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Resumo

Verificação remota é um método de atestar à distância a integridade de um dispositivo.
Este trabalho visa estudar esse tipo de monitoramento com foco em dispositivos embarcados.
Nele é realizada uma revisão bibliográfica dos artigos mais recentes na área e, entre eles, um
artigo específico, denominado SMART: Secure and Minimal Architecture for (Establishing a
Dynamic) Root of Trust. Por ser uma referência na área e ter servido de base para diversas
publicações, este trabalho refaz todos os seus passos. Além disso, foi criado um protótipo em
um FPGA para testar se a implementação teórica sugerida funciona. Para testar o funciona-
mento desse protótipo em um cenário real, ele foi conectado a Internet. Para responder as
requisições desse dispositivo e realizar a verificação remota nela, um servidor específico foi
desenvolvido. Além disso, ataques foram simulados no dispositivo e no meio de comunicação.
Todos os ataques foram identificados com êxito.

Palavras-chave: segurança em sistemas embarcados, verificação remota, SMART.
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Abstract

Remote attestation is a method for verifying the integrity of a remote device. This work
studies this concept focused on embedded devices, containing a bibliographical review of the
most recent papers in this area and, among them, a specific paper called SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust, which referenced
remote attestation and served as a basis for several publications. Thus, all procedures in
the aforementioned paper have been remade for this work. Furthermore, a prototype using
FPGA was developed to verify the outcome of the suggested implementation. The prototype
had Internet access in order to test using real scenarios. A specific server was developed to
respond to device requests and perform remote attestation. Also, attacks were simulated on
the device and in the communication channel. The experiment results show that all attacks
were successfully identified.

Keywords: embedded systems security, remote attestation, SMART.
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Chapter 1

Introduction

1.1 Motivation
Nowadays, the term IoT (Internet of Things) is turning into a buzzword. Humans, specif-

ically government agencies and industries have learned that connecting simple devices to the
Internet can produce a huge volumes useful data, which can be used to improve production,
make houses smarter, and save money and time. Some studies show that by 2020 there will
be more than 20 billion IoT devices connected to the Internet [9].

This massive number of devices create new security challenges. The vast number of
cyberattacks in the lasts few years shows that the developers responsible for these devices
are not taking these challenges seriously. Some of these attacks can be seen in the paper [15].
These kinds of attacks can occur in critical infrastructures, such as nuclear plants, health,
and transportation system.

Because these devices are connected to the Internet, their software, network, and hard-
ware layers can be attacked and damaged. Studying techniques to verify if one device was
compromised, and test these techniques in real hardware is the main goal object of this
work. Attacks will ever occur, but in case it occurs, they need to be quickly identified and
defeated.

The process of performing remote verification on these devices receives the name of
Remote Attestation. The incorporation of this feature into an embedded device without
increasing its cost is another motivation of this work.

1.2 Objective
The objective of this work is to study and implement from scratch the simple and best

remote attestation technique for embedded devices. The technique chosen was SMART [6].
This decision was made because it is one of the first systems designed specifically for embed-
ded devices. Also, it tries to implement the remote attestation feature maintaining the low
cost of the devices. Other methods, like software remote attestation techniques, TrustLite [11]
and Sancus [13] have advantages and disadvantages, a detailed comparison will be provided
in section 2.4.

Another goal of this work is to advance SMART research by implementing it into a real
device. For this, a prototype was created using the openMSP430 microcontroller unit (MCU)
and tested in a field-programmable gate array (FPGA). Unlike the original paper, the main
changes were made in the device memory bus and not in the memory backbone. This change
was made to simplify the implementation and, as a consequence, to avoid errors.
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As a final example, this prototype was used to control a LED remotely, over the Internet.
Despite being a simple application, this device can be remotely attested. This feature makes
it possible to detect if the source code has been altered or if it is in an unexpected state.
For example, the LED status can be remotely attested, making it possible to notice if an
intruder modifies its status.

1.3 Structure
Key concepts are introduced in the Chapter 2, where basic concepts of remote attestation

and FPGAs are presented. The aforementioned chapter also presents the the most important
papers related to remote attestation. Thus, the reader will be able to understand all the
necessary requirements to implement and test a device designed by a Hardware Description
Language (HDL).

The third chapter contains the premises adopted in the SMART and how to implement
a device running SMART without violating any of these premises. Chapter 3 also explains
every decision made for this project.

Finally, there are two appendices. The Appendix A shows a detailed explanation of the
main source file used for this work. Appendix B describes the rest of the files used during
the development of this work.



Chapter 2

Key Concepts

This chapter presents definitions of related technologies, and related works in the field
of remote attestation.

2.1 Embedded Devices
An embedded device is a system built for a specific task. The main difference from

common integrated circuits is that it has programmable hardware, making it possible to
change its functionality by simply changing the program embedded inside it. However, they
are not built for a general purpose, and the majority of them do not run full-featured
operating systems.

There are embedded systems based on microprocessors and microcontrollers. Both of
them have been designed for real-time applications. Microprocessor-based systems usually
have a processor and a memory chip in the same printed circuit board (PCB). Because
this type of embedded system has multiple components, it is more expensive than the ones
that have every part integrated into a single chip. However, they are more customizable in
production. For example, it is possible to change the memory size in different models by
changing only the memory component. There are some microprocessors capable of running
a complete operational system, such as the ones used in home routers.

The microcontroller (or MCU for Microcontroller Unit) is a single chip that provides all
computational capabilities. In most cases, the processor, memory and digital I/O ports are in
a single integrated circuit (IC). Although their cost and size are lower than microprocessor-
based systems, they offer low computational power, limited storage capability and, usually,
single-threading. These characteristics enable the use of identical ICs for different situations,
only changing its program. Examples of devices with microcontrollers are remote controls,
actuators and sensors that have access to the Internet.

This work focuses on low-cost embedded systems that use microcontrollers. Nowadays,
these devices are widely adopted by the IoT industry, making it possible to produce low-
cost devices capable of exchanging information over the Internet. The usage of these types
of devices has increased over the last few years, which caused cyberattacks and invasions to
increase as well. Furthermore, several vulnerabilities have been discovered. Unfortunately,
there is a lack of in research for security-related topics of this devices. This is partially
because of the difficulty to offer security without increasing their cost.

3
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2.2 Trust Anchor and Root of Trust
One of the main themes related to security is the Trust Anchor. For example, Alice

wants to communicate with Bob using an encrypted channel, which can be done with either
a symmetric or an asymmetric encryption algorithm. If they choose a symmetric algorithm,
they will need to share passphrase before start talking. Choosing a symmetric algorithm will
require sharing a passphrase (key) before communicating. However, choosing an asymmetric
algorithm will require sharing their public key in a secure channel. If they share their public
keys in an insecure channel, they will not be able to identify each other. Thus, a reliable
channel is required before communicating. This channel is the trust anchor.

Another example of a trust anchor can be seen in the TLS (Transport Layer Security),
which requires using previously-saved public keys (certificates) before creating an encrypted
connection. These certificates are usually provided during the installation of the Operating
System (OS). It is believed that these certificates are not corrupted nor changed during the
installation of the OS. This process is the trust anchor of the TLS.

A similar idea of trust anchor can be used for verifying software and hardware and this
is called Root of Trust. The main idea is to verify if the internal state of a remote hardware
platform is known. In most cases, anything that occurs after a reliable state can be predicted
and trusted.

There are two types of Roots of Trusts in the field of software verification [8]: dynamic
and static. In the static one, the verification is made only before the software execution.
That is, the software is verified before it is loaded. For example, a module that verifies if a
file of the operating system has been modified before boot. A problem of the static type is
that it does not guarantee anything about the current software state. Any exploit after its
initialization will not be noticed.

The dynamic root of trust is similar to the static type, but verifies the software after it
has been initialized. However, it usually uses private mechanisms such as keys to perform the
attestation. The software does not have access to these keys, and an authenticated channel
is required to transmit the key to the device running the software.

2.3 Remote Attestation
Remote attestation refers to the capability of providing attestation across a network [8].

Attestation is the ability to provide clear evidence depending on the field. For example, the
state of a device is considered an evidence in security. The state of the device is comprised
of what is in the memory at a particular moment. Thus, it can be considered as an image
of the device.

Remote attestation techniques have already been developed for high-end devices such
as computers. The Trusted Computing Group (TCG1), a computer industry consortium,
created a standard called the Trusted Platform Module (TPM[14]), to describe architectural
elements needed to build a hardware module that provides security capabilities. Among
these capabilities is remote attestation.

TPM is in its second version. Figure 2.1 shows all components of this module. It is
worth mentioning that this module can be used to encrypt messages. It has a full encryption
engine making it and a key stored securely. Furthermore, this module is connected with the
processor, making it possible to exchange information.

1 https://trustedcomputinggroup.org/ (visited on November, 2018)

https://trustedcomputinggroup.org/
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Figure 2.1: Architectural Overview of TPM. Image from its manual [14].

Another interesting use is hardware and software verification. Suppose a company does
not want to modify the hardware and software of its computers. The TMP can make a hash
of the bootloader memory and all modules connected with the processor. Afterwards, it can
sign this information and send it to the company. If it suffers any modification, the company
will see differences between the expected and received data. Thus, system updates can be
stopped or the warranty may be cancelled for example.

TPM is only one a single technical standard of secure cryptoprocessors. Intel and other
manufacturers have developed other techniques to optimize security in its core processors.
Although, the cost of adding this extra hardware in processor is not huge, when talking about
embedded systems it becomes significant. Usually, microcontrollers that drive embedded
systems cost few dollars and the cost secure cryptoprocessor has practically the same price
of than. In other words, using a cryptoprocessor in an embedded system can approximately
double the price. This considerable cost is a major motivation to determine the minimum
requirements for a remote attestation.

The article [8] shows the necessary elements and functions to produce a secure remote
attestation protocol. As defined in the aforementioned articles, Remote Attestation is com-
prised of the challenger and the prover. The challenger is the device or computer that
verifies the internal state of the prover across the network. The primary objective of the
protocol is to allow an uncompromised prover to provide an authentication token to the
challenger, expecting if the prover is in an expected state. The challenger needs to be
aware if the prover has been modified.

Three functions are required in order for this protocol to work:

• Setup(): needs to produce a long key k probabilistically. This function will be called
only once. The challenger stores that key and the prover has access to it, however
only in certain circumstances.

• Attest(k, s): a deterministic algorithm that, given a state s of the prover and a key
k, outputs an attestation token α. The prover is able to compute this function.

• Verify(k, s, α): given a key k, a device state s, and an attestation token α; the
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function returns True if Attest(k, s) is equal α, otherwise, returns False. The
challenger can compute this function.

To verify Remote Attestation, the challenger requests an authentication token to the
prover. The prover produces it using the Attest function, creating the attestation token
(which indirectly is the information of its state). When the challenger receives α, it verifies
if it can produce the same token, using the Verify function.

This protocol requires sharing the key k between the challenger and the prover. We
will suppose that this k will be shared safely during the manufacturing process. Thus, the
key will be written in the device before it can be compromised. The company that produces
the device is responsible for generating and storing k securely. Afterwards, they will use k
to make the attestation.

The attestation token is transmitted following the protocol specification. This transmis-
sion occurs over a network and is susceptible to attacks. If this occurs, the prover will send a
token α and the challenger will receive one modified token α′. In this case, the challenger
will identify the prover as a violated device (in an unknown state). Some technologies, such
as the TLS, can be used to prevent attacks in this connection. An interesting fact worth
mentioning is that an attacker can store an old authentication token for later use. To prevent
this type of attack, when the challenger asks for the authentication token it will be sent
a nonce n in the request. This nonce will modify the state of the prover, resulting in a
unique state. The nonce is randomly generated for each request of the authentication token.
The nonce n is not specified in the above functions, to better explain the basic idea of the
protocol, however, it will be discussed in detail afterwards.

Suppose the prover is compromised ,the attacker will know the state s of the device.
With this information he can produce two types of attacks: simulate the Attest function
and return a correct α; or return a α that is not the real state of the device. To prevent
these attacks, the Attest function in the prover has to have the following properties:

• Exclusive Access: only the Attest function can have access to a key k. This makes
it impossible to forge the token α without running the Attest function.

• No Leaks: after the execution of Attest function no information of the key k can
leak. Otherwise, the key k will become known by the attacker. Cleaning all memory
after the function execution can solve this problem.

• Immutability: if Attest function can be changed, the attacker can take advantage
of this flaw to leak k.

• Uninterruptedly: if during the computation of |Attest|the device is interrupted,
information of k can leak.

• Controlled Invocation: the Attest function can only be called by its beginning.
Otherwise, the attacker can skip important parts in the Attest function code, such
as the part that disables all interruptions.

The way all these properties are provided depends on the device. Some approaches try
to provide all these properties using a software implementation. Unfortunately, remote at-
testation using only software has been proved not to work in the context of the Internet.
Subsection 2.4.1 contains more information about this topic and references related papers.
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2.4 Works of Remote Attestation for Embedded Devices
This section has the primary objective to show and discuss the mains papers in Remote

Attestation for Embedded Devices. Its first subsection contemplates software remote attes-
tation techniques and show why they have been proven to be insecure on the internet. The
following subsections focus on hardware implementations.

2.4.1 Software Remote Attestation

Several articles tried to develop a software-only remote attestation algorithm, without
hardware changes. One of the main articles in this area is: Pioneer: Verifying Code Integrity
and Enforcing Untampered Code Execution on Legacy Systems [17]. The basic idea of this
article is to send a nonce to the device and wait for the device to produce an attestation
token based on the current state of the device. Similar to the premises for remote attestation,
the received and expected token are compared to determine if the device is compromised.

However, it is not possible to ensure all the security requirements related to the key
storage. As a solution, the computing time is considered to verify the challenger. The device
was probably compromised if it took considerable amount of time to calculate the hash.
When the Pioneer makes the memory hash, it takes a random look in the memory based on
the nonce it receives. If the attacker copies the memory to another place or tries any action to
subvert the attestation, this will increase the computation time considerably. The challenger
will notice this difference, and it will suspect that the device has suffered an attack.

Unfortunately, the connection between the prover and the challenger can vary consid-
erably, making the packet transmission time not to be exact and have considerable variance.
These techniques proposed in Pioneer work well when this connection has a constant trans-
mission time.

In this implementation, the challenger needs to know accurately how much time the
device takes to calculate the attestation token. The only way to do this is testing the attes-
tation challenge in a real device. In a real environment with a server verifying a vast number
of devices, this process does not scalable.

One interesting fact is that the Pioneer solution was made to work on various device
types. The article implements it in an Intel Pentium IV Xeon processor. Pioneer uses the
same ideas previously created in a project called SWATT: SoftWare-based ATTestation for
Embedded Devices [16]. This article shows another remote attestation technique. The idea
in those implementations is similar, but the main difference is that SWATT works only in
embedded devices with simple CPU architectures, such as micro-controllers.

Some works have shown failures in time based remote attestation systems. The arti-
cle [5] shows how to forge the SWATT in implementation. Adding simple instructions and
reordering the existing ones in the verification source they can forge the authentication to-
ken without increasing the computation time significantly. In the conclusion of this article,
authors declare that software-based attestation is challenging to design, but not impossible.
The main reason for this assertion is the fact that small changes on the verification code can
reduce the verification time and cheat the verifier.

The article [12] has tested and simulated attacks to find out the efficiency of the software-
based attestation. They showed that depending on the implementation, the attack could
be noticed when the prover is not connected directly with the challenger. They also
clarified that the majority of generic attacks against timing-based attestation systems are
TOCTOU (time of check to time of use) attacks. This class of attacks involves the race
condition between checking one condition and using what this condition provides. However,
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in the end, they conclude that the timing-based remote attestation is in its infancy.
As seen, the software remote attestations have several problems. It assumes guarantees

that are complicated to exist when involving real embed devices on the internet. To make
the remote attestation viable was concluded that hardware change is needed.

2.4.2 SMART

The primary objective of this research is to implement and test the hardware and ideas
proposed in SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root
of Trust [6]. This article talks about the minimum hardware requirements for embedded
devices to make remote attestation viable.

The basic idea in the article is to change the memory access to get the exclusive access
to the key in a ROM memory (read-only memory). Changing it, they made the key only
accessible when the device program counter points to the first address of the Attest. Other
changes have also been made to prevent the Attest to be executed from its middle. The
memory cleaning, to prevent the leak of the key, is implemented as part of the Attest func-
tion. The uninterruptedly is guaranteed by a software instruction to disable all interruptions
at the beginning of the Attest function.

The Attest function in the device is made using a software SHA-1 hash implementation.
It concatenates the device memory, and the nonce sent by the challenger and obtain a hash
that represents the device state. Also, the function can look only to one part of the memory,
and this makes possible the attestation of single parts of the device in a relatively short
time.

Another functionality that has been added to the Attest function is the capability to
the challenger to send a function address to be called at the end of the SMART code
execution. This feature makes possible to attest one memory region and, afterward, call its
code in a safety way. The article shows the benefits of this in two examples: the first is
to attest the reading of measurements and the second is to prove if the device has been
successfully reset.

To test the functionality of the idea, they have implemented the SMART modifications
in two different micro-controllers units: the Atmel AVR and the Texas Instruments MSP430.
According to the article, adding SMART to both chips caused only a 10% increase in their
respective surface areas. That is, adding the SMART hardware do not increase the cost of
the device significantly.

All the results from the article are obtained from simulations. The authors did not
mention that they have tested the SMART code in FPGAs or ASIC devices. Also, they
affirm that more experiments using current implementations need to be performed for better
overhead evaluation.

The SMART implementation takes several assumptions. Among them is that the attacker
has full control of the device program. It can change it or call other functions. Note that
the program can be safely saved in read-only memory, but this does not prevent this type of
attacks. Some attacks, such as a technique called Return-Oriented Programming (ROP) [18],
only change the return pointer in the data memory and reuse the program code in a different
memory alignment to perform the attack. Therefore, in the article, the authors assumed that
the attacker has full access and can modify the code outside the protected memory region
of SMART.

Another critical assumption is that the device will not suffer any hardware attacks. This
assumption is important because if it is possible, the attacker can, for example, reset the
device every time the SMART code is called. Making this successively, extra information of
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the key can leak and then the attacker can obtain the key.
Although carefully designed, some flaws were found in the SMART project [7]. In SMART,

all parameters sent by the challenger can be changed by the attacker. If this happens, the
adversary can make the callable function be inside the smart ROM, making an infinite loop,
making a very effective denial-of-service attack without actually controlling the device. This
problem is not related in the SMART article but can be simply solved by checking if the
end function address is inside de smart ROM before going to it.

The second flaw is related to the fact that the SMART authors argued that the in-
terruption disable is optional. However, depending on the device’s interrupt handler the
attacker can cause the leak of the key. Disabling the device interrupts during the SMART
code execution is an option to solve this problem.

2.4.3 TrustLite

TrustLite [11] is another remote attestation project. It uses SMART as inspiration but has
several improvements. SMART only supports one protected area in the ROM memory, while
in contrast, TrustLite created a Memory Protection Unit (MPU). The MPU is dedicated
hardware that contains a table with information about several protected memory regions
and the address of functions that can access it. This hardware unit stays between the CPU
core and the address space (including memory and the device peripherals).

Some advantage of this implementation is the existence of several trustful applications.
These applications are named trustlets by the authors. Each trustlets is isolated in the sense
that no other software on the platform can modify their code. Trustlets data can only be read
or modified by other trustlets according to the policy described in the MPU. One trustlets
can contain the Attest function inside it, making it possible answers attestation requests.
That is, the TrustLite can support remote attestation.

To load the memory access policy to the MPU, authors developed a Secure Loader. This
loader works like a trustlets, but it is the first to be loaded, and it is in a known region of the
memory. It is responsible for loading the other trustlets. Another important thing about this
loader is the fact that it cleans memory before loading any other code. This action solves the
information leakage on the platform reset, providing the root of trust. The Secure Loader
can also be remotely updated.

In SMART, when on memory violation occurs the hardware makes a reset. TrustLite
constructs a mechanism to handle memory access violation. On any violation, the trustlets
invalidate the instruction responsible for it. This functionality can prevent an attacker to
make the device reset in a critical situation.

TrustLite can also have insecure applications. These applications and the trustlets can
exchange information, creating an interprocess communication. This information exchanged
can be used, for example, to make one untrusted application (such as an input and output
control) to be attested.

The TrustLite was tested in an FPGA. The testers used an Intel Siskiyou Peak processor
to implement it inside a Xilinx Virtex-6 FPGA. The evaluation of the hardware extension
cost was made based on the number of the FPGA registers and LUTs (more information
of LUTs and FPGA can be seen in the Section 2.5). According to the article, the cost per
module was approximately 8% in the number of registers and 4% in the number of LUTs.
However, the base core, without any modifications, uses 552 registers a 14361 LUTs. This
total number of LUTS is much higher if compared to the 1810 LUTs used in the openMSP430
in the same FPGA. That is, the 622 LUTs used to implement the TrustLite is approximately
one-third of the openMSP430 size. This comparison is not exact, because small changes in
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the hardware description language or the FPGA syntax settings can produce a significant
change in the total number of LUTs. Despite, it is still possible to note that TrustLite costs
more than SMART.

In this research, it was chosen to implement the SMART because it contains all necessary
mechanisms to make the remote attestation viable. Besides that, suppose we want to have
multiple applications running in a device, so it will be only necessary to attest the code
responsible for loading these apps. If this code is trustworthy, then every code loaded by it
will also be reliable. Note that this will be not possible in a dynamic root of trust context.

2.4.4 SANCUS

Unlike the two projects mentioned above, SANCUS 2.0 (A Security Architecture for Low-
Cost Networked Embedded Devices) [13] project was created to attend a network of devices.
The main idea of this project is to provide some capabilities, such as software module
isolation and remote attestation, in a network of interconnected devices.

Like the other projects, the SANCUS does not use asymmetric cryptography, because of
the high cost of implementing it. However, to provide security capabilities, the microprocessor
was changed internally to add new special instructions. This kind of changes significantly
impacts on the cost of the final device. For example, the remote attestation features were
implemented by extending the processor with two more instructions.

Like TrustLite, in SANCUS is possible to load multiple security application inside the
device considering each application with its area in memory. Each application has a single
key, but this key is not accessible directly, it only can be used by the processor when par-
ticular functions are called, the same way as in SMART. In SANCUS, every application
needs to have special hardware related to it. This hardware is responsible for saving the
application key, the address of the application code, and the data. Also, it has Memory
Access Logic (MAL), the hardware that is used to enforce the memory access rules for a
single application and to produce a violation signal if something unexpected happens.

Differently, from the other projects, the area needed to implement SANCUS is given based
on the maximum number of the security application that it can support. The hardware design
is evaluated using two different types of logic gates and three different key sizes. However,
in short, we have for SANCUS, with only one application, an average increase in hardware
size of 90%.

Since the article made changes to the CPU core, it also evaluates the maximum frequency
supported by the new micro-controller. The maximum frequency needed to be decreased
when increasing the number of security applications. According to the authors, this hap-
pens due to the large multiplexer needed to get the module key out of the MAL circuits.
Additionally, the maximum frequency decreases much faster when using a larger key size,
because of the same factor quoted.

All experiments conducted by the authors are made using an XC6SLX25 Spartan-6
FPGA with a speed grade of 2, synthesized using Xilinx ISE Design Suite. This family of
FPGAs is the same used in the tests in this research.

2.5 FPGA
FPGA is an abbreviation for "field-programmable gate array". This hardware is a par-

ticular type of integrated circuit created in the 80s. The main difference to others integrated
circuits is the possibility to reprogram the circuit using HDL (hardware description lan-
guage).
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The major benefits are that it makes possible to test new hardware and circuits without
the need to produce a new integrated circuit. One of the main tasks in this work is to
change the memory backbone of one micro-controller and test the results. Using the FPGA
facilitated the assignment to test the modifications due to its reprogramming interface.

There are two main HDL languages used in the market: Verilog and VHDL. These
languages are differences from conventional programming languages. The most noticeable
difference is the fact that everything is happening in parallel. In these languages, variables
are replaced by registers and connected with wires. There are some attempts to convert
following programming languages, like C, in hardware description languages, like the LegUp
High-Level Synthesis project [3]. However, transforming a sequential program to run in one
FPGA, typically, is not efficient and requires more resources of the FPGA that what is
needed.

An approach used in most FPGA projects is to program a small processor inside it. This
processor can be programmed using a sequential programming language. The good thing
about this design is the possibility to connect dedicated hardware in the processor to make
specifics tasks. Some companies that produce FPGAs have built optimized processors for
their products. One of the most famous projects is MicroBlaze, a 32-bit RISC microprocessor,
designed by Xilinx. A Linux kernel implementation has been made for this processor, making
possible to run a Linux inside an FPGA.

Another frequent topic related to FPGAs is the LookUp Tables (LUTs). A LUT is a
hardware truth table. That is, depending on its input there is a specific logic output. One
important FPGA characteristic is its number of LUTs. The LUTs can be classified as the
number of accepted inputs. For example, there is 4-inputs LUTs and 6-inputs LUTs. The
k-input LUT means that it has k configuration pins, making possible a truth table with 2k

inputs.
The capability of saving temporary information is essential for FPGAs. The registers

(commonly implemented as flip-flops) are responsible for this property.

2.6 FPGA Testing and Programming Steps
In this work, we will build a microcontroller from its hardware description and program

it. This process involves different abstraction layers, understanding all its steps is crucial to
comprehend this work. Figure 2.2 presents all the steps and layers in the process of testing
and building a microcontroller inside an FPGA.

Initially, we have the hardware description language (HDL), responsible for describing
all parts of the microcontroller. In the right part of the Figure 2.2, inside a grey box, it is
shown the hardware description language. The primary objective is to transform the HDL
source to be loaded in the FPGA. Like a computer program, this language syntax needs to
be verified. The synthesis process will check code syntax and analyze the hierarchy of the
source design (usually multiple files and modules compose a device).

After the synthesis check, we build NGC files that contain both logical design data and
constraints. NGC files represent the hardware description using only primary elements, such
as logical ports. This file is also known as netlist file. NGC is only a file format created by
Xilinx and has no specific meaning, the official description of NGC in the Xilinx developer
resources2 is "Netlist file with constraint information".

The Translate process merges all of the input netlists and design constraints. This process
outputs a Xilinx native generic database (NGD) file, which describes the logical design

2Xilinx Command Line Tools User Guide https://goo.gl/crxWL6

https://goo.gl/crxWL6
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Figure 2.2: This figure shows the building and loading steps needed to simulate and run the hardware
description in one FPGA and the source C on microcontroller formed by it. The gray boxes represent
a program source. The yellow one represents the simulation programs. The red one is the hardware
FPGA, and the purple is the microcontroller running in an FPGA. All the with boxes are steps
taken by scripts during the development process.

reduced to Xilinx primitives. The Map process maps the logic defined by an NGD file into
FPGA elements. The output design is a native circuit description (NCD) file that physically
represents the design mapped to the components in the FPGA.

The Place and Route (PAR) process takes a mapped NCD file, places and routes the
design, and produces an NCD file that is used as input for bitstream generation.

The Bitgen process produces a bitstream for the FPGA device configuration (bin file).
This file can be sent to de device flash memory. This update is done via a USB serial cable
and is in the diagram as SPI Flash write. After that, when the FPGA boots it will read its
flash memory, configure its internal gates (Hardware Configuration) and at the end it will
be a programmed micro-controller. In this research case, the openMSP430.

On the left side of the Figure 2.2 there is the responsible component for managing the
source code in C. Initially there is a C code, and we want to transform it into an executable
file. For this, there was a need to compile the code, place the assembly generated in specific
locations and send it to the device via a serial connection. One interesting thing is the fact
that the executable code can be merged in the FPGA bitstream. In this case, the when the
FPGA loads the bitstream it will also initialize its memory blocks.

The last unexplained block is the Computer Simulation. This block is responsible for
simulating de hardware and testing its results. These tests usually take a long time, because
it sequentially simulates all the hardware parallelism.
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The layer and this diagram can change depending on the tools used in the process. In
Figure 2.2, we have the specific process for the Spartan 6 FPGA family using it manufacture
(Xilinx) tools. All FPGA building steps description are based in the Xilinx documentation3.

3https://www.xilinx.com/support.html#documentation

https://www.xilinx.com/support.html#documentation


Chapter 3

Implementing SMART

As has been said, the SMART implementation is one of the main purposes of this under-
graduate thesis. In this chapter, more details of the SMART project will be presented and
all information about how it was implemented.

A Github repository1 contains all the source code used during the implementation. Ad-
ditionally, there is instruction for how to build and test the project.

3.1 Premises
In the main article [6], a few assertions are made to allow the proof of the SMART secu-

rity. These assertions were used to drive the construction of the hardware that implements
SMART. Because of that lets present the assertions and discuss some of that:

• A1: is impossible to forge the hash value. One significant difference from the main
article is the fact that the hash is computed using special hardware and not software
code. This hardware is designed to receive a data chunk and digest it to make the hash
value. There is a guarantee on a hardware level to make impossible to recover the data
sent to the hash computation.

• A2: the device with SMART will not suffer any hardware attack, only software.

• A3: only the SMART code can access the SMART key.

• A4: the smart code is immutable. Nobody can change it.

• A5: SMART code can only be called from the first memory address.

• A6: if the SMART code moves the instruction pointer from outside its region, it is
impossible to return to the previous code. This assertion is a little different from the
original but provides the same guarantees.

• A7: all interrupts are turned off during the SMART code execution.

• A8: after the SMART code execution the SMART key cannot be recovered.

• A9: the SMART code compute the hash correctly after receiving a challenge.

• A10: after a reset, erase all memory data segment. This procedure prevents the leak
of any information remaining in the memory.

1https://github.com/capellaresumo/MAC0499
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• A11: none information from the SMART key can be a leak.

The use of the hardware implementation of the SHA256 algorithm guarantees the A1
assertion, more information at subsection 3.2.4.

The assertion A2 is part of the adversary model. As said before, we will assume that
the adversary has two main capabilities. The first, he can manipulate all the software in the
microcontroller. That is, he can deploy a malicious software into the module. The second, we
assume attackers can control the communication network that is used by the challenger and
the prover to communicate with each other. In this model, the attacker does not perform
any hardware attacks on the prover and any attack in the challenger. Note that denial-
of-service attack (DoS attack) are part of in this model, but will not be part of this work
because there is specific bibliography for this.

For assertions A3, A5 and A6 a specific module, called SMART Memory Access Control
(SMART MAC), was designed. More information about this module and how it ensures
these items are specified in subsection 3.2.5.

ROM memory saves all the SMART code and the key used by it, ensuring that their
content is immutable (A4).

The microcontroller used in the implementation has a particular function (DINT) re-
sponsible for disabling all interrupts (A7). A specification of the microcontroller and a link
to the supported assembly function is in the subsection 3.2.1.

The way the SMART has programmed guarantee the assertions A8 and A11. All register
and memory space used in the SMART execution are cleaned (all e values are set to zero)
after it uses. Besides that, the hash computing hardware was not designed to permit any
recovery of data sent to it.

We suppose the hash algorithm is correct and it correctly computes the hash (A9). The
hash code source has several tests to prove this assumption.

The assertion A10 is guaranteed by including the internal structure of the microcontroller.
When it initializes, all mutable variables are copied from the ROM to the RAN, removing
any remaining information. When the compiler builds the assembly from the source code,
the compiler inserts this behavior in the code. In the adversary model, this behavior can be
inhibited, not guaranteeing the cleaning of the memory. This problem can be bypassed with
a safety reset, as described in the SMART article [6].

3.2 Implementation Details
One of the main objectives of this work is to implement the SMART as described in the

article. The authors made two implementations of SMART, one in an Atmel AVR micro-
controller and other in a Texas Instruments MSP430. In this work, we will only implement
SMART in the MSP430 microcontroller. However the implementation focus on changing the
memory bus, making it easily portable to other microcontrollers.

This section will describe the devices, softwares and hardware parts used to make the
SMART implementation.

3.2.1 MSP430

The MSP430 is a family of microcontrollers created by the Texas Instruments. All of them
have the same set of processor instructions2. What makes them different is their memory

2MSP430 Family Instruction Set Summary: https://www.ti.com/sc/docs/products/micro/msp430/
userguid/as_5.pdf

https://www.ti.com/sc/docs/products/micro/msp430/userguid/as_5.pdf
https://www.ti.com/sc/docs/products/micro/msp430/userguid/as_5.pdf
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size, number of GPIO pins and the integrated peripherals in the chip.
The MSP430 uses a 16-bit CPU, unlike most low-cost microcontrollers that use only an

8-bit CPU. However, curiously, instruction simple arithmetic operations, like multiplication,
are not present in the MSP430 arithmetic logic unit (ALU). As a solution to this, a peripheral
with this function is usually connected to the chip. Another advantage of having a 16-bit
CPU is the largest memory address range. It can map the memory in 216 distinct bytes.

One of the most significant functions of the MSP430 is the way it uses this memory map.
The program, data, and peripherals memory are mapped in a single range of addresses. The
figure 3.1 shows how the memory works.

Figure 3.1: Memory map using a ROM with 8192 bytes and RAM with 1024 bytes. Also, there are
two peripheral, one responsible for controlling the serial communication (UART, universal asyn-
chronous receiver/transmitter) and other to calculate SHA256 hashes.

The scheme showed in the picture are almost the basic MSP430 memory map. The unique
difference is the addition of two peripherals to made particular tasks. Using the peripheral
directed attached to the memory make easy write and read values from it. Peripherals can
be physically added to the microcontroller or can be built into the same integrated circuit.

When we talk about memory, we have two types of addresses: logical and the physical
address. The logical is used by the program to refer to the memory area that it wants to
access. The physical one is the address of the device memory. The distinct of this two types
is important because depending on the situation will be a reference to one type or other.

Make a clear difference between this types, let’s give an example. Suppose a program
wants to write an integer value (2-bytes) in the address physical address 0x0200. When the
processor runs this instruction, it will calculate the physical address and output this value in
the data memory address bus to communicate with the memory. In this example, the value
of the physical address will be 0x000 (LOGICAL_ADDRESS = 2×PHYSICAL_ADDRESS+



3.2 IMPLEMENTATION DETAILS 17

0x200). The number 0x200. The number 0x200 is a default value used by the MSP430 family.
How the MSP430 and its functions works are well known, but how these things are

implemented on a hardware level is an industry secret. However, Olivier Girard created an
open implementation of the MSP430 in Verilog and made it public under the GNU Lesser
General Public License. This project was named openMSP430. This work will use this open
version to make changes and implement SMART.

Already has been said that the main difference of models in the MSP430 family is the
RAM and ROM memory size. Using the openMSP430 this two value are fully configurable,
that is, using the same code is possible to simulate multiple devices. To make things simple,
all tests will use a ROM with 8192 bytes and RAM with 1024 bytes, like shown in figure 3.1.
These two sizes are chosen intrinsically, but they are enough to save and execute programs
with reasonable complexity.

To build the binary code to run in the openMSP430 Texas Instruments use a derived
version of GCC3. This compiler accepts flags to describe the target device. Also, it supports
a memory linker scripts to build the executable to devices that use the MSP430 instruction,
but do not correspond to any device of the family.

This compiler additionally came with the MSP430 header files. Some crucial tasks are
the responsibility of these files. For example, when we declare a string (array of chars), this
data will be saved in the ROM memory (the only memory that will be preserved between
device resets). If the microcontroller program has an instruction to change one byte of this
string, this cannot be done in the ROM. To solve this problem, the compiler inserts a code
to be run when the device starts. This code is responsible for copying all initialized variables
to the RAM. Also, the compiler changes the reference of these variables to point it to the
RAM.

There are many other specifications of this microcontroller. The main ones were men-
tioned here or will have a subsection discussing it. Other specifications are outside the scope
of this work.

3.2.2 Development Board and SPARTAN 6

AMimas V2 Spartan 6 FPGA development board is used to test and develop the SMART
implementation. This development board has several components to make possible its use
in different scenarios. Its manufacture website4 has a list of all the board components and
specification. Here we will discuss some of them.

The SPI flash memory of 16 Mbytes (M25P16) is responsible for saving the Bitgen file,
as explained in the diagram. Unfortunately, the programming of this memory is made using
a PIC microcontroller that interfaces it with the USB. Because this type of connection and
data conversion, there is a significant delay in writing the Bitgen to this memory.

This PIC microcontroller also serves as a USB-UART interface, which helps to establish
the communication between the code in the FPGA and any application running on the PC.
Data can be sent and received from the FPGA by using a serial terminal at the fixed of baud
rate 19200. This interface will be connected to the UART openMSP430 peripheral, making
possible to exchange information between the computer and the microcontroller.

Because the PIC can have two different functions, there is a switch to select the required
function.

Some LEDs, buttons, and switches are present in the development board. The switches
are used in the hardware tests to help to turn on/off some modules and peripherals. The

3http://www.ti.com/tool/msp430-gcc-opensource
4Numato Website: http://www.ti.com/tool/msp430-gcc-opensource

http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/msp430-gcc-opensource
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LEDs are used to show the internal status of the microcontroller. Moreover, one button is
used to be the openMSP430 reset pin.

Despite all the components, the principal one is the Xilinx Spartan 6 XC6SLX9 in a
CSG324 package with a speed grade of 2. This component as pins connected to all the
other devices. Inside it, also has some pre-built components (these components need to be
connected using a specific HDL code), like a RAM. This model of FGA has 576 Kbytes
of RAM. This memory will be used in the implementation to supply the ROM, and RAM
needs by the openMSP430. Note that we will use a RAM as a ROM, this not implies in any
security fault, because the memory openMSP430 memory backbone prevents any the ROM
to be writable.

A considerable time amount of this work is spent adapting the openMSP430 implemen-
tation to run in the Spartan 6 and this development board. Several times all computer
simulating tests in the run without any errors, but when tried in using a real FPGA the
tests stopped to work. Unfortunately, to discovery and debug these problems are a difficult
task because it involves real hardware. It was necessary to use an oscilloscope several times.

3.2.3 Time Constants

One important thing when working with FPGA is the time constants. These values are
essential for testing, and the allocation of the connections inside the FPGA.

For Verilog simulations, the time constants are set using a reserved macro named timescale.
This macro receives two values: the time unit and time precision. The simulations delays
and any time value use this time unit. So the time precision is used by the simulator to know
how they can round the summation values. In the tests we used 1ns for time unit and 100ps
for precision.

1 i n i t i a l
begin

3 CLK_100MHz = 1 ’ b0 ;
f o r e v e r #5 CLK_100MHz <= ~CLK_100MHz; // 100 MHz

5 end

Listing 3.1: Simulation clock signal generator.

Code 3.1 is used in simulation to generate the clock signal. It changes the value of wire
CLK_100MHz in intervals of 5ns (5 units of time), making an output signal of 100MHz. We
choose the frequency of 100MHz because the testing FPGA has a clock of this frequency.
These values are calculated using the frequency formula F = 1

T
, where F = 100MHz is the

desired frequency and T is the period. After solving this equation T = 10−8s, this is equal
to 10 units of time (10ns). The FPGA clock uses a duty cycle of 50%, that is that the clock
will need to be 50% of their time active and the other part inactive (the signal will change
to high to low or vice-versa in an interval of 5 units of time).

The communication with the simulator in testing or the computer in a real FPGA is
made using the RS-232 standard. This standard is a serial protocol. In there the bits are
sent one at a time. A direct consequence is that the protocol use time constraints to send
the information. In all test is used the 19200 bit/s baud rate, making each bit transmission
time be 52100ns.

To reduce the timing conflicts and problems inside the openMP430 [4] the microcontroller
will receive a clock input of 20000MHz. To change from 100000MHz to the desired input
speed, a Digital Clock Manager (DCM) [1] will be used. The DCM is a dedicated hardware
inside the FPGA for clock frequency conversion. To this module works it needs several
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configuration parameters, to simplify it a module named clock.v was created with all
configurations inside it.

The microcontroller uses one hardware peripheral to interface with the RS-232 serial
port. This hardware need to know the bit transmission time, in all software that uses serial
has the UART_BAUD = BAUD; line. This line is responsible for setting a unique memory
address to the correct bit transmission time.

3.2.4 SHA256

One improvement in this implementation compared to the original article was the use of
a hardware SHA2 (Secure Hash Algorithm 2) to hash the memory. The original implemen-
tation uses a software SHA1. Different from SHA1, SHA2 is a family of hash function, in
implementation we used the SHA256 function.

The SHA256 has some improvements compared to the SHA1. The first one has the input
size, SHA1 needs to receive only 160 bits to produce a hash, the SHA256 needs 256 bits.
SHA1 was deprecated by NIST (National Institute of Standards and Technology) in 2011.
There also some articles, like [19], to show how an attacker can forge two distinct PDF
documents with the same SHA-1 hash.

It is important to notice there exists a new version of the secure hash algorithm, the
SHA3. This version made some improvements and NIST advise to use it. We tried to imple-
ment the SHA3 in the FPGA, but it exceeds the number of available LUTs in the FPGA,
making the implementation impossible with the openMSP430 core. However, SHA256 is still
considered secure, and it fits inside the FPGA.

A SHA256 implementation written by Joachim Strombergson [2] has used. A peripheral
adaptor was built to communicate with the openMSP430 core. This adaptor is responsible
for interfacing the SHA256 implementation with the peripherals pins in the microcontroller.
The file SMART/rtl/verilog/sha256/sha256per.v contains this interface.

This change makes the hash timing faster and saves several bytes in ROM. However, it
uses approximately 2000 FPGA LUTs.

3.2.5 SMART Memory Access Control

A specific module was developed to build one hardware that guarantees the A3, A5, and
A6 assertions. We give the name of SMART Memory Access Control (SMART MAC) to this
module. It usually needs to be between the microcontroller and the memory that we want
to protect.

To allow the full comprehension of this module and its capabilities, table 3.1 show all
hardware pins it has and the table 3.2 shows all parameters.

This basic module idea is to monitor the current instruction pointer address and depend-
ing on its position allow the access to a specific memory region. We will call this area as the
protected memory region. In case of any attempt to access this region when the instruction
pointer is in an invalid position, the module will send a reset signal to the microcontroller.

Most specifically, the protected memory region will only be readable when an internal
module register is activated. This activation happens when the instruction pointer points
to the first instruction of a specific function (the LOW_CODE and the HIGH_CODE
parameters describe the place of this function). After it is activated, the deactivation only
occurs if the instruction pointer is outside the function addresses area. The protected memory
region is described by the LOW_SAFE and the HIGH_SAFE parameters.
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Port Name Direction Width Description

in_safe_area Output 1 bit

This pin becomes HIGH between the moment
the ins_addr point to the HIGH\_SAFE ad-
dress to the moment it exits from the safe code
area.

reset Output 1 bit This pin becomes HIGH when some violation
occurs and a microcontroller a reset is needed.

mem_dout Output 16 bits
If no violation occurs and all states are correct
this value will be equal mem_din. Otherwise
will be 0x000.

mem_addr Input variable Memory physical address.
mclk Input 1 bit Microcontroller clock.
mem_din Input 16 bits Memory data input.
ins_addr Input 16 bits Instruction pointer logical address.

disable_debug Input 1 bit When this pi is HIGH, the module will be dis-
abled. This feature is used for debug propose.

Table 3.1: This table describe all the input and output pins in the SMART Memory Access Control
(SMART MAC). When using this module with a real FPGA, only the pin in_safe_area can be
not connected to the circuit. To make the module work uninterrupted the pin disable_debug can be
continuously set to zero.

Parameter Name Description
SIZE_MEM_ADDR width of mem_addr
LOW_SAFE The lower physical address in the region’s memory to be

protected.
HIGH_SAFE The higher physical address in the region’s memory to

be protected.
LOW_CODE Where the function that will access the protected region

in memory begins. Virtual address.
HIGH_CODE Where the function that will access the protected region

in memory ends. Virtual address.

Table 3.2: When building a module using Verilog is possible to insert some parameters. This table is
the list of all possible parameters and it description of the SMART Memory Access Control (SMART
MAC) module.
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A single SMART MAC can be used in the memory bus to make the A3 assertion valid.
In this case, the memory protected area will be the key and the allowed function to read it
will be the smart function.

To assertion A5 be valid a SMART MAC is used differently. Suppose the smart function
started it code in X and ends in the Y logical memory address. A module will be built with:
LOW_SAFE = X ′+2 byte, HIGH_SAFE = Y ′, LOW_CODE = X and HIGH_CODE =
X. X ′ and Y ′ are the physical memory address derived from the logical addresses. We add
two bytes to the physical memory address of the SMART function because it is outside the
protected memory region (the first instruction is not protected).

Also, assertion A6 is guaranteed by this second module, because if the instruction pointer
goes outside the function memory region, the function can only be callable from its beginning.
If someone tries to call this function by its middle, a reset signal will be produced.

Figure 3.2: The interface between the ROM memory and the openMSP430. In the middle, is
SMART memory access control module.

By using two SMART MAC it is possible to grant the three remaining assertions. In
figure 3.2 is possible to see how these modules are placed between the microcontroller and
the memory. Note that the left module is responsible for protecting the key and the right
one to protect the code.

The original SMART article changes the openMSP430 memory backbone to validate
the A3, A5, and A6 assertions. With the creation of SMART MAC, there was a much less
invasive modification the microcontroller and produce the same guarantees. Besides that,
the use of a module that does not make changes in the core elements of microcontroller make
the solution more portable to other platforms.

Appendix A make a deeper analysis of SMART MAC. Also, it contains the module core
code5.

3.2.6 Linker Script

When building the binary source to a microcontroller the compiler needs to know where
to place the code, data and other pieces of information in the memory. The linker script (or
linker command file) is the file that describes to the compiler where to place this information.

5The SMART MAC source file is in the SMART/rtl/verilog/smart_mac.v directory of this the-
sis repository. The implementation of the connections described in figure 3.2 is present in the
SMART/rtl/verilog/openMSP430_fpga.v directory.
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Figure 3.3: The orange link is the program memory backbone where the smart modules are intro-
duced. Differently, from figure X, this image includes de physical and logical addresses used by the
SMART code and the SMART key.

In figure 3.1 it is possible to see where the SMART MAC was implemented. Also, this
image contains information about the new memory sections created for salving the SMART
key and code. It was not quoted before, but the image has a special section named Interrupt
Vector Table. This memory region has 16 processor addresses (the equivalent of 32 bytes)
and in there is functions addresses to be callable when one interruption occurs. The first
16-bit word in this section (address 0xFFFE) is the instruction that the processor will jump
and a reset is performed. There is an importance to do not block this memory sections
because it provides primordial functionalities to the microcontroller.

Shortly after this section of memory we introduce a memory protect region to save the
SMART key. The linker script described this section, that way the compiler will not introduce
any code in there. A particular attribute was used in the C source code to force the key to
be kept in that region. The SMART key memory region starts at byte 0xFEE0 and has a
length of 0x0100 bytes.

A region for SMART code is also introduced. It starts at byte 0xFAE0 and has a length of
0x0400 bytes. All the smart code will be saved in this memory section. Because of that, this
section can contain multiple functions. Depending on the order the header of this functions
are declared the compiler can locate one function after other. As a consequence, the main
SMART code function needs to be the first declared. Otherwise, if the SMART main function
is not at the first address, its call will not unlock its executable source and will provoke an
unexpected reset. That is, in the SMART code, the order of the function header matters.

The linker script can be found in SMART/software/libs/linker.msp430-elf.x
file. This script was based the original linked script provided by Texas Instruments.
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3.3 Tests
This section explains how SMART implementation was tested. The last subsection will

show a real application using SMART.

3.3.1 Continuous integration

A continuous integration system is used to prevent and to identify any code error or
change that affected the correct work of the microcontroller. A GitHub project is set to track
the code changes and versioning the code. On every push, a server receives a notification,
run all test in the project and build the FPGA files.

Jenkins6 is used to build the continues integration system. Other systems, like Travis or
Gitlab CI, are not used because they have restrictions on the maximum size of their builds.
To test and mount the code the ISE WebPACK Design Software is used, which has 6 GBytes.
Jenkins makes possible install this software on the tester machine only one time and uses it
when needed.

Two simulation softwares are used to reproduce the behavior of the hardware: the Icarus
Verilog7 (an open-source project) and the Xilinx ISE (a proprietary software). Every test is
executed using this two simulation softwares. We made this decision because there are errors
that only occur in one of testing softwares.

3.3.2 Light Remote Control

To test and study SMART a full application is built using it. The basic idea was to build
a device able to receive remote commands to turn off and on this led with all the security
guarantees. As said before, this device was built in an FPGA, that run the openMSP430
project with two SMART MAC modules in the memory bus. As the most IoT devices, it
runs as a client on the internet. Because of that, a simple python server was written to
answer the requests, save the device key and to calculate the expected hash values.

Figure 3.4: The Numato Mimas V2 (in the right) connected with an Amica Node MCU (in the
left) board with the ESP8266 module. A wall charger supplies the device by the USB port.

In figure 3.4 is possible to see the final hardware prototype. An ESP8266 module was
used to make the FPGA able to connect to the internet. A small software was written to this

6https://jenkins.io/
7http://iverilog.icarus.com/
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module control the connection to the internet and among this two devices. It creates a TCP
connection between it and the server. All data received by internet is streamed to the FPGA
serial connection and, if the FPGA send any byte, the module gets the byte and sent to
the TCP connection. The ESP866 module was programmed using the Arduino environment
with the Arduino core for ESP8266 WiFi chip8.

In the implementation this module was not attested. That is, if it suffers any attack
it will not be detected. However, it is possible to connect some pins of this module to
allow the FPGA to read it internal memory. Making it is possible to create an attestation
algorithm to validate this module memory. Note that, this algorithm will be a program in
the openMSP430, this program can be attested using the SMART functions.

Because the connection between the two devices is made using the serial protocol, some
problems have arisen. There is no attempt to change to other protocol because this protocol is
simple to use and we already had an HDL implementation of a peripheral with this protocol.
The main problem is that some bytes are getting wrongly when the internet module send it
the FPGA. To work around this problem a particular communication protocol was written.

On the other side of the communication channel, there is a Python server responding
all the requests. The socketserver library was used to implement the server. This library
helps the creation of a new process to handle each received connection. This library enables
multiple connections at the same time. Unfortunately, the server was hardcoded the device
key and the path to its source code. In a real application, each device must have a unique
key and a database stores all this data.

The device was responsible for creating the TCP connection, but when performed, only
the server can send commands to it, and the device only becomes responsible for responding
to the requests. This protocol has only five commands:

• TAKE_HASH: used to server request a hash from a memory area. The smart code is
responsible for calculating this hash. A 256 bits hash is expected as a response to this
command.

• SET_LED_ON: turn on the led.

• SET_LED_OFF: turn off the led.

• SET_RESET: forces a reset in the device.

• GET_RESET_HASH: if a reset is successfully made, it will produce a hash from the
previous command. This command is responsible for requesting this hash from the
device.

As said, a protocol is designed to send this commands. On every server request, 263
bytes are sent to the device. The first byte is the command byte. Each command has a byte
associated with it. The device will receive it and call the correct functions after that. The
next two bytes (16 bits) are a memory address number that will be used to start the hash
computation. Next, there are more two bytes, that represent how many bytes will be part
of the hash. The next 258 bytes are part of the attest nonce. These bytes can be divided
in three section of 86 bytes. Each section is identical to with each other. This decision was
made because if any byte gets wrongly by the device, it can restore the original one.

The device uses a nonce of 256 bytes o compute the hash. Because the serial connection
error, an error-correcting algorithm was used. Algorithms like the Hamming code can be

8urlhttps://github.com/esp8266/Arduino
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able to correct errors with a small overhead in the connection. However, these algorithms
are complicated to implement and uses a lot of the memory of the microcontroller (only 5120
bytes are available is the program memory). As a solution, the nonce size has reduced and
sent three times. The reduction is necessary the save the data memory. Using this method,
became easy to correct any communication error.

Also, to reduce the communication error a low baud rate of 4800 bit/s was used. Another
method to reduce this errors would be soldering the internet module in the FPGA, but this
would damage the test devices.

For all server commands, the device needs to send a response. However, for only the
commands TAKE_HASH and GET_RESET_HASH this response need to be a valid 256-bit
hash. With this hash, the server became able to attest the device remotely. In the device
response to the server are not any error prevention measures.

To test the protocol and the SMART functionality a simple communication mock has
built. First of all, the server asks for a hash from the address 0x0000 with 0 bytes. Although
this command does not appear useful, it cam detected if the correct device is connected with
the server. Id other device connected, it will not be able to produce the expected hash. After
that a SET_LED_ON command is sent. Nest, the server asks for a hash from the led status
variable address with 1 byte to verify if this command takes effect. Again, if the value was
not the expected one, the hash will be incorrect. In the mock, this verification is made ten
times with a small time interval between them. The same procedure is repeated turning off
the led.

After that, is requested a hash of the full program memory. The response of this request
is critical to see if the device code has not changed. To verify if this function is correctly
working some untrusted code was injected into the device and was successfully identified.
To make is identification more precisely, the server several requests different memory blocks,
following a binary search algorithm. As a result, we obtain the first changed byte.

Subsequent the code verification, a reset signal is sent. The hash computes from the
information send by this command is preserve in the hash peripheral, becoming available
after the reset. After 5 seconds, the server sends the GET_RESET_HASH command to retrieve
this hash and verify if a successful reset was made.

In the server and the device are set timeouts if some errors occur. These timeouts are
essential because if any the internet connection or the cable between the devices fail, the
server and the device will know how to handle this problem.

Two attacks are made to test this implementation. The first one is a man-in-the-middle
attack. In this attack every time the command SET_LED_ON was sent, the attacker changes
the command to SET_LED_OFF and vice-versa. As a result, all the verification of led variable
value produces an unexpected hash value, proving that the device or the connections have
been changed. The attack is made making an ARP spoofing, changing the packets change
in a specific port and redirecting the data.

Note that during this procedure, the attacker successfully changes the led status. This
problem happens because the device cannot identify the server. One way to mitigate this
attack is the device generate a random number and make a hash of it. After that, the device
must send this random value and ask for the server the expected hash value. If the server
returns the correct value, the device can confirm that is the correct server. Unfortunately,
the openMSP430 did not come with a random number generator to make this feature viable.
Generate a random number in this microcontroller unit an be part of future work.

The second attack was made by changing the code of the device. When this happens, the
function responsible for calculating the hash from the program memory return an incorrect
value.
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Number of Slice Registers Number of Slice LUTs
SMART without
SHA256 peripheral

1025 2492

SMART with SHA256
peripheral

2702 4764

MCU with SHA256
and without SMART

2694 4710

Table 3.3: Use of the FPGA LUTs and registers depending activation of SMART and the SHA256
peripheral.

Other information about this test and the source code are in the code repository.

3.4 Results
As a result of the tests are obtained table 3.3. This table shows that the SMART imple-

mentation in the memory bus uses a small number of LUTs and registers. However, using a
hardware implementation of the hash function almost double the necessary hardware. Un-
fortunately, this is not a good thing, because one of the main objectives is to maintain a
lower device cost.

One way to solve this problem is to expand the device program memory size and use a
software SHA256 hash implementation. This changes also increase the cost of the device.
By the Xilinx Spartan 6 manual, each slice can store 8 bits of information, that is, one byte.
The SHA256 software uses approximate 1300 bytes of memory 9. That is, the cost of using
a hardware version will be a little more significant, not 180% as shown in table 3.3.

Another significant result obtained was the hash computation time in the network, that
is the device response time after a command to compute a hash. The theoretical computation
time from the hash peripheral can be obtained from the hash source code. This value is not
so interesting, because it is count in the number of the clock cycles and does not involve any
variation. 0.72 seconds was the average time response after a TAKE_HASH command in the
Light Remote Control experiment. This result was obtained after 1000 measures, using one
byte to compute the hash. The experiment was run in a local network, with the computer
as a server and the device, both connected by wireless with a 2,4 GHz Wi-Fi (manufacturer
Askey and model RTF3505VW-N1).

Another similar test was run. However, instead of asking the hash of one byte, was
requested the hash of 8192 bytes. 0.73 seconds is the average obtained. This little change
in this scenarios shows that most of the time is used by the communication and the pre-
processing computation and not for the hash calculus. Probably this time has significant
because of the serial protocol between the FPGA and the wireless module.

9This value is obtained running the tool msp430-elf-size in the with and without a software SHA256
implementation. The source for the hash code was obtained in the RFC4634.
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Conclusion

Any work that talks about security needs to be carefully made because if it provides a
solution with any flaw, one attacker can study it and use this breach for a malicious propose.
This thesis works with a simple solution to provide the remote attestation ability for one
embedded device. As said, this involves multiple programming layers and change hardware
at a low level. This work made small changes in the hardware layer. However, all of them
were carefully made to prevent any error. Tests were written for most of the device changes
and codes for the same motive, guarantee the absence of flaws.

During the development, several errors occur. Debugging this errors sometimes is not
trivial, because at principle the layers it happens is not known and find where it is a hard
task. Also, some tests run correctly in the computer simulations, but when executed in a
real FPGA they mysterious fails.

This situation happens two times during the thesis development, consuming a lot of work
time. The first one was related to the reset pin. In the computer tests, the buttons pins were
set to the LOW state when unpressed. However, the real FPGA set the value to HIGH when
unpressed. This small difference produced sequential resets in the device and was discovered
only using an oscilloscope.

Another similar error occurs in the tests of SMART code. When it was called, the device
simple restart itself. After many tests and hours debugging, was discovered that the con-
nection of the instruction pointer was being made in way correctly by the Verilog language,
but not valid to the Xilinx HDL text processor. Because of this stupid error, the software
responsible for building the connection of the FPGA had trimmed out the SMART module.

Furthermore, simulation tests that involve the full microcontroller behavior take signifi-
cant time to be executed. This delay happens because of this kind of tests simulated the full
asynchrony serial communication. Also, depending on the size of the microcontroller code
or if it was several loops, the instructions decode end execution takes too long to end. This
situation happens, for example, when a test with a software SHA256 implementation was
run. The test took more than one hour.

Although all the difficulties, the SMART was successfully reimplemented. Everything was
made to guarantee SMART premises to be valid and unviolated. Also, the primary objective
of this work, to run SMART in a real FPGA, was accomplished, proving that SMART is a
simple and an efficient solution to implement the remote attestation capability on embedded
devices.

This work has some improvements to be made as a part of future work. Implementing
the SMART in others microcontrollers units, like the AVR, is not done. Doing it in future
work could prove that the generality of the decision of only changing the memory bus.

Also, as the original article, this thesis not formally verified the SMART implementation
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and premises. Some recent work has been done in this area [10]. In this article, a formally
verified SMART implementation is suggested.

Another interesting topic of future work is extending the device hardware changes to add
more security feature and study how they can be used with SMART. For example, adding a
secure random number generator peripheral can add the capability for the device to verify
the identity of the remote server. It generates a random sequence of bytes, produces a hash
from it and requests the server to send the expected hash of the random sequence. If the
server produces the correct hash, the device can confirm that the server has its key.

Hardware improvements can also be made. For example, changing the wireless module
can improve the connection speed and reduce the number of communication error. Study the
SMART changes necessary to make SMART enable to handle and manage remote updates
is also an exciting topic.

Concluding, it was showed that SMART is implemented with ease and its make remote
attestation viable for embedded devices.



Appendix A

SMART MAC Analysis

The purpose of this appendix is discussing how the SMART Memory Access Control
(SMART MAC) was implemented. Also, some tests will be showed and commented. Below,
at code box A.1, is possible to see the core code of the of the module. The module header
and parameters initializations are not showed because they do not influence in the module
behavior.

Although the small size of the module, it has a reasonable complexity. The microcontroller
clock synchronizes all actions taken by the module. This mechanism is important because
sometimes, during a fetch, decode or execution of an instruction in the microcontroller, the
value of some pins, like the instruction pointer or the memory address, can become a random
number. This strange behavior happens because when a 16 bits bus changes its value, the
bits are not changed together. This time variation is minimal, but if the module does not
use a synchronizing mechanism, an incorrect reset signal can be produced.

1 module smart_mac (
// OUTPUTs

3 output in_safe_area , // On on s a f e area
output r e s e t , // High to r e s e t dev i c e

5 output [ 1 5 : 0 ] mem_dout , // Memory data output

7 // INPUTs
input [SIZE_MEM_ADDR: 0 ] mem_addr , // Memory adre s s

9 input mclk , // Memory c l o ck
input [ 1 5 : 0 ] mem_din , // Memory data input

11 input [ 1 5 : 0 ] ins_addr , // I n s t r u c t i o n po in t e r adre s s
input disable_debug // Disab le p r o t e c t i on on HIGH

13 ) ;

15 // PARAMETERs
//============================================================================

17 parameter SIZE_MEM_ADDR = 15 ; // s i z e o f mem_addr

19 parameter LOW_SAFE = 200 ; // Low address s a f e code
parameter HIGH_SAFE = 200 ; // High address s a f e code

21

parameter LOW_CODE = 200 ; // Low adre s s code
23 parameter HIGH_CODE = 200 ; // High address code

25 // LOGIC
//============================================================================

27 reg ins ide_code = 1 ’ b0 ;
reg to_be_reset = 1 ’ b0 ;

29
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29

wire addr_in_safe = (mem_addr <= HIGH_SAFE) & (mem_addr >= LOW_SAFE) ;
31 wire pc_in_code = ( ins_addr <= HIGH_CODE) & ( ins_addr >= LOW_CODE) ;

33 a s s i gn sa f e_re s e t = addr_in_safe & ~ins ide_code ;

35 a s s i gn r e s e t = to_be_reset & ~disable_debug ;

37 a s s i gn mem_dout = r e s e t ? 16 ’ b0 : mem_din ;
a s s i gn in_safe_area = ins ide_code ;

39

always @ ( posedge mclk ) begin
41 i f ( ins_addr == LOW_CODE) ins ide_code <= 1 ’ b1 ;

e l s e i f (~pc_in_code ) ins ide_code <= 1 ’ b0 ;
43 to_be_reset <= sa f e_re s e t ;

end
45

endmodule

Listing A.1: Core code of the SMART MAC

Line 40 is responsible for the synchronizer mechanism. This line tells the hardware to
take one action only when the clock signal change from low to high. By the openMSP430 mi-
crocontroller documentation, it clock cycle start on the rising edge and ends before the next
rising edge. This guarantees that the device state is consistent during the posedge mclk
signal.

The module implementation uses two registers. The first one is the to_be_reset. This
register is responsible for synchronizing the reset signal. The output of the reset pin will be
the value of this register. Inside the synchronizing area (start at line 40 and ends at 44) is
the only place where this register changes its value. Has said before, this mechanism is used
to prevent any reset caused by an inconsistent state of the pins connected with the module.

The other register is the inside_code. It is used as a memory to save if the instruction
pointer was pointed to the first code instruction. Also, it saves if the instruction pointer goes
outside the code region.

Figures A.1, A.2, A.3 and A.4 shows some simulations. In the left bar of this images
is a list of variables. All these variables are described in table K, with the exception of
CLK_100MHz that replaces the SMART MAC mclk pin. The parameters of the modules
in all simulations are: SIZE_MEM_ADDR = 0x04, LOW_SAFE = 0x08, HIGH_SAFE =
0x10, LOW_CODE = 0x18 and HIGH_CODE = 0x20.

The right part of the images is a graph with the value pins value over time. All values
changes in the input pins are part of the test. That is, the test consists of changing the
inputs and see how the outputs react.

Figure A.1: Simulation of success access to the protected memory region.
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Figure A.1 shows a simulation that reflects the following steps: the instruction address
go to LOW_CODE value; memory address go to a value inside protected region memory, in
this case, LOW_SAFE value; memory address go to 0x00; instruction address go to 0x0000.
The module work as expected. In the first step, it correctly changes the in_safe_area
value to high, because it runs the first instruction of the safe code. As there was no memory
access violation, no reset signal is triggered.

Figure A.2: Simulation of what happens when the instruction pointer goes to the second code
address and access to the protected memory region.

The only difference from figure figure A.1 and figure A.2 is that in the first step the
instruction address go to LOW_CODE+1. Since this value is not the first instruction in
safe code area, in_safe_area stay with a low signal. In the second step, when there is an
attempt to read a protected memory region, a reset signal is triggered. Another important
aspect of this simulation is that the mem_din pin is a constant value, but mem_dout change
to 0x0000 when the violation occurs.

Figure A.3: Simulation of one not authorized access to the protected memory region.

Figure A.3 is very similar to previous simulation. It shows a memory access violation.

Figure A.4: Simulation of the behaviour when men_addr pin inconsistency states happens.
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The figure A.3 aims to show that inconsistent states do not provoke accidental resets. In
the image occur two inconsistent states, the first one is the change of mem_addr between a
half clock cycle (start at 22ns and ends at 48ns). The second one happens in the same pin,
and start ate 93 ns and ended at 123ns.

All images from the tests are generated using the Scansion1 application and the Icarus
Verilog vvp runtime engine.

1http://www.logicpoet.com/scansion/

http://www.logicpoet.com/scansion/
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File and Directory Description

This thesis involves a lot of files and directories. To makes an easy visualization of all
its contents a directory tree was built below1. To simplify the integration with other project
and to make it easier to understand, the directory structure is based on the OpenCores2
recommendations, the same used in the openMSP430 microcontroller unit (MCU) project.

FULL_APP contains files related to light remote control ap-
plication

PythonServer
server.py python script to TCP server to control the ap-

plication
WiFiClient

WiFiClient.ino Arduino (C) code of the ESP8266 module
README.md Information about how to run and build other

files
SMART directory of MCU project

bench contains the test bench files
verilog

glbl.v control MCU initialization
msp_debug.v connect the processor and decode its internal

state during the tests
registers.v make the MCU registers available for the tests
tb_openMSP430_fpga.v connect the MCU to the test settings and ini-

tialize it
timescale.v set the timescale used in the tests

rtl describe real hardware
verilog

clock.v module for transforming a 100MHz to a 20Mhz
clock signal

coregen Information about the Xilinx modules
coregen.cgp Information about the FPGA
spartan6_dmem.xco describe the data memory
spartan6_pmem.xco describe the program memory

1 A Github repository with all the source code used during the implementation and tests. https://github.
com/capellaresumo/MAC0499

2http://cdn.opencores.org/downloads/opencores_coding_guidelines.pdf
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omsp_uart.v describe de peripheral responsible for serial com-
munication

openMSP430_fpga.v connect the memory, SMART modules, and pe-
ripherals to the MCU

openmsp430 openMSP430 files. This is a directory and the
files are not listed.

sha256
sha256_core.v main SHA256 module
sha256_k_constants.v constants used by SHA256
sha256_w_mem.v manage the dynamic memory used by the mod-

ule
sha256per.v get the SHA256 module and make it a peripheral

smart_mac.v SMART MAC module
sim contains simulation files

rtl_sim
bin tests helpers

asm2ihex.sh convert one asm file to ihex
helper.sh helper fiction used by more helpers
ihex2mif.tcl convert one asm file to mif
msp430sim coordinates the tests execution
omsp_config.sh contains values dynamic inject in c code
rtlsim.sh control a test after compiled
template.x linker script for assembly tests
template_defs.asm definitions for assembly tests

run scripts to start test execution
cores_build build the Xilinx cores
run example of how to run a test
run_clean clean all files generate by a test
test run all tests scripts in tests file
tests tests scripts

acess_key_reset test the SMART key violation and correct access
hw_uart_isim test the serial peripheral using ISim
hw_uart_iverilog test the serial peripheral using Icarus Verilog
led_blink verify if IO peripheral works
sha256 verify if SHA256 peripheral works
smart_code_block verify if f a SMART perform a successful code

access and after an invalid one
smart_v1 test a the MCU with SMART calling the hash

from the serial
src hardware setup for the tests in tests. If the test

do not have an software, will be used the assem-
bly file provide here.

acess_key.s43
acess_key.v
hw_uart.v
led_blink.v
main.s43
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main.v
sha256.v
smart_code_block.s43
smart_code_block.v
smart_v1.v
submit.f Describe the module for ISim
submit.prj Describe the module for Icarus Verilog
write_flash.v

software contains the softwares (c programs) used during
the test and deployment

hw_uart serial communication software
main.c
makefile

led_blink software to make a led blink for simulation
Makefile
main.c

led_blink_real software to make a led blink for in the real device
Makefile
main.c

libs common files used by softwares
Makefile
cprintf control the input and output of the serial pe-

ripheral
cprintf.c
cprintf.h

hardware.h constants and definitions of peripherals
linker.msp430-elf.x linker script
omsp_system.h constants and definitions of MCU
smart

smart.c
smart.h
test.py script to generate the expected hash

sha256 software to compute a hash
main.c
makefile

smart_app light remote control source
Makefile
main.c
makekey.py script to generate the expected hash

smart_v1 smart used for tests
Makefile
main.c
makekey.py script to generate the expected hash

synthesis
xilinx script to automate the process of build the

FPGA
0_create_bitstream.sh
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1_initialize_pmem.sh
2_generate_prom_file.sh
3_usb_upload.py
bitstreams Directory that contains the generated bit-

streams
scripts

ihex2mem.tcl
memory.bmm
openMSP430_fpga.prj Contains information of modules necessary to

build the project.
openMSP430_fpga.ucf User Constraints File
xst_verilog.opt options used during the synthesis

SMART_MAC_TEST Directory responsible for graphical tests in
SMART MAC module

run_tests.sh Script to run the tests. Only works in Mac OS.
test.v HDL code for configuring the test.

The dark gray files represent that it has copied from the openMSP430 project or the
SHA256 open implementation. The light gray is file based in pre-existing one. The cells with
a white background were written from scratch.



Bibliography

[1] Spartan-6 FPGA Clocking Resources, 2018. https://www.xilinx.com/support/
documentation/user_guides/ug382.pdf [Accessed: September 2018]. 18

[2] Hardware implementation of the SHA-256 cryptographic hash function, 2018. https:
//github.com/secworks/sha256 [Accessed: September 2018]. 19

[3] LegUp High-Level Synthesis, 2018. http://legup.eecg.utoronto.ca/ [Accessed: September
2018]. 11

[4] openMSP430, 2018. https://opencores.org/project/openmsp430 [Accessed: August
2018]. 18

[5] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of software-
based attestation of embedded devices. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, pages 400–409, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-894-0. doi: 10.1145/1653662.1653711. URL http:
//doi.acm.org/10.1145/1653662.1653711. 7

[6] K. Eldefrawy, D. Perito, and G. Tsudik. Smart: Secure and minimal architecture for
(establishing a dynamic) root of trust. 01 2012. 1, 8, 14, 15

[7] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. Systematic treatment of
remote attestation. IACR Cryptology ePrint Archive, 2012:713, 2012. 9

[8] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A minimalist approach to
remote attestation. pages 1–6, 01 2014. 4, 5

[9] Garther. Gartner Says 8.4 Billion Connected. 1

[10] N. R. M. S. G. T. Karim Eldefrawy, Ivan O. Nunes. Formally verified hardware/software
co-design for remote attestation. 01 2018. 28

[11] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. Trustlite: A security
architecture for tiny embedded devices. In Proceedings of the Ninth European Con-
ference on Computer Systems, EuroSys ’14, pages 10:1–10:14, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2704-6. doi: 10.1145/2592798.2592824. URL http:
//doi.acm.org/10.1145/2592798.2592824. 1, 9

[12] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth. New
results for timing-based attestation. In 2012 IEEE Symposium on Security and Privacy,
pages 239–253, May 2012. doi: 10.1109/SP.2012.45. 7

37

https://www.xilinx.com/support/documentation/user_guides/ug382.pdf
https://www.xilinx.com/support/documentation/user_guides/ug382.pdf
https://github.com/secworks/sha256
https://github.com/secworks/sha256
http://legup.eecg.utoronto.ca/
https://opencores.org/project/openmsp430
http://doi.acm.org/10.1145/1653662.1653711
http://doi.acm.org/10.1145/1653662.1653711
http://doi.acm.org/10.1145/2592798.2592824
http://doi.acm.org/10.1145/2592798.2592824


BIBLIOGRAPHY 38

[13] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Ver-
bauwhede, J. Götzfried, T. Müller, and F. Freiling. Sancus 2.0: A low-cost security
architecture for iot devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33, July 2017. ISSN
2471-2566. doi: 10.1145/3079763. URL http://doi.acm.org/10.1145/3079763. 1, 10

[14] T. Published. Trusted platform module library - family 2.0 - revision 01.38, 09 2018.
4, 5

[15] A.-R. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy challenges in
industrial internet of things. 2015, 07 2015. doi: 10.1145/2744769.2747942. 1

[16] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: Software-based attestation
for embedded devices. 04 2004. 7

[17] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. SIGOPS
Oper. Syst. Rev., 39(5):1–16, Oct. 2005. ISSN 0163-5980. doi: 10.1145/1095809.1095812.
URL http://doi.acm.org/10.1145/1095809.1095812. 7

[18] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pages 552–561, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-703-2. doi: 10.1145/1315245.1315313. URL http://doi.acm.
org/10.1145/1315245.1315313. 8

[19] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first collision
for full sha-1. pages 570–596, 07 2017. 19

Saturday 2nd February, 2019

17:12

http://doi.acm.org/10.1145/3079763
http://doi.acm.org/10.1145/1095809.1095812
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313

	Introduction
	Motivation
	Objective
	Structure

	Key Concepts
	Embedded Devices
	Trust Anchor and Root of Trust
	Remote Attestation
	Works of Remote Attestation for Embedded Devices
	Software Remote Attestation
	SMART
	TrustLite
	SANCUS

	FPGA
	FPGA Testing and Programming Steps

	Implementing SMART
	Premises
	Implementation Details
	MSP430
	Development Board and SPARTAN 6
	Time Constants
	SHA256
	SMART Memory Access Control
	Linker Script

	Tests
	Continuous integration
	Light Remote Control

	Results

	Conclusion
	SMART MAC Analysis
	File and Directory Description
	Bibliography

