
LATEX TikZposter

Functional vs. Object-Oriented: Comparing how Programming Paradigmsaffect the architectural characteristics of systems
Briza Mel Dias de Sousa1, Alfredo Goldman Vel Lebjman1, and Renato Cordeiro Ferreira1

1 Institute of Mathematics and Statistics - University of São Paulo

Functional vs. Object-Oriented: Comparing how Programming Paradigmsaffect the architectural characteristics of systems
Briza Mel Dias de Sousa1, Alfredo Goldman Vel Lebjman1, and Renato Cordeiro Ferreira1

1 Institute of Mathematics and Statistics - University of São Paulo

Introduction

After decades of dominance of object-oriented programming, the functionalparadigm is becoming widespread inthe industry. According to the IEEESpectrummagazine in 2022 [1], one signthat the software industry is preparingfor a paradigm shift is that functionalfeatures are showing up in more andmore mainstream languages.

The present project aims to comparethe impact of Object-Oriented Program-ming (OOP) and Functional Program-ming (FP) paradigms on developers’understanding of various architecturalcharacteristics and non-functional re-quirements.

Methodology

A Digital Wallet system has been develo-ped using two JVM-based programminglanguages: Kotlin (representing OOP)and Scala (representing FP).

Both versions of the Digital Wallet sys-tem will be evaluated based on thefollowing key characteristics: reada-bility, maintainability, extensibility,testability, reusability, error handlingand error propagation.

The evaluation of both system imple-mentations will be conducted throughtwo approaches: a qualitative analysisby the author, and a quantitative analy-sis based on feedback from other deve-lopers via a survey.

Survey

Figura 1: Survey: The survey contains four ques-tions with code snippets extracted from the Digi-tal Wallet System. It also contains backgroundquestions.

Architecture

Figura 2: Architecture: The figure illustrates the architecture of the Digital Wallet system, highlighting the main services, oneof which interacts with a third-party API. It also depicts essential system models, such as Wallet, Investment Policy, and JournalEntry.

Qualitative Analysis

• Kotlin represents different Wallet types using OOP concepts like inheritance and polymorphism, whileScala uses enumerations and pattern matching. Both approaches ensure code updates are enforced viacompilation errors when adding new Wallet types;
• Scala adopts more generic solutions through higher-order functions. While Kotlin’s retryBatch methodis tightly coupled to the transactions domain, Scala implements a reusable retry function that handlesany operation returning Either[A, B], enabling its application across multiple domains;
• Kotlin handles errors using exceptions, while Scala uses typed monads like Option and Either that canbe part of function return types. Thesemonads enforce localized and explicit error handling, enhancingrobustness and reducing the risk of missing errors;
• Scala uses pure functions for transaction processing logic, postponing side effects, which allows seam-less support for atomic transaction batch processing. On the other hand, Kotlin integrates side effectsdirectly into the transaction logic, making it more challenging to achieve the same level of atomicity intransaction batch processing.

References
[1] Charles Scalfani.Why Functional Programming Should Be The Future of Software Development. url: https://spectrum.ieee.org/functional-programming.
For further information, see https://linux.ime.usp.br/~brizamel/mac0499/ or submit an email to brizamel.dias@usp.br

https://spectrum.ieee.org/functional-programming
https://linux.ime.usp.br/~brizamel/mac0499/
brizamel.dias@usp.br

