UNIVERSIDADE DE SAO PAULO
INSTITUTO DE MATEMATICA, ESTATISTICA E C1ENCIA DA COMPUTACAO
BACHARELADO EM CIENCIA DA COMPUTAGAO

Florestas geradoras maximais de custo
minimo em grafos dinimicos

Chung Jin Shian

MONOGRAFIA FINAL

MAC 499 — TRABALHO DE
FORMATURA SUPERVISIONADO

Supervisora: Prof? Dr? Cristina Gomes Fernandes

S30 Paulo
2025



O conteudo deste trabalho é publicado sob a licengca CC BY 4.0

(Creative Commons Attribution 4.0 International License)


https://creativecommons.org/licenses/by/4.0/

Agradecimentos

"Nada é impossivel para aquele que persiste.”

— Alexandre, o Grande

Primeiramente gostaria de agradecer aos meus amigos do IME durante toda essa
jornada. O contato com cada um e a troca de experiéncias contribuiu significativamente

para o meu desenvolvimento técnico e profissional durante o curso.

Gostaria de agradecer a minha orientadora Cristina Gomes Fernandes por ter me
apresentado ao tema desse trabalho, e ter sempre sido muito atenciosa e dedicada para
garantir que eu estava de fato aprendendo os conceitos do trabalho. Foi ela quem fez
crescer o meu interesse por Teoria da Computagio, principalmente em algoritmos e

estrutura de dados.

Além da Cristina, gostaria de agradecer aos professores Carlos Eduardo Ferreira e
Marcel Kenji de Carli Silva, que fomentaram o meu interesse por algoritmos em grafos, e

cujos ensinamentos contribuiram para a producéo deste trabalho.

Por fim, quero agradecer a minha familia, que me deu bastante suporte para eu me

dedicar aos estudos nos primeiros anos da graduacao.

iii






Resumo

Chung Jin Shian. Florestas geradoras maximais de custo minimo em grafos di-
namicos. Monografia (Bacharelado). Instituto de Matematica, Estatistica e Ciéncia da

Computacdo, Universidade de Sdo Paulo, Sdo Paulo, 2025.

Grafos dindmicos permitem modelar problemas em que o grafo sofre alteracoes ao longo do tempo.
Um dos problemas fundamentais nesse contexto é a manutencdo de uma arvore geradora de custo minimo
no decorrer de varias alteracdes no grafo. Neste trabalho, estudamos e implementamos varios algoritmos
propostos por Holm, de Lichtenberg e Thorup para variantes desse problema. O foco foi no algoritmo para
manter uma floresta geradora maximal de custo minimo (MSF) decremental, em que se da suporte eficiente
a remocio de arestas do grafo. Além disso, estudamos as ideias usadas num algoritmo que mantém uma
floresta geradora maximal de custo minimo (MSF) em um grafo dindmico, em que se da suporte eficiente

a adicdo e remocgdo de arestas.

Palavras-chave: Grafo dindmico. Floresta geradora maximal de custo minimo. Splay trees.






Abstract

Chung Jin Shian. Minimum spanning forests in dynamic graphs. Capstone Project
Report (Bachelor). Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo
Paulo, 2025.

Dynamic graphs allow us to model problems in which the graph changes over time. One of the fun-
damental problems in this context is maintaining a minimum spanning tree of the dynamic graph as it
undergoes multiple updates. In this work, we study and implement several algorithms proposed by Holm,
de Lichtenberg, and Thorup for variants of this problem. Our main focus is the algorithm for maintaining a
decremental minimum spanning forest, which efficiently supports edge deletions in the graph. In addition,
we also study the approach for maintaining a fully dynamic minimum spanning forest, which efficiently

supports both edge insertions and deletions in the graph.

Keywords: Dynamic graph. Minimum spanning forest. Splay trees.
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Capitulo 1

Introducao

Grafos sao estruturas de dados que nos permitem modelar varios problemas existentes
da vida real, sejam eles estaticos ou dinamicos. Em problemas estaticos, o grafo ndo sofre
alteracdes com o passar do tempo. Podemos citar, como exemplo, o planejamento de
rotas de entrega, analise de moléculas quimicas e de dependéncias em software utilizando
ordenacéo topoldgica. Entretanto, ainda existem muitas situa¢des em que ocorre dinami-
cidade, como nas interacdes de usuarios em redes sociais, monitoramento de epidemias
(contatos e isolamentos) e sistemas de navegacdo GPS, onde ha necessidade de recalcular
rotas dependendo de condi¢des como congestionamentos e acidentes. Para modelar tais
problemas, podemos usar grafos dinamicos.

Dessa forma, sdo considerados problemas em grafos completamente dinamicos aqueles
em que o grafo sofre, com o tempo, alteragdes como inser¢des e remocdes de arestas. As
variantes em que se permite apenas inser¢ao ou apenas remocao de arestas sdo chamadas
de parcialmente dindmicas, conforme Holm, de Lichtenberg e Thorup [4]. Note que as
operacdes de atualizacdo e consulta sido apresentadas de forma online, e as agdes devem
ser tomadas sem conhecimento algum das operagdes futuras.

Aqui serdo tratados problemas em que o grafo dindmico possui um conjunto fixo de
vértices V, e estabelecemos n = |V'|. Além disso, pode-se definir m como o ntimero de
arestas existentes. Na maior parte das vezes, a complexidade de tempo das operacdes
sera amortizada, o que implica que a complexidade é calculada como a média sobre todas
as operacOes realizadas.

Um grafo dindmico de ordem n é uma sequéncia de grafos (G, Gy, ..., Gr), onde G, é o
grafo inicial com n vértices e cada G, para 1 < t < T € obtido a partir de G,_; pela adicéo
ou remocéo de alguma aresta. Chamamos de alteracao, modificacao ou atualizacio o
resultado de alguma operacao de adicdo e/ou remocdo de arestas no grafo dinamico.

Um problema em grafos dinamicos consiste em verificar se o grafo atual G satisfaz
alguma propriedade, e cada operagio que realiza essa verificagdo é denominada consulta.
A solugao do problema depende da cria¢do de um algoritmo que utiliza estruturas de dados
capazes de realizar estas consultas e as alteragdes de forma eficiente.

Iremos tratar inicialmente do problema de conexidade em grafos dinamicos, que
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consiste em manter um grafo dindmico que sofre uma sequéncia de inser¢des e remogdes
de arestas, dando suporte a eventuais consultas para verificar se dois vértices u e v estdo
conectados por algum caminho no grafo dindmico corrente. Porém, antes de entrarmos
em detalhes, iremos apresentar alguns conceitos importantes que constituirdo a base do
nosso problema.

Uma floresta em um grafo G é um subgrafo aciclico de G. Uma arvore é uma floresta
conexa, ou seja, uma floresta pode consistir de varias arvores. Um subgrafo F de G é
gerador se contém todos os vértices de G. Com isso, podemos enunciar um problema
classico em grafos chamado o problema da arvore geradora de custo minimo (MST,
de Minimum Spanning Tree). Seja G = (V, E) um grafo conexo, onde V é o conjunto de
vértices e E o conjunto de arestas de G. Para cada aresta uv € E, temos um peso w(uv)
associado. Assim, o objetivo do problema é encontrar uma arvore geradora cujo peso total

w(T)= Y. w(e)

ecE(T)

seja minimo. A Figura 1.1 mostra um exemplo de grafo conexo com pesos nas arestas
e uma arvore geradora minima.

Figura 1.1: Um grafo com sete vértices. As arestas em vermelho formam uma arvore geradora minima
(MST) com peso total 17.

Para encontrar uma arvore geradora minima, podemos utilizar uma abordagem gulosa
para o problema. Existem dois algoritmos gulosos classicos que resolvem este problema
eficientemente, quando o grafo ndo é dinamico: o algoritmo de Kruskal e o de Prim. Cada
um deles estabelece uma regra especifica para escolher a proxima aresta a ser incluida
na solugio.

Se um grafo G tem n vértices e m arestas, o algoritmo de Kruskal consome O(mlg n),
que ¢é a complexidade de tempo para ordenar as arestas em ordem crescente de peso. Ja
o algoritmo de Prim pode ser implementado de modo a consumir O(m + nlg n), usando
Fibonacci heaps. Tais algoritmos e suas implementa¢des estdo bem descritos no Capi-
tulo 23.2 do livro de Cormen, Leiserson, Rivest e Stein [2] e, como néo sdo o foco do nosso
estudo, nao iremos descrevé-los nesse estudo.

No nosso estudo, estamos interessados em grafos dinamicos, que podem sofrer insercdes
e remocOes de arestas, e por isso abrimos méao de exigir que o grafo seja conexo. Queremos
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manter uma floresta geradora maximal de custo minimo (MSF) do grafo. Ja existe uma
solucdo para esse problema proposta por Holm, de Lichtenberg e Thorup [4] na Secdo 5
do seu artigo. Essa solu¢do se baseia num algoritmo para a restri¢do decremental da MSF,
descrita na Secéo 4 de seu artigo, que por sua vez depende do algoritmo para o problema
de conexidade em grafos dinamicos descrito na Secdo 3 de seu artigo.

No decorrer do nosso estudo, destrincharemos a solugao dos autores em varios capitulos
do texto. No Capitulo 2 descreveremos em detalhes o problema da conexidade em grafos
dinamicos, onde mostramos os pseudocddigos e a complexidade de tempo de cada um, e
como certas invariantes sdo mantidas no decorrer de sua execucao.

No Capitulo 3, descreveremos a nossa implementacao do algoritmo para o problema
decremental da floresta geradora maximal de custo minimo, que chamamos de MSF decre-
mental. Como este algoritmo é baseado em varios métodos do problema de conexidade
em grafos dindmicos, realizamos alguns ajustes nos métodos deste ultimo para adaptarmos
ao contexto decremental.

No Capitulo 4, descreveremos um estudo experimental em grafos aleatérios, compa-
rando a performance entre um algoritmo derivado de Kruskal e o algoritmo para MSF
decremental. Os resultados foram exibidos em forma de tabelas e graficos gerados por
programas escritos em Python 3.

Finalmente, no Capitulo 5 apresentaremos algumas conclusdes, incluindo uma dis-
cussao dos ingredientes usados na solucdo de Holm, de Lichtenberg e Thorup [4] para o
problema dinamico da floresta geradora maximal de custo minimo, que da suporte a adi¢des
e remocOes de arestas e utiliza varias estruturas decrementais em sua implementagéo.

As nossas implementac¢des dos algoritmos de Holm, de Lichtenberg e Thorup [4] foram
feitas utilizando a linguagem C++, e disponibilizamos o c6digo no repositorio do GitHub [7].






Capitulo 2

Conexidade em grafos dinamicos

Como citado no Capitulo 1, o problema da conexidade em grafos dindmicos visa
construir um algoritmo eficiente que dé suporte a inser¢des e remocgdes de arestas e
consultas de conexidade entre dois vértices. O algoritmo de Holm, de Lichtenberg e
Thorup [4] para este problema de conexidade mantém [lg n| florestas dindmicas do grafo
G de ordem n, e utiliza uma biblioteca que sera descrita na proxima secao.

2.1 Conexidade em florestas dinamicas

Rodrigues [6], em sua dissertacdo do mestrado, estudou, entre outros assuntos, o
problema da conexidade em florestas dindmicas e implementou o algoritmo que foi proposto
na Sec¢do 2 do artigo de Holm, de Lichtenberg e Thorup [4]. No Capitulo 2 da sua dissertacéo,
Rodrigues descreveu as rotinas principais de sua implementacao, que se baseia em Euler
tour trees, e realizou uma analise minuciosa da complexidade de tempo de cada rotina de
sua implementacdo. Levando isso em conta, optamos por ndo apresentar uma descri¢ao
detalhada desse mesmo algoritmo, e apenas explicar brevemente o que as rotinas principais
fazem, ressaltando algumas diferencas da nossa implementacdo em cédigo em relagio
a de Rodrigues.

O problema da conexidade em florestas dindmicas pode ser considerado uma simpli-
ficacdo do problema de conexidade em grafos dinamicos, quando o grafo em questao é
uma floresta. A biblioteca que usaremos contém os seguintes métodos:

. florestaDinamica(n): constrdi e devolve uma floresta dindmica F com n vértices
e sem arestas;

« conectadosFD(F, u, v):devolve verdadeiro se u e v estio na mesma componente
da floresta F e falso caso contrario;

« adicioneFD(F, u, v):insere uma aresta uv na floresta F;
« removaFD(F, u, v):remove a aresta uv da floresta F.

A estrutura de dados principal usada neste algoritmo de Holm, de Lichtenberg e
Thorup para dar suporte eficiente as rotinas acima é uma arvore binaria de busca balanceada
(ABBB). Uma floresta dinamica é constituida de varias ABBBs. Rodrigues utiliza treaps
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em sua implementacdo, que sdo de natureza aleatéria. Em nosso caso, utilizamos arvores
splay, que foram desenvolvidas por Sleator e Tarjan [8]. Arvores splay sdo arvores
binarias de busca (ABBs) que possuem uma rotina extra (além das usuais de busca, insercéao
e remocio) chamada splay, que é acionada ao final de cada operagdo feita na arvore,
de modo que é sempre aplicada ao n6 mais profundo visitado. O n6 em que a operacao
splay é aplicada é trazido, por meio das tradicionais rotagdes usadas no balanceamento de
arvores binarias de busca, para cima até chegar na raiz da arvore. Isso faz com que o custo
de uma sequéncia de m operacdes (insercdo, remocdo ou busca) em uma arvore splay com
n nds seja O(mlg n), ou seja, o custo amortizado por operacdo é O(lg n). Como também
ja existe bastante literatura sobre arvores splay [5, Lecture 12], e seu funcionamento
interno afeta muito pouco a descrigao dos algoritmos que descreveremos, nao entraremos
em detalhes de sua implementacao.

O resultado é uma implementacdo em que florestaDinamica(n) tem custo O(n) e
os demais métodos da biblioteca tém custo amortizado O(Ig n).

2.2 Biblioteca do grafo dinamico

Implementar o grafo dindmico resume-se a construcdo da seguinte biblioteca de forma
eficiente:

« grafoDindmico(n): contrdi e devolve um grafo dindmico com n vértices e sem
arestas;

« conectadosGD(G, u, v): devolve verdadeiro se os vértices u e v estdo na mesma
componente de G e falso caso contrario;

« adicioneGD(G, u, v):adiciona a aresta uv ao grafo G;
« removaGD(G, u, v):remove a aresta uv do grafo G.

Para entender como cada uma dessas rotinas funcionam, sera necessario apresentar a
estrutura interna da implementacgao do grafo para explicar como manter essas estruturas
e como elas deixam essas rotinas mais eficientes.

2.2.1 Fatiamento do grafo em niveis

Na Secéo 3.1 do artigo de Holm, de Lichtenberg e Thorup [4], é apresentada a técnica
de fatiar o grafo G em niveis. Cada aresta do grafo possui um nivel entre 1 e [lg n], onde n
€ o numero de vértices do grafo G. Toda vez que inserimos uma aresta em G, ela possuira
o nivel [Ig n], e ele nunca sera aumentado.

Seja G um grafo com n vértices, com conjunto V(G) de vértices e conjunto E(G) de
arestas. Se X é um conjunto ndo-vazio de arestas, dizemos que o subgrafo de G induzido
por X é o subgrafo gerador H de G tal que E(H) = X. Denotamos H por G[X].

Sendo assim, seja G; = G[X] o grafo onde X é o conjunto das arestas do grafo G de
nivel menor ou igual a i. Para cada nivel i, manteremos uma floresta maximal F; de G;.
Além disso, vamos manter também, para cada nivel i, um grafo R; em forma de listas de
adjacéncias, que guardam apenas arestas de nivel i que nao estejam em F,.
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Consequentemente, temos que G; € G, C -+ C Gyigy € deduzimos que G = Gyig ) €
que Fjig ;) € uma floresta maximal de G. Dessa maneira, sempre que estivermos realizando
alguma operagdo de consulta de conexidade em nosso grafo G, podemos realiza-la na
floresta Fyi; ) de G.

Com isso, podemos enunciar algumas invariantes, que sdo mantidas ao longo das
modifica¢des no grafo G:

(I) F; é uma floresta maximal de G; para todo 1 <i < [lgn];
(I) F;, C Fy; paratodo 1 <i<[lgn]—1;
(Ill) Cada componente da floresta F; possui no maximo 2' vértices.

Na Secdo 2.3, descreveremos com mais detalhes como as rotinas da biblioteca funcionam
e como cada uma preserva as invariantes acima, de modo a manter a corretude do algoritmo
durante toda a sua execucdo. Por fim, para simplificar um pouco a notagio, escreveremos
L = [lgn], isto é, Fjiz passa a ser escrita como F;, da mesma forma que G, = Gygy
€ RL = R[lg nl-

2.2.2 Tipos de arestas do grafo

Quando realizamos uma chamada a funcdo adicioneGD(G, u, v), é feita uma cha-
mada a rotina conectadosGD(G, u, v) para verificar a conexidade de u com v em G. Se
estes vértices nao estiverem na mesma componente de G, entio a aresta uv é inserida na
floresta maximal F; que estamos mantendo, assim ligando a arvore que contém u com a
que contém v em F;. Chamamos esse tipo de aresta de aresta da floresta.

Caso u e v ja estejam conectados em G, entdo essa aresta uv é chamada de aresta
reserva e ela sera armazenada no grafo Ry representado por listas de adjacéncias, mantido
pela seguinte biblioteca:

« listasDeAdjacéncias(n): constrdi e devolve um grafo com n vértices e sem ares-
tas, representado por listas de adjacéncias;

« adicioneLA(R, u, v):adiciona u na lista de adjacéncias de v em R e vice-versa;
« removalA(R, u, v):remove u da lista de adjacéncias de v em R e vice-versa.

A nossa implementacao [7] de listas de adjacéncias possui um custo O(n) ao acionar o
construtor listasDeAdjacéncias, e para as rotinas adicionelLA e removalA é garantido
tempo esperado O(1), visto que estamos utilizando um mapa hash da linguagem C++ para
realizar adicido de um vizinho v na lista de u e remocao de v da lista de adjacéncias de u.

2.3 Rotinas da biblioteca do grafo dinamico

2.3.1 Criacao do grafo

Para criar um grafo dindmico G com n vértices e inicialmente sem arestas, acio-
namos a rotina grafoDinadmico(n). Nesta chamada, armazenamos o nivel maximo do
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grafo, no caso o valor de [lgn], numa variavel do grafo chamada nivelMax, onde po-
demos extrair e usar o valor do nivel maximo chamando G.nivelMax. Em seguida, cha-
mamos florestaDinadmica(n) para criar [Ign]| florestas dindmicas com n vértices, e
listasDeAdjacéncias(n) para criar [lg n] grafos com n vértices representados por listas
de adjacéncias.

Além disso, usamos um mapa hash para guardar e obter o nivel de uma aresta uv
em tempo esperado O(1). Assim, este mapa usa como chave as pontas da aresta (u e v)
e armazena o valor do nivel da aresta uv. Assim, podemos definir um outro método
novoMapaHash (n) que devolve um mapa hash vazio em tempo O(1) para um grafo de n
vértices. Dessa forma, se chamarmos esse método e atribuirmos o objeto devolvido a uma
variavel chamada nivel, podemos realizar as seguintes operagdes com nivel:

« nivel[u, v] < i: armazena i como o nivel da aresta uv.
« nivel[u, v[ < NIL: remove a aresta uv do mapa hash.
« x < nivel[u, v]: atribui o valor do nivel da aresta uv a variavel x.

Dessa forma, podemos apresentar o construtor do grafo no Programa 2.1.

Programa 2.1 grafoDinamico(n)

Entrada: Recebe o nimero n de vértices do grafo.

Saida: Devolve um grafo dinamico G com n vértices e sem arestas.
L «[lgn]

2 G.nivelMax < L

3 parai «<1atéLfaca

4 G.F; < florestaDinamica(n)

5

6

7

=

G.R; < listasDeAdjacéncias(n)
G.nivel < novoMapaHash (n)
retorne G

Como ambos florestaDinamica(n) e listasDeAdjacéncias(n) consomem tempo
O(n), entao grafoDinamico(n) consome tempo O(nlg n), pois estamos criando [lg n]
florestas dinamicas e listas de adjacéncias. Além disso, é facil de ver que, ao final, as trés
invariantes valem.

2.3.2 Consultas de conexidade

Para testar a conexidade entre dois vértices u e v no grafo G, basta chamarmos
conectadosGD(G, u, v), que por sua vez aciona conectadosFD(F,, u, v), pois Fy,
¢ uma floresta maximal de G pelo invariante (I). O Programa 2.2 mostra essa rotina.

Programa 2.2 conectadosGD(G, u, v)
Entrada: Recebe dois vértices u e v do grafo G.

Saida: Devolve um booleano indicando se u e v estdao conectados em G.
1 L « G.nivelMax

2  retorne conectadosFD(G.F., u, v)
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A rotina conectadosFD(F,, u, v) em nossa implementacido consome tempo amorti-
zado O(lg n), e, portanto, conectadosGD (F;, u, v) também terd o mesmo consumo de
tempo amortizado. Além disso, a rotina de consulta nio altera o nosso grafo, incluindo
florestas e listas de adjacéncias, ja que ndo ha nenhuma modificagado neles. Isso implica
que as invariantes sdo mantidas.

2.3.3 Insercoes de arestas

Como explicado na Secdo 2.2.2, inserimos uma aresta uv no grafo G chamando a
rotina adicioneGD(G, u, v) e, em seguida, testamos a conexidade de u e v chamando a
rotina conectadosGD (G, u, v), e, dependendo do resultado, uv pode ser inserida como
aresta reserva ou como aresta da floresta. Assumindo que a aresta uv nao exista em G
no momento de sua insercédo, temos dois cenarios:

« Se os vértices u e v jé estdo conectados em G, entio chamaremos a fungéo
adicioneLA(R,, u, v), que armazenara uv como aresta reserva de nivel L de
G em R;. A Figura 2.1 ilustra esse cenario.

Figura 2.1: As arestas pretas sdo da floresta maximal F;, do grafo. Como queremos inserir a aresta uv
e os vértices u e v ja estdo conectados pelo caminhou — a > b — ¢ — e — v, entdo armazenamos
uv como aresta reserva (em vermelho).

« Se u e v ndo estido conectados em G, entdo inserimos uv como aresta da floresta F;
de nivel L, chamando a fun¢do adicioneFD(F,, u, v). A Figura 2.2 ilustra esse
cenario.

Figura 2.2: As arestas pretas sdo da floresta maximal F;, do grafo. Como os vértices u e v nao estdo
conectados em Fy, entdo inserimos uv como aresta da floresta (em verde), nesse caso conectando as
componentes T, e T, de Fr.
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O Programa 2.3 ilustra uma primeira versdo da rotina ad+icioneGD. Posteriormente,
faremos alguns ajustes nessa rotina por causa da rotina de remocao de arestas explicada
na Secdo 2.3.4.

Programa 2.3 adicioneGD(G, u, v)
Entrada: Recebe dois vértices u e v do grafo G.
Efeito: Adiciona a aresta uv no grafo G.
L « G.nivelMax
G.nivel[u,v] « L
se conectadosFD(G.F,, u, v) entdo
adicionelA(G.R;, u, v)
senao
adicioneFD(G.F, u, v)

o 00 b~ W N

Em nossa implementacéo, conectadosFD consome tempo amortizado O(lg n). A ro-
tina adicionelA, quando acionada, consome tempo esperado constante O(1) em nossa
implementacdo por conta do mapa hash. Ja inserir uma aresta da floresta chamando
adicioneFD consome tempo O(lg n) (amortizado, em nossa implementagao). Portanto, a
rotina adicioneGD tem custo de tempo amortizado O(lg n).

A invariante (I) se mantém para o nivel i = [lg n]. Como sempre adicionamos arestas
com nivel [lgn] em Fpg, (se ndo forem reservas), entdo as outras florestas de niveis
inferiores ndo sdo afetadas, mantendo-se, assim, os invariantes (II) e (III) também.

2.3.4 Remocao de arestas

A remocio de arestas se divide em dois casos: remoc¢do de uma aresta reserva ou
remoc¢do de uma aresta da floresta.

Quando queremos remover uma aresta uv e ela é reserva, podemos simplesmente
acionar a rotina removalA(R;, u, v) onde i, obtido do mapa hash, é o nivel da aresta
uv e R; é a lista de adjacéncias na qual uv estd armazenada. Por conta disso, nenhuma
das florestas maximais F; do grafo sera afetada, e as trés invariantes serdo mantidas. A
Figura 2.3 mostra esse cenario.

Figura 2.3: As arestas pretas sdo da floresta maximal Fy, do grafo, enquanto as vermelhas sdo arestas
reserva. A aresta vermelha uv tracejada é reserva e esta prestes a ser removida.

O caso da remocdo de uma aresta uv da floresta é mais complexo. Se a aresta uv tem
nivel i, remover uv sempre quebra uma componente de F; em duas arvores T, e T, de modo
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que a primeira contém o vértice u e a segunda contém o vértice v. Neste caso, precisamos
verificar se existe alguma aresta reserva que ligue T, a T,, para que possamos garantir que
a floresta F; continue maximal em G;. Chamamos uma tal aresta de aresta substituta.

Figura 2.4: As arestas pretas sdo da floresta maximal F; do grafo G;, enquanto as vermelhas sdo
reservas de nivel i. A aresta uv tracejada de nivel i esta prestes a ser removida, assim ela pode ser
substituida por ad ou cv, pois qualquer uma destas liga T,, a T,.

Para buscar uma aresta reserva de maneira o mais eficiente possivel, o algoritmo
percorre cada vértice x de T, e verifica se existe algum vértice y na lista de adjacéncias
de x de R; que esteja em T,. Se y € V(T,), entdo a aresta xy é uma aresta substituta de
nivel i, bastando apenas acionar adicioneFD(F;, x, y) para reconectar T, e T,, que
virariam uma unica componente da floresta F, e acionar removalA(R;, x, y) ja que
Xy se tornara uma aresta da floresta.

E para tornar essa busca mais eficiente que introduzimos o fatiamento em niveis na
Secdo 2.2.1. A intuicdo por tras deste fatiamento é que, quando uma aresta de nivel i da

floresta é removida, ndo é necessario buscar por substitutas nos niveis menores que i.

Isso quer dizer que comecamos a busca no nivel em questao, ou seja, em R;, e caso ndo
haja nenhuma substituta em R;, passamos a procurar em R;;1, Ri12, ..., R;. Quando nédo
encontramos uma substituta em um certo R;, aproveitamos para rebaixar o nivel de todas
as arestas percorridas em R; para i — 1, de modo que ndo precisaremos mais percorrer essas
arestas quando removermos uma outra aresta de nivel i, visto que elas ja estariam em R;_;.

Na verdade, antes de fazer esse rebaixamento, rebaixamos o nivel de toda aresta de
nivel i de T, parai — 1, de modo que T, C F,_;. Rebaixar o nivel dessas arestas significa
inseri-las em F,_;, pois elas passam a ser de nivel i — 1. Esse rebaixamento e as inser¢des
em F,_; se tornam necessarios para preservar a invariante (I). Ao mesmo tempo, para
manter também a invariante (III), esse processo devera ser feito na menor das arvores
T,e T, SejaT = T, U T, + uv . Denotando o nimero de vértices de uma arvore T por
|T|, o algoritmo garantira que |T,| < |T,|. Pela invariante (III), temos que |T| < 2/, e como
|T,| +|T,| = |T], entdo |T,| < 2. Por isso, ao rebaixarmos todas as arestas de nivel i de
T, para o nivel i — 1, preservamos a invariante (III).

Ao remover uma aresta de nivel i da floresta, na verdade temos que remové-la nao s6 de
F,, mas também de F,,4, ..., F; pela invariante (II). Similarmente, quando encontramos uma
aresta substituta de nivel i, temos que acrescenta-la nao s6 a F;, mas também a F,4,..., F;
para manter as invariantes (I) e (II). A invariante (III) neste caso é mantida trivialmente.

11
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Agora, veremos em detalhes o motivo de nao precisarmos procurar uma substituta
em niveis menores que i quando removemos uma aresta uv de nivel i. Veja que, como
a aresta uv tem nivel i, ela ndo pertence a F,_;. Logo, pela invariante (II), u e v estdo em
componentes distintas de F;_;. Como F;_; é maximal em G;_;, ndo existe aresta reserva de
nivel < i— 1 que conecte as componentes T, e T,. Portanto, s procuramos uma substituta
em niveis > i. A Figura 2.5 torna a explicagdo mais intuitiva.

i—1

Figura 2.5: Os circulos verdes representam as componentes T, e T, da floresta F; do grafo G;, enquanto
os circulos vermelhos representam as componentes da floresta F;_1 do grafo G;_1. Note que a aresta
reserva de nivel i — 1 mostrada ndo deveria existir, porque sendo ela violaria a invariante (I). Portanto,
tais arestas de nivel i — 1 ligando componentes de F; (como a aresta vermelha) ndo existem e so é
necessario procurar arestas substitutas a partir de nivel i (como a aresta verde) para conectar T, e T,.

A seguir, demonstraremos a remoc¢do de uma aresta uv da floresta em uma série de
imagens. Na Figura 2.6, temos um grafo G de n = 10 vértices. Para facilitar, assumiremos
que, até o momento, s6 houve insercdes de arestas.

Nivel 4

Nivel 3

Figura 2.6: Um grafo G de 10 vértices, onde as arestas pretas sdo da floresta Fy, enquanto as vermelhas
sdo reservas. A aresta uv esta prestes a ser removida. A floresta Fy de G de cima contém todas as arestas
pretas recém-inseridas e as arestas vermelhas estido em Ry. A floresta de baixo é a F5, com os vértices
isolados, e R3 também ndo tem nenhuma aresta.

Temos também que n = 10 e [1g 10] = 4, logo o nivel maximo L é 4 e, consequentemente,
G = G,. Como todas as insercoes s6 acontecem no nivel L, no momento, em F,, s6 temos
arestas da floresta de nivel 4, enquanto F; contém apenas vértices isolados. Neste cenario,
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note que a remocao da aresta uv da floresta, representada por uma linha tracejada na figura,
acaba quebrando a unica componente da floresta F, em duas, T, e T,. Como F, é a floresta
maximal de nivel maximo de G, entdo removemos somente a uv de F;.

O proximo passo é rebaixar todas as arestas de nivel 4 em T, para o nivel 3. Dessa
forma, as arestas de T, passam a estar em F;, como se pode ver na Figura 2.7, pois agora
elas passam a ser de nivel 3.

Perceba que, devido a invariante (II), podemos ter arestas de diferentes niveis em uma
mesma floresta. Assim, percorrer todas as arestas de T, e selecionar apenas as de nivel i
para rebaixar pode se tornar demorado quando o grafo possui uma grande quantidade
de vértices. A forma como o algoritmo procura as arestas de nivel i de T, sera descrita
de maneira detalhada na Secdo 2.4.3. No momento, s6 precisamos entender como este
rebaixamento funciona.

Nivel 4

Nivel 3

Figura 2.7: Representacdo da remogdo da aresta uv em G. As arestas de nivel 4 de T, foram rebaixadas
para o nivel 3, o que pode ser visto na floresta Fs.

Como T, e T, em F, ficaram separadas apds a remoc¢ao de uv, precisamos encontrar, se
existir, uma aresta reserva que possa reconecta-las. Note que percorrer todas as arestas
reserva para achar uma substituta que ligue T, a T, pode ser ineficiente quando temos
muitas arestas reserva. Por isso, explicaremos como implementar essa busca por uma
substituta de forma eficiente na Secao 2.4.4.

Na Figura 2.8, percorremos as arestas reserva em R, que tenham uma das pontas em T,,.

Para cada aresta percorrida, verificamos se a outra ponta dela incide em algum vértice de
T,. Caso nao incida, a aresta tem duas pontas em T, pois F, era maximal antes da remocao
de uv, e logo a aresta ndo é uma substituta. Entdo a rebaixamos para o nivel 3, ou seja,
movemos de R, para R; as arestas percorridas que nao sio substitutas.

13
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Nivel 4

Nivel 3

Figura 2.8: Representacdo da busca por uma aresta substituta em Ry. As arestas reserva de nivel 4
que estdo tracejadas foram percorridas e estdo prestes a ser removidas de Ry, pois foram rebaixadas
para o nivel 3, como se pode ver em Rs.

Supondo que achamos a aresta ad como substituta de nivel 4 antes de cv, conectamos
T, e T, chamando adicioneFD(F;, a, d) e ad passa a ser uma aresta da floresta, ou seja,
é removida de R,. Como i = 4 é o nivel maximo do grafo nesse exemplo, ndo precisamos
chamar esta rotina para niveis superiores e entdo terminamos a execucao do algoritmo.
A Figura 2.9 ilustra essa etapa do algoritmo.

Nivel 4

Nivel 3

Figura 2.9: Representacdo do grafo com a aresta substituta ad escolhida para conectar T, a T,,
tornando-se uma aresta da floresta Fy.

Quando removemos uma aresta da floresta de nivel i que quebra uma componente da
floresta F; em duas, T, e T,, com |T,| < |T,|, note que ao procurar por uma aresta substituta
ndo necessariamente percorreremos todas as arestas reserva em R; incidentes a T,. Entdo
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nem sempre todas as arestas reserva de R; incidentes a T, sdo rebaixadas, visto que o
algoritmo sera finalizado no momento em que encontrarmos uma substituta.

O Programa 2.4 apresenta uma primeira versao da rotina removaGD. Ela contém uma
chamada a rotina substituaAresta que sera explicada Se¢do 2.4.7. Alguns ajustes em
removaGD serdo necessarios devido a implementacao da rotina substituaAresta. Em
particular, essa rotina deve percorrer as arestas da floresta e as arestas reserva de maneira
eficiente. Apresentaremos a estratégia usada para isso nas Sec¢des 2.4.3 e 2.4.4.

Programa 2.4 removaGD(G, u, v)

Entrada: Recebe dois vértices u e v adjacentes do grafo G.
Efeito: Remove a aresta uv do grafo G.

1 i<« G.nivellu,v]

2 nivel[u, v] < NIL > marcamos uv como removida
3 L « G.nivelMax

4 se uv € G.F; entao > uv é aresta da floresta
5 paraj < iaté L faca

6 removafFD(G.Fj, u, v) > remove uv da floresta F;
7 substituaAresta(G, i, u, v)

8 senio D> uv é aresta reserva
9 removalA(G.R;, u, v) > remove uv do grafo R;

Note que removaGD consome O(lg2 n) mais o tempo do substituaAresta, que sera
descrito mais adiante.

2.4 Estrutura interna do grafo dinamico

Para explicar a rotina substituaAresta, precisamos saber mais detalhes sobre como
as arvores de cada floresta F; sdo armazenadas. Apresentaremos esses detalhes a seguir.

2.4.1 Euler tour trees

A Sec@o 2.1 do artigo de Holm, de Lichtenberg e Thorup [4] propde o uso de Euler
tour trees, que é uma técnica utilizada para representar uma arvore. Essa representacéo é
obtida de uma arvore T substituindo-se cada aresta por dois arcos em sentidos opostos e
adicionando-se um lago a cada vértice, como pode ser visto na Figura 2.10.

O digrafo resultante de T é Euleriano, ou seja, é conexo e o grau de entrada de cada
vértice é igual ao grau de saida. Consequentemente, ha uma trilha que comeca e termina
num mesmo vértice, passando por todos os arcos do digrafo somente uma vez. Tal trilha
¢ chamada de ciclo Euleriano.
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Figura 2.10: A esquerda, temos uma darvore T e, a direita, temos o digrafo Euleriano de T.

A representacio da arvore T é basicamente a sequéncia de arcos que forma um ciclo
Euleriano do digrafo correspondente a T. Denotamos cada arco pelo par de vértices que o
compde. Dessa forma, se o arco parte de u para v, ele sera denotado como uv. Para o caso
do lago em um vértice u, o arco sera escrito como uu. Assim, no exemplo da Figura 2.10,
um possivel ciclo Euleriano poderia ser o seguinte:

ee ea aa ab bb ba ad dd dc cc cd da ae. (2.1)

A sequéncia dos arcos obtida de T depende do vértice inicial e da ordem em que os
vizinhos de cada vértice sao visitados. Uma tal sequéncia é chamada sequéncia Eule-
riana de T.

Henzinger e King [3] propuseram armazenar uma sequéncia Euleriana em uma arvore
binaria de busca balanceada, usando como chave a posi¢ao de cada elemento na sequéncia.
Tomando como base o nosso exemplo da arvore da Figura 2.10 e sua sequéncia Euleriana
dada em (2.1), podemos ilustrar uma possivel arvore binaria de busca balanceada para
ela na Figura 2.11.

Figura 2.11: Uma arvore binaria de busca balanceada para um ciclo Euleriano da arvore da Figura 2.10.
Note que se percorrermos os nos da darvore acima em inorder, obtemos a sequéncia Euleriana de (2.1).

Além disso, Henzinger e King [3] propuseram representar uma floresta pela colegio de
sequéncias Eulerianas de cada componente da floresta. Assim, é possivel implementar as
operagdes de consulta de conexidade e de alteracdo na floresta com consumo esperado
de tempo O(lg n) (amortizado em nossa implementacao), onde n é o nimero de nds da
floresta. O algoritmo de Holm, de Lichtenberg e Thorup [4] para conexidade dindmica
armazena cada floresta F; em uma estrutura dessas.
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2.4.2 Nos das florestas

Os nos das arvores binarias de busca que representam as sequéncias Eulerianas que
sdao mantidas pelo algoritmo serdo chamados de nds das florestas. Cada tal né pode
representar um vértice u do grafo, se o elemento armazenado no né for uu, ou pode
representar uma aresta uv do grafo, se o elemento armazenado no né for uv ou vu, com
u # v. O primeiro tipo de n6 é chamado de n6 de vértice e o segundo, de n6 de aresta.
Em nossa implementacao, para cada floresta F;, usaremos um mapa hash né que armazena,
para cada par de vértices (u,v), um apontador para o né do elemento uv na floresta F,,
se tal no6 existe (ou NIL caso ndo exista).

Como representamos uma Euler tour tree por uma arvore binaria de busca, cada no6 p
possui apontadores para o filho esquerdo, filho direito e seu pai. Na descricdo de nossa
implementacdo, denotamos tais apontadores por p.esq, p.dir e p.pai, respectivamente. O
motivo de usar o apontador para o pai é por conta da operagao splay.

Além disso, para extrairmos as pontas de um no6 de aresta p que representa xy, cha-
mamos (x, y) := p.vértices. Em um no de vértice q que representa xx, podemos extrair as
pontas do né q chamando (x, x) := g.vértices. Extrair as pontas dos nds sera importante
como veremos em varios métodos posteriormente.

A seguir, descreveremos a funcionalidade de cada tipo de n6, bem como outros atributos
relevantes que lhe pertencem.

2.4.3 NO de aresta

Como ja observamos, na floresta F;, ha arestas de nivel < i. Para percorrermos as
arestas de nivel i de uma componente de F; eficientemente, os n6s da floresta F; tém um
atributo extra booleano chamado éNivel, que, em caso de um nd de aresta, indica se tal
aresta da floresta F; é de nivel i.

Além disso, todos os nds da floresta armazenam um contador chamado arestasDeNivel,
com a quantidade de nds em sua subarvore que tém o atributo éNivel verdadeiro. Sempre
que modificarmos alguma das arvores binarias da floresta F;, devemos manter este contador
com o valor correto. Na nossa implementacio, a atualizacdo deste contador é feita na
operacdo splay sempre que essa executa alguma rotagao.

A rotina abaixo do Programa 2.5 é usada para alterar para b o valor do atributo
éNivel para uma aresta uv. Ela é acionada sempre que adicionamos uma aresta ao grafo, e
também quando uma aresta é rebaixada. Tal rotina utiliza um método auxiliar chamado
atualizeArestasDeNivel, descrito no Programa 2.6.

Programa 2.5 atualizeENivel(F, u, v, b)

Entrada: Recebe uma floresta F, pontas u e v de uma aresta de F, e um booleano b.
Efeito: Atualiza o atributo éNivel do n6 uv da floresta F e o contador arestasDeNivel.
arestaUV « F.no[u, v]

splay (arestaUV)

arestaUV.éNivel < b

atualizeArestasDeNivel (arestaUV)

A W N R
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Programa 2.6 atualizeArestasDeNivel(p)

Entrada: Recebe um no p.
Efeito: Atualiza o contador arestasDeNivel de p.
c«0
se p.esq # NIL entao
¢ « c+ p.esq.arestasDeNivel
se p.dir # NIL entao
¢ « c+ p.dir.arestasDeNivel
se p.éNivel entiao
c<c+1
p.arestasDeNivel « ¢

o N oo 00 h~ W N

Como se pode ver, o Programa 2.6 consome tempo O(1). Ja o Programa 2.5 consome
tempo amortizado O(lg n) por conta da operacdo splay. Veja que ambos os métodos néo
alteram a floresta F;, alteram apenas a forma de uma das arvores binarias que a representam.
Portanto, todas as trés invariantes sao preservadas.

Usando o mesmo exemplo da Figura 2.11 na Secéo 2.4.1, podemos ilustrar como estaria
o atributo arestasDeNivel de cada n6 na arvore. Na nossa implementacio, os vértices sao
identificados por inteiros de 1 a n e, para uma aresta uv, usamos o atributo éNivel apenas
para o n6 de uv com u < v.

Figura 2.12: Arvore de uma das componentes da floresta F;, onde nés pintados em vermelho indicam
arestas de nivel i, e logo possuem o atributo éNivel verdadeiro. Embaixo de cada n6 temos o valor do
contador arestasDeNivel.

Na Figura 2.12, note que os nos ab e ba representam a mesma aresta. Assim, para
evitar a duplicacdo do atributo éNivel, optamos por colocar este atributo como verdadeiro
somente nos noés de aresta cujos vértices estdo em ordem lexicografica. Entdo, no nosso
exemplo, nds do tipo ba, da, dc e ea vao ter este atributo falso.

Lembre-se que a remogao de uma aresta uv de nivel i da floresta F; quebra uma compo-
nente de F; em duas, T, e T,. Sendo T, a menor das duas, a rotina substituaAresta realiza
o rebaixamento das arestas de nivel i de T, para i — 1. Para fazer isso de forma eficiente,
introduzimos um método auxiliar chamado procureArestaDeNivel. Esse método utiliza
o atributo arestasDeNivel para encontrar um a um, numa arvore da floresta F;, os nos
de arestas de nivel i.
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Programa 2.7 procureArestaDeNivel(p)

Entrada: Recebe um no6 p de uma floresta com o contador arestasDeNivel > 0.
Saida: Devolve um né de aresta da subarvore do né com éNivel verdadeiro.
1 se p.éNivel entiao
retorne p
se p.esq # NIL e p.esq.arestasDeNivel > 0 entdo
retorne procureArestaDeNivel(p.esq)
senao

O b~ W N

retorne procureArestaDeNivel(p.dir)

Veja que o Programa 2.7 ndo altera o grafo, e, portanto, as invariantes sao preservadas.
Como a Euler tour tree é balanceada, entdo o consumo de tempo de cada percurso é
O(lg n) (amortizado em nossa implementagao, onde sempre realizamos um splay no no
devolvido). Assim, se temos k arestas de nivel i da arvore a serem rebaixadas, entdo a
busca por essas k arestas custara tempo O(k Ig n).

A rotina procureArestaDeN7vel serd usada na rotina substituaAresta, que sera
descrita na Secdo 2.4.7.

2.4.4 NO de vértice

Na rotina substituaAresta, para percorrermos as arestas reserva de nivel i incidentes
a vértices da arvore T, em busca de uma aresta substituta, cada n6 da floresta F; possui um
booleano chamado incideArestaReservaDeNivel, que é verdadeiro somente se 0 n6 é um
no de vértice, e o vértice em questio é ponta de alguma aresta reserva de nivel i. Dessa
forma, se uv é aresta reserva de nivel 2, entdo os nos de vértice de u e de v em F, terdo
o atributo incideArestaReservaDeNivel como verdadeiro.

Cada n6 das florestas também guardara um contador arestasReservasDeNivel, que
armazena a quantidade de nos em sua subarvore com o atributo incideArestaReservaDeNivel
verdadeiro. Esse contador deve ser mantido atualizado quando é feita qualquer alteracio
em uma das arvores binarias que representam as florestas. Na nossa implementacao, a
atualizagao é feita na operagdo splay, sempre que essa executa uma rotacao.

O campo incideArestaReservaDeNivel de um n6 de vértice u pode mudar de valor quando
houver insercoes e remocdes de arestas reserva que possuem como uma da suas pontas o
vértice u. Portanto, mostraremos dois métodos, incrementeArestasReservasDeNivel
e decrementeArestasReservasDeN7vel, que modificam este campo e atualizam o con-
tador arestasReservasDeNivel chamando atualizeArestasReservasDeNivel, descrito
no Programa 2.10 abaixo.

O método decrementeArestasReservasDeNivel do Programa 2.8 atualiza o campo
incideArestaReservaDeNivel de um né de vértice u para falso quando ele ndo tem mais
elementos em sua lista de adjacéncias das arestas reserva, isto é, quando nao ha mais
nenhuma aresta reserva do nivel da floresta incidente nele. A assinatura R[u] retorna o
conjunto de vizinhos da lista de adjacéncias de u.
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Programa 2.8 decrementeArestasReservasDeNivel(F, R, u)

Entrada: Recebe um vértice u da floresta F e uma lista de adjacéncias R.
Efeito: Atualiza o campo incideArestaReservaDeNivel para falso se necessario.
1 vérticeU < F.nd[u, u]
2 se R[u] = @ entao
3 splay (vérticeU)
4 vérticeU.incideArestaReservaDeNivel < falso
5 atualizeArestasReservasDeNivel (vérticeU)

Ja o método incrementeArestasReservasDeNivel do Programa 2.9 atualiza o atri-
buto incideArestaReservaDeNivel de um no de vértice u para verdadeiro quando adicionamos
um vértice v na lista de adjacéncias de u e v é o primeiro elemento de sua lista de adjacéncias,
pois isso indica que u passa a ser incidente a aresta reserva uv.

Programa 2.9 incrementeArestasReservasDeNivel(F, R, u)

Entrada: Recebe um vértice u da floresta F e uma lista de adjacéncias R.
Efeito: Atualiza o campo incideArestaReservaDeNivel para verdadeiro se necessario.
1 vérticeU < F.nd[u, u]
se |[R[u]| = 1 entao
splay (vérticeU)
vérticeU.incideArestaReservaDeNivel < verdadeiro
atualizeArestasReservasDeNivel (vérticeU)

a A W N

Programa 2.10 atualizeArestasReservasDeNivel(p)

Entrada: Recebe um no p.
Efeito: Atualiza o contador arestasReservasDeNivel de p.
1 c¢<«0
2 se p.esq = NIL entao
3 ¢ < c + p.esq.arestasReservasDeNivel
4 se p.dir# NIL entdo
5 ¢ < c + p.dir.arestasReservasDeNivel
6 se p.incideArestaReservaDeNivel entao
7 c«c+1
8  p.arestasReservasDeNivel « c

O Programa 2.10 consome tempo O(1). Ja os Programas 2.8 e 2.9 consomem tempo
O(lg n), amortizado em nossa implementacio por conta das operac¢des splay. Como estes
trés métodos ndo alteram a floresta F;, alteram apenas a forma de uma das arvores binarias
que a representam, entdo as trés invariantes sdo preservadas.

Usando o mesmo exemplo da Figura 2.11 na Secéo 2.4.1, podemos ilustrar como estaria
o atributo arestasReservasDeNivel de cada n6 na arvore.
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Figura 2.13: Arvore de uma das componentes da floresta F;, onde noés pintados em verde indicam nos de
vértices com o atributo incideArestaReservaDeNivel verdadeiro. No nosso exemplo, todos os vértices sdo
ponta de alguma aresta reserva de niveli. Embaixo de cada n6 temos o contador arestasReservasDeNivel.

No substituaAresta acionado na floresta F;, apds rebaixarmos as arestas de nivel i
de T,, precisamos procurar por uma aresta substituta. Para isso, precisamos buscar por
uma aresta reserva de nivel i, com uma ponta em T, e outra em T,, para que consigamos
reconectar as duas componentes de F; separadas pela remocéo de uv.

Para resolver este problema de maneira eficiente, usa-se uma estratégia semelhante
a que usamos para buscar arestas de nivel i em T,. Introduzimos um método auxiliar
chamado procureNéIncideArestaReservaDeNivel, que devolve um vértice de T, que
incide em alguma aresta reserva de nivel i. Assim, podemos percorrer cada vizinho desse
vértice em R; para verificar se a aresta entre eles liga T, a T,,.

Programa 2.11 procureNéIncideArestaReservaDeNivel(p)
Entrada: Recebe um no da floresta p com o contador arestasReservasDeNivel > 0.
Saida: Devolve um n6 de vértice da subarvore de p com incideArestaReservaDeNivel
verdadeiro.
1 se p.incideArestaReservaDeNivel entao
retorne p
se p.esq # NIL e p.esq.arestasReservasDeNivel > 0 entao
retorne procureNéIncideArestaReservaDeNivel(p.esq)
senao
retorne procureNéIncideArestaReservaDeNivel (p.dir)

o 0 b W N

Veja que o Programa 2.11 nao altera o grafo, e, portanto, as invariantes sdo preservadas.
Como a Euler tour tree é balanceada, o consumo de tempo do Programa 2.11 é O(lg n)
(amortizado em nossa implementacdo, que sempre aciona a rotina splay no né devolvido).

A rotina procureNéIncideArestaReservaDeNivel sera usada na rotina substitu-
aAresta, que sera descrita na Secdo 2.4.7.

2.4.5 Versao completa da rotina de adicao de arestas

Nesta se¢do, apresentamos uma versao completa da rotina adicioneGD mostrada na
Secdo 2.3, para incorporar os atributos descritos nas se¢des anteriores.
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Programa 2.12 adicioneGD(G, u, v)

Entrada: Recebe dois vértices u e v do grafo G, com u < v.

Efeito: Adiciona a aresta uv no grafo G.

1 L <« G.nivelMax

G.nivel[u,v] <L

se conectadosFD(G.F., u, v) entao > uv é aresta reserva
adicionelA(G.Ry, u, v)
incrementeArestasReservasDeNivel(G.F., G.Ry, u)
incrementeArestasReservasDeNivel(G.Fy, G.Rp, v)

senao
adicioneFD(G.F, u, v)
atualizeENivel(G.F;, u, v, verdadeiro)

© 0o N O U b W N

Nesta versdo final, veja que as linhas 5 e 6 sdo necessarias para que os campos incideA-
restaReservaDeNivel e arestasReservasDeNivel dos nos de vértice u e v estejam corretos. Ja
a linha 9 define o atributo éNivel do n6 de aresta uv como verdadeiro em F;, quando ela é
aresta da floresta, e atualiza o campo arestasDeNivel de todos os nos da floresta.

Atualizamos os atributos desses nos que descrevemos para fazermos a remogao eficiente
de arestas, cuja rotina sera descrita também com ajustes na Se¢ao 2.4.6. Note que o método
adicioneGD do Programa 2.12 continua tendo o mesmo consumo de tempo do Programa 2.3
apos esses ajustes, ou seja, O(lg n) amortizado.

2.4.6 Versao completa da rotina de remocao de arestas

Nessa se¢ao, apresentamos uma versiao completa da rotina removaGD apresentada no
Programa 2.4, incorporando os atributos descritos na Secao 2.4.4.

Programa 2.13 removaGD(G, u, v)
Entrada: Recebe dois vértices adjacentes u e v do grafo G.
Efeito: Remove a aresta uv do grafo G.

1 L « G.nivelMax
2 i« G.nivellu,v]
3 G.nivellu,v] < NIL > marcamos uv como removida
4 se uve GF, entao > uv é aresta da floresta
5 paraj < iaté L faca
6 removafFD(G.F;, u, v)
7 substituaAresta(G, i, u, v)
8 senao > uv é aresta reserva
9 removalA(G.R;, u, v)

10 decrementeArestasReservasDeNivel(G.F;, G.R;, u)

11 decrementeArestasReservasDeNivel(G.F;, G.R;, v)

A diferenca entre as duas versdes de removaGD é que a segunda tem as linhas 10 e
11 a mais. Tais linhas sdo necessarias para que o campo incideArestaReservaDeNivel e o
contador arestasReservasDeNivel dos nds estejam corretos, visto que, ao remover uma
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aresta reserva, precisamos verificar se os vértices incidentes a ela ainda sdo incidentes
a alguma outra aresta reserva de R.

Agora falta descrever a rotina substituaAresta. Da mesma forma que a primeira
versio, nesta segunda versio removaGD também consumira tempo amortizado O(lg” n)
mais o custo do substituaAresta.

2.4.7 Rotina de substituicao de aresta

A rotina de substituicdo da aresta substituaAresta esta descrita no Programa 2.14
abaixo, onde usaremos varios dos métodos auxiliares apresentados nas Secdes 2.4.3 e 2.4.4.
Além disso, usaremos dois métodos auxiliares chamados rebaixeNivelDaAresta e tes-
teSubstituta, que serdo explicados de maneira detalhada no momento em que estivermos
explicando cada trecho do coédigo de substituaAresta. O atributo tam, que existe em
todos os nos da floresta, guarda o nimero de nds na subarvore de cada né.

Programa 2.14 substituaAresta(G, i, u, v)
Entrada: Recebe dois vértices u e v do grafo G, e o nivel i da aresta removida uv.
Efeito: Adiciona uma aresta substituta no grafo, se ela existir.

1 L < G.nivelMax
2 paraj < iatéL faca
3 T, < splay(G.F;.no[u, u]) > torna o nd uu raiz de T,
4 T, < splay(G.F;.nd[v,v]) > torna o né vv raiz de T,
5 se T,.tam > T,.tam entao
6 T, & T,
7 enquanto T,.arestasDeNivel > 0 faca
8 noéXY <« procureArestaDeNivel(T,)
9 T, < splay(noXyY)
10 rebaixeNivelDaAresta(G, noXY, j)
11 enquanto T,.arestasReservasDeNivel > 0 faca
12 noéXX « procureNéIncideArestaReservaDeNivel(T,)
13 T, « splay(noxX)
14 (x, x) « noXX.vértices
15 para y € G.Rj[x] faca
16 se testeSubstituta(G, x, y, j) entao
17 retorne

Para explicar o substituaAresta do Programa 2.14, descreveremos a funcdo de cada
trecho do c6digo. Vamos assumir de inicio que estamos aplicando as operagdes de remocéo
em um grafo G de n vértices. Lembre-se que, a0 removermos uma aresta uv da floresta
de nivel i, precisamos procurar uma substituta partindo de R;, e se ndo encontrarmos,
passamos a buscar em Ry, 4, ..., R;. A linha 2 faz exatamente essa iteracio sobre os niveis i
até L. Suponha que estamos na iteracdo j da linha 2, ou seja, ja removemos uv de F;, ..., F;_;
e nao encontramos aresta substituta em R;,..., R -1

Nas linhas 3 e 4, obtemos as arvores T, e T,, que foram derivadas da floresta F;, ja que
uma componente desta foi quebrada em duas apos a remocao de uv. As operagdes splay
puxam os noés u e v para raiz de T, e T,, respectivamente. As linhas 5 e 6 garantem que
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|T,] < |T,| como ja discutido na Segdo 2.3.4.

Nas linhas 7 a 10, realizamos o processo de rebaixar as arestas de T, de nivel j. Nalinha 7,
temos um laco que terminara quando todas as arestas de nivel j tiverem sido rebaixadas, isto
é, quando o contador arestasDeNivel do no raiz de T, estiver nulo. Na linha 8, utilizamos o
método auxiliar procureArestaDeN7vel, que retornara um noé de aresta de nivel j, ou seja,
que possui o éNivel verdadeiro. Para cada n6 de aresta retornado, acionamos splay nele.
Em seguida, o rebaixamos chamando o método rebaixeNivelDaAresta, descrito abaixo.

Programa 2.15 rebaixeNivelDaAresta(G, p, j)
Entrada: Recebe o grafo G, um né6 de aresta p da floresta F; que é raiz de uma arvore e
tem nivel ;.
Efeito: Rebaixa o nivel do n6 de aresta p.
1 (x,y) < p.vértices
G.nivel[x,y] «<j-1
atualizeENivel(G.F;, x, y, falso)
adicionefFD(G.Fji_1, x, y)
atualizeENivel(G.Fj_y, x, y, verdadeiro)

a b W N

No Programa 2.15, atualizamos o nivel do n6 de aresta xy de j para j — 1. Note que o
noé p é raiz de sua arvore pois foi feito um splay neste n6 antes da chamada a rebaixeNi-
velDaAresta, na linha 9 do Programa 2.14. Ademais, como rebaixamos xy de F; para F;_;,
entdo em F; atualizamos o seu atributo éNivel para falso, e em F;_; atualizamos este atributo
para verdadeiro. Veja que rebaixeNivelDaAresta consome tempo amortizado O(lg n).

Voltando ao Programa 2.14, nas linhas 11 a 17, procuramos por uma aresta substituta
de nivel j. Similarmente a linha 7, a linha 11 é um laco que terminara quando nao existirem
mais arestas reserva de nivel j incidentes a T, (ou seja, quando o contador arestasReservas-
DeNivel do n6 raiz de T, estiver nulo) ou quando achamos uma aresta substituta.

Na linha 12, acionamos procureNéIncideArestaReservaDeNivel, que retornara um
no de vértice xx que incide em alguma aresta reserva de nivel j. Depois, acionamos splay
em xx. Na linha 14, obtemos o vértice x do n6 xx e percorremos todos os vizinhos y na
lista de adjacéncias de x na linha 15, pois queremos testar se xy é uma aresta substituta.

Para isso, chamamos o método auxiliar testeSubstituta na linha 16, descrito no
Programa 2.16. Como o nome sugere, o método testa se xy é uma aresta substituta, devol-
vendo verdadeiro se xy for e falso caso contrario. Quando o método devolve verdadeiro,
chegamos a linha 17 do Programa 2.14, terminando o algoritmo. Caso contrario, conti-
nuamos percorrendo os vizinhos y da lista de adjacéncias de x e chamando o mesmo
método varias vezes.
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Programa 2.16 testeSubstituta(G, x, y, Jj)
Entrada: Recebe o grafo G, as pontas x e y do n6 xy e o nivel j.

Saida: Devolve verdadeiro se a aresta xy é substituta e falso caso contrario.
1 removalA(G.R;, x, y)

2 decrementeArestasReservasDeNivel(G.F;, G.R;, x)
3 decrementeArestasReservasDeNivel(G.F;, G.R;, y)
4  seconectadosGD(G, x, y) entao > a aresta xy ndo é substituta
5 G.nivel[x,y] «<j-1
6 adicionelA(G.Rj_1, x, ¥)
7 incrementeArestasReservasDeNivel(G.Fj_1, G.Rj_1, x)
8 incrementeArestasReservasDeNivel(G.Fj1, G.Rj1, y)
9 retorne falso
10 senao > a aresta xy é substituta
11 L <« G.nivelMax
12 para k < jaté L faca
13 adicionefFD(G.Fx, x, y)
14 se x > y entao
15 xoy
16 atualizeENivel(G.Fj, x, y, verdadeiro)
17 retorne verdadeiro

No Programa 2.16, a linha 1 remove a aresta reserva xy de R;, independentemente se
tal aresta é substituta ou ndo, pois ou ela sera rebaixada, ou sera uma aresta substituta,
que sera incluida em F;. Se xy ndo é substituta, entdo ela é rebaixada para R;_;, como
visto na Secao 2.3.4. Se ela é substituta, entdo se tornara uma aresta da floresta de nivel j
conectando T, a T,.

As linhas 2 e 3 atualizam os atributos dos nds de vértice x e y, visto que removemos
xy de R;. As linhas 4 a 9 englobam o caso em que os vértices x e y estdo em T, isto é,
quando conectadosGD(G, x, y) retorna verdadeiro. Isso quer dizer que xy nédo é uma
aresta substituta, e por isso precisamos rebaixa-la de R; para R;_;, além de atualizar os atri-
butos dos nés de vértice x e y em F;_; ao acionar incrementeArestasReservasDeNivel.
Devolvemos falso porque, neste caso, xy nio é aresta substituta.

Veja que conectadosGD(G, x, y) so devolvera falso quando x estd em T, e y esta
em T, pois assim os dois vértices estariam em componentes separadas da floresta F;. Este
caso, abordado nas linhas 10 a 17 do Programa 2.16, mostra que encontramos xy como
uma aresta substituta, e finalizamos o algoritmo incluindo xy em todas as florestas Fy, para
k = j,...,L, para manter a invariante (II). Além disso, se a aresta substituta encontrada é
de nivel j, precisamos atualizar o atributo éNivel do n6 desta aresta em F; para verdadeiro
quando a adicionamos na floresta F;, como acontece na linha 16. Por fim, devolvemos
verdadeiro pois, neste caso, achamos uma aresta substituta.

Veja que, no Programa 2.16, o trecho que compreende as linhas 4 a 9 possui custo
amortizado O(lg n). Isso quer dizer que, enquanto as arestas que estamos testando néo
forem substitutas, o método testeSubstituta serd acionado varias vezes com esse custo
de tempo. No momento em que encontrarmos uma substituta, testeSubstituta sera
acionado uma tnica vez e consumira tempo amortizado O(Ig® n) por causa das linhas 12
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e 13, e assim o algoritmo sera finalizado.

Agora, explicaremos o custo da rotina substituaAresta. No pior caso, uma execucao
desta rotina pode consumir muito tempo. Por exemplo, se o grafo ja estd com m = ©(n?)
arestas inseridas, todas de nivel L, pode ocorrer uma remocao que aciona o substituaA-
resta e que acarreta o rebaixamento de @(nz) arestas, a um custo Q(n2 lg n).

No entanto, para chegar a essa situacdo, teriam ocorrido 0(n?) inser¢oes, cada uma
com um custo bem mais barato, de O(lg n). Isso sugere que possivelmente uma analise
amortizada do custo das operacdes leve a um custo por operagdo mais baixo.

Agora mostraremos que, se ocorreram t operacdes de insercio e remocao de arestas
desde a criacao do grafo, entdo o custo total de tal sequéncia de operacdes é O(tlg2 n), o
que resulta em um custo amortizado por operacio de O(lg® n).

Para tanto, cada insercdo sera responsavel ndo apenas pelo custo da inser¢do de uma
aresta e, mas também pelo custo de todos os rebaixamentos sofridos por e no decorrer de
todas as remocdes que ocorrerem apoés a insercdo de e. Isso quer dizer que a insercdo da
aresta e vai pagar por cada execucdo das linhas 7 a 10 do Programa 2.14 e das linhas 4 a 9
do Programa 2.16 que processa a aresta e. Como a inser¢io custa O(lg n) e essas linhas
custam O(lg n) e sdo executadas O(lg n) vezes, pois e pode ser rebaixada no maximo [lg n]
vezes, o custo pago por uma insercio é O(Ig® n).

Ja uma remocéao de aresta, executada pelo Programa 2.13, custa O(lg2 n) mais o custo
do substituaAresta. O custo do substituaAresta ¢ O(lg® n) excluindo-se as execucdes
das linhas 7 a 10 do Programa 2.14, assim como as linhas 4 a 9 do Programa 2.16. Des-
considerando estas linhas onde ocorrem rebaixamentos de arestas, cada iteracdo do para
da linha 2 do Programa 2.14 possui custo O(lg n) enquanto uma aresta substituta nao for
encontrada, ou seja, excetuando as linhas 10 a 17 do Programa 2.16.

No momento em que encontrarmos uma substituta, as linhas 10 a 17 do Programa 2.16
serdo executadas uma tnica vez e consumirido tempo O(lg” n) devido as linhas 12 e 13,
terminando o algoritmo logo em seguida. Assim, como a linha 2 do Programa 2.14 pode
ser executada no maximo O(lg n) vezes, temos que substituaAresta consome tempo
amortizado O(lg” n) por operacio de remogao.

Com isso, concluimos que o custo total de uma sequéncia de t insercoes e remocdes é
O(t1g® n), e assim cada insercio e remoc¢do consome tempo amortizado O(lg” n).



Capitulo 3

Algoritmo para MSF decremental

Neste capitulo, estudaremos o problema da arvore geradora minima em grafos dina-
micos. Dado um grafo conexo G com um custo associado a cada uma de suas arestas, o
problema da arvore geradora minima consiste em determinar uma arvore geradora de G
com custo minimo, onde o custo de uma arvore é a soma dos custos de suas arestas. Como
estamos interessados em grafos dindmicos, é natural remover a restri¢do de que o grafo
seja conexo, e neste caso considerar florestas geradoras maximais de custo minimo (MSF,
do inglés, minimum spanning forest). Chamamos um grafo com um custo associado a
cada aresta de grafo ponderado.

O problema da arvore geradora minima em grafos ponderados (conexos) estaticos
pode ser resolvido eficientemente, por exemplo, pelos algoritmos de Kruskal e de Prim. O
algoritmo de Kruskal utiliza uma estrutura de dados classica conhecida como union-find,
enquanto que o algoritmo de Prim utiliza uma fila de prioridades. Nao ha na literatura
uma versao destes algoritmos para grafos dindmicos. Isso talvez se deva a caracteristica
essencialmente sequencial destes algoritmos, que modificam suas estruturas internas
conduzidos por uma ordem de eventos. Uma alteracdo no grafo poderia levar a uma
alteracdo em toda a sequéncia de eventos nesses algoritmos a partir de um certo ponto, e
com isso ndo ha uma versdo eficiente deles que acomode alteracdes no grafo.

Por outro lado, Holm, de Lichtenberg e Thorup [4] propuseram uma adaptagao do seu
algoritmo para conexidade em grafos dinamicos, apresentado no Capitulo 2, para que este
mantenha, de maneira eficiente, uma floresta geradora maximal de custo minimo em um
grafo ponderado que pode sofrer remocgdes de arestas. Ou seja, eles propuseram um algo-
ritmo que resolve de maneira eficiente o problema que chamamos de MSF decremental.
Neste capitulo, descreveremos esse algoritmo, que é uma adaptacdo do algoritmo descrito
no Capitulo 2 para que este passe a resolver o problema da MSF decremental.

3.1 Biblioteca da MSF decremental

Implementar o algoritmo decremental para florestas geradoras maximais de custo
minimo resume-se a construcio da seguinte biblioteca de forma eficiente:

« MSFDecremental(n, E): contrdie devolve um grafo ponderado G com n vértices
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e as arestas ponderadas dadas no conjunto E;
+ consultePesoMSF(G): devolve o peso de uma MSF do grafo ponderado G;
« removaMSF(G, u, v):remove a aresta uv do grafo ponderado G.

Note que, diferente da biblioteca do algoritmo de conexidade em grafos dinamicos,
apresentada na Secdo 2.3, na MSF decremental ndo temos um método equivalente a adi-
cioneGD disponivel para o usuario. Em nossa implementacéo [7], para criarmos um grafo
G de n vértices e m arestas ponderadas dadas em E, acionamos MSFDecremental(n, E),
onde criamos, como no problema da conexidade em grafos dinadmicos, [lg n| florestas
dindmicas e [lg n] listas de adjacéncias, com n vértices isolados. Em seguida, ordenamos e
inserimos as m arestas de E em ordem crescente de peso, usando uma biblioteca pronta do
C++ para ordena-las, que consome tempo esperado O(m Ig n). Estas m arestas sdo inseridas
uma a uma acionando uma rotina que chamamos de adicioneMSF(u, v, w),onde ue
v sdo pontas da aresta e w é o peso dela.

A rotina adicioneMSF é acionada somente dentro do construtor e tem custo amortizado
O(lg n). Ela é uma versao da adicioneGD que acomoda os pesos das arestas como veremos
adiante. Por ser uma rotina privada, ou seja, ndo esta disponivel para o usuario, apds a
inser¢ao destas arestas, nao sdo permitidas mais operagoes de insercdo, somente de remocéo
de arestas. Para o usuario, entdo, sé estardo disponiveis as rotinas consultePesoMSF e
removaMSF. Discutiremos brevemente a versao totalmente dinamica no Capitulo 5, que
inclui a rotina de adicdo de arestas para o usuario.

O construtor MSFDecremental, devido a ordenacao de arestas e a chamada ao mé-
todo adicioneMSF, possui consumo de tempo O(mlg n). Ja a rotina consultePesoMSF
possui consumo de tempo O(1). Como estes dois métodos sdo mais simples, passaremos
brevemente sobre eles, e detalharemos mais a rotina removaMSF, que possui a rotina
auxiliar substituaArestaMSF implementada de maneira diferente do substituaAresta
do algoritmo de conexidade em grafos dinamicos.

Usaremos varias defini¢cdes ja apresentadas no algoritmo de conexidade em grafos
dinamicos, incluindo as mesmas invariantes apresentadas na Se¢do 2.2.1, os mesmos
tipos de arestas da Se¢do 2.2.2 e nds das florestas apresentados na Secdo 2.4.2. A seguir,
apresentaremos as rotinas da MSF decremental e alguns ajustes a serem feitos.

3.1.1 Listas de adjacéncias

Na Secéo 2.2.2, apresentamos a biblioteca de 1istasDeAdjacéncias, onde usamos
um mapa hash para inserir ou remover um vértice v da lista de u, além de percorrer os
vizinhos da lista de u. No algoritmo da MSF decremental, quando removemos uma aresta
de nivel i da floresta F;, uma componente desta sera quebrada em duas, T, e T,, da mesma
forma que no algoritmo de conexidade em grafos dinamicos. A diferenca é que, no caso da
MSF decremental, precisamos buscar por uma aresta substituta que tenha o menor peso
e que ligue T, a T,. Nao podemos simplesmente percorrer todos os vizinhos y de cada
vértice x em T, verificar se xy reconecta as componentes separadas e se ¢ de menor peso
dentre todas as substitutas, ja4 que isso seria ineficiente.

Assim, fica claro que seria bom percorrer as arestas reserva em ordem crescente de peso
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e testar se alguma é substituta nesta ordem. Por isso, em vez de usar um mapa hash para
armazenar os vizinhos de cada vértice, usa-se um min-heap. Na verdade, como estamos
trabalhando com nos de vértice e de aresta, cada n6 de vértice u guardara um min-heap
com os vizinhos de u em R;, onde a chave dessa estrutura de dados para um vizinho v sera
o peso da aresta uv. Nos de aresta também guardardo um min-heap, porém vazio.

Os métodos principais (remogao, insercdo e extragdo do vértice de chave minima) que
usamos no min-heap consomem tempo O(lg n) usando uma implementacao tradicional de
heap, como a descrita no Capitulo 6 de Thomas H. Cormen et al. [2]. O resto dos métodos
(consulta de um vértice de chave minima, da quantidade de elementos na min-heap e se
a min-heap esta vazia) consomem tempo constante, e eles serdo necessarios para buscar
uma aresta substituta de peso minimo, como descreveremos mais a frente.

Como o min-heap é uma estrutura de dados bastante conhecida, ndo iremos descrever
a sua implementacdo em detalhes. O objetivo é ressaltar as diferencas entre as listas de
adjacéncias utilizadas no algoritmo de conexidade em grafos dinamicos e na MSF decre-
mental, e como essa mudanca afetara o comportamento do método substituaArestaMSF
da MSF decremental.

Assim, com base na implementacéo classica do min-heap, podemos definir a biblioteca
das listas de adjacéncias da MSF decremental.

+ listasDeAdjacénciasMSF(n): constrdi e devolve um grafo com n vértices e sem
arestas, representado por listas de adjacéncias armazenadas em min-heaps;

« adicioneLAMSF(R, u, v, w):adiciona o vértice u na lista de adjacéncias de v em
R e vice-versa, considerando que o peso de uv é w;

« removalLAMSF(R, u, v): remove o vértice u da lista de adjacéncias de v em R e
vice-versa;

+ consulteMinLAMSF(R, u):retornaum par (v, w), onde v é um vértice do min-heap
de u em R com chave minima w;

Uma chamada a rotina adicioneLAMSF(R, u, v, w) adiciona o par (4, w) no min-
heap de v e também adiciona o par (v, w) no min-heap de u, consumindo tempo O(lg n).
Similarmente, uma chamada a rotina removalLAMSF (R, u, v) remove o par (u, w) do
min-heap de v e também remove o par (v, w) do min-heap de u, consumindo também tempo
O(lg n). Ja o método consulteMinLAMSF consome tempo O(1), jA que estamos apenas
consultando a chave minima do min-heap de um vértice.

3.2 Ajustes nas invariantes

Como agora estamos tratando de florestas geradoras maximais de custo minimo (MSFs),
ajustaremos somente a primeira invariante, onde substituimos o termo floresta maximal
por MSF, como se pode ver abaixo.

(I) F; é uma MSF de G; paratodo 1 <i < [lgn];
(I) F;, C Fy; paratodo 1 <i < [lgn] —1;
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(IlT) Cada componente da floresta F; possui no maximo 2’ vértices.

Além disso, uma invariante extra, que envolve o peso das arestas reserva, sera usada
para garantir a correcido do novo algoritmo:

(IV) Toda aresta reserva de nivel i incidente a um vértice u tem peso menor ou igual
ao peso das arestas reserva de nivel maior que i incidentes a u, para todo 1 <i <

[lgn] — 1.

A partir deste momento, usaremos estas quatro invariantes e mostraremos como elas
sdo preservadas no decorrer das modificagdes no grafo e como garantem o funcionamento
do algoritmo.

3.3 Rotinas da biblioteca da MSF decremental

3.3.1 Criacao do grafo

O construtor MSFDecremental é bem parecido com o do grafo dindmico, descrito
na Secdo 2.3.1. Além das variaveis de classe existentes que criamos para o grafo G no
algoritmo de conexidade em grafos dindmicos, armazenaremos o peso da MSF numa
variavel chamada pesoMSF, que sera simplesmente retornada quando consultarmos o peso
da MSF decremental corrente, chamando consultePesoMSF.

Também incluiremos um atributo do grafo chamado peso, que é um mapa hash que
armazena o peso das arestas. Para armazenar o peso w de uma aresta uv, basta chamarmos
G.peso[u, v] < w. O atributo peso sera fundamental para recalcular a variavel pesoMSF
no decorrer das remogdes de arestas do grafo.

Dessa forma, podemos apresentar o construtor da MSF decremental no Programa 3.1,
que usa a rotina adicioneMSF apresentada no Programa 3.2.

Programa 3.1 MSFDecremental(n, E)
Entrada: Recebe o nimero n de vértices do grafo e um conjunto E de arestas.

Saida: Devolve um grafo G com n vértices e m arestas ponderadas.
1 L «[lgn]

2 G.nivelMax < L
3 G.pesoMSF <0
4 parai «<1atéL faca
5 G.F; < florestaDinamica(n)
6 G.R; < listasDeAdjacénciasMSF(n)
7 G.nivel < novoMapaHash(n)
8  G.peso < novoMapaHash(n)
9 ordene(E) > ordena as arestas do conjunto E em ordem crescente de peso
10  para cada aresta (u, v, w) em E faca
11 adicioneMSF(G, u, v, w)
12 retorne G

Podemos notar algumas diferengas quando comparamos o construtor MSFDecremental
com o construtor grafoDinamico. Na MSF decremental, além de inicializarmos [lg n] listas
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de adjacéncias e [lg n] florestas dinamicas, ordenamos as arestas do conjunto E em ordem
crescente de peso e inserimos uma a uma chamando adicioneMSF, que esta descrita
abaixo. Note que esta é a primeira versdo do método adicioneMSF. A versao completa
dele sera descrita na Secao 3.3.5.

Programa 3.2 adicioneMSF(G, u, v, w)
Entrada: Recebe dois vértices u e v do grafo G, com u < v, e 0 peso w da aresta uv.
Efeito: Adiciona a aresta uv de peso w no grafo G.

1 L <« G.nivelMax

2 G.nivellu,v] <L

3 G.pesolu,v] «w

4  se conectadosFD(G.F., u, v) entao > uv é aresta reserva
5 adicionelLAMSF(G.R;, u, v, w)

6 incrementeArestasReservasDeNivel(G.F., G.R;, u)
7 incrementeArestasReservasDeNivel(G.F., G.Rp, v)
8 senao

9 G.pesoMSF < G.pesoMSF + w

10 adicioneFD(G.F, u, v)

11 atualizeENivel(G.F;, u, v, verdadeiro)

Como citado antes, a rotina adicioneMSF é acionada apenas em MSFDecremental.
Ademais, a Unica diferenca entre a adicioneMSF e a adicioneGD que vimos na Se¢io 2.4.5
é que, na primeira, estamos guardando o peso das arestas quando as inserimos no grafo.
Portanto, adicioneMSF também consome tempo amortizado O(Ig n).

Para ad+cioneMSF, a invariante (I) é preservada para o nivel i = [lg n], ja que estamos
inserindo as arestas do grafo em ordem crescente de peso. Essa construgio basicamente
simula o algoritmo de Kruskal. Como estamos inserindo arestas de nivel [Ig n] em Fyz ), en-
tao as florestas de niveis inferiores ndo sio afetadas, mantendo-se, assim, as invariantes (II),
(IIT) e (IV) também.

3.3.2 Consulta de peso da MSF

A rotina consultePesoMSF, que devolve o peso de uma MSF do grafo G, esta descrita
abaixo.

Programa 3.3 consultePesoMSF(G)
Entrada: Recebe o grafo dinamico G.

Saida: Devolve o peso de uma MSF de G.
1 retorne G.pesoMSF

E facil ver que consultePesoMSF consome tempo O(1). Ademais, como nio estamos
alterando nem o grafo G nem as florestas de G, entdo as quatro invariantes sao preservadas.

3.3.3 Remociao de arestas

A remocdo de arestas também ¢é semelhante a do algoritmo de conexidade em grafos
dinamicos. A diferenca é que a busca por alguma aresta substituta, feita na substituaA-
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restaMSF agora, ¢ dada por ordem crescente de peso das arestas reserva.

Quando removemos de F; uma aresta uv de nivel i, quebramos uma componente desta
floresta em T, e T,, com |T,| < |T,|, e rebaixamos todas as arestas de T,, da mesma forma
que faziamos antes em substituaAresta. Porém, agora buscamos alguma aresta reserva
de peso minimo dentre todas as arestas reserva em R; incidente a T,, e testamos se ela é
uma substituta. Se ndo é, a rebaixamos para R;_; e buscamos a proéxima de peso minimo
em R; incidente a T,. Por causa da invariante (IV), quando achamos uma substituta, essa é
a substituta de menor peso e conseguimos manter o peso da MSF do grafo, reconectando
as duas componentes separadas devido a remocao de uv.

Para facilitar o entendimento da substituiciao de aresta na MSF decremental, demons-
traremos a remogao de uma aresta uv da floresta em uma série de imagens. Na Figura 3.1,
temos um grafo ponderado G e assumiremos que essa é a primeira remocao depois da
criagdo do grafo. No nosso exemplo, G tem n = 10 vértices. Sabemos que [lg 10] = 4, logo
o nivel maximo L da floresta é 4 e, consequentemente, G = G4. Como, na construcao, todas
as insercdes ocorrem no nivel L em F,, s6 temos arestas da floresta de nivel 4, enquanto F;
contém apenas vértices isolados. Neste cenario, note que a remocao da aresta uv da floresta,
representada por uma linha tracejada na figura, acaba quebrando a inica componente da
floresta F, em duas, T, e T,. Como F, é a floresta maximal de nivel maximo de G, entao
removemos a uv somente de F;.

Nivel 4

Nivel 3

Figura 3.1: Um grafo ponderado G de 10 vértices, onde as arestas pretas sdo da floresta Fy, enquanto
as vermelhas sdo reservas. A aresta uv esta prestes a ser removida. A floresta Fy de G de cima contém
todas as arestas pretas recém-inseridas e as arestas vermelhas estido em Ry. A floresta de baixo é a Fs,
com os vértices isolados, e R3 também ndo tem nenhuma aresta.

O proximo passo é rebaixar todas as arestas de nivel 4 em T, para o nivel 3. Dessa
forma, as arestas de T, passam a estar em F;, como se pode ver na Figura 3.2, pois agora
elas passam a ser de nivel 3. Como T, e T, em F; ficaram separadas apds a remocao de
uv, precisamos encontrar, se existir, uma aresta reserva que possa reconecta-las. Note que
agora precisamos percorrer as arestas reserva em ordem de peso. Entretanto, percorrer
todas as arestas reserva de R, incidentes a T, e selecionar a de menor peso é ineficiente. Isso
porque, se a aresta de peso minimo néo é uma substituta, teremos que buscar a préoxima de
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menor peso e fazer esse processo novamente, o que acaba comprometendo a performance
do algoritmo. Por isso, explicaremos como implementar essa busca eficiente por uma
aresta substituta de menor peso na Secdo 3.3.4.

Nivel 4

Nivel 3

Figura 3.2: Representagdo da remogao da aresta uv em G. As arestas de nivel 4 de T,, foram rebaixadas
para o nivel 3, o que pode ser visto na floresta Fs.

Na Figura 3.3, percorremos as arestas reserva em ordem de peso em R, que tenham
uma das pontas em T,. Para cada aresta percorrida, verificamos se a outra ponta dela
incide em algum vértice de T,. No nosso exemplo, olhamos para as arestas reserva em Ry,
antes de encontrarmos a substituta, nesta ordem: bu (peso 12) e uc (peso 13). Veja que
as rebaixamos para R; por nio serem substitutas.

Nivel 4

Nivel 3

Figura 3.3: Representacdo da busca por uma aresta substituta em Ry. As arestas reserva de nivel 4
que estdo tracejadas foram percorridas em ordem crescente de peso e estdo prestes a serem removidas
de Ry, pois foram rebaixadas para o nivel 3, como se pode ver em Rs.

Assim, a proxima aresta reserva de menor peso em R, que olharemos é a ad, de peso
14. Como ela conecta T, a T,, chamamos adicioneFD(F;, a, d) e ad passa a ser uma
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aresta da floresta, ou seja, é removida de Ry. Como i = 4 é o nivel maximo do grafo nesse
exemplo, ndo precisamos chamar esta rotina para niveis superiores e entdo terminamos
a execucdo do algoritmo. A Figura 3.4 ilustra essa etapa do algoritmo.

Nivel 4

Nivel 3

Figura 3.4: Representacdo do grafo com a aresta substituta ad por ser a de menor peso em Ry que
conecta T, a T,, tornando-se uma aresta da floresta Fy.

A partir dessas imagens, percebe-se que o método removaMsSF, descrito abaixo, ¢ bem
semelhante ao método removaGD, exceto que no primeiro precisamos recalcular o peso da
MSF de G quando removemos uma aresta da floresta. Note que o removaMSF descrito abaixo
¢ a primeira versao deste método. Descreveremos a sua versao completa na Se¢ao 3.3.6

Programa 3.4 removaMSF (G, u, v)
Entrada: Recebe dois vértices adjacentes u e v do grafo G.
Efeito: Remove a aresta uv do grafo G.

1 L < G.nivelMax
2 i< G.nivel[u,v]
3 G.nivellu,v] < NIL > marcamos uv como removida
4 se uve GF; entao > uv é aresta da floresta
5 w < G.peso|u,v]
6 G.pesoMSF « G.pesoMSF - w
7 paraj < iaté L faca
8 removafFD(G.F;, u, v)
9 substituaArestaMSF(G, i, u, v)
10  senao > uv é aresta reserva
11 removalLAMSF(G.R;, u, v)
12 decrementeArestasReservasDeNivel(G.F;, G.R;, u)
13 decrementeArestasReservasDeNivel(G.F;, G.R;, v)

O método substituaArestaMSF, que é uma versdo ajustada de substituaAresta,
sera descrito mais adiante. Por enquanto, sabemos que removaMSF consome tempo O(Ig® n)
mais o custo de substituaArestaMSF.
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3.3.4 Ajustes em nos das florestas

No algoritmo de conexidade em grafos dinamicos, vimos que os nds da floresta guardam
dois campos, incideArestaReservaDeNivel e éNivel, além de dois contadores, arestasDeNivel
e arestasReservasDeNivel. Mostramos também alguns métodos que atualizam e utilizam
estes campos para realizar a busca eficiente de uma aresta substituta.

Para o algoritmo da MSF decremental, além destes campos apresentados, precisaremos
de dois campos extras para cada n6 da floresta: peso e pesoMinimo. O primeiro campo
armazena o peso de um no de aresta (nds de vértice guardam oo neste campo). Na floresta
F;, cada no6 de vértice sabe facilmente o peso minimo de uma aresta reserva de R; incidente
nele. Assim, o campo pesoMinimo de cada n6 p de floresta guarda o peso minimo de uma
aresta reserva de R; incidente a algum vértice cujo n6 esta na subarvore de p.

Como o peso de cada aresta ponderada nunca muda, entdo nio precisamos atualizar o
seu peso. Entretanto, a medida que vamos removendo arestas da floresta F;, quebramos
alguma componente dela em duas e precisamos buscar alguma aresta substituta para
reconectar as duas componentes separadas. Assim, quando procuramos por alguma aresta
substituta em R;, podemos neste processo rebaixar algumas arestas de R; para R;_; e o peso-
Minimo dos nos em F; e em F;_; precisa ser atualizado. Se em R; acharmos uma substituta,
ela se tornara uma aresta da floresta F; e precisamos também atualizar o pesoMinimo de
alguns nés em F;, que agora sera o peso minimo dentre as arestas reserva restantes em R;.

Por isso, fica claro que precisamos de um método que atualize o campo pesoMinimo dos
no6s. Para isso, criamos o método atualizePesoMinimo, que esta descrito abaixo. Na nossa
implementacio, ele é usado em métodos quando estamos fazendo alguma alteracdo em R;, e
também é usado ao acionarmos as operagdes splay, sempre que essa executa uma rotagao.

Programa 3.5 atualizePesoMinimo(F, R, u)

Entrada: Recebe um vértice u, as listas de adjacéncias R e a floresta F.
Efeito: Atualiza o atributo pesoMinimo do n6 de vértice u.

1 ndUU « F.nd[u, u]
2 splay(noUU)
3 C <O
4 se ndUU.esq # NIL e noUU.esq.pesoMinimo < c entdo
5 ¢ < noUU.esq.pesoMinimo
6 se noUU.dir # NIL e noUU.dir.pesoMinimo < ¢ entio
7 ¢ « noUU.dir.pesoMinimo
8 se R[u] # @ entdo
9 (v, w) < consulteMinLAMSF(R, u)
10 se w < centao
11 cC <—w
12 noUU.pesoMinimo <« c

Como se pode ver, o Programa 3.5 consome tempo amortizado O(lg n) por conta da
operacgdo splay. Além disso, ele ndo altera a floresta F, altera somente a forma de uma das
arvores binarias que a representam. Portanto, todas as quatro invariantes sdo preservadas.

Para entendermos como estes dois campos extras aparecem em cada n6 da floresta,
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usaremos um exemplo de um grafo ponderado G de 5 vértices e 7 arestas ponderadas, como
se pode ver na Figura 3.5. A Figura 3.6 mostra estes campos nos nos da floresta Fj, de G.

Figura 3.5: Grafo ponderado G de 5 vértices e 7 arestas ponderadas. Arestas pretas sao da floresta e
formam a MSF de G, enquanto as vermelhas sdo arestas reserva.

Figura 3.6: Arvore da tinica componente da floresta F;, do grafo G da Figura 3.5, onde embaixo de
cada né ha um par de numeros. O primeiro nimero indica o atributo peso do né, enquanto o segundo
numero indica o atributo pesoMinimo, calculado através dos nos em sua subarvore.

A seguir, o Programa 3.6 apresenta o método procureNéIncideArestaDePesoMinimo,
que procura e retorna o n6 de vértice que incide em uma aresta reserva de peso minimo.
Ele sera usado no método substituaArestaMSF, que descreveremos na Secéo 3.3.8.

Programa 3.6 procureNéIncideArestaDePesoMinimo(R, p)

Entrada: Recebe um n6 p de uma floresta com o atributo arestasReservasDeNivel > 0 e as
listas de adjacéncias R.

Saida: Devolve um n6 de vértice incidente a uma aresta reserva de peso minimo.
1 C <X

(x, y) « p.vértices
se x = y e R[x] # @ entdo > verificamos se p é um no de vértice
(v, w) < consulteMinLAMSF(R, p)
c—w
se ¢ # oo e p.pesoMinimo = c entao
retorne p
se p.esq # NIL e p.esq.pesoMinimo = p.pesoMinimo entao
retorne procureNéIncideArestaDePesoMinimo(R, p.esq)
senao

© 0 N O 0 b W N

(R
= o

retorne procureN6IncideArestaDePesoMinimo (R, p.dir)

Veja que o Programa 3.6 ndo altera o grafo, e, portanto, as invariantes sdo preservadas.
Como a Euler tour tree é balanceada, o consumo de tempo de cada percurso é O(lg n)
(amortizado em nossa implementacéo, onde sempre realizamos um splay no né devolvido).
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3.3.5 Versao completa da rotina de adicao de arestas

A versdo completa do método adicioneMSF esta descrita abaixo. Ao inserirmos uma
aresta reserva uv em R;, precisamos atualizar o atributo pesoMinimo dos nos de vértice
u e v de F;, como se pode ver nas linhas 6 e 7. Isso porque se o peso de uv é o menor
dentre todas as arestas reserva inseridas em R; até o momento, o campo pesoMinimo de
u e de v entao passa a ser o peso de uv. Assim, a complexidade de tempo da versdo final
de adicioneMSF continua sendo O(lg n).

Programa 3.7 adicioneMSF(G, u, v, w)

Entrada: Recebe dois vértices u e v do grafo G, com u < v, e 0 peso w da aresta uv.
Efeito: Adiciona a aresta uv de peso w no grafo G.

1 L < G.nivelMax

2 G.nivellu,v] <L

3 G.pesolu,v] «w

4 se conectadosFD(G.F,, u, v) entao > uv é aresta reserva
5 adicionelLAMSF(G.R;, u, v, w)

6 atualizePesoMinimo(G.F,, G.Ry, u)

7 atualizePesoMinimo(G.F;, G.Ry, v)

8 incrementeArestasReservasDeNivel(G.F., G.R;, u)
9 incrementeArestasReservasDeNivel(G.F., G.Rp, v)
10 senao

11 G.pesoMSF « G.pesoMSF + w

12 adicioneFD(G.F, u, v)

13 atualizeENivel(G.F,, u, v, verdadeiro)

3.3.6 Versao completa da rotina de remocio de arestas

A versdo completa do método removaMSF esta descrita abaixo.

Programa 3.8 removaMSF (G, u, v)

Entrada: Recebe dois vértices adjacentes u e v do grafo G.
Efeito: Remove a aresta uv do grafo G.

1 L « G.nivelMax
2 i< G.nivel[u,v]
3 G.nivellu,v] «NIL > marcamos uv como removida
4 se uve GF, entao > uv € aresta da floresta
5 w < G.peso[u,v]
6 G.pesoMSF < G.pesoMSF — w
7 para j < iaté L faca
8 removafFD(G.F;, u, v)
9 substituaArestaMSF(G, i, u, v)
106  senao > uv é aresta reserva
11 removalAMSF (G.R;, u, v)
12 atualizePesoMinimo(G.F;, G.R;, u)
13 atualizePesoMinimo(G.F;, G.R;, v)
14 decrementeArestasReservasDeNivel(G.F;, G.R;, u)
15 decrementeArestasReservasDeNivel (G.F;, G.R;, v)
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Ao removermos uma aresta reserva uv de R;, precisamos atualizar o atributo pesoMinimo
dos nos de vértice u e v de F;, como se pode ver nas linhas 12 e 13. Isso porque se o peso de
uv era o menor dentre todas as arestas reserva restantes, entdo o atributo pesoMin-imo de
u e de v passa a ser o peso da aresta reserva de segundo menor peso em R; incidente a u ou
v. Assim, a complexidade de tempo da versio final de removaMSF continua sendo O(Ig® n)
mais o custo da rotina substituaArestaMSF, que sera descrita na Sec¢ao 3.3.8.

3.3.7 Busca por uma aresta substituta

Agora, veremos em detalhes porque, ao removermos uma aresta uv de nivel i, uma
aresta substituta de menor peso estd em um R; com j > i menor possivel. Serd que nio ha
uma aresta substituta no nivel j + 1 que seja mais leve que uma substituta do nivel j?

Primeiramente, é facil perceber que, se removermos uma aresta de nivel i de F; e i # L,
sabemos que alguma aresta de nivel i + 1 da floresta F;,; ja tinha sido removida antes, o que
causou o rebaixamento de algumas arestas de nivel i + 1 para o nivel i. Lembre-se que ndo
ha insercdo de arestas depois que as remocdes (e rebaixamentos) comecam a ocorrer.

Sabemos, entdo, que algumas arestas de F;;; foram rebaixadas para F,. Para facilitar
o entendimento deste cenario, ilustraremos um grafo com as florestas F; e F;,, além de
R; e R;;1, como se pode ver na Figura 3.7. Nela, podemos supor que a aresta uv ja foi
removida, quebrando a componente de F;;; em T, e T,. Além disso, todas as arestas de
T, foram rebaixadas para F,. As arestas reserva ub e uc foram rebaixadas de R;;; para
R;, ja que estamos percorrendo em ordem crescente de peso das arestas reserva de R,
para buscar uma aresta substituta.

Nivel i + 1

Nivel i

Figura 3.7: Representagdo da busca por uma aresta substituta em R;.1. As arestas reserva de nivel i + 1
que estao tracejadas foram percorridas em ordem crescente de peso e estdo prestes a serem removidas
de Riy1, pois foram rebaixadas para o nivel i, como se pode ver em R;.

Logo na Figura 3.8, temos a aresta ad escolhida para ser uma substituta de menor peso
que reconecta T, e T, tornando-se uma aresta da floresta. Note que, em R;, as arestas
reserva com as duas pontas em T, de F; (neste caso, ub e uc) possuem peso menor que
as arestas reserva com duas pontas em T, de F;;; (neste caso, ac). Isso acontece porque,
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quando percorremos as arestas reserva em ordem crescente de peso, aproveitamos para
rebaixar aquelas com as duas pontas em T, até encontrarmos uma que conecte T, e T,.

Ainda na Figura 3.8, a aresta bc, de nivel i, esta prestes a ser removida, o que acabaria
quebrando uma componente da floresta F; em T, e T.. Para reconectar T, e T,, observe
que apenas uc seria percorrida e ja é substituta, como se pode ver na Figura 3.9. Embora
ac e cv também sejam substitutas incidentes a T, pelo fato de elas estarem em R;; e pela
invariante (IV), elas sdo mais pesadas que uc, que esta em R;.

Nivel i + 1

oS
Nive O OHIC
) 13

'« © O

Figura 3.8: Representacdo do grafo com a aresta substituta ad por ser a de menor peso em Ri11 que
conecta T, a T,, tornando-se uma aresta da floresta F;1. A proxima aresta a ser removida é bc, que
esta tracejada, e quebra uma componente de F; em Ty, e T,.

Nivel i + 1

Nivel i

Figura 3.9: Representacdo do grafo com a aresta da floresta bc removida de F; e de F;41, e a aresta
reserva uc é escolhida como a substituta por ser a de menor peso que reconecta Ty e T,.
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3.3.8 Rotina de substituicao de aresta

Para descrever a rotina substituaArestaMSF do Programa 3.9, usaremos varios dos
métodos auxiliares ja apresentados, além de alguns métodos e campos novos adicionados
aos nos das florestas, que vimos na Secao 3.3.4. Mostraremos também a rotina testeSubs-
titutaMSF, que é uma versao ajustada da rotina testeSubstituta que vimos antes.

Programa 3.9 substituaArestaMSF(G, i, u, v)
Entrada: Recebe dois vértices u e v do grafo G, e o nivel i da aresta removida uv.
Efeito: Adiciona uma aresta substituta de peso minimo em G, se ela existir.

1 L < G.nivelMax
2 paraj < iatéL faca
3 T, < splay(G.F;.no[u, u]) > torna o nd uu raiz de T,
4 T, < splay(G.F;.ndlv,v]) > torna o né vv raiz de T,
5 se T,.tam > T,.tam entao
6 T, < T,
7 enquanto T,.arestasDeNivel > 0 faca
8 néXY < procureArestaDeNivel(T,)
9 T, <« splay(noXy)
10 rebaixeNivelDaAresta(G, noXY, j)
11 enquanto T,.arestasReservasDeNivel > 0 faca
12 néXX < procureNéIncideArestaDePesoMinimo(R;, T)
13 T, <« splay(noXX)
14 (x, x) « n6XX vértices
15 (¥, w) < consulteMinLAMSF(R;, x)
16 se testeSubstitutaMSF(G, x, y, j) entao
17 retorne

Veja que ja vimos as linhas 1 a 10 do Programa 3.9, pois elas sao exatamente iguais a esse
mesmo trecho do cédigo do Programa 2.14. Isso quer dizer que o rebaixamento de arestas
da floresta acontece da mesma forma que no algoritmo de conexidade em grafos dinamicos.
O que muda é somente a forma como procuramos por alguma aresta substituta.

Sendo assim, explicaremos o co6digo da linha 11 em diante. A linha 11, como também
ja visto, € um lagco que terminara quando nio existirem mais arestas reserva de nivel j
incidentes a T, (ou seja, quando o contador arestasReservasDeNivel do né raiz de T, estiver
nulo) ou quando achamos uma aresta substituta.

A linha 12 é onde acionamos o método procureNéIncideArestaDePesoMinimo, para
obtermos um no6 de vértice incidente a uma aresta reserva de peso minimo. Assim, obtemos
esta aresta chamando consulteMinLAMSF na linha 15, onde obtemos um par (y, w).

Em seguida, basta testarmos se a aresta xy de peso minimo w é uma aresta substituta
que reconecta T, a T,. Para isso, na linha 16 chamamos testeSubstitutaMSF, descrita
no Programa 3.10.
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Programa 3.10 testeSubstitutaMSF(G, x, y, j)
Entrada: Recebe o grafo G, as pontas x e y da aresta xy e o nivel j.
Saida: Remove xy de R; e, caso xy seja substituta, adiciona xy a R; e devolve verdadeiro.

Caso contrario, adiciona xy a R;_; e devolve falso.
removalAMSF(G.R;, x, y)

1
2 decrementeArestasReservasDeNivel(G.F;, G.R;, x)
3 decrementeArestasReservasDeNivel(G.F;, G.Rj, y)
4 atualizePesoMinimo(G.F;, G.R;, x)
5 atualizePesoMinimo(G.Fj, G.R;, y)
6 w <« G.peso[x, y]

7 se conectadosFD(G.F;, x, y) entao > a aresta xy néo é substituta
8 G.nivel[x,y] «j-1

9 adicioneLAMSF(G.Rj_1, x, ¥y, W)

10 atualizePesoMinimo(G.Fi-1, G.Rj_1, x)

11 atualizePesoMinimo(G.Fj_1, G.Rj_1, y)

12 incrementeArestasReservasDeNivel(G.Fj_1, G.Rj_, x)
13 incrementeArestasReservasDeNivel(G.Fj_1, G.Rj_1, )
14 retorne falso

15 senao > a aresta xy é substituta
16 L <« G.nivelMax

17 G.pesoMSF « G.pesoMSF + w

18 para k < jaté L faca

19 adicionefFD(G.Fy, x, y)

20 se x > y entao

21 xey

22 atualizeENivel(G.Fj, x, y, verdadeiro)

23 retorne verdadeiro

Na rotina testeSubstitutaMSF, precisamos atualizar a variavel pesoMSF de G quando
encontramos uma aresta substituta, além de chamar os devidos métodos auxiliares (acio-
namos removalLAMSF e adicioneLAMSF em vez de removalA e adicionelA). Além disso,
como estamos rebaixando arestas reserva, precisamos atualizar o atributo pesoMinimo
dos nos de vértice afetados, acionando a rotina atualizePesoMinimo nas linhas 4, 5, 10
e 11 do Programa 3.10.

Veja que o trecho que compreende as linhas 7 a 14 do Programa 3.10 possui custo
amortizado O(lg n). Isso quer dizer que, enquanto as arestas que estamos testando nao
forem substitutas, o método testeSubstitutaMSF sera acionado varias vezes com esse
custo de tempo. No momento em que encontrarmos uma substituta, testeSubstitutaMSF
sera acionado uma tinica vez e consumira tempo amortizado O(Ig” n) por causa das linhas
18 e 19, e assim o algoritmo ser4 finalizado.

Agora, explicaremos o custo da rotina substituaArestaMSF. Usaremos o mesmo
argumento da amortizagio da rotina substituaAresta, apresentado na Se¢do 2.4.7.

No pior caso, uma execucdo da rotina substituaArestaMSF pode consumir muito
tempo. Por exemplo, se o grafo ja esta com m = ©(n?) arestas inseridas, todas de ni-
vel L, pode ocorrer uma remocao que aciona o substituaArestaMSF e que acarreta o
rebaixamento de ©(n?) arestas, a um custo Q(n?l1g n).
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No entanto, para chegar a essa situacdo, teriam ocorrido G)(nz) inser¢oes, cada uma
com um custo bem mais barato, de O(lg n). Isso sugere que possivelmente uma analise
amortizada do custo das operagdes leve a um custo por operagdo mais baixo.

Agora mostraremos que, se ocorreram t operacgdes de insercio e remocao de arestas
desde a criacao do grafo, entdo o custo total de tal sequéncia de operacdes é O(t‘lg2 n), o
que resulta em um custo amortizado por operacio de O(Ig® n).

Para tanto, cada insercdo sera responsavel nao apenas pelo custo da inser¢do de uma
aresta e, mas também pelo custo de todos os rebaixamentos sofridos por e no decorrer
de todas as remog¢des que ocorrerem apos a inser¢ao de e. Isso quer dizer que a insercéo
da aresta e vai pagar por cada execucdo das linhas 7 a 10 do Programa 3.9 e das linhas
7 a 14 do Programa 3.10 que processa a aresta e. Como a inserc¢ao custa O(Ig n) e essas
linhas custam O(lg n) e sdo executadas O(lg n) vezes, pois e pode ser rebaixada no maximo
[Ig n] vezes, o custo pago por uma insercio ¢ O(lg” n).

Ja uma remocao de aresta, executada pelo Programa 3.8, custa O(lg® n) mais o custo
do substituaArestaMsF. O custo do substituaArestaMsF ¢ O(Ig® n) excluindo-se as
execugoes das linhas 7 a 10 do Programa 3.9, assim como as linhas 7 a 14 do Programa 3.10.
Desconsiderando estas linhas onde ocorrem rebaixamentos de arestas, cada iterag¢do do
para da linha 2 do Programa 3.9 possui custo O(lg n) enquanto uma aresta substituta nao
for encontrada, ou seja, excetuando as linhas 15 a 23 do Programa 3.10.

No momento em que encontrarmos uma substituta, as linhas 15 a 23 do Programa 3.10
serdo executadas uma tnica vez e consumirdo tempo O(lg” n) devido as linhas 18 e 19,
terminando o algoritmo logo em seguida. Assim, como a linha 2 do Programa 3.9 pode
ser executada no maximo O(lg n) vezes, temos que substituaAresta consome tempo
amortizado O(lg® n) por operacio de remocio.

Com isso, concluimos que o custo total de uma sequéncia de t insercoes e remocdes é
O(t1g® n), e assim cada insercio e remog¢do consome tempo amortizado O(lg” n).



Capitulo 4

Testes experimentais

Neste capitulo, apresentaremos alguns testes de comparacao de performance entre o
algoritmo descrito no Capitulo 3 e uma versdo do algoritmo de Kruskal adaptado para
o problema da MSF decremental. Os experimentos foram realizados em um computador
pessoal com as seguintes configuragoes:

« Sistema operacional Ubuntu 24.04.3 LTS (kernel 6.8.0-49-generic);

« Processador Intel Core i5-8265U (4 nucleos, 8 threads), arquitetura x86_64;
« Memoéria RAM de 7,6 GB;

« GPU Intel UHD Graphics 620.

Para calcular a duracdo de tempo de uma operagdo em milissegundos, utilizamos a
biblioteca chrono da linguagem C++. Além disso, o experimento nédo considera o tempo
para inicializar um grafo com n vértices e m arestas. Considera apenas o tempo para as
remocdes das arestas e para as consultas ao peso de uma MST.

Foi implementado um gerador de grafos aleatdrios, seguindo o modelo G(n, p) de
Erdés-Rényi, onde n é o nimero de vértices e p é a probabilidade da existéncia de cada

aresta. E sabido que, no modelo G(n, p) de Erd6s-Rényi, o limiar para conexidade é p = 1o

1ng > lnT", n > 1. Assim, temos que o

n(n—1)lgn
2n

Nos nossos experimentos, usamos o valor p =

numero esperado de arestas nos grafos gerados é dado por . Ademais, a cada aresta

¢ atribuido um peso inteiro no intervalo de 1 a n.

Cada arquivo de teste gerado possui a primeira linha com os valores n e m, seguida de
m linhas da forma u v w, onde w é o peso da aresta uv. Ademais, temos outras k linhas
da forma u v, que representam uma lista aleatoria das arestas a serem removidas. Nos
experimentos, cada grafo gerado possui n = 20.000 vértices, o que d4 um numero esperado
de arestas de 142.000, e removemos k = 25.600 arestas, o que foi suficiente para demonstrar
a eficiéncia do algoritmo para MSF decremental.

Nos nossos experimentos, geramos seis grafos G;, 0 < i < 5, com cinco listas aleatorias
distintas de arestas para cada. Inicialmente, avaliamos o grafo G, considerando a remocéo
de 25.600 arestas em cinco listas distintas. Para cada lista, registramos o peso de uma MST

n°
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apods a remocao de um certo numero de arestas e o tempo de execugdo, em milissegundos,
dos dois algoritmos. Depois, calculamos a média dos cinco testes realizados.

Ja para outros cinco grafos, realizamos os mesmos experimentos de G, usando apenas
a primeira lista de arestas gerada para cada grafo, tendo em vista que os cinco testes eram
muito semelhantes. Os resultados dos testes foram apresentados em tabelas e graficos
gerados por programas escritos em Python 3.

Para cada grafo, realizamos a remocéo de arestas em lotes sucessivos. Apos cada lote de
remogdes, imprimimos o peso de uma MST correspondente ao estado atual do grafo e, em
seguida, dobramos o tamanho do lote. Assim, removemos 100, 200, 400, ..., 25.600 arestas,
registrando o tempo acumulado das remogdes e o peso de uma MST apo6s cada etapa.

Todos os arquivos de teste mencionados neste capitulo, bem como os geradores de-
senvolvidos, estdo disponiveis no diretorio src/tests/ da nossa implementacédo [7]. Os
arquivos de teste gerados possuem um nome genérico graph_i_permutation_j,0 <i <5
e 0 < j <4, e o programa que gera os arquivos de teste se chama randomGraphGenera-
tor.cpp. Neste programa, é possivel configurar o valor de n e de p do modelo G(n, p) de
Erdés-Rényi, além do numero de grafos e de permutacgdes a serem gerados. Por fim, os
programas em Python para geracio de tabelas e graficos sdo chart.py e graph.py, cujos
valores devem ser alterados de acordo com os resultados de cada teste.

4.1 Algoritmo de Kruskal

O algoritmo de Kruskal foi implementado de uma forma que permita remocéo de
arestas. Utilizamos Union-Find como a parte central do algoritmo. Na inicializacdo do
construtor, ordenamos o vetor de m arestas em ordem crescente de peso, usando o método
sort da linguagem C++, que consome tempo esperado O(mlgm). Em seguida, inserimos
as arestas no grafo, em ordem crescente de peso.

Toda vez que removermos uma aresta uv, precisamos reordenar as arestas restantes
em ordem crescente de peso. Para isso, basta deslocar as arestas a partir de uv de uma
posi¢éo para cima no vetor, o que consome tempo O(m).

4.2 Grafo G,

O grafo G, gerado tem 142.069 arestas, que é um nimero proéximo do esperado. A
seguir, mostraremos os resultados das remog¢des em G, de algumas listas de arestas, visto
que o comportamento dos graficos e valores das tabelas sao muito semelhantes.

E importante ressaltar que, como o algoritmo derivado de Kruskal consome tempo
O(m) por remogao de aresta, optamos por fazer uma compressao de valores dos eixos x
e y dos graficos para evitar a sobreposi¢ao dos nimeros, preservando ainda a aparéncia
de crescimento linear.
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4.2.1 Primeira lista de arestas

Figura 4.1: Desempenho dos dois algoritmos em Gy na primeira lista de arestas, exibindo o peso de

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33762814 821 3
200 33785737 1645 7

400 33819663 3290 14
800 33908570 6585 35

1600 34113006 13138 77

3200 34475634 26145 189

6400 35208851 52104 384

12800 36904722 103301 613

25600 41025020 204580 1045

uma MST apds a remocgdo de cada lote de arestas.

Figura 4.2: Desempenho dos dois algoritmos em Gy na primeira lista de arestas.

4.2.2 Segunda lista de arestas

Figura 4.3: Desempenho dos dois algoritmos em G, na segunda lista de arestas, exibindo o peso de

Tempo da execugao em milissegundos

Comparagao de desempenho: Algoritmo de Kruskal vs MSF Decremental

250000

—8— Algoritmo de Kruskal
200000 { —®— MSF Decremental

100000 4

50000

25000 +

10000 +

5000
2500 +
1000 4
250 4
10

100
200
400
800

1600
3200

6400

Namero de arestas removidas

12800
25600

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33772392 862 51

200 33800786 1739 57

400 33870503 3647 67

800 33956041 7493 94

1600 34156556 14402 165

3200 34513752 29798 241

6400 35290830 57433 394

12800 37027756 111321 648

25600 41021221 216698 1055

uma MST apbs a remogdo de cada lote de arestas.
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250000 Comparacao de desempenho: Algoritmo de Kruskal vs MSF Decremental

—8— Algoritmo de Kruskal
200000 1 —®— MSF Decremental

100000 4

50000 -

25000

Tempo da execucao em milissegundos

N}
=0
oo

100 4
200 4
400
800
1600 -
3200 4
400

©

12800 4
25600

NUmero de arestas removidas

Figura 4.4: Desempenho dos dois algoritmos em Gy na segunda lista de arestas.

4.2.3 Tempo médio de execucao das cinco listas de arestas

Arestas removidas Algoritmo de Kruskal (ms) MSF Decremental (ms)

100 827.6 12,4

200 1664,2 20,4

400 33612 29.4

800 6806,6 56,2

1600 13438,8 1116

3200 26996,4 209,0

6400 538314 374,0

12800 108854,0 630,6

25600 212800,6 1075,2

Figura 4.5: Tempo médio de execucdo obtido a partir de cinco listas de arestas de Gy.

250000 Comparagao de desempenho: Algoritmo de Kruskal vs MSF Decremental

—8— Algoritmo de Kruskal
200000 1 —®— MSF Decremental

100000 4

50000 -

25000

10000

Tempo da execucao em milissegundos

5000
2500
1000 A
250
10 A

100
200
400
800
1600
3200
6400
12800
25600

Namero de arestas removidas

Figura 4.6: Comparagdo do tempo médio de execucdo dos dois algoritmos ao longo de cinco listas de
arestas de Gy.
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4.3 Grafos G, Gy, G3, G4 e Gs

Neste experimento, realizamos os mesmos experimentos de G,, mas usando apenas a
primeira lista aleatdria de arestas de outros cinco grafos. Isso porque vimos na Se¢éo 4.2
que os resultados entre as diferentes listas aleatorias de um mesmo grafo sdo bem parecidos.
Por isso, focamos no desempenho dos dois algoritmos em grafos aleatorios distintos. O
grafo G, gerado tem 142.589 arestas; o grafo G, tem 142.954 arestas; o grafo G; tem 142.734
arestas; o grafo G, tem 142.402 arestas; e o grafo Gs tem 143.216 arestas.

4.3.1 Grafo G,

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33716589 799 2
200 33740550 1609 4

400 33783957 3224 46
800 33841145 6468 89

1600 34069725 12964 136

3200 34512154 25961 234

6400 35254848 51880 364

12800 37064231 103548 616

25600 40987759 205685 1073

Figura 4.7: Desempenho dos dois algoritmos em Gy na primeira lista de arestas, exibindo o peso de
uma MST apés a remocgdo de cada lote de arestas.

Comparacao de desempenho: Algoritmo de Kruskal vs MSF Decremental

250000
—8— Algoritmo de Kruskal
200000 4 —®— MSF Decremental

100000 4

50000 -

25000

10000

5000
2500 4
1000 4
250
10

Tempo da execugao em milissegundos

100
200
400
800
1600
3200

6400 4
12800 o
25600

Ndmero de arestas removidas

Figura 4.8: Desempenho dos dois algoritmos em G na primeira lista de arestas.
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Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33608618 839 1
200 33627608 1692 3

400 33664674 3359 15
800 33771940 6663 84

1600 33970361 13257 125

3200 34342223 26329 242

6400 35199125 52941 367

12800 37028250 107687 623

25600 41061532 214918 1053

Figura 4.9: Desempenho dos dois algoritmos em G, na primeira lista de arestas, exibindo o peso de

uma MST apds a remocgdo de cada lote de arestas.

Tempo da execucao em milissegundos

Figura 4.10: Desempenho dos dois algoritmos em G, na primeira lista de arestas.

Comparagao de desempenho: Algoritmo de Kruskal vs MSF Decremental

250000

—8— Algoritmo de Kruskal
200000 1 —@— MSF Decremental

100000

50000 -

25000

10000 -

5000 A
2500 A
1000 A
250 4
10

100
200
400
800

4.3.3 Grafo G;

1600
3200

6400

NUmero de arestas removidas

12800

25600

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33565584 835 2
200 33587661 1880 6

400 33644718 3588 92
800 33715057 6713 124

1600 33935024 13819 172

3200 34335498 26719 283

6400 35148344 52872 398

12800 36854631 106895 605

25600 40930086 215517 1073

Figura 4.11: Desempenho dos dois algoritmos em Gs na primeira lista de arestas, exibindo o peso de

uma MST apos a remogdo de cada lote de arestas.
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Figura 4.12: Desempenho dos dois algoritmos em Gs na primeira lista de arestas.

4.3.4 Grafo G,

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33829742 888 1
200 33848803 1873 6
400 33893983 3715 15
800 33993565 7208 60

1600 34224219 14336 87

3200 34596283 29004 201
6400 35437537 58493 339

12800 37207483 115347 581

25600 41267643 221589 1058

Figura 4.13: Desempenho dos dois algoritmos em G4 na primeira lista de arestas, exibindo o peso de
uma MST apés a remogdo de cada lote de arestas.
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Figura 4.14: Desempenho dos dois algoritmos em G4 na primeira lista de arestas.
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Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33100731 882 1

200 33123666 1779 3

400 33162874 3701 7

800 33240740 8030 57

1600 33414077 16763 135

3200 33821182 34159 186

6400 34602138 68632 386

12800 36392134 135427 650

25600 40386060 255063 1079

Figura 4.15: Desempenho dos dois algoritmos em Gs na primeira lista de arestas, exibindo o peso de
uma MST apds a remocgdo de cada lote de arestas.

Comparagao de desempenho: Algoritmo de Kruskal vs MSF Decremental
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Figura 4.16: Desempenho dos dois algoritmos em Gs na primeira lista de arestas.

4.3.6 Tempo médio de execucio dos cinco grafos

Arestas removidas Algoritmo de Kruskal {ms) MSF Decremental (ms)

100 848,6 1.4

200 1766,6 4,4

400 3517.4 35,0

800 7016,4 82,8

1600 14227,8 131,0

3200 28434,4 231,2

6400 56063,6 370,8

12800 112780,8 615,0

25600 222554,4 1067,2

Figura 4.17: Tempo médio de execugao obtido a partir de cinco grafos.
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Figura 4.18: Comparagio do tempo médio de execugdo dos dois algoritmos considerando cinco grafos
distintos.

4.4 Conclusao

A partir dos experimentos realizados, verifica-se que os grafos gerados para os testes
apresentam um numero de arestas proximo do valor esperado para um grafo do modelo
G(n, p), com p = lng. Além disso, os resultados indicam que, nos graficos de tempo de exe-
cugdo, o algoritmo derivado de Kruskal apresenta um crescimento aproximadamente linear
em funcdo do numero de arestas removidas, enquanto o algoritmo para MSF decremental
exibe um padréo de crescimento compativel com o esperado que é polilogaritmico.

As tabelas de resultados, por outro lado, evidenciam a diferenca significativa no tempo
de execucao entre os dois algoritmos durante o processo de remocao de arestas, diferenca
esta que ja se mostra perceptivel mesmo nas primeiras remocdes realizadas.

Portanto, observa-se que os experimentos conduzidos sobre diferentes grafos aleatorios
com o mesmo numero de vértices produzem graficos e tabelas com comportamentos seme-
lhantes no que tange ao tempo de execucio, indicando consisténcia nos resultados obtidos.

Por fim, seria interessante usar essas implementacdes para testar os algoritmos em
grafos vindos de aplicagdes reais.
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Capitulo 5

Conclusoes

Neste trabalho, estudamos, implementamos e apresentamos um algoritmo para a MSF
decremental. Esse algoritmo é uma adaptacdo do algoritmo para conexidade em grafos
dindmicos. Essencialmente, a adaptacio consiste em trocar a estrutura de dados usada
para armazenar as arestas reserva de listas de adjacéncias para min-heaps.

Estudamos também o algoritmo de Holm, de Lichtenberg e Thorup [4] para o problema
da MSF dinamica, no qual se quer dar suporte eficiente também a inser¢des de arestas a
qualquer momento. Esse algoritmo também é uma adaptacéo do algoritmo para conexidade
em grafos dindmicos, mas é uma adaptacdo mais extensa e complexa, que utiliza uma
implementacdo adaptada do algoritmo para MSF decremental que implementamos.

A adaptacdo agora troca a estrutura de dados usada para armazenar as florestas dinami-
cas. Em vez de Euler tour trees, esse algoritmo usa as chamadas top trees, que sdo versodes
de uma arvore introduzida por Alstrup et al. [1] e denominada de topological trees.

Inicialmente, sera descrito resumidamente o motivo principal de usar top trees no
algoritmo, em vez de Euler tour trees. Nas Euler tour trees, um caminho nio corresponde a
um segmento continuo ao longo do percurso da Euler tour tree. Isso dificulta a manutencéo
eficiente de informacdes sobre caminhos na arvore, como, por exemplo, 0 peso maximo
no caminho entre dois vértices dados, que é importante ao inserir uma aresta que forma
um circuito no grafo, pois temos que decidir se ela deve substituir uma aresta da MSF. Por
causa disso, os autores do artigo sugeriram o uso de top trees para armazenar e retornar
dados sobre qualquer caminho entre dois vértices numa arvore.

Top trees sdo arvores binarias que suportam adicdo e remocao de arestas. A construcao
delas se baseia em uma sequéncia de merges e splits, que acabam destruindo e recons-
truindo nos e arestas da arvore. Conforme Alstrup et al. [1], para uma floresta dindmica
de n vértices podemos manter top trees de altura O(lg n) implementando as operagdes
mencionadas com uma sequéncia de O(lg n) merges e splits. Podemos, entéo, definir uma
operacdo que retorna o peso maximo de um caminho entre dois vértices em tempo O(lg n),
que sera fundamental na operacéo de inser¢ao de arestas do algoritmo para MSF dinédmica.

Holm, de Lichtenberg e Thorup [4] propuseram um algoritmo para MSF dindmica
que mantém uma MSF que suporta adi¢des e remogdes de arestas em tempo amortizado
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O(lg* n) por operacio. A ideia deste algoritmo é manter uma MSF decremental F de um
grafo G de n vértices e m arestas, como também um conjunto G = {G,, ..., G.}, L = [lgm],
de subgrafos de G, de modo que para cada G; manteremos uma MSF decremental F,,
implementada com top trees.

As arestas de F sdo chamadas de arestas da floresta globais e as arestas de R = E(G)\F
sdo chamadas de arestas reserva globais, onde R corresponde a lista de arestas reserva
retornadas pelas estruturas decrementais de G. E nesta lista que iremos procurar uma
aresta substituta de menor peso para reconectar as componentes separadas de F quando
removemos alguma aresta da floresta global.

Similarmente, as arestas de F; sio chamadas de arestas da floresta locais e as arestas
de R; = E(G;)\F; de arestas reserva locais. Além disso, todas as arestas de F estardo
em alguma F, ou seja, F C |, F.

Para inserir uma aresta uv, temos dois casos a considerar:
« se u e v nao estio conectados, entdo basta inserir a aresta uv em F;
« caso contrario, temos dois casos:

— se o caminho entre u e v onde contiver uma aresta w cujo peso é maior que o
de uv, entao substituimos w por uv, e atualizamos G com w;

— caso contrario, atualizamos G com uv.

Ja para remover uma aresta uv, primeiramente removemos todas as ocorréncias desta
aresta nos G;’s. Se uv for uma aresta de F, a removemos de F e verificamos se em R ha
arestas que reconectem as componentes separadas de F. Se houver, escolhemos uma de
menor peso dentre elas. Finalmente, independentemente de uv ser uma aresta da floresta
global ou aresta reserva global, atualizamos G com R.

O artigo explica em detalhes sobre como esta atualizacdo de G é feita, e para isso ele se
baseia fortemente na estrutura das top trees para podermos implementar este algoritmo
para MSF dinamica mais eficientemente, tanto em termos de espaco quanto de consumo de
tempo. No final da Secéo 5 do artigo, ¢ mencionado que a implementacéo deste algoritmo
consome espaco O(mlg n).

Até o momento, fica claro que ha uma certa cadeia de dependéncias entre os algo-
ritmos que estudamos e implementamos. Dessa forma, seria interessante apresentar os
detalhes de como implementar a biblioteca deste algoritmo para MSF dinamica. Mas, para
isso, precisariamos modificar a implementacdo da biblioteca da conexidade em florestas
dinadmicas, que passaria a manter top trees no lugar de Euler tour trees. Como a nossa
implementacao da biblioteca de Euler tour trees possui um consumo de tempo diferente
da implementacdo de top trees apresentada em Holm, de Lichtenberg e Thorup [4], a
biblioteca que implementamos do algoritmo de conexidade em grafos dinamicos teria
a sua complexidade de tempo alterada, visto que este passaria a manter componentes
destas florestas dinamicas ajustadas.

Além disso, ajustes na biblioteca do algoritmo de conexidade em grafos dindmicos
alterariam, por sua vez, o consumo de tempo da biblioteca que implementamos do algoritmo
para MSF decremental. E apo6s todos estes ajustes que, finalmente, poderiamos implementar
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o algoritmo para a MSF dinamica proposto por Holm, de Lichtenberg e Thorup [4] na
Secdo 5 do artigo deles.

Em suma, dada a complexidade de se realizar estes ajustes nos algoritmos ja implemen-
tados, ndo houve tempo de implementa-lo e optamos por ndo descrever uma biblioteca
deste algoritmo para MSF dinamica.
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