolicy will cre-
ate a transaction batch comprising four TransferFromHold transactions. These transactions are
defined as follows:

• $25 is transferred to the Investment Wallet under the SubwalletType.Stocks;

• $25 is transferred to the Investment Wallet under the SubwalletType.RealEstate;

• $25 is transferred to the Investment Wallet under the SubwalletType.Bonds;

• $25 is transferred to the Investment Wallet under the SubwalletType.Cryptocurrency.

The investment request of $100 will be fulfilled only if all four TransferFromHold transactions
complete successfully, ensuring the full amount reserved in the Real Money Wallet is invested.

A key requirement of the Digital Wallet System is batch processing with atomicity. For this
scenario, atomicity ensures that either all TransferFromHold transactions complete successfully
— finalizing the $100 investment — or all transactions fail permanently, resulting in the failure of
the entire investment request. This guarantees that partial investments do not occur, maintaining
system consistency.

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 43

Figure 6.3: The figure represents a transaction batch containing four TransferFromHold
transactions. Transactions 1, 2 and 3 succeed while transaction 4 fails permanently.

In the scenario illustrated in Figure 6.3 , transactions 1, 2, and 3 were successfully executed,
while transaction 4 failed permanently due to a validation error. Since transactions failing due to
validation errors are ineligible for retries, the status of transaction 4 must transition to the terminal
status FAILED.

However, transaction 4 is part of a batch that includes three other transactions, all of which
must also fail permanently to meet the atomicity requirement. In this case, the expected behavior
is that failing the entire batch will prevent the investment request from being fulfilled and ensure
the release of the funds initially held in the Real Money Wallet.

Enforcing atomicity in the Kotlin implementation of the Digital Wallet System is challenging.
By the time transaction 4 encountered a validation error, transactions 1, 2, and 3 had already been
completed, transferring $75 to the Investment Wallet. To reverse these successfully executed
transactions, the system would need to:

• Move the $75 back to the Real Money Wallet and reverse the corresponding journal entries
in the ledger to maintain consistency, or

• Resort to manual remediation.

Reverting the $75 to the Real Money Wallet involves recalling the third-party API, which may
incur additional costs if the partner charges per transfer. Ideally, the Digital Wallet System should
avoid invoking the third-party API unless it can ensure that permanent failures, such as validation
errors, are unlikely for the entire batch.

1 type Action = Transaction => Either[PartnerServiceError, Unit]

2 type ProcessTransactionTuple =

3 (Transaction, List[CreateJournalEntry], TransactionStatus, Option[Action])

4

5 class TransactionsService(

6 transactionsRepo: TransactionDatabase,

44 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

7 validationService: TransactionValidationService,

8 partnerService: PartnerService,

9 ledgerService: LedgerService,

10) {

11 // [...]

12

13 def process(

14 transaction: Transaction

15): Either[ProcessError, ProcessTransactionTuple] = {

16 lib.maybeLogError(() => {

17 for {

18 _ <- validationService

19 .validateTransaction(transaction)

20 .left.map(e => ProcessError(e.message))

21 processTransactionTuple <-

22 processTransaction(transaction)

23 .left.map(e => ProcessError(e.message))

24 } yield processTransactionTuple

25 })

26 }

27

28 private def processTransaction(

29 transaction: Transaction

30): Either[TransactionServiceError, ProcessTransactionTuple] = {

31 transaction.transactionType match {

32 case TransactionType.Deposit => processDeposit(transaction)

33 case TransactionType.Withdraw => processWithdraw(transaction)

34 case TransactionType.Hold => processHold(transaction)

35 case TransactionType.Transfer => processTransfer(transaction)

36 case TransactionType.TransferFromHold => processTransferFromHold(transaction)

37 }

38 }

39

40 private def processTransferFromHold(

41 transaction: Transaction

42): Either[TransactionServiceError, ProcessTransactionTuple] = {

43 for {

44 beneficiaryWalletId <-

45 transaction

46 .beneficiaryWalletId

47 .toRight(ProcessError(s"TransferFromHold must contain beneficiaryWalletId"))

48 beneficiarySubwalletType <-

49 transaction

50 .beneficiarySubwalletType

51 .toRight(ProcessError(s"Wallet not found"))

52 } yield {

53 val journalEntries = List(

54 CreateJournalEntry(

55 walletId = Some(transaction.originatorWalletId),

56 subwalletType = transaction.originatorSubwalletType,

57 balanceType = BalanceType.Holding,

58 amount = -transaction.amount

59),

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 45

60 CreateJournalEntry(

61 walletId = Some(beneficiaryWalletId),

62 subwalletType = beneficiarySubwalletType,

63 balanceType = BalanceType.Available,

64 amount = transaction.amount

65)

66)

67

68 val partnerAction: Action = partnerService.executeInternalTransfer

69 (transaction, journalEntries, TransactionStatus.Completed, Some(partnerAction))

70 }

71 }

72

73 // [...]

74 }

In the Scala implementation, the function handling the processing logic for a TransferFromHold
transaction is a pure function. Instead of directly performing side effects like calling a third-party
API, posting journal entries, or updating the transaction status, the function returns a tuple con-
taining all the necessary details for the caller to decide whether to execute the side effects. The
returned information includes:

• Journal entries: Entries to be posted to the ledger.

• Action: A function that interacts with the third-party API.

This design gives the caller the flexibility to determine whether and when to execute these side
effects. If the caller chooses to proceed, it can invoke the execute method to trigger the necessary
operations.

1 type Action = Transaction => Either[PartnerServiceError, Unit]

2 type ProcessTransactionTuple =

3 (Transaction, List[CreateJournalEntry], TransactionStatus, Option[Action])

4

5 class TransactionsService(

6 transactionsRepo: TransactionDatabase,

7 validationService: TransactionValidationService,

8 partnerService: PartnerService,

9 ledgerService: LedgerService,

10) {

11 // [...]

12

13 def execute(

14 tuple: ProcessTransactionTuple

15): Either[ExecutionError, Transaction] = {

16 val (transaction, journalEntries, statusOnSuccess, maybeExecuteAction) = tuple

17

18 val actionResult: Either[PartnerServiceError, Unit] = maybeExecuteAction match {

19 case Some(action) => lib.maybeLogError(() => action(transaction))

20 case None => Right(())

21 }

22

46 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

23 actionResult match {

24 case Left(e) =>

25 updateStatus(transaction.id, TransactionStatus.TransientError)

26 Left(ExecutionError(e.message))

27 case Right(_) =>

28 ledgerService.postJournalEntries(journalEntries)

29 Right(updateStatus(transaction.id, statusOnSuccess))

30 }

31 }

32

33 def updateStatus(

34 transactionId: String,

35 status: TransactionStatus

36): Transaction = {

37 transactionsRepo.update(transactionId, status)

38 }

39

40 // [...]

41 }

In the Scala implementation of executeMovementWithInvestmentPolicy, all TransferFromHold
transactions are processed before execution. If transactions 1, 2, and 3 succeed but transaction 4
encounters a permanent failure, the method finishes without attempting to execute any of the
transactions.

1 class InvestmentService(

2 transactionsRepo: TransactionDatabase,

3 walletsRepo: WalletsDatabase,

4 investmentPolicyRepo: InvestmentPolicyDatabase,

5 transactionsService: TransactionsService) {

6 // [...]

7

8 def executeMovementWithInvestmentPolicy(

9 request: MovementRequest

10): Either[InvestmentServiceError, Unit] = {

11 val allocationStrategy = request.investmentPolicy.allocationStrategy.toList

12

13 allocationStrategy

14 .filter((_, percentage) => percentage != BigDecimal(0))

15 .traverse { case (subwalletType, percentage) =>

16 for {

17 (originatorSubwalletType,

18 beneficiaryWalletId,

19 beneficiarySubwalletType

20) <- getTransactionDetails(request, subwalletType)

21

22 createTransactionRequest = CreateTransactionRequest(

23 amount = request.amount * percentage,

24 batchId = Some(request.idempotencyKey),

25 idempotencyKey = s"${request.idempotencyKey}_$subwalletType",

26 originatorWalletId = request.walletId,

27 originatorSubwalletType = originatorSubwalletType,

28 beneficiaryWalletId = beneficiaryWalletId,

6.4 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 47

29 beneficiarySubwalletType = beneficiarySubwalletType,

30 transactionType = request.transactionType

31)

32

33 transaction <-

34 transactionsService

35 .create(createTransactionRequest)

36 .left.map { e =>

37 CreateTransactionFailed(s"Failed to create transaction")

38 }

39

40 processTransactionTuple <-

41 transactionsService

42 .process(transaction)

43 .left.map { e =>

44 transactionsService.failBatch(request.idempotencyKey)

45 ProcessTransactionFailed(s"Failed to process transaction")

46 }

47 } yield processTransactionTuple

48 }.flatMap { processTransactionTuples =>

49 lib.maybeLogError(() => {

50 val failures =

51 processTransactionTuples

52 .map { tuple => transactionsService.execute(tuple) }

53 .collect { case Left(error) => error }

54

55 if (failures.nonEmpty) {

56 Left(

57 ExecuteTransactionFailed(s"${failures.size} transaction(s) failed")

58)

59 } else {

60 Right(())

61 }

62 }

63)

64 }

65 }

66

67 private def getTransactionDetails(

68 request: MovementRequest,

69 subwalletType: SubwalletType

70): Either[

71 InvestmentServiceError, (SubwalletType, Option[String], Option[SubwalletType])

72] = {

73 request.transactionType match {

74 case TransactionType.Hold =>

75 Right((subwalletType, None, None))

76

77 case TransactionType.TransferFromHold =>

78 request.walletSubwalletType

79 .toRight(InvestmentServiceInternalError(s"Missing wallet subwallet type"))

80 .map(walletSubwalletType => (

81 walletSubwalletType,

48 CHAPTER 6. QUALITATIVE ANALYSIS 6.4

82 request.targetWalletId,

83 Some(subwalletType)

84))

85

86 case _ =>

87 Left(InvestmentServiceInternalError(s"Unsupported transaction type"))

88 }

89 }

90

91 // [...]

92 }

Since process is a pure function, no side effects are performed during this stage. This ensures
that the entire transaction batch can be marked as failed without the need for complex rollback
operations to reverse prior actions, such as recalling the third-party API.

1 class InvestmentService(

2 transactionsRepo: TransactionDatabase,

3 walletsRepo: WalletsDatabase,

4 investmentPolicyRepo: InvestmentPolicyDatabase,

5 transactionsService: TransactionsService) {

6 // [...]

7

8 def buyFunds(): Unit = {

9 transactionsRepo

10 .find(

11 TransactionFilter(

12 status = Some(TransactionStatus.Processing),

13 subwalletType = Some(List(SubwalletType.RealMoney))

14)

15)

16 .foreach(investmentTransaction => {

17 for {

18 wallet <-

19 walletsRepo

20 .findById(investmentTransaction.originatorWalletId)

21 .toRight(InvestmentServiceInternalError(s"Wallet not found"))

22 policyId <-

23 wallet

24 .policyId

25 .toRight(InvestmentServiceInternalError(s"Wallet has no policyId"))

26 investmentPolicy <-

27 investmentPolicyRepo

28 .findById(policyId)

29 .toRight(

30 InvestmentServiceInternalError(s"Investment policy not found")

31)

32 investmentWallet <-

33 walletsRepo

34 .find(WalletFilter(

35 customerId = Some(wallet.customerId),

36 walletType = Some(WalletType.Investment)

37))

6.5 THE BATCH PROCESSING WITH ATOMICITY REQUIREMENT 49

38 .headOption

39 .toRight(

40 InvestmentServiceInternalError(s"Investment wallet not found")

41)

42 } yield {

43 executeMovementWithInvestmentPolicy(MovementRequest(

44 amount = investmentTransaction.amount,

45 idempotencyKey = investmentTransaction.idempotencyKey,

46 walletId = investmentTransaction.originatorWalletId,

47 walletSubwalletType = Some(SubwalletType.RealMoney),

48 targetWalletId = Some(investmentWallet.id),

49 investmentPolicy = investmentPolicy,

50 transactionType = TransactionType.TransferFromHold

51))

52 .fold(

53 error => {

54 error match {

55 case ProcessTransactionFailed(_) =>

56 // Fail the investment transaction gracefully

57 transactionsService.releaseHold(investmentTransaction)

58 transactionsService

59 .updateStatus(

60 investmentTransaction.id,

61 TransactionStatus.Failed

62)

63 case _ => ()

64 }

65 },

66 _ => {

67 // Update the transaction status to completed

68 transactionsService

69 .updateStatus(

70 investmentTransaction.id,

71 TransactionStatus.Completed

72)

73 }

74)

75 }

76 })

77 }

78

79 // [...]

80 }

In Scala, if a permanent failure occurs, the system releases and fails the Hold transaction
that initiated the investment. If any TransferFromHold transaction encounters a failure during
execution, it becomes eligible for a retry, and no further actions are taken.

While the Scala implementation successfully meets the batch processing with atomicity require-
ment, the Kotlin implementation faces challenges due to the presence of side effects within the
TransferFromHold processing logic.

50 CHAPTER 6. QUALITATIVE ANALYSIS 6.5

6.5 Testability

To analyze testability, this section examines how the Kotlin and Scala versions process transac-
tions.

Transfer implementation

In the previous section, the Kotlin implementation of the TransferFromHold processing logic
directly executes side effects such as calling a third-party API, posting journal entries, and updating
the transaction status. This pattern is consistently applied across other transaction types. The code
below shows the processing logic for Transfer transactions:

1 class TransactionsService(

2 private val transactionsRepo: TransactionsDatabase,

3 private val walletsRepo: WalletsDatabase,

4 private val ledgerService: LedgerService,

5 private val partnerService: PartnerService,

6) {

7 suspend fun processTransaction(request: ProcessTransactionRequest): Transaction {

8 val transaction = transactionsRepo.insert(request)

9 transaction.validate(walletsRepo, ledgerService)

10 transaction.process(transactionsRepo, ledgerService, partnerService)

11

12 return transaction

13 }

14

15 // [...]

16 }

1 class Transfer(

2 id: String,

3 batchId: String? = null,

4 amount: BigDecimal,

5 idempotencyKey: String,

6 originatorWalletId: String,

7 originatorSubwalletType: SubwalletType,

8 status: TransactionStatus,

9 val beneficiaryWalletId: String,

10 val beneficiarySubwalletType: SubwalletType,

11) : Transaction(

12 id,

13 batchId,

14 amount,

15 idempotencyKey,

16 originatorWalletId,

17 originatorSubwalletType,

18 status,

19) {

20 override fun validate(

21 walletsRepo: WalletsDatabase,

22 ledgerService: LedgerService,

6.5 TESTABILITY 51

23) {

24 val originatorSubwalletType = this.originatorSubwalletType

25 val beneficiarySubwalletType = this.beneficiarySubwalletType

26

27 val validTransferPairs =

28 setOf(

29 SubwalletType.REAL_MONEY to SubwalletType.EMERGENCY_FUND,

30 SubwalletType.EMERGENCY_FUND to SubwalletType.REAL_MONEY,

31)

32

33 if ((originatorSubwalletType to beneficiarySubwalletType)

34 !in validTransferPairs) {

35 throw TransferNotAllowed("Transfer not allowed")

36 }

37

38 validateBalance(walletsRepo, ledgerService)

39 }

40

41 override suspend fun process(

42 transactionsRepo: TransactionsDatabase,

43 ledgerService: LedgerService,

44 partnerService: PartnerService,

45) {

46 partnerService.executeInternalTransfer(this)

47

48 val journalEntries =

49 listOf(

50 CreateJournalEntry(

51 walletId = this.originatorWalletId,

52 subwalletType = this.originatorSubwalletType,

53 balanceType = BalanceType.AVAILABLE,

54 amount = -this.amount,

55),

56 CreateJournalEntry(

57 walletId = this.beneficiaryWalletId,

58 subwalletType = this.beneficiarySubwalletType,

59 balanceType = BalanceType.AVAILABLE,

60 amount = this.amount,

61),

62)

63

64 ledgerService.postJournalEntries(journalEntries)

65

66 this.updateStatus(transactionsRepo, newStatus = TransactionStatus.COMPLETED)

67 }

68

69 // [...]

70 }

By contrast, the Scala implementation separates concerns by providing a pure function to process
Transfer transactions, postponing side effects through a distinct execute function.

52 CHAPTER 6. QUALITATIVE ANALYSIS 6.5

1 type Action = Transaction => Either[PartnerServiceError, Unit]

2 type ProcessTransactionTuple =

3 (Transaction, List[CreateJournalEntry], TransactionStatus, Option[Action])

4

5 class TransactionsService(

6 transactionsRepo: TransactionDatabase,

7 validationService: TransactionValidationService,

8 partnerService: PartnerService,

9 ledgerService: LedgerService,

10) {

11 private val lib = Library()

12

13 def process(transaction: Transaction): Either[ProcessError, ProcessTransactionTuple] = {

14 lib.maybeLogError(() => {

15 for {

16 _ <-

17 validationService

18 .validateTransaction(transaction)

19 .left.map(e => ProcessError(e.message))

20 processTransactionTuple <-

21 processTransaction(transaction)

22 .left.map(e => ProcessError(e.message))

23 } yield processTransactionTuple

24 })

25 }

26

27 def execute(

28 tuple: ProcessTransactionTuple

29): Either[ExecutionError, Transaction] = {

30 val (transaction, journalEntries, statusOnSuccess, maybeExecuteAction) = tuple

31

32 val actionResult: Either[PartnerServiceError, Unit] = maybeExecuteAction match {

33 case Some(action) => lib.maybeLogError(() => action(transaction))

34 case None => Right(())

35 }

36

37 actionResult match {

38 case Left(e) =>

39 updateStatus(transaction.id, TransactionStatus.TransientError)

40 Left(ExecutionError(e.message))

41 case Right(_) =>

42 ledgerService.postJournalEntries(journalEntries)

43 Right(updateStatus(transaction.id, statusOnSuccess))

44 }

45 }

46

47 def updateStatus(

48 transactionId: String,

49 status: TransactionStatus

50): Transaction = {

51 transactionsRepo.update(transactionId, status)

52 }

53

6.5 TESTABILITY 53

54 private def processTransaction(

55 transaction: Transaction

56): Either[TransactionServiceError, ProcessTransactionTuple] = {

57 transaction.transactionType match {

58 case TransactionType.Deposit => processDeposit(transaction)

59 case TransactionType.Withdraw => processWithdraw(transaction)

60 case TransactionType.Hold => processHold(transaction)

61 case TransactionType.Transfer => processTransfer(transaction)

62 case TransactionType.TransferFromHold => processTransferFromHold(transaction)

63 }

64 }

65

66 private def processTransfer(

67 transaction: Transaction

68): Either[TransactionServiceError, ProcessTransactionTuple] = {

69 for {

70 beneficiaryWalletId <

71 transaction

72 .beneficiaryWalletId

73 .toRight(ProcessError(s"Transfer must contain beneficiaryWalletId"))

74 beneficiarySubwalletType <-

75 transaction

76 .beneficiarySubwalletType

77 .toRight(ProcessError(s"Wallet not found"))

78 } yield {

79 val journalEntries = List(

80 CreateJournalEntry(

81 walletId = Some(transaction.originatorWalletId),

82 subwalletType = transaction.originatorSubwalletType,

83 balanceType = BalanceType.Available,

84 amount = -transaction.amount

85),

86 CreateJournalEntry(

87 walletId = Some(beneficiaryWalletId),

88 subwalletType = beneficiarySubwalletType,

89 balanceType = BalanceType.Available,

90 amount = transaction.amount

91)

92)

93

94 val partnerAction: Action = partnerService.executeInternalTransfer

95 (transaction, journalEntries, TransactionStatus.Completed, Some(partnerAction))

96 }

97 }

98

99 // [...]

100 }

Testing the transfer implementation

Testing the Kotlin version of the Transfer logic involved mocking the third-party API and
the LedgerService.

54 CHAPTER 6. QUALITATIVE ANALYSIS 6.5

1 it("works") {

2 val request =

3 ProcessTransactionRequest(

4 amount = BigDecimal(100),

5 idempotencyKey = "idempotencyKey",

6 originatorWalletId = "realMoneyWalletId",

7 originatorSubwalletType = SubwalletType.REAL_MONEY,

8 beneficiaryWalletId = "emergencyFundsWalletId",

9 beneficiarySubwalletType = SubwalletType.EMERGENCY_FUNDS,

10 type = TransactionType.TRANSFER,

11)

12

13 val transaction = transactionsService.processTransaction(request)

14

15 transaction.status shouldBe TransactionStatus.COMPLETED

16

17 coVerify(exactly = 1) { partnerServiceMock.executeInternalTransfer(any()) }

18 coVerify(exactly = 1) {

19 ledgerServiceMock.postJournalEntries(

20 journalEntries =

21 listOf(

22 CreateJournalEntry(

23 walletId = "realMoneyWalletId",

24 subwalletType = SubwalletType.REAL_MONEY,

25 amount = BigDecimal(-100),

26 balanceType = BalanceType.AVAILABLE,

27),

28 CreateJournalEntry(

29 walletId = "emergencyFundsWalletId",

30 subwalletType = SubwalletType.EMERGENCY_FUNDS,

31 amount = BigDecimal(100),

32 balanceType = BalanceType.AVAILABLE,

33),

34),

35)

36 }

37 }

38

Although the Scala implementation avoids mocking the third-party API and LedgerService

for transaction processing, it requires mocking the TransactionValidationService. The Kotlin
implementation encapsulates validation logic within subclasses using polymorphic methods, which
eliminates the need for mocking the validation process entirely.

1 it should "process transfer" in {

2 val transaction = Transaction(

3 id = UUID.randomUUID().toString,

4 transactionType = TransactionType.Transfer,

5 originatorSubwalletType = SubwalletType.RealMoney,

6 amount = BigDecimal(100),

7 originatorWalletId = "realMoneyWalletId",

8 beneficiarySubwalletType = Some(SubwalletType.EmergencyFunds),

6.5 TESTABILITY 55

9 beneficiaryWalletId = Some("emergencyFundsWalletId"),

10 idempotencyKey = "idempotencyKey",

11 insertedAt = LocalDateTime.now(),

12 status = TransactionStatus.Creating

13)

14

15 when(

16 transactionValidationServiceMock

17 .validateTransaction(any()))

18 .thenReturn(Right(())

19)

20

21 val result = transactionService.process(transaction)

22

23 val expectedJournalEntries = List(

24 CreateJournalEntry(

25 walletId = Some("realMoneyWalletId"),

26 subwalletType = SubwalletType.RealMoney,

27 balanceType = BalanceType.Available,

28 amount = -BigDecimal(100)

29),

30 CreateJournalEntry(

31 walletId = Some("emergencyFundsWalletId"),

32 subwalletType = SubwalletType.EmergencyFunds,

33 balanceType = BalanceType.Available,

34 amount = BigDecimal(100)

35)

36)

37

38 result match {

39 case Right((transactionResult, journalEntries, transactionStatus, action)) =>

40 transactionResult shouldBe transaction

41 journalEntries shouldBe expectedJournalEntries

42 transactionStatus shouldBe TransactionStatus.Completed

43 action.isDefined shouldBe true

44 case Left(error) =>

45 fail(s"Expected Right but got Left with error: $error")

46 }

47 }

Moreover, Scala introduces an additional function, execute, to handle side effects such as
calling the third-party API and posting journal entries. While the process function remains pure
and avoids side effects, this separation means that execute requires its own set of tests. These
tests need to mock dependencies like the third-party API and LedgerService to ensure the side
effects are correctly executed and verified. This adds an extra layer of testing compared to Kotlin,
where the side effects are integrated into the main processing logic and tested together.

1 it should "execute transfer" in {

2 val id = UUID.randomUUID().toString

3 val transaction = utils.insertTransactionInMemory(

4 db = transactionsRepo,

5 id = id,

56 CHAPTER 6. QUALITATIVE ANALYSIS 6.5

6 transactionType = TransactionType.Transfer,

7 originatorSubwalletType = SubwalletType.RealMoney,

8 amount = BigDecimal(100),

9 originatorWalletId = "realMoneyWalletId",

10 beneficiarySubwalletType = Some(SubwalletType.EmergencyFunds),

11 beneficiaryWalletId = Some("emergencyFundsWalletId"),

12 insertedAt = LocalDateTime.now(),

13 status = TransactionStatus.Creating

14)

15

16 val journalEntries = List(

17 CreateJournalEntry(

18 walletId = Some("realMoneyWalletId"),

19 subwalletType = SubwalletType.RealMoney,

20 balanceType = BalanceType.Available,

21 amount = -BigDecimal(100)

22),

23 CreateJournalEntry(

24 walletId = Some("emergencyFundsWalletId"),

25 subwalletType = SubwalletType.EmergencyFunds,

26 balanceType = BalanceType.Available,

27 amount = BigDecimal(100)

28)

29)

30

31 val action: Action = partnerServiceMock.executeInternalTransfer

32

33 val tuple: ProcessTransactionTuple =

34 (transaction, journalEntries, TransactionStatus.Completed, Some(action))

35

36 when(partnerServiceMock.executeInternalTransfer(any())).thenReturn(Right(()))

37 when(ledgerServiceMock.postJournalEntries(any())).thenReturn(LocalDateTime.now())

38

39 val result = transactionService.execute(tuple)

40

41 result match {

42 case Right(transactionResult) =>

43 transactionResult.id shouldBe id

44 transactionResult.status shouldBe TransactionStatus.Completed

45 case Left(error) =>

46 fail(s"Expected Right but got Left with error: $error")

47 }

48

49 verify(ledgerServiceMock).postJournalEntries(ArgumentMatchers.eq(journalEntries))

50 }

Conclusion

The Scala implementation, by keeping the processTransfer function pure and free of side
effects, allows for straightforward and isolated testing of the core logic. However, the separation
of side effects into the execute function introduces additional testing requirements. Testing the
execute function necessitates mocking dependencies to verify that side effects are performed

6.6 READABILITY 57

correctly. While this adds an extra testing layer, it ensures a clear distinction between testing
transaction processing logic and side-effect execution.

On the other hand, Kotlin integrates side effects directly into the processing logic, requiring
mocks for both the third-party API and LedgerService when testing the transaction flow. While
this approach simplifies the overall test structure, it increases the coupling between the processing
logic and dependencies, making it harder to isolate the core logic for testing.

6.6 Readability

To analyze readability, this section examines how the Kotlin and Scala versions implements the
logic that fulfills liquidation requests.

Similar to investment requests, a liquidation request begins in the WalletsService with the
creation of a Hold transaction. However, in this case, the Hold is created on the Investment

Wallet to reserve funds that will later be transferred to the Real Money Wallet. A batch of
Hold transactions is generated according to the customer’s InvestmentPolicy:

1 suspend fun liquidate(request: LiquidationRequest) {

2 val wallet =

3 walletsRepo

4 .find(

5 WalletFilter(

6 customerId = request.customerId,

7 type = WalletType.INVESTMENT,

8),

9).firstOrNull() ?: throw NoSuchElementException("Wallet not found")

10 val investmentPolicy =

11 investmentPolicyRepo.findById(wallet.policyId)

12 ?: throw NoSuchElementException("Policy not found")

13

14 try {

15 investmentService.executeMovementWithInvestmentPolicy(

16 InvestmentMovementRequest(

17 amount = request.amount,

18 idempotencyKey = request.idempotencyKey,

19 walletId = wallet.id,

20 investmentPolicy = investmentPolicy,

21 transactionType = TransactionType.HOLD,

22),

23)

24 } catch (e: TransactionFailed) {

25 throw LiquidationFailed(e.message.toString())

26 }

27 }

The Kotlin implementation places the logic for fulfilling liquidation requests in the sellFunds
method within the InvestmentService:

1 suspend fun sellFunds() {

2 val transactions =

58 CHAPTER 6. QUALITATIVE ANALYSIS 6.6

3 transactionsRepo.find(

4 TransactionFilter(

5 status = TransactionStatus.PROCESSING,

6 subwalletType =

7 listOf(

8 SubwalletType.STOCK,

9 SubwalletType.BONDS,

10 SubwalletType.REAL_ESTATE,

11 SubwalletType.CRYPTOCURRENCY,

12),

13),

14)

15

16 for (liquidationTransaction in transactions) {

17 val wallet =

18 walletRepo.findById(liquidationTransaction.originatorWalletId)

19 ?: throw NoSuchElementException("Wallet not found")

20 val realMoneyWallet =

21 walletRepo

22 .find(

23 WalletFilter(

24 customerId = wallet.customerId,

25 type = WalletType.REAL_MONEY,

26),

27).firstOrNull() ?: throw NoSuchElementException("Wallet not found")

28

29 try{

30 transactionsService.processTransaction(

31 ProcessTransactionRequest(

32 amount = liquidationTransaction.amount,

33 idempotencyKey = liquidationTransaction.id,

34 originatorWalletId = liquidationTransaction.originatorWalletId,

35 originatorSubwalletType =

36 liquidationTransaction.originatorSubwalletType,

37 beneficiaryWalletId = realMoneyWallet.id,

38 beneficiarySubwalletType = SubwalletType.REAL_MONEY,

39 type = TransactionType.TRANSFER_FROM_HOLD,

40)

41)

42

43 liquidationTransaction.updateStatus(

44 transactionsRepo,

45 newStatus = TransactionStatus.COMPLETED,

46)

47 } catch (e: ValidationException) {

48 logger.error("Transaction ${liquidationTransaction.id} failed")

49 liquidationTransaction.reverse(ledgerService)

50 liquidationTransaction.updateStatus(

51 transactionsRepo,

52 newStatus = TransactionStatus.FAILED

53)

54 } catch (e: PartnerException) {

55 // this error can be retried; let's just ignore it

6.6 READABILITY 59

56 transactionsService.handleException(e,

57 TransactionStatus.TRANSIENT_ERROR,

58 request.idempotencyKey

59)

60 }

61 }

62 }

The Kotlin implementation starts by finding all Hold transactions in the Investment Wal-

let. For each Hold, it identifies the corresponding Real Money Wallet to which the reserved
funds should be transferred.

A single TransferFromHold transaction is created for each Hold to transfer the reserved
funds to the Real Money Wallet. The implementation uses a try-catch block to handle two
types of failures: permanent failures and retriable failures. If no failures occur, the originating Hold

transaction is marked as Completed.
The structure of the sellFunds method is straightforward and intuitive. Its purpose is easy

to infer, as it starts by finding ongoing transactions under the Stock, Bonds, RealEstate, and
Cryptocurrency subwallets, which clearly indicates the goal of fulfilling liquidation requests.

The for loop explicitly iterates over each transaction, performing a series of operations that
may fail. These failures are addressed using Exceptions and try-catch blocks. The use of
try-catch blocks, which visually stand out from the rest of the code, enhances readability by
distinguishing the error-handling logic from the main operation flow.

Similarly, in the Scala implementation, a liquidate function in the WalletsService initiates
liquidation requests:

1 def liquidate(request: LiquidationRequest): Either[LiquidationFailedError, Unit] = {

2 val wallets = walletsRepo.find(

3 WalletFilter(

4 customerId = Some(request.customerId),

5 walletType = Some(WalletType.Investment)

6)

7)

8

9 wallets match {

10 case List(wallet) =>

11 for {

12 policyId <-

13 wallet

14 .policyId

15 .toRight(LiquidationFailedError(s"Wallet has no policyId"))

16

17 investmentPolicy <-

18 investmentPolicyRepo

19 .findById(policyId)

20 .toRight(LiquidationFailedError(s"Investment policy found"))

21

22 _ <-

23 investmentService.executeMovementWithInvestmentPolicy(MovementRequest(

24 amount = request.amount,

25 idempotencyKey = request.idempotencyKey,

60 CHAPTER 6. QUALITATIVE ANALYSIS 6.6

26 walletId = wallet.id,

27 investmentPolicy = investmentPolicy,

28 transactionType = TransactionType.Hold

29)).left.map(e => LiquidationFailedError(e.message))

30 } yield ()

31 case _ =>

32 Left(LiquidationFailedError(s"None or multiple wallets found"))

33 }

34 }

The core logic for fulfilling liquidation requests resides in the sellFunds function within the
InvestmentService:

1 def sellFunds(): Unit = {

2 transactionsRepo

3 .find(

4 TransactionFilter(

5 status = Some(TransactionStatus.Processing),

6 subwalletType =

7 Some(

8 List(

9 SubwalletType.Stock,

10 SubwalletType.Bonds,

11 SubwalletType.RealEstate,

12 SubwalletType.Cryptocurrency,

13)

14)

15)

16)

17 .map(liquidationTransaction => {

18 for {

19 wallet <-

20 walletsRepo

21 .findById(liquidationTransaction.originatorWalletId)

22 .toRight(InvestmentServiceInternalError(s"Wallet not found"))

23 realMoneyWallet <-

24 walletsRepo

25 .find(WalletFilter(

26 customerId = Some(wallet.customerId),

27 walletType = Some(WalletType.RealMoney)

28))

29 .headOption

30 .toRight(InvestmentServiceInternalError(s"Real money wallet not"))

31 transaction <- transactionsService.create(

32 CreateTransactionRequest(

33 amount = liquidationTransaction.amount,

34 idempotencyKey = liquidationTransaction.id,

35 originatorWalletId = liquidationTransaction.originatorWalletId,

36 originatorSubwalletType =

37 liquidationTransaction.originatorSubwalletType,

38 beneficiaryWalletId = Some(realMoneyWallet.id),

39 beneficiarySubwalletType = Some(SubwalletType.RealMoney),

40 transactionType = TransactionType.TransferFromHold,

6.6 READABILITY 61

41)

42).left.map { e =>

43 CreateTransactionFailed(e.message)

44 }

45

46 processTransactionTuple <-

47 transactionsService

48 .process(transaction)

49 .left

50 .map { e =>

51 // fail transfer from hold

52 transactionsService.updateStatus(

53 transaction.id,

54 TransactionStatus.Failed

55)

56 // fail liquidation transaction

57 transactionsService.releaseHold(liquidationTransaction)

58 transactionsService.updateStatus(

59 liquidationTransaction.id,

60 TransactionStatus.Failed

61)

62 ProcessTransactionFailed("Failed to process transaction")

63 }

64

65 _ <-

66 transactionsService

67 .execute(processTransactionTuple)

68 .fold(

69 error => {

70 Left(ExecuteTransactionFailed(error.message))

71 },

72 _ => {

73 Right(transactionsService.updateStatus(

74 liquidationTransaction.id,

75 TransactionStatus.Completed

76))

77 }

78)

79 } yield ()

80 })

81 }

The Scala implementation also begins by finding ongoing transactions in the Stock, Bonds,
RealEstate, and Cryptocurrency subwallets. It uses the higher-order function map to apply
a series of operations to each Hold transaction.

For error handling, the Scala implementation employs a for-comprehension to manage each
potentially failable operation. The number of operations in Scala is greater because the creation,
processing, and execution logic of transactions are separated into distinct methods.

Errors in Scala are treated as values, composing part of the return type. This approach en-
forces localized error handling and minimizes the risk of unhandled cases. However, treating errors
as regular values reduces their prominence compared to Kotlin’s Exceptions and try-catch

blocks, which stand out more clearly in the code. While the functional approach ensures safety

62 CHAPTER 6. QUALITATIVE ANALYSIS 6.6

and composability through high-order functions, it may lack the visual distinction that facilitates
understanding of error-handling and propagation flows.

Chapter 7

Quantitative Analysis

The quantitative analysis aims to gather feedback from developers with diverse backgrounds
through a survey, complementing the qualitative analysis.

At the time of this research, the survey has received eight responses. However, it remains open,
and additional responses will be considered for future work.

The survey was initially beta-tested with a developer experienced in both paradigms. It was
then tested with two additional developers before being made available to a wider public.

The survey consists of two sections: background questions and a questionnaire. The back-
ground questions are designed to map the developers’ experience with object-oriented and functional
programming languages, as this experience might influence their reasoning when evaluating the code
snippets. The questionnaire comprises four questions, each of which includes a brief explanation
of a functionality from the Digital Wallet System and two code snippets—one from the Kotlin
implementation and the other from the Scala implementation—that implement this functionality.

Developers are asked to evaluate various architectural characteristics, including extensibility,
reusability, error handling, error propagation, testability, readability, and maintainability, for each
implementation using a Likert scale. Detailed background questions and the descriptions of the
questionnaire items can be found in Appendix A.

While the survey collects feedback on maintainability, this characteristic will not be analyzed
in this work.

As the survey gathers more responses, it will become possible to correlate the results of the
background questions with the responses to the main questionnaire. This will enable the enable the
understanding of how developers’ experiences influence their perceptions of architectural character-
istics.

7.1 Results

This section presents the results collected from the survey to date.

7.1.1 Question #1

Question 1 collects feedback on Kotlin and Scala implementation of the logic that retries a
transaction batch.

63

64 CHAPTER 7. QUANTITATIVE ANALYSIS 7.1

Kotlin

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

0 0 0 0 0

3

2

1

4 4

2

5

3

2

3 3

5

0

3

5

1 1 1

00 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

Scala

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

0 0 0 0 0

1

4

1

3

4

3

00

3

2 2

4 44 4

2

1 1

2

0 0

1 1

0

1

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

The results of Question 1 reveal a notable difference in the characteristics of error handling,
error propagation, and readability. Many developers found the Scala implementation of the retry
logic to be more challenging to handle, propagate errors, and read when compared to the Kotlin
implementation. This indicates that, for these aspects, Kotlin may offer a clearer and more accessible
approach.

7.1 RESULTS 65

7.1.2 Question #2

Question 2 gathers feedback on the Kotlin and Scala implementations of the Withdrawal

validation logic.

Kotlin

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

2

1 1

2

1

3

4

5

2 2

6

3

2 2

5

4

1 1

0 0 0 0 0

1

0 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

Scala

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

0 0

2 2 2 2

4 4

2

3

2

4

2

3 3 3

2

1

2

1 1

0

2

1

0 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

The results of Question 2 reveal a notable difference in several characteristics. Extensibility and
reusability were slightly favored in the Kotlin implementation. Error handling, error propagation,
and readability showed comparable results between the two implementations. While responses for

66 CHAPTER 7. QUANTITATIVE ANALYSIS 7.1

testability in the Scala implementation were inconclusive, the Kotlin implementation stood out
positively in this area, reflecting a stronger perceived capability for effective testing in Kotlin.

7.1.3 Question #3

Question 3 gathers feedback on the Kotlin and Scala implementations of the logic responsible
for initiating an investment.

Kotlin

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

1

0

1 1

0

11

0

5

3

5

4

2

5

2

3 3

1

4

3

0

1

0

1

0 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

Scala

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

0 0

2

1

0 0

1 1

3 3

2

3

5

4

1

3

4

22

3

2

1

2

3

0 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

7.1 RESULTS 67

The results of Question 3 indicate that extensibility is slightly favored in the Scala implementa-
tion compared to the Kotlin implementation. Error handling and error propagation are comparable
between the two, though some responses suggest these aspects may be more challenging to achieve in
Scala. Reusability is also quite similar for both implementations, with a slight preference for Scala.
Testability demonstrates a significant advantage in favor of the Kotlin implementation. Readability,
while inconclusive for the Scala implementation, received more favorable feedback for the Kotlin
version.

7.1.4 Question #4

Question 4 gathers feedback on the Kotlin and Scala implementations represent a Transfer.

Kotlin

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

1 1

0 0

1

4

3

1

2 2

4 44

6

3

4

3

00 0

2

1

0 00 0

1 1

0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

68 CHAPTER 7. QUANTITATIVE ANALYSIS 7.1

Scala

Extensibility Reusability E. Handling E. Propagation Testability Readability

0

1

2

3

4

5

6

0 0

2 2

0 0

3

2

3

2

5

6

4

5

3

4

3

11 1

0 0 0

1

0 0 0 0 0 0

Characteristics

Fr
eq

ue
nc

y

Very Easy Easy Neutral Hard Very Hard

The results of Question 4 suggest that extensibility is slightly preferred in the Kotlin implemen-
tation over the Scala implementation. Error handling and error propagation, on the other hand,
were perceived more favorably in Scala. Reusability and testability were largely comparable between
the two, with a slight preference for Kotlin. Both implementations were considered easy to read for
this specific example, though readability was slightly more favored in Kotlin.

Chapter 8

Discussion

This chapter discusses the findings derived from both the qualitative and quantitative analyses
conducted for each architectural characteristic outlined in the methodology (chapter 2).

8.1 Extensibility

This research assessed how object-oriented and functional paradigms contribute to the develop-
ment of a Digital Wallet System designed for ease of expansion.

The qualitative analysis revealed that both Kotlin and Scala offer features that promote ex-
tensibility. Kotlin leveraged object-oriented principles such as inheritance and polymorphism to
achieve extensibility, while Scala employed enumerations and pattern matching to accomplish the
same objective. Although the Scala implementation was more concise, requiring less boilerplate
code to extend a model, both approaches were effective and provided comparable benefits to the
extensibility characteristic.

The quantitative analysis corroborated these findings. The perceptions of Scala and Kotlin im-
plementations were similar, with only minor differences observed. Notably, these differences mostly
favored the Kotlin implementation of the Digital Wallet System.

8.2 Reusability

This research assessed how object-oriented and functional paradigms promote flexibility and
reduce the need for further redesign by enabling code reusability.

The qualitative analysis examined the object-oriented and functional paradigms by evaluating
two distinct examples. The findings for both were consistent: Scala demonstrated stronger support
for code reusability through higher-order functions, enabling generic implementations of various
functionalities. In contrast, the Kotlin implementations in both examples lacked sufficient flexibility
to be effectively adapted for different domains.

However, the quantitative analysis did not reveal significant differences between Kotlin and Scala
in terms of reusability. Responses indicated that both implementations were perceived as similar,
with only minor variations.

The discrepancy between the qualitative and quantitative analysis findings suggests that the
reusability characteristic may considerably depend on the specific functionality being evaluated.

69

70 CHAPTER 8. DISCUSSION 8.2

8.2.1 Error Handling and Propagation

This research assessed how object-oriented and functional paradigms handle error detection,
management, and propagation.

The qualitative analysis demonstrated that the Scala implementation contributed more effec-
tively to the robustness of the Digital Wallet System than the Kotlin implementation for the example
under consideration. Kotlin propagates errors using exceptions and handles them with traditional
try-catch blocks. In contrast, Scala utilizes the Either[A, B] type, representing a disjoint
union of two types, to propagate errors. Error handling in Scala is performed through higher-order
functions, allowing mapping to new error types as needed.

By incorporating errors directly into return types, the Scala implementation enforces compre-
hensive error handling through type checking, ensuring that new error cases cannot be missed.

Nevertheless, the quantitative analysis did not reflect the same dominance of the Scala imple-
mentation. Most responses indicated that Kotlin is either comparable or slightly superior to Scala
in terms of error handling and propagation.

This divergence may suggest the influence of readability characteristic. In the Scala implementa-
tion, treating errors as values can cause them to blend with other elements of the code, potentially
impacting clarity and comprehension. Conversely, Kotlin utilizes exceptions and try-catch blocks,
which stand out from the rest of the code, effectively highlighting error management within the
Digital Wallet System.

8.2.2 Testability

This research assessed how object-oriented and functional paradigms contribute to the correct-
ness of the Digital Wallet System by facilitating the development of tests.

The qualitative analysis showed that Scala enabled more isolated testing by implementing trans-
action processing logic as pure functions, while side effects were implemented in a separate method.
This approach enhanced test isolation but introduced an additional layer of testing compared to
the Kotlin implementation.

The quantitative analysis, on the other hand, revealed that Kotlin was preferred in several
examples, with developers perceiving it as more intuitive to test in practice.

Overall, these findings suggest that while Scala’s functional approach offers advantages in test
isolation, Kotlin promotes more integration with side effects and aligns better with developers’
expectations.

8.2.3 Readability

This research assessed how object-oriented and functional paradigms contribute to the legibility
of the Digital Wallet System.

The qualitative analysis revealed that Scala effectively utilizes constructs like for-comprehension
to compose the various steps required to fulfill a liquidation request. However, it falls in providing
clarity in its error handling and propagation flow. In contrast, Kotlin’s use of Exceptions and
try-catch blocks makes error handling more distinct from the main logic, enhancing readability
and making the flow of error handling and propagation easier to understand.

8.2 REUSABILITY 71

The quantitative analysis relatively corroborated the findings of the qualitative analysis. With
a few exceptions, the Kotlin implementation was consistently perceived as easier to read and reason
about by the developers who answered the survey.

Chapter 9

Conclusion

As the functional programming paradigm has gained relevance after decades of dominance by
object-oriented programming, this research aims to comparing how object-oriented programming
and functional programming paradigms impact the architectural characteristics of systems, con-
tributing with valuable insights into how programming paradigms influence architectural charac-
teristics in software systems.

9.1 Main results

This research facilitated the comparison of object-oriented programming and functional pro-
gramming paradigms, addressing the research questions outlined in Chapter 1.

The first research question, RQ1, aimed to establish a well-defined set of architectural charac-
teristics to serve as the foundation for comparing the two paradigms. These architectural charac-
teristics, detailed in Chapter 2, include extensibility, reusability, error handling, error propagation,
testability, and readability.

The second research question, RQ2, aimed to determine how object-oriented and functional pro-
gramming paradigms impact the architectural characteristics defined in RQ1. To answer this, the
research employed a mixed-methods approach, involving both qualitative and quantitative analyses,
followed by a synthesis of findings in a final discussion.

The qualitative analysis, detailed in Chapter 6, examined the implementation of specific func-
tionalities within the paradigms. Each architectural characteristic was meticulously compared, re-
vealing the strengths and weaknesses of each paradigm for a given functionality. This analysis pro-
vided valuable insights into which paradigm better satisfies a particular architectural characteristic
or if they are relatively equivalent.

The quantitative analysis, presented in Chapter 7, involved a survey to gather feedback from
developers with diverse backgrounds. This analysis complemented the qualitative findings by adding
perspectives from real-world experience.

Finally, the combined results of the qualitative and quantitative analyses were discussed in
Chapter 8. This discussion explored the similarities and differences between the two analyses, ex-
ploring potential factors contributing to significant discrepancies and offering deeper insights into
how each paradigm addresses the defined architectural characteristics.

72

9.2 FUTURE WORK 73

9.2 Future work

This work offers opportunities for further expansion to yield even more comprehensive results.
For instance, future iterations could increase the scope of the current research questions. The list
of architectural characteristics could be expanded to include non-functional requirements, such as
scalability and security. Introducing new requirements could uncover the analysis of object-oriented
or functional concepts that were not addressed in the current research, such as dependency inversion
and laziness.

Additionally, the research could be enhanced by gathering more responses through the survey.
This would strengthen the validity of the findings by incorporating more practical experiences from
the real-world.

The research could also be enhanced by developing additional study objects that explore domains
beyond the Digital Wallet System. This would provide a broader perspective on how object-oriented
and functional programming paradigms perform across different contexts, enriching the qualitative
and quantitative analysis.

Appendix A

Survey

A.1 Questionnaire

A.1.1 Question #1

Kotlin

1 suspend fun retryBatch(

2 batchId: String,

3 n: Int,

4) {

5 val transactions = transactionsRepo.find(

6 TransactionFilter(

7 batchId = batchId,

8 status = TransactionStatus.TRANSIENT_ERROR

9))

10 var allCompleted = true

11

12 for (transaction in transactions) {

13 var attempts = 0

14 var success = false

15

16 while (attempts < n && !success) {

17 attempts++

18 try {

19 transaction.process(

20 transactionsRepo,

21 ledgerService,

22 partnerService

23)

74

QUESTIONNAIRE 75

24 transaction.updateStatus(

25 transactionsRepo, TransactionStatus.COMPLETED

26)

27 success = true

28 } catch (e: PartnerException) {

29 break

30 }

31 }

32

33 if (!success) {

34 allCompleted = false

35 }

36 }

37

38 if (allCompleted) {

39 val originalTransaction = transactionsRepo.find(

40 TransactionFilter(

41 idempotencyKey = batchId

42)).firstOrNull()

43 originalTransaction?.updateStatus(

44 transactionsRepo,

45 TransactionStatus.COMPLETED

46)

47 }

48 }

Scala

1

2 def retryBatch(batchId: String): Either[TransactionServiceError, Unit] = {

3 transactionsRepo

4 .find(TransactionFilter(

5 batchId = Some(batchId),

6 status = Some(TransactionStatus.TransientError)

7))

8 .traverse { t =>

9 process(t).left.map { e =>

10 // We are not really expecting a process error

11 // as we know it worked the first time

12 ProcessError(e.message)

13 }

14 }

15 .flatMap(tuples => {

16 val failures =

17 tuples

18 .map { tuple => lib.retry(() => execute(tuple), 3) }

19 .collect { case Left(error) => error }

20

21 if (failures.nonEmpty) {

22 Left(ExecutionError(s"Could not execute batch successfully."))

23 }

24 else {

76 APPENDIXA

25 for {

26 originatingTransaction <-

27 transactionsRepo

28 .find(TransactionFilter(idempotencyKey = Some(batchId)))

29 .headOption

30 .toRight(

31 TransactionServiceInternalError(s"Could not find transaction")

32)

33 } yield {

34 updateStatus(originatingTransaction.id, TransactionStatus.Completed)

35 }

36 }

37 })

38 }

A.1.2 Question #2

Kotlin

1 abstract class Transaction(

2 val id: String,

3 val batchId: String? = null,

4 val amount: BigDecimal,

5 val idempotencyKey: String,

6 val originatorWalletId: String,

7 val originatorSubwalletType: SubwalletType,

8 var status: TransactionStatus,

9) {

10 abstract fun validate(

11 walletsRepo: WalletsDatabase,

12 ledgerService: LedgerService,

13)

14

15 fun validateExternalTransaction() {

16 if (this.originatorSubwalletType != SubwalletType.REAL_MONEY) {

17 throw ExternalTransactionValidationException("Transaction not allowed")

18 }

19 }

20

21 fun validateBalance(

22 walletsRepo: WalletsDatabase,

23 ledgerService: LedgerService,

QUESTIONNAIRE 77

24) {

25 val walletId = this.originatorWalletId

26 val wallet = walletsRepo.findById(walletId)

27 ?: throw NoSuchElementException("Wallet not found")

28

29 val balance = wallet.getAvailableBalance(ledgerService)

30

31 if (this.amount > balance) {

32 throw InsufficientFundsException("Wallet has no sufficient funds")

33 }

34 }

35

36 // [...]

37 }

38

39 //////////

40

41 class Withdraw(

42 id: String,

43 batchId: String? = null,

44 amount: BigDecimal,

45 idempotencyKey: String,

46 originatorWalletId: String,

47 originatorSubwalletType: SubwalletType,

48 status: TransactionStatus,

49) : Transaction(

50 id,

51 batchId,

52 amount,

53 idempotencyKey,

54 originatorWalletId,

55 originatorSubwalletType,

56 status,

57) {

58 override fun validate(

59 walletsRepo: WalletsDatabase,

60 ledgerService: LedgerService,

61) {

62 validateExternalTransaction()

63 validateBalance(walletsRepo, ledgerService)

64 }

65

66 // [...]

67 }

Scala

1 class TransactionValidationService(

2 walletsRepo: WalletsDatabase,

3 walletsService: WalletsService,

4 ledgerService: LedgerService

5) {

78 APPENDIXA

6 def validateTransaction(

7 transaction: Transaction

8): Either[TransactionValidationError, Unit] = {

9 transaction.transactionType match {

10 case TransactionType.Deposit => validateDeposit(transaction)

11 case TransactionType.Withdraw => validateWithdraw(transaction)

12 case TransactionType.Hold => validateHold(transaction)

13 case TransactionType.Transfer => validateTransfer(transaction)

14 case TransactionType.TransferFromHold => validateTransferFromHold(transaction)

15 }

16 }

17

18 private def validateWithdraw(

19 transaction: Transaction

20): Either[TransactionValidationError, Unit] = {

21 for {

22 _ <- validateOriginatorSubwalletType(

23 transaction.originatorSubwalletType,

24 List(SubwalletType.RealMoney)

25)

26 _ <- validateBalance(

27 transaction.originatorWalletId,

28 transaction.amount

29)

30 } yield ()

31 }

32

33 private def validateOriginatorSubwalletType(

34 originatorSubwalletType: SubwalletType,

35 validSubwalletTypes: List[SubwalletType]

36): Either[TransactionValidationError, Unit] =

37 if (!validSubwalletTypes.contains(originatorSubwalletType)) {

38 Left(OriginatorSubwalletTypeValidationError(s"Transaction not allowed"))

39 } else {

40 Right(())

41 }

42

43 private def validateBalance(

44 originatorWalletId: String,

45 amount: BigDecimal

46): Either[TransactionValidationError, Unit] =

47 for {

48 wallet <- walletsRepo.findById(originatorWalletId)

49 .toRight(TransactionValidationFailed(s"Wallet not found"))

50

51 balance = walletsService.getAvailableBalance(wallet)

52

53 result <- if (amount > balance) {

54 Left(InsufficientFundsValidationError(s"Wallet has no sufficient funds"))

55 } else {

56 Right(())

57 }

58 } yield ()

QUESTIONNAIRE 79

59 }

A.1.3 Question #3

Kotlin

1 def invest(

2 request: InvestmentRequest

3): Either[InvestmentFailedError, Transaction] = {

4 val wallets =

5 walletsRepo.find(

6 WalletFilter(

7 customerId = Some(request.customerId),

8 walletType = Some(WalletType.RealMoney)

9)

10)

11

12 wallets match {

13 case List(wallet) =>

14 for {

15 transaction <- transactionsService.create(

16 CreateTransactionRequest(

17 amount = request.amount,

18 idempotencyKey = request.idempotencyKey,

19 originatorWalletId = wallet.id,

20 originatorSubwalletType = SubwalletType.RealMoney,

21 transactionType = TransactionType.Hold

22)

23).left.map { e =>

24 InvestmentFailedError(e.message)

25 }

26

27 processTransactionTuple <-

28 transactionsService

29 .process(transaction)

30 .left

31 .map { e =>

32 transactionsService.updateStatus(

33 transaction.id,

34 TransactionStatus.Failed

35)

36 InvestmentFailedError(e.message)

37 }

38

80 APPENDIXA

39 executedTransaction <-

40 transactionsService

41 .execute(processTransactionTuple)

42 .left

43 .map(e =>

44 InvestmentFailedError(e.message)

45)

46 } yield executedTransaction

47

48 case _ =>

49 Left(InvestmentFailedError(s"None or multiple wallets found"))

50 }

51 }

Scala

1 class TransactionValidationService(

2 walletsRepo: WalletsDatabase,

3 walletsService: WalletsService,

4 ledgerService: LedgerService

5) {

6 def validateTransaction(

7 transaction: Transaction

8): Either[TransactionValidationError, Unit] = {

9 transaction.transactionType match {

10 case TransactionType.Deposit => validateDeposit(transaction)

11 case TransactionType.Withdraw => validateWithdraw(transaction)

12 case TransactionType.Hold => validateHold(transaction)

13 case TransactionType.Transfer => validateTransfer(transaction)

14 case TransactionType.TransferFromHold => validateTransferFromHold(transaction)

15 }

16 }

17

18 private def validateWithdraw(

19 transaction: Transaction

20): Either[TransactionValidationError, Unit] = {

21 for {

22 _ <- validateOriginatorSubwalletType(

23 transaction.originatorSubwalletType,

24 List(SubwalletType.RealMoney)

25)

26 _ <- validateBalance(

27 transaction.originatorWalletId,

28 transaction.amount

29)

30 } yield ()

31 }

32

33 private def validateOriginatorSubwalletType(

34 originatorSubwalletType: SubwalletType,

35 validSubwalletTypes: List[SubwalletType]

36): Either[TransactionValidationError, Unit] =

QUESTIONNAIRE 81

37 if (!validSubwalletTypes.contains(originatorSubwalletType)) {

38 Left(OriginatorSubwalletTypeValidationError(s"Transaction not allowed"))

39 } else {

40 Right(())

41 }

42

43 private def validateBalance(

44 originatorWalletId: String,

45 amount: BigDecimal

46): Either[TransactionValidationError, Unit] =

47 for {

48 wallet <- walletsRepo.findById(originatorWalletId)

49 .toRight(TransactionValidationFailed(s"Wallet not found"))

50

51 balance = walletsService.getAvailableBalance(wallet)

52

53 result <- if (amount > balance) {

54 Left(InsufficientFundsValidationError(s"Wallet has no sufficient funds"))

55 } else {

56 Right(())

57 }

58 } yield ()

59 }

A.1.4 Question #4

Kotlin

1 class TransactionsService(

2 private val transactionsRepo: TransactionsDatabase,

3 private val walletsRepo: WalletsDatabase,

4 private val ledgerService: LedgerService,

5 private val partnerService: PartnerService,

6) {

7 private val logger = Logger()

82 APPENDIXA

8

9 suspend fun processTransaction(

10 request: ProcessTransactionRequest

11): Transaction {

12 val transaction = transactionsRepo.insert(request)

13 transaction.validate(walletsRepo, ledgerService)

14 transaction.process(transactionsRepo, ledgerService, partnerService)

15

16 return transaction

17 }

18

19 // [...]

20 }

21

22 /////////

23

24 class Transfer(

25 id: String,

26 batchId: String? = null,

27 amount: BigDecimal,

28 idempotencyKey: String,

29 originatorWalletId: String,

30 originatorSubwalletType: SubwalletType,

31 status: TransactionStatus,

32 val beneficiaryWalletId: String,

33 val beneficiarySubwalletType: SubwalletType,

34) : Transaction(

35 id,

36 batchId,

37 amount,

38 idempotencyKey,

39 originatorWalletId,

40 originatorSubwalletType,

41 status,

42) {

43 override fun validate(

44 walletsRepo: WalletsDatabase,

45 ledgerService: LedgerService,

46) {

47 val originatorSubwalletType = this.originatorSubwalletType

48 val beneficiarySubwalletType = this.beneficiarySubwalletType

49

50 val validTransferPairs =

51 setOf(

52 SubwalletType.REAL_MONEY to SubwalletType.EMERGENCY_FUND,

53 SubwalletType.EMERGENCY_FUND to SubwalletType.REAL_MONEY,

54)

55

56 if ((originatorSubwalletType to beneficiarySubwalletType)

57 !in validTransferPairs) {

58 throw TransferNotAllowed("Transfer not allowed")

59 }

60

61 validateBalance(walletsRepo, ledgerService)

QUESTIONNAIRE 83

62 }

63

64 override suspend fun process(

65 transactionsRepo: TransactionsDatabase,

66 ledgerService: LedgerService,

67 partnerService: PartnerService,

68) {

69 partnerService.executeInternalTransfer(this)

70

71 val journalEntries =

72 listOf(

73 CreateJournalEntry(

74 walletId = this.originatorWalletId,

75 subwalletType = this.originatorSubwalletType,

76 balanceType = BalanceType.AVAILABLE,

77 amount = -this.amount,

78),

79 CreateJournalEntry(

80 walletId = this.beneficiaryWalletId,

81 subwalletType = this.beneficiarySubwalletType,

82 balanceType = BalanceType.AVAILABLE,

83 amount = this.amount,

84),

85)

86

87 val postedAt = ledgerService.postJournalEntries(journalEntries)

88

89 this.updateStatus(

90 transactionsRepo,

91 newStatus = TransactionStatus.COMPLETED,

92 at = postedAt

93)

94 }

95 }

96

Scala

1 class TransactionsService(

2 transactionsRepo: TransactionDatabase,

3 validationService: TransactionValidationService,

4 partnerService: PartnerService,

5 ledgerService: LedgerService,

6) {

7 private val lib = Library()

8

9 // [...]

10

11 def process(

12 transaction: Transaction

13): Either[ProcessError, ProcessTransactionTuple] = {

14 lib.maybeLogError(() => {

84 APPENDIXA

15 for {

16 _ <- validationService

17 .validateTransaction(transaction)

18 .left.map(e => ProcessError(e.message))

19 processTransactionTuple <-

20 processTransaction(transaction)

21 .left.map(e => ProcessError(e.message))

22 } yield processTransactionTuple

23 })

24 }

25

26 private def processTransaction(

27 transaction: Transaction

28): Either[TransactionServiceError, ProcessTransactionTuple] = {

29 transaction.transactionType match {

30 case TransactionType.Deposit => processDeposit(transaction)

31 case TransactionType.Withdraw => processWithdraw(transaction)

32 case TransactionType.Hold => processHold(transaction)

33 case TransactionType.Transfer => processTransfer(transaction)

34 case TransactionType.TransferFromHold => processTransferFromHold(transaction)

35 }

36 }

37

38

39 private def processTransfer(

40 transaction: Transaction

41): Either[TransactionServiceError, ProcessTransactionTuple] = {

42 for {

43 beneficiaryWalletId <-

44 transaction

45 .beneficiaryWalletId

46 .toRight(ProcessError(s"Transfer must contain beneficiaryWalletId"))

47 beneficiarySubwalletType <-

48 transaction

49 .beneficiarySubwalletType

50 .toRight(ProcessError(s"Wallet not found"))

51 } yield {

52 val journalEntries = List(

53 CreateJournalEntry(

54 walletId = Some(transaction.originatorWalletId),

55 subwalletType = transaction.originatorSubwalletType,

56 balanceType = BalanceType.Available,

57 amount = -transaction.amount

58),

59 CreateJournalEntry(

60 walletId = Some(beneficiaryWalletId),

61 subwalletType = beneficiarySubwalletType,

62 balanceType = BalanceType.Available,

63 amount = transaction.amount

64)

65)

66

67 val partnerAction: Action = partnerService.executeInternalTransfer

BACKGROUND QUESTIONS 85

68 (transaction, journalEntries, TransactionStatus.Completed, Some(partnerAction))

69 }

70 }

71

72 }

A.2 Background Questions

Bibliography

Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1st edition, 1994. 5

Finley. Functional programming is finally going mainstream. URL
https://github.com/readme/featured/functional-programming. 1, 2

Neal Ford Mark Richards. Fundamentals of Software Architecture: An Engineering
Approach. O’Reilly Media, 1st edition, 2020. 2

Robert Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Pearson, illustrated edition edition, 2017. 8

Rúnar Bjarnason Paul Chiusano. Functional Programming in Scala. Manning Publications,
1st edition, 2014. 9

Charles Scalfani. Why functional programming should be the future of software development.
URL https://spectrum.ieee.org/functional-programming. 2

86

https://github.com/readme/featured/functional-programming
https://spectrum.ieee.org/functional-programming

	Introduction
	Objective
	Research Questions
	Proposal Structure

	Methodology
	Proof of Concept
	Qualitative Analysis
	Quantitative Analysis
	Analysis Discussion
	Threats to Validity
	Programming languages
	Qualitative analysis

	Programming Paradigms Concepts
	Object-Oriented Programming
	Functional Programming

	Requirements
	Wallet Management
	Investment Customization
	Transaction Lifecycle Management
	Other minor requirements

	System
	Models
	Wallet
	Subwallet
	Transaction
	Journal Entry
	Investment Policy

	Services

	Qualitative Analysis
	Extensibility
	Reusability
	Error handling and propagation
	The Batch Processing With Atomicity Requirement
	Testability
	Readability

	Quantitative Analysis
	Results
	Question #1
	Question #2
	Question #3
	Question #4

	Discussion
	Extensibility
	Reusability
	Error Handling and Propagation
	Testability
	Readability

	Conclusion
	Main results
	Future work

	Survey
	Questionnaire
	Question #1
	Question #2
	Question #3
	Question #4

	Background Questions

	Bibliography

