Functional vs. Object-Oriented: Comparing how Programming Paradigms
affect the architectural characteristics of systems

Briza Mel Dias de Sousal, Alfredo Goldman Vel Lebjman?, and Renato Cordeiro Ferreiral

! Institute of Mathematics and Statistics - University of Sdo Paulo

Introduction Architecture

After decades of dominance of object-
oriented programming, the functional
paradigm is becoming widespread in
the industry. According to the IEEE
Spectrum magazine in 2022 [1], one sign
that the software industry is preparing
for a paradigm shift is that functional
features are showing up in more and
more mainstream languages.

The present project aims to compare
the impact of Object-Oriented Program-
ming (OOP) and Functional Program-
ming (FP) paradigms on developers’
understanding of various architectural
characteristics and non-functional re-
quirements.

Methodology

A Digital Wallet system has been develo-
ped using two JVM-based programming

languages: Kotlin (representing OOP)
and Scala (representing FP).

Both versions of the Digital Wallet sys-
tem will be evaluated based on the
following key characteristics: reada-
bility, maintainability, extensibility,
testability, reusability, error handling
and error propagation.

The evaluation of both system imple-
mentations will be conducted through
two approaches: a qualitative analysis
by the author, and a quantitative analy-
sis based on feedback from other deve-
lopers via a survey.

OOP vs FP - Architectural Characteristics

This form is part of a capstone project for the Bachelor in Computer Science at the
Institute of Mathematics and Statistics of the University of Sdo Paulo (IME-USP) in Brazil.

It aims to compare how the use of Object-Oriented Programming (OOP) and Functional
Programming (FP) paradigms affects the understanding of different architectural
characteristics / non-functional requirements by developers. To conduct this comparison,
the authors developed a Digital Wallet system in two JVM-based programming languages:
Kotlin, representing OOF, and Scala, representing FP.

Participants are asked to evaluate code snippets extracted from both systems, each
chosen to highlight specific architectural features such as error handling, readability and
reusability. The goal is to evaluate how these paradigms handle common challenges in
system design and their impact on code structure.

This form is anonymous. All information will be used for research purposes only. Your
feedback will provide valuable insights for this study, and your participation is greatly
appreciated.

In case you have any issues, please contact the creators of this research:
- Briza Mel Dias [brizamel.dias at usp.br]
- Renato Cordeiro Ferreira [renatocf at ime.usp.br]

Figura 1: Survey: The survey contains four ques-
tions with code snippets extracted from the Digi-
tal Wallet System. It also contains background
questions.

Digital Wallet
System

Ledger Service

.T.

post journal entries

Journal Entries

wallet 1d:
"realMoneyWalletId"

subwallet type:
real money

balance type:

holding
: make AFP| calls -
Wallets Service EIEEI_E Tra I'IEE-I.'._.tIHrIE transfer funds Third-party amount: =100
transactions Service betwaen wallets API .
T wallet 1d:
manage pending "investmentWalletId"”
investments and liquidations
| subwallet type:
stocks
Investment balance type:
Service available
amount: +100
Wallet Types Investment Policy
. _ = 25% In stocks
Emergency | unds aliocalion——» paa| Money [—investment— Inyestment | * 25%inreal estate
Funds Wallet ¢ _finds relaase— Wallet __jiquidation Wallet « 25% in crypto
| =« 25% in bonds

| -

Figura 2: Architecture: The figure illustrates the architecture of the Digital Wallet system, highlighting the main services, one
of which interacts with a third-party API. It also depicts essential system models, such as Wallet, Investment Policy, and Journal

Entry.

Qualitative Analysis

» Kotlin represents different Wallet types using OOP concepts like inheritance and polymorphism, while
Scala uses enumerations and pattern matching. Both approaches ensure code updates are enforced via
compilation errors when adding new Wallet types;

» Scala adopts more generic solutions through higher-order functions. While Kotlin’s retryBatch method
1s tightly coupled to the transactions domain, Scala implements a reusable retry function that handles
any operation returning Either[A, B], enabling its application across multiple domains;

» Kotlin handles errors using exceptions, while Scala uses typed monads like Option and Either that can
be part of function return types. These monads enforce localized and explicit error handling, enhancing
robustness and reducing the risk of missing errors;

» Scala uses pure functions for transaction processing logic, postponing side effects, which allows seam-
less support for atomic transaction batch processing. On the other hand, Kotlin integrates side effects
directly into the transaction logic, making it more challenging to achieve the same level of atomicity in

transaction batch processing.

References

[1] Charles Scalfani. Why Functional Programming Should Be The Future of Software Development. url: https://spectrum.ieee.org/functional-programming.

For further information, see https://linux.ime.usp.br/ brizamel/mac0499/ or submit an email to brizamel.dias@usp.br

BTEX TikZposter

https://spectrum.ieee.org/functional-programming
https://linux.ime.usp.br/~brizamel/mac0499/
brizamel.dias@usp.br

