
Universidade de São Paulo
Instituto de Matemática, Estatística e Ciência da Computação

Bacharelado em Ciência da Computação

Florestas geradoras maximais de custo
mínimo em grafos dinâmicos

Chung Jin Shian

Monografia Final

mac 499 — Trabalho de
Formatura Supervisionado

Supervisora: Prof.ª Dr.ª Cristina Gomes Fernandes

São Paulo

2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

iii

Agradecimentos

"Nada é impossível para aquele que persiste."

— Alexandre, o Grande

Primeiramente gostaria de agradecer aos meus amigos do IME durante toda essa

jornada. O contato com cada um e a troca de experiências contribuiu significativamente

para o meu desenvolvimento técnico e profissional durante o curso.

Gostaria de agradecer à minha orientadora Cristina Gomes Fernandes por ter me

apresentado ao tema desse trabalho, e ter sempre sido muito atenciosa e dedicada para

garantir que eu estava de fato aprendendo os conceitos do trabalho. Foi ela quem fez

crescer o meu interesse por Teoria da Computação, principalmente em algoritmos e

estrutura de dados.

Além da Cristina, gostaria de agradecer aos professores Carlos Eduardo Ferreira e

Marcel Kenji de Carli Silva, que fomentaram o meu interesse por algoritmos em grafos, e

cujos ensinamentos contribuíram para a produção deste trabalho.

Por fim, quero agradecer à minha família, que me deu bastante suporte para eu me

dedicar aos estudos nos primeiros anos da graduação.

Resumo

Chung Jin Shian. Florestas geradoras maximais de custo mínimo em grafos di-
nâmicos. Monografia (Bacharelado). Instituto de Matemática, Estatística e Ciência da

Computação, Universidade de São Paulo, São Paulo, 2025.

Grafos dinâmicos permitem modelar problemas em que o grafo sofre alterações ao longo do tempo.

Um dos problemas fundamentais nesse contexto é a manutenção de uma árvore geradora de custo mínimo

no decorrer de várias alterações no grafo. Neste trabalho, estudamos e implementamos vários algoritmos

propostos por Holm, de Lichtenberg e Thorup para variantes desse problema. O foco foi no algoritmo para

manter uma floresta geradora maximal de custo mínimo (MSF) decremental, em que se dá suporte eficiente

à remoção de arestas do grafo. Além disso, estudamos as ideias usadas num algoritmo que mantém uma

floresta geradora maximal de custo mínimo (MSF) em um grafo dinâmico, em que se dá suporte eficiente

à adição e remoção de arestas.

Palavras-chave: Grafo dinâmico. Floresta geradora maximal de custo mínimo. Splay trees.

Abstract

Chung Jin Shian. Minimum spanning forests in dynamic graphs. Capstone Project

Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São

Paulo, 2025.

Dynamic graphs allow us to model problems in which the graph changes over time. One of the fun-

damental problems in this context is maintaining a minimum spanning tree of the dynamic graph as it

undergoes multiple updates. In this work, we study and implement several algorithms proposed by Holm,

de Lichtenberg, and Thorup for variants of this problem. Our main focus is the algorithm for maintaining a

decremental minimum spanning forest, which efficiently supports edge deletions in the graph. In addition,

we also study the approach for maintaining a fully dynamic minimum spanning forest, which efficiently

supports both edge insertions and deletions in the graph.

Keywords: Dynamic graph. Minimum spanning forest. Splay trees.

ix

Sumário

1 Introdução 1

2 Conexidade em grafos dinâmicos 5
2.1 Conexidade em florestas dinâmicas . 5

2.2 Biblioteca do grafo dinâmico . 6

2.2.1 Fatiamento do grafo em níveis . 6

2.2.2 Tipos de arestas do grafo . 7

2.3 Rotinas da biblioteca do grafo dinâmico 7

2.3.1 Criação do grafo . 7

2.3.2 Consultas de conexidade . 8

2.3.3 Inserções de arestas . 9

2.3.4 Remoção de arestas . 10

2.4 Estrutura interna do grafo dinâmico . 15

2.4.1 Euler tour trees . 15

2.4.2 Nós das florestas . 17

2.4.3 Nó de aresta . 17

2.4.4 Nó de vértice . 19

2.4.5 Versão completa da rotina de adição de arestas 21

2.4.6 Versão completa da rotina de remoção de arestas 22

2.4.7 Rotina de substituição de aresta 23

3 Algoritmo para MSF decremental 27
3.1 Biblioteca da MSF decremental . 27

3.1.1 Listas de adjacências . 28

3.2 Ajustes nas invariantes . 29

3.3 Rotinas da biblioteca da MSF decremental 30

3.3.1 Criação do grafo . 30

3.3.2 Consulta de peso da MSF . 31

x

3.3.3 Remoção de arestas . 31

3.3.4 Ajustes em nós das florestas . 35

3.3.5 Versão completa da rotina de adição de arestas 37

3.3.6 Versão completa da rotina de remoção de arestas 37

3.3.7 Busca por uma aresta substituta 38

3.3.8 Rotina de substituição de aresta 40

4 Testes experimentais 43
4.1 Algoritmo de Kruskal . 44

4.2 Grafo 𝐺0 . 44

4.2.1 Primeira lista de arestas . 45

4.2.2 Segunda lista de arestas . 45

4.2.3 Tempo médio de execução das cinco listas de arestas 46

4.3 Grafos 𝐺1, 𝐺2, 𝐺3, 𝐺4 e 𝐺5 . 47

4.3.1 Grafo 𝐺1 . 47

4.3.2 Grafo 𝐺2 . 48

4.3.3 Grafo 𝐺3 . 48

4.3.4 Grafo 𝐺4 . 49

4.3.5 Grafo 𝐺5 . 50

4.3.6 Tempo médio de execução dos cinco grafos 50

4.4 Conclusão . 51

5 Conclusões 53

Bibliografia 57

1

Capítulo 1

Introdução

Grafos são estruturas de dados que nos permitem modelar vários problemas existentes
da vida real, sejam eles estáticos ou dinâmicos. Em problemas estáticos, o grafo não sofre
alterações com o passar do tempo. Podemos citar, como exemplo, o planejamento de
rotas de entrega, análise de moléculas químicas e de dependências em software utilizando
ordenação topológica. Entretanto, ainda existem muitas situações em que ocorre dinami-
cidade, como nas interações de usuários em redes sociais, monitoramento de epidemias
(contatos e isolamentos) e sistemas de navegação GPS, onde há necessidade de recalcular
rotas dependendo de condições como congestionamentos e acidentes. Para modelar tais
problemas, podemos usar grafos dinâmicos.

Dessa forma, são considerados problemas em grafos completamente dinâmicos aqueles
em que o grafo sofre, com o tempo, alterações como inserções e remoções de arestas. As
variantes em que se permite apenas inserção ou apenas remoção de arestas são chamadas
de parcialmente dinâmicas, conforme Holm, de Lichtenberg e Thorup [4]. Note que as
operações de atualização e consulta são apresentadas de forma online, e as ações devem
ser tomadas sem conhecimento algum das operações futuras.

Aqui serão tratados problemas em que o grafo dinâmico possui um conjunto fixo de
vértices V, e estabelecemos 𝑛 = |V |. Além disso, pode-se definir 𝑚 como o número de
arestas existentes. Na maior parte das vezes, a complexidade de tempo das operações
será amortizada, o que implica que a complexidade é calculada como a média sobre todas
as operações realizadas.

Um grafo dinâmico de ordem 𝑛 é uma sequência de grafos (𝐺0, 𝐺1, …, 𝐺𝑇), onde 𝐺0 é o
grafo inicial com n vértices e cada 𝐺𝑡 para 1 ≤ 𝑡 ≤ 𝑇 é obtido a partir de 𝐺𝑡−1 pela adição
ou remoção de alguma aresta. Chamamos de alteração, modificação ou atualização o
resultado de alguma operação de adição e/ou remoção de arestas no grafo dinâmico.

Um problema em grafos dinâmicos consiste em verificar se o grafo atual G satisfaz
alguma propriedade, e cada operação que realiza essa verificação é denominada consulta.
A solução do problema depende da criação de um algoritmo que utiliza estruturas de dados
capazes de realizar estas consultas e as alterações de forma eficiente.

Iremos tratar inicialmente do problema de conexidade em grafos dinâmicos, que

2

INTRODUÇÃO

consiste em manter um grafo dinâmico que sofre uma sequência de inserções e remoções
de arestas, dando suporte a eventuais consultas para verificar se dois vértices u e v estão
conectados por algum caminho no grafo dinâmico corrente. Porém, antes de entrarmos
em detalhes, iremos apresentar alguns conceitos importantes que constituirão a base do
nosso problema.

Uma floresta em um grafo 𝐺 é um subgrafo acíclico de 𝐺. Uma árvore é uma floresta
conexa, ou seja, uma floresta pode consistir de várias árvores. Um subgrafo 𝐹 de 𝐺 é
gerador se contém todos os vértices de 𝐺. Com isso, podemos enunciar um problema
clássico em grafos chamado o problema da árvore geradora de custo mínimo (MST,
de Minimum Spanning Tree). Seja 𝐺 = (𝑉 , 𝐸) um grafo conexo, onde 𝑉 é o conjunto de
vértices e 𝐸 o conjunto de arestas de 𝐺. Para cada aresta 𝑢𝑣 ∈ 𝐸, temos um peso 𝑤(𝑢𝑣)

associado. Assim, o objetivo do problema é encontrar uma árvore geradora cujo peso total

𝑤(𝑇) = ∑

𝑒 ∈ 𝐸(𝑇)

𝑤(𝑒)

seja mínimo. A Figura 1.1 mostra um exemplo de grafo conexo com pesos nas arestas
e uma árvore geradora mínima.

a b

c

de

f g

7

8

6

6

75

2

4

1 3

2

5

Figura 1.1: Um grafo com sete vértices. As arestas em vermelho formam uma árvore geradora mínima
(MST) com peso total 17.

Para encontrar uma árvore geradora mínima, podemos utilizar uma abordagem gulosa
para o problema. Existem dois algoritmos gulosos clássicos que resolvem este problema
eficientemente, quando o grafo não é dinâmico: o algoritmo de Kruskal e o de Prim. Cada
um deles estabelece uma regra específica para escolher a próxima aresta a ser incluída
na solução.

Se um grafo 𝐺 tem 𝑛 vértices e 𝑚 arestas, o algoritmo de Kruskal consome O(𝑚 lg 𝑛),
que é a complexidade de tempo para ordenar as arestas em ordem crescente de peso. Já
o algoritmo de Prim pode ser implementado de modo a consumir O(𝑚 + 𝑛 lg 𝑛), usando
Fibonacci heaps. Tais algoritmos e suas implementações estão bem descritos no Capí-
tulo 23.2 do livro de Cormen, Leiserson, Rivest e Stein [2] e, como não são o foco do nosso
estudo, não iremos descrevê-los nesse estudo.

No nosso estudo, estamos interessados em grafos dinâmicos, que podem sofrer inserções
e remoções de arestas, e por isso abrimos mão de exigir que o grafo seja conexo. Queremos

INTRODUÇÃO

3

manter uma floresta geradora maximal de custo mínimo (MSF) do grafo. Já existe uma
solução para esse problema proposta por Holm, de Lichtenberg e Thorup [4] na Seção 5
do seu artigo. Essa solução se baseia num algoritmo para a restrição decremental da MSF,
descrita na Seção 4 de seu artigo, que por sua vez depende do algoritmo para o problema
de conexidade em grafos dinâmicos descrito na Seção 3 de seu artigo.

No decorrer do nosso estudo, destrincharemos a solução dos autores em vários capítulos
do texto. No Capítulo 2 descreveremos em detalhes o problema da conexidade em grafos
dinâmicos, onde mostramos os pseudocódigos e a complexidade de tempo de cada um, e
como certas invariantes são mantidas no decorrer de sua execução.

No Capítulo 3, descreveremos a nossa implementação do algoritmo para o problema
decremental da floresta geradora maximal de custo mínimo, que chamamos de MSF decre-
mental. Como este algoritmo é baseado em vários métodos do problema de conexidade
em grafos dinâmicos, realizamos alguns ajustes nos métodos deste último para adaptarmos
ao contexto decremental.

No Capítulo 4, descreveremos um estudo experimental em grafos aleatórios, compa-
rando a performance entre um algoritmo derivado de Kruskal e o algoritmo para MSF
decremental. Os resultados foram exibidos em forma de tabelas e gráficos gerados por
programas escritos em Python 3.

Finalmente, no Capítulo 5 apresentaremos algumas conclusões, incluindo uma dis-
cussão dos ingredientes usados na solução de Holm, de Lichtenberg e Thorup [4] para o
problema dinâmico da floresta geradora maximal de custo mínimo, que dá suporte a adições
e remoções de arestas e utiliza várias estruturas decrementais em sua implementação.

As nossas implementações dos algoritmos de Holm, de Lichtenberg e Thorup [4] foram
feitas utilizando a linguagem C++, e disponibilizamos o código no repositório do GitHub [7].

5

Capítulo 2

Conexidade em grafos dinâmicos

Como citado no Capítulo 1, o problema da conexidade em grafos dinâmicos visa
construir um algoritmo eficiente que dê suporte a inserções e remoções de arestas e
consultas de conexidade entre dois vértices. O algoritmo de Holm, de Lichtenberg e
Thorup [4] para este problema de conexidade mantém ⌈lg 𝑛⌉ florestas dinâmicas do grafo
𝐺 de ordem 𝑛, e utiliza uma biblioteca que será descrita na próxima seção.

2.1 Conexidade em florestas dinâmicas
Rodrigues [6], em sua dissertação do mestrado, estudou, entre outros assuntos, o

problema da conexidade em florestas dinâmicas e implementou o algoritmo que foi proposto
na Seção 2 do artigo de Holm, de Lichtenberg e Thorup [4]. No Capítulo 2 da sua dissertação,
Rodrigues descreveu as rotinas principais de sua implementação, que se baseia em Euler
tour trees, e realizou uma análise minuciosa da complexidade de tempo de cada rotina de
sua implementação. Levando isso em conta, optamos por não apresentar uma descrição
detalhada desse mesmo algoritmo, e apenas explicar brevemente o que as rotinas principais
fazem, ressaltando algumas diferenças da nossa implementação em código em relação
à de Rodrigues.

O problema da conexidade em florestas dinâmicas pode ser considerado uma simpli-
ficação do problema de conexidade em grafos dinâmicos, quando o grafo em questão é
uma floresta. A biblioteca que usaremos contém os seguintes métodos:

• florestaDinâmica(𝑛): constrói e devolve uma floresta dinâmica 𝐹 com 𝑛 vértices
e sem arestas;

• conectadosFD(𝐹, 𝑢, 𝑣): devolve verdadeiro se 𝑢 e 𝑣 estão na mesma componente
da floresta 𝐹 e falso caso contrário;

• adicioneFD(𝐹, 𝑢, 𝑣): insere uma aresta uv na floresta 𝐹 ;

• removaFD(𝐹, 𝑢, 𝑣): remove a aresta uv da floresta 𝐹 .

A estrutura de dados principal usada neste algoritmo de Holm, de Lichtenberg e
Thorup para dar suporte eficiente às rotinas acima é uma árvore binária de busca balanceada
(ABBB). Uma floresta dinâmica é constituída de várias ABBBs. Rodrigues utiliza treaps

6

2 | CONEXIDADE EM GRAFOS DINÂMICOS

em sua implementação, que são de natureza aleatória. Em nosso caso, utilizamos árvores
splay, que foram desenvolvidas por Sleator e Tarjan [8]. Árvores splay são árvores
binárias de busca (ABBs) que possuem uma rotina extra (além das usuais de busca, inserção
e remoção) chamada splay, que é acionada ao final de cada operação feita na árvore,
de modo que é sempre aplicada ao nó mais profundo visitado. O nó em que a operação
splay é aplicada é trazido, por meio das tradicionais rotações usadas no balanceamento de
árvores binárias de busca, para cima até chegar na raiz da árvore. Isso faz com que o custo
de uma sequência de 𝑚 operações (inserção, remoção ou busca) em uma árvore splay com
𝑛 nós seja O(𝑚 lg 𝑛), ou seja, o custo amortizado por operação é O(lg 𝑛). Como também
já existe bastante literatura sobre árvores splay [5, Lecture 12], e seu funcionamento
interno afeta muito pouco a descrição dos algoritmos que descreveremos, não entraremos
em detalhes de sua implementação.

O resultado é uma implementação em que florestaDinâmica(n) tem custo Θ(𝑛) e
os demais métodos da biblioteca têm custo amortizado O(lg 𝑛).

2.2 Biblioteca do grafo dinâmico
Implementar o grafo dinâmico resume-se à construção da seguinte biblioteca de forma

eficiente:

• grafoDinâmico(𝑛): contrói e devolve um grafo dinâmico com 𝑛 vértices e sem
arestas;

• conectadosGD(𝐺, 𝑢, 𝑣): devolve verdadeiro se os vértices 𝑢 e 𝑣 estão na mesma
componente de 𝐺 e falso caso contrário;

• adicioneGD(𝐺, 𝑢, 𝑣): adiciona a aresta 𝑢𝑣 ao grafo 𝐺;

• removaGD(𝐺, 𝑢, 𝑣): remove a aresta 𝑢𝑣 do grafo 𝐺.

Para entender como cada uma dessas rotinas funcionam, será necessário apresentar a
estrutura interna da implementação do grafo para explicar como manter essas estruturas
e como elas deixam essas rotinas mais eficientes.

2.2.1 Fatiamento do grafo em níveis
Na Seção 3.1 do artigo de Holm, de Lichtenberg e Thorup [4], é apresentada a técnica

de fatiar o grafo 𝐺 em níveis. Cada aresta do grafo possui um nível entre 1 e ⌈lg 𝑛⌉, onde 𝑛
é o número de vértices do grafo 𝐺. Toda vez que inserimos uma aresta em 𝐺, ela possuirá
o nível ⌈lg 𝑛⌉, e ele nunca será aumentado.

Seja 𝐺 um grafo com 𝑛 vértices, com conjunto 𝑉 (𝐺) de vértices e conjunto 𝐸(𝐺) de
arestas. Se 𝑋 é um conjunto não-vazio de arestas, dizemos que o subgrafo de 𝐺 induzido
por 𝑋 é o subgrafo gerador 𝐻 de 𝐺 tal que 𝐸(𝐻) = 𝑋 . Denotamos 𝐻 por 𝐺[𝑋].

Sendo assim, seja 𝐺𝑖 = 𝐺[𝑋] o grafo onde 𝑋 é o conjunto das arestas do grafo 𝐺 de
nível menor ou igual a 𝑖. Para cada nível 𝑖, manteremos uma floresta maximal 𝐹𝑖 de 𝐺𝑖.
Além disso, vamos manter também, para cada nível 𝑖, um grafo 𝑅𝑖 em forma de listas de
adjacências, que guardam apenas arestas de nível 𝑖 que não estejam em 𝐹𝑖.

2.3 | ROTINAS DA BIBLIOTECA DO GRAFO DINÂMICO

7

Consequentemente, temos que 𝐺1 ⊆ 𝐺2 ⊆ ⋯ ⊆ 𝐺⌈lg 𝑛⌉ e deduzimos que 𝐺 = 𝐺⌈lg 𝑛⌉ e
que 𝐹⌈lg 𝑛⌉ é uma floresta maximal de 𝐺. Dessa maneira, sempre que estivermos realizando
alguma operação de consulta de conexidade em nosso grafo 𝐺, podemos realizá-la na
floresta 𝐹⌈lg 𝑛⌉ de 𝐺.

Com isso, podemos enunciar algumas invariantes, que são mantidas ao longo das
modificações no grafo 𝐺:

(I) 𝐹𝑖 é uma floresta maximal de 𝐺𝑖 para todo 1 ≤ 𝑖 ≤ ⌈lg 𝑛⌉;

(II) 𝐹𝑖 ⊆ 𝐹𝑖+1 para todo 1 ≤ 𝑖 ≤ ⌈lg 𝑛⌉ − 1;

(III) Cada componente da floresta 𝐹𝑖 possui no máximo 2𝑖 vértices.

Na Seção 2.3, descreveremos com mais detalhes como as rotinas da biblioteca funcionam
e como cada uma preserva as invariantes acima, de modo a manter a corretude do algoritmo
durante toda a sua execução. Por fim, para simplificar um pouco a notação, escreveremos
𝐿 = ⌈lg 𝑛⌉, isto é, 𝐹⌈lg 𝑛⌉ passa a ser escrita como 𝐹𝐿, da mesma forma que 𝐺𝐿 = 𝐺⌈lg 𝑛⌉

e 𝑅𝐿 = 𝑅⌈lg 𝑛⌉.

2.2.2 Tipos de arestas do grafo
Quando realizamos uma chamada à função adicioneGD(𝐺, 𝑢, 𝑣), é feita uma cha-

mada à rotina conectadosGD(𝐺, 𝑢, 𝑣) para verificar a conexidade de 𝑢 com 𝑣 em 𝐺. Se
estes vértices não estiverem na mesma componente de 𝐺, então a aresta 𝑢𝑣 é inserida na
floresta maximal 𝐹𝐿 que estamos mantendo, assim ligando a árvore que contém 𝑢 com a
que contém 𝑣 em 𝐹𝐿. Chamamos esse tipo de aresta de aresta da floresta.

Caso 𝑢 e 𝑣 já estejam conectados em 𝐺, então essa aresta 𝑢𝑣 é chamada de aresta
reserva e ela será armazenada no grafo 𝑅𝐿 representado por listas de adjacências, mantido
pela seguinte biblioteca:

• listasDeAdjacências(𝑛): constrói e devolve um grafo com 𝑛 vértices e sem ares-
tas, representado por listas de adjacências;

• adicioneLA(𝑅, 𝑢, 𝑣): adiciona 𝑢 na lista de adjacências de 𝑣 em 𝑅 e vice-versa;

• removaLA(𝑅, 𝑢, 𝑣): remove 𝑢 da lista de adjacências de 𝑣 em 𝑅 e vice-versa.

A nossa implementação [7] de listas de adjacências possui um custo O(𝑛) ao acionar o
construtor listasDeAdjacências, e para as rotinas adicioneLA e removaLA é garantido
tempo esperado O(1), visto que estamos utilizando um mapa hash da linguagem C++ para
realizar adição de um vizinho 𝑣 na lista de 𝑢 e remoção de 𝑣 da lista de adjacências de 𝑢.

2.3 Rotinas da biblioteca do grafo dinâmico

2.3.1 Criação do grafo
Para criar um grafo dinâmico 𝐺 com 𝑛 vértices e inicialmente sem arestas, acio-

namos a rotina grafoDinâmico(𝑛). Nesta chamada, armazenamos o nível máximo do

8

2 | CONEXIDADE EM GRAFOS DINÂMICOS

grafo, no caso o valor de ⌈lg 𝑛⌉, numa variável do grafo chamada nívelMax, onde po-
demos extrair e usar o valor do nível máximo chamando 𝐺.nívelMax. Em seguida, cha-
mamos florestaDinâmica(𝑛) para criar ⌈lg 𝑛⌉ florestas dinâmicas com 𝑛 vértices, e
listasDeAdjacências(𝑛) para criar ⌈lg 𝑛⌉ grafos com 𝑛 vértices representados por listas
de adjacências.

Além disso, usamos um mapa hash para guardar e obter o nível de uma aresta 𝑢𝑣

em tempo esperado O(1). Assim, este mapa usa como chave as pontas da aresta (𝑢 e 𝑣)
e armazena o valor do nível da aresta 𝑢𝑣. Assim, podemos definir um outro método
novoMapaHash(𝑛) que devolve um mapa hash vazio em tempo O(1) para um grafo de 𝑛

vértices. Dessa forma, se chamarmos esse método e atribuirmos o objeto devolvido a uma
variável chamada nível, podemos realizar as seguintes operações com nível:

• nível[u, v] ← 𝑖: armazena 𝑖 como o nível da aresta 𝑢𝑣.

• nível[u, v] ← NIL: remove a aresta 𝑢𝑣 do mapa hash.

• 𝑥 ← nível[u, v]: atribui o valor do nível da aresta 𝑢𝑣 à variável 𝑥 .

Dessa forma, podemos apresentar o construtor do grafo no Programa 2.1.

Programa 2.1 grafoDinâmico(𝑛)
Entrada: Recebe o número 𝑛 de vértices do grafo.
Saída: Devolve um grafo dinâmico 𝐺 com 𝑛 vértices e sem arestas.
1 L ←⌈lg 𝑛⌉

2 𝐺.nívelMax ← L
3 para 𝑖 ← 1 até L faça
4 𝐺.𝐹𝑖 ← florestaDinâmica(𝑛)
5 𝐺.𝑅𝑖 ← listasDeAdjacências(𝑛)
6 G.nível ← novoMapaHash(𝑛)
7 retorne G

Como ambos florestaDinâmica(𝑛) e listasDeAdjacências(𝑛) consomem tempo
O(𝑛), então grafoDinâmico(𝑛) consome tempo O(𝑛 lg 𝑛), pois estamos criando ⌈lg 𝑛⌉

florestas dinâmicas e listas de adjacências. Além disso, é fácil de ver que, ao final, as três
invariantes valem.

2.3.2 Consultas de conexidade
Para testar a conexidade entre dois vértices 𝑢 e 𝑣 no grafo 𝐺, basta chamarmos

conectadosGD(𝐺, 𝑢, 𝑣), que por sua vez aciona conectadosFD(𝐹𝐿, 𝑢, 𝑣), pois 𝐹𝐿

é uma floresta maximal de 𝐺 pelo invariante (I). O Programa 2.2 mostra essa rotina.

Programa 2.2 conectadosGD(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺.
Saída: Devolve um booleano indicando se 𝑢 e 𝑣 estão conectados em 𝐺.
1 L ←𝐺.nívelMax
2 retorne conectadosFD(𝐺.𝐹𝐿, 𝑢, 𝑣)

2.3 | ROTINAS DA BIBLIOTECA DO GRAFO DINÂMICO

9

A rotina conectadosFD(𝐹𝐿, 𝑢, 𝑣) em nossa implementação consome tempo amorti-
zado O(lg 𝑛), e, portanto, conectadosGD(𝐹𝐿, 𝑢, 𝑣) também terá o mesmo consumo de
tempo amortizado. Além disso, a rotina de consulta não altera o nosso grafo, incluindo
florestas e listas de adjacências, já que não há nenhuma modificação neles. Isso implica
que as invariantes são mantidas.

2.3.3 Inserções de arestas
Como explicado na Seção 2.2.2, inserimos uma aresta 𝑢𝑣 no grafo 𝐺 chamando a

rotina adicioneGD(𝐺, 𝑢, 𝑣) e, em seguida, testamos a conexidade de 𝑢 e 𝑣 chamando a
rotina conectadosGD(𝐺, 𝑢, 𝑣), e, dependendo do resultado, 𝑢𝑣 pode ser inserida como
aresta reserva ou como aresta da floresta. Assumindo que a aresta 𝑢𝑣 não exista em 𝐺

no momento de sua inserção, temos dois cenários:

• Se os vértices 𝑢 e 𝑣 já estão conectados em 𝐺, então chamaremos a função
adicioneLA(𝑅𝐿, 𝑢, 𝑣), que armazenará 𝑢𝑣 como aresta reserva de nível 𝐿 de
𝐺 em 𝑅𝐿. A Figura 2.1 ilustra esse cenário.

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

Figura 2.1: As arestas pretas são da floresta maximal 𝐹𝐿 do grafo. Como queremos inserir a aresta 𝑢𝑣

e os vértices 𝑢 e 𝑣 já estão conectados pelo caminho 𝑢 → 𝑎 → 𝑏 → 𝑐 → 𝑒 → 𝑣, então armazenamos
𝑢𝑣 como aresta reserva (em vermelho).

• Se 𝑢 e 𝑣 não estão conectados em 𝐺, então inserimos 𝑢𝑣 como aresta da floresta 𝐹𝐿

de nível 𝐿, chamando a função adicioneFD(𝐹𝐿, 𝑢, 𝑣). A Figura 2.2 ilustra esse
cenário.

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Figura 2.2: As arestas pretas são da floresta maximal 𝐹𝐿 do grafo. Como os vértices 𝑢 e 𝑣 não estão
conectados em 𝐹𝐿, então inserimos 𝑢𝑣 como aresta da floresta (em verde), nesse caso conectando as
componentes 𝑇𝑢 e 𝑇𝑣 de 𝐹𝐿.

10

2 | CONEXIDADE EM GRAFOS DINÂMICOS

O Programa 2.3 ilustra uma primeira versão da rotina adicioneGD. Posteriormente,
faremos alguns ajustes nessa rotina por causa da rotina de remoção de arestas explicada
na Seção 2.3.4.

Programa 2.3 adicioneGD(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺.
Efeito: Adiciona a aresta 𝑢𝑣 no grafo 𝐺.
1 L ←𝐺.nívelMax
2 𝐺.nível[𝑢, 𝑣] ← L
3 se conectadosFD(𝐺.𝐹𝐿, 𝑢, 𝑣) então
4 adicioneLA(𝐺.𝑅𝐿, 𝑢, 𝑣)
5 senão
6 adicioneFD(𝐺.𝐹𝐿, 𝑢, 𝑣)

Em nossa implementação, conectadosFD consome tempo amortizado O(lg 𝑛). A ro-
tina adicioneLA, quando acionada, consome tempo esperado constante O(1) em nossa
implementação por conta do mapa hash. Já inserir uma aresta da floresta chamando
adicioneFD consome tempo O(lg 𝑛) (amortizado, em nossa implementação). Portanto, a
rotina adicioneGD tem custo de tempo amortizado O(lg 𝑛).

A invariante (I) se mantém para o nível 𝑖 = ⌈lg 𝑛⌉. Como sempre adicionamos arestas
com nível ⌈lg 𝑛⌉ em 𝐹⌈lg 𝑛⌉ (se não forem reservas), então as outras florestas de níveis
inferiores não são afetadas, mantendo-se, assim, os invariantes (II) e (III) também.

2.3.4 Remoção de arestas
A remoção de arestas se divide em dois casos: remoção de uma aresta reserva ou

remoção de uma aresta da floresta.

Quando queremos remover uma aresta 𝑢𝑣 e ela é reserva, podemos simplesmente
acionar a rotina removaLA(𝑅𝑖, 𝑢, 𝑣) onde 𝑖, obtido do mapa hash, é o nível da aresta
𝑢𝑣 e 𝑅𝑖 é a lista de adjacências na qual 𝑢𝑣 está armazenada. Por conta disso, nenhuma
das florestas maximais 𝐹𝑗 do grafo será afetada, e as três invariantes serão mantidas. A
Figura 2.3 mostra esse cenário.

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

Figura 2.3: As arestas pretas são da floresta maximal 𝐹𝐿 do grafo, enquanto as vermelhas são arestas
reserva. A aresta vermelha 𝑢𝑣 tracejada é reserva e está prestes a ser removida.

O caso da remoção de uma aresta 𝑢𝑣 da floresta é mais complexo. Se a aresta 𝑢𝑣 tem
nível 𝑖, remover 𝑢𝑣 sempre quebra uma componente de 𝐹𝑖 em duas árvores 𝑇𝑢 e 𝑇𝑣, de modo

2.3 | ROTINAS DA BIBLIOTECA DO GRAFO DINÂMICO

11

que a primeira contém o vértice 𝑢 e a segunda contém o vértice 𝑣. Neste caso, precisamos
verificar se existe alguma aresta reserva que ligue 𝑇𝑢 a 𝑇𝑣, para que possamos garantir que
a floresta 𝐹𝑖 continue maximal em 𝐺𝑖. Chamamos uma tal aresta de aresta substituta.

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Figura 2.4: As arestas pretas são da floresta maximal 𝐹𝑖 do grafo 𝐺𝑖, enquanto as vermelhas são
reservas de nível 𝑖. A aresta 𝑢𝑣 tracejada de nível 𝑖 está prestes a ser removida, assim ela pode ser
substituída por 𝑎𝑑 ou 𝑐𝑣, pois qualquer uma destas liga 𝑇𝑢 a 𝑇𝑣.

Para buscar uma aresta reserva de maneira o mais eficiente possível, o algoritmo
percorre cada vértice 𝑥 de 𝑇𝑢 e verifica se existe algum vértice 𝑦 na lista de adjacências
de 𝑥 de 𝑅𝑖 que esteja em 𝑇𝑣. Se 𝑦 ∈ 𝑉 (𝑇𝑣), então a aresta 𝑥𝑦 é uma aresta substituta de
nível 𝑖, bastando apenas acionar adicioneFD(𝐹𝑖, 𝑥, 𝑦) para reconectar 𝑇𝑢 e 𝑇𝑣, que
virariam uma única componente da floresta 𝐹𝑖, e acionar removaLA(𝑅𝑖, 𝑥, 𝑦) já que
𝑥𝑦 se tornará uma aresta da floresta.

É para tornar essa busca mais eficiente que introduzimos o fatiamento em níveis na
Seção 2.2.1. A intuição por trás deste fatiamento é que, quando uma aresta de nível 𝑖 da
floresta é removida, não é necessário buscar por substitutas nos níveis menores que 𝑖.
Isso quer dizer que começamos a busca no nível em questão, ou seja, em 𝑅𝑖, e caso não
haja nenhuma substituta em 𝑅𝑖, passamos a procurar em 𝑅𝑖+1, 𝑅𝑖+2, … , 𝑅𝐿. Quando não
encontramos uma substituta em um certo 𝑅𝑖, aproveitamos para rebaixar o nível de todas
as arestas percorridas em 𝑅𝑖 para 𝑖 − 1, de modo que não precisaremos mais percorrer essas
arestas quando removermos uma outra aresta de nível 𝑖, visto que elas já estariam em 𝑅𝑖−1.

Na verdade, antes de fazer esse rebaixamento, rebaixamos o nível de toda aresta de
nível 𝑖 de 𝑇𝑢 para 𝑖 − 1, de modo que 𝑇𝑢 ⊆ 𝐹𝑖−1. Rebaixar o nível dessas arestas significa
inseri-las em 𝐹𝑖−1, pois elas passam a ser de nível 𝑖 − 1. Esse rebaixamento e as inserções
em 𝐹𝑖−1 se tornam necessários para preservar a invariante (I). Ao mesmo tempo, para
manter também a invariante (III), esse processo deverá ser feito na menor das árvores
𝑇𝑢 e 𝑇𝑣. Seja 𝑇 = 𝑇𝑢 ∪ 𝑇𝑣 + 𝑢𝑣 . Denotando o número de vértices de uma árvore 𝑇 por
|𝑇 |, o algoritmo garantirá que |𝑇𝑢| ≤ |𝑇𝑣|. Pela invariante (III), temos que |𝑇 | ≤ 2𝑖, e como
|𝑇𝑢| + |𝑇𝑣| = |𝑇 |, então |𝑇𝑢| ≤ 2𝑖−1. Por isso, ao rebaixarmos todas as arestas de nível 𝑖 de
𝑇𝑢 para o nível 𝑖 − 1, preservamos a invariante (III).

Ao remover uma aresta de nível 𝑖 da floresta, na verdade temos que removê-la não só de
𝐹𝑖, mas também de 𝐹𝑖+1, … , 𝐹𝐿 pela invariante (II). Similarmente, quando encontramos uma
aresta substituta de nível 𝑖, temos que acrescentá-la não só a 𝐹𝑖, mas também a 𝐹𝑖+1, … , 𝐹𝐿

para manter as invariantes (I) e (II). A invariante (III) neste caso é mantida trivialmente.

12

2 | CONEXIDADE EM GRAFOS DINÂMICOS

Agora, veremos em detalhes o motivo de não precisarmos procurar uma substituta
em níveis menores que 𝑖 quando removemos uma aresta 𝑢𝑣 de nível 𝑖. Veja que, como
a aresta 𝑢𝑣 tem nível 𝑖, ela não pertence a 𝐹𝑖−1. Logo, pela invariante (II), 𝑢 e 𝑣 estão em
componentes distintas de 𝐹𝑖−1. Como 𝐹𝑖−1 é maximal em 𝐺𝑖−1, não existe aresta reserva de
nível ≤ 𝑖 − 1 que conecte as componentes 𝑇𝑢 e 𝑇𝑣. Portanto, só procuramos uma substituta
em níveis ≥ 𝑖. A Figura 2.5 torna a explicação mais intuitiva.

𝑇𝑢 𝑇𝑣

𝑖

𝑖 − 1

Figura 2.5: Os círculos verdes representam as componentes 𝑇𝑢 e 𝑇𝑣 da floresta 𝐹𝑖 do grafo 𝐺𝑖, enquanto
os círculos vermelhos representam as componentes da floresta 𝐹𝑖−1 do grafo 𝐺𝑖−1. Note que a aresta
reserva de nível 𝑖 − 1 mostrada não deveria existir, porque senão ela violaria a invariante (I). Portanto,
tais arestas de nível 𝑖 − 1 ligando componentes de 𝐹𝑖 (como a aresta vermelha) não existem e só é
necessário procurar arestas substitutas a partir de nível 𝑖 (como a aresta verde) para conectar 𝑇𝑢 e 𝑇𝑣.

A seguir, demonstraremos a remoção de uma aresta 𝑢𝑣 da floresta em uma série de
imagens. Na Figura 2.6, temos um grafo 𝐺 de 𝑛 = 10 vértices. Para facilitar, assumiremos
que, até o momento, só houve inserções de arestas.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

Figura 2.6: Um grafo 𝐺 de 10 vértices, onde as arestas pretas são da floresta 𝐹4, enquanto as vermelhas
são reservas. A aresta 𝑢𝑣 está prestes a ser removida. A floresta 𝐹4 de 𝐺 de cima contém todas as arestas
pretas recém-inseridas e as arestas vermelhas estão em 𝑅4. A floresta de baixo é a 𝐹3, com os vértices
isolados, e 𝑅3 também não tem nenhuma aresta.

Temos também que 𝑛 = 10 e ⌈lg 10⌉ = 4, logo o nível máximo 𝐿 é 4 e, consequentemente,
𝐺 = 𝐺4. Como todas as inserções só acontecem no nível 𝐿, no momento, em 𝐹4, só temos
arestas da floresta de nível 4, enquanto 𝐹3 contém apenas vértices isolados. Neste cenário,

2.3 | ROTINAS DA BIBLIOTECA DO GRAFO DINÂMICO

13

note que a remoção da aresta 𝑢𝑣 da floresta, representada por uma linha tracejada na figura,
acaba quebrando a única componente da floresta 𝐹4 em duas, 𝑇𝑢 e 𝑇𝑣. Como 𝐹4 é a floresta
maximal de nível máximo de 𝐺, então removemos somente a 𝑢𝑣 de 𝐹4.

O próximo passo é rebaixar todas as arestas de nível 4 em 𝑇𝑢 para o nível 3. Dessa
forma, as arestas de 𝑇𝑢 passam a estar em 𝐹3, como se pode ver na Figura 2.7, pois agora
elas passam a ser de nível 3.

Perceba que, devido à invariante (II), podemos ter arestas de diferentes níveis em uma
mesma floresta. Assim, percorrer todas as arestas de 𝑇𝑢 e selecionar apenas as de nível 𝑖
para rebaixar pode se tornar demorado quando o grafo possui uma grande quantidade
de vértices. A forma como o algoritmo procura as arestas de nível 𝑖 de 𝑇𝑢 será descrita
de maneira detalhada na Seção 2.4.3. No momento, só precisamos entender como este
rebaixamento funciona.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

Figura 2.7: Representação da remoção da aresta 𝑢𝑣 em 𝐺. As arestas de nível 4 de 𝑇𝑢 foram rebaixadas
para o nível 3, o que pode ser visto na floresta 𝐹3.

Como 𝑇𝑢 e 𝑇𝑣 em 𝐹4 ficaram separadas após a remoção de 𝑢𝑣, precisamos encontrar, se
existir, uma aresta reserva que possa reconectá-las. Note que percorrer todas as arestas
reserva para achar uma substituta que ligue 𝑇𝑢 a 𝑇𝑣 pode ser ineficiente quando temos
muitas arestas reserva. Por isso, explicaremos como implementar essa busca por uma
substituta de forma eficiente na Seção 2.4.4.

Na Figura 2.8, percorremos as arestas reserva em 𝑅4 que tenham uma das pontas em 𝑇𝑢.
Para cada aresta percorrida, verificamos se a outra ponta dela incide em algum vértice de
𝑇𝑣. Caso não incida, a aresta tem duas pontas em 𝑇𝑢, pois 𝐹4 era maximal antes da remoção
de 𝑢𝑣, e logo a aresta não é uma substituta. Então a rebaixamos para o nível 3, ou seja,
movemos de 𝑅4 para 𝑅3 as arestas percorridas que não são substitutas.

14

2 | CONEXIDADE EM GRAFOS DINÂMICOS

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Nível 3
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Figura 2.8: Representação da busca por uma aresta substituta em 𝑅4. As arestas reserva de nível 4
que estão tracejadas foram percorridas e estão prestes a ser removidas de 𝑅4, pois foram rebaixadas
para o nível 3, como se pode ver em 𝑅3.

Supondo que achamos a aresta 𝑎𝑑 como substituta de nível 4 antes de 𝑐𝑣, conectamos
𝑇𝑢 e 𝑇𝑣 chamando adicioneFD(𝐹4, a, d) e 𝑎𝑑 passa a ser uma aresta da floresta, ou seja,
é removida de 𝑅4. Como 𝑖 = 4 é o nível máximo do grafo nesse exemplo, não precisamos
chamar esta rotina para níveis superiores e então terminamos a execução do algoritmo.
A Figura 2.9 ilustra essa etapa do algoritmo.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Nível 3
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

Figura 2.9: Representação do grafo com a aresta substituta 𝑎𝑑 escolhida para conectar 𝑇𝑢 a 𝑇𝑣,
tornando-se uma aresta da floresta 𝐹4.

Quando removemos uma aresta da floresta de nível 𝑖 que quebra uma componente da
floresta 𝐹𝑖 em duas, 𝑇𝑢 e 𝑇𝑣, com |𝑇𝑢| ≤ |𝑇𝑣|, note que ao procurar por uma aresta substituta
não necessariamente percorreremos todas as arestas reserva em 𝑅𝑖 incidentes a 𝑇𝑢. Então

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

15

nem sempre todas as arestas reserva de 𝑅𝑖 incidentes a 𝑇𝑢 são rebaixadas, visto que o
algoritmo será finalizado no momento em que encontrarmos uma substituta.

O Programa 2.4 apresenta uma primeira versão da rotina removaGD. Ela contém uma
chamada à rotina substituaAresta que será explicada Seção 2.4.7. Alguns ajustes em
removaGD serão necessários devido à implementação da rotina substituaAresta. Em
particular, essa rotina deve percorrer as arestas da floresta e as arestas reserva de maneira
eficiente. Apresentaremos a estratégia usada para isso nas Seções 2.4.3 e 2.4.4.

Programa 2.4 removaGD(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 adjacentes do grafo 𝐺.
Efeito: Remove a aresta 𝑢𝑣 do grafo 𝐺.
1 i ←𝐺.nível[𝑢, 𝑣]
2 nível[u, v] ← NIL ⊳ marcamos 𝑢𝑣 como removida
3 L ←𝐺.nívelMax
4 se uv ∈ G.𝐹𝐿 então ⊳ 𝑢𝑣 é aresta da floresta
5 para j ← i até 𝐿 faça
6 removaFD(𝐺.𝐹𝑗, 𝑢, 𝑣) ⊳ remove 𝑢𝑣 da floresta 𝐹𝑗

7 substituaAresta(𝐺, 𝑖, 𝑢, 𝑣)
8 senão ⊳ 𝑢𝑣 é aresta reserva
9 removaLA(𝐺.𝑅𝑖, 𝑢, 𝑣) ⊳ remove 𝑢𝑣 do grafo 𝑅𝑖

Note que removaGD consome O(lg
2
𝑛) mais o tempo do substituaAresta, que será

descrito mais adiante.

2.4 Estrutura interna do grafo dinâmico
Para explicar a rotina substituaAresta, precisamos saber mais detalhes sobre como

as árvores de cada floresta 𝐹𝑖 são armazenadas. Apresentaremos esses detalhes a seguir.

2.4.1 Euler tour trees
A Seção 2.1 do artigo de Holm, de Lichtenberg e Thorup [4] propõe o uso de Euler

tour trees, que é uma técnica utilizada para representar uma árvore. Essa representação é
obtida de uma árvore 𝑇 substituindo-se cada aresta por dois arcos em sentidos opostos e
adicionando-se um laço a cada vértice, como pode ser visto na Figura 2.10.

O digrafo resultante de 𝑇 é Euleriano, ou seja, é conexo e o grau de entrada de cada
vértice é igual ao grau de saída. Consequentemente, há uma trilha que começa e termina
num mesmo vértice, passando por todos os arcos do digrafo somente uma vez. Tal trilha
é chamada de ciclo Euleriano.

16

2 | CONEXIDADE EM GRAFOS DINÂMICOS

𝑎

𝑏

𝑐

𝑑𝑒

𝑎

𝑏

𝑐

𝑑𝑒

Figura 2.10: À esquerda, temos uma árvore 𝑇 e, à direita, temos o digrafo Euleriano de 𝑇 .

A representação da árvore 𝑇 é basicamente a sequência de arcos que forma um ciclo
Euleriano do digrafo correspondente a 𝑇 . Denotamos cada arco pelo par de vértices que o
compõe. Dessa forma, se o arco parte de 𝑢 para 𝑣, ele será denotado como 𝑢𝑣. Para o caso
do laço em um vértice 𝑢, o arco será escrito como 𝑢𝑢. Assim, no exemplo da Figura 2.10,
um possível ciclo Euleriano poderia ser o seguinte:

ee ea aa ab bb ba ad dd dc cc cd da ae. (2.1)

A sequência dos arcos obtida de 𝑇 depende do vértice inicial e da ordem em que os
vizinhos de cada vértice são visitados. Uma tal sequência é chamada sequência Eule-
riana de 𝑇 .

Henzinger e King [3] propuseram armazenar uma sequência Euleriana em uma árvore
binária de busca balanceada, usando como chave a posição de cada elemento na sequência.
Tomando como base o nosso exemplo da árvore da Figura 2.10 e sua sequência Euleriana
dada em (2.1), podemos ilustrar uma possível árvore binária de busca balanceada para
ela na Figura 2.11.

𝑎𝑑

𝑎𝑏 𝑐𝑑

𝑑𝑐

𝑑𝑑 𝑐𝑐

𝑑𝑎

𝑎𝑒

𝑒𝑎

𝑒𝑒 𝑎𝑎

𝑏𝑏

𝑏𝑎

Figura 2.11: Uma árvore binária de busca balanceada para um ciclo Euleriano da árvore da Figura 2.10.
Note que se percorrermos os nós da árvore acima em inorder, obtemos a sequência Euleriana de (2.1).

Além disso, Henzinger e King [3] propuseram representar uma floresta pela coleção de
sequências Eulerianas de cada componente da floresta. Assim, é possível implementar as
operações de consulta de conexidade e de alteração na floresta com consumo esperado
de tempo O(lg 𝑛) (amortizado em nossa implementação), onde 𝑛 é o número de nós da
floresta. O algoritmo de Holm, de Lichtenberg e Thorup [4] para conexidade dinâmica
armazena cada floresta 𝐹𝑖 em uma estrutura dessas.

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

17

2.4.2 Nós das florestas
Os nós das árvores binárias de busca que representam as sequências Eulerianas que

são mantidas pelo algoritmo serão chamados de nós das florestas. Cada tal nó pode
representar um vértice 𝑢 do grafo, se o elemento armazenado no nó for 𝑢𝑢, ou pode
representar uma aresta 𝑢𝑣 do grafo, se o elemento armazenado no nó for 𝑢𝑣 ou 𝑣𝑢, com
𝑢 ≠ 𝑣. O primeiro tipo de nó é chamado de nó de vértice e o segundo, de nó de aresta.
Em nossa implementação, para cada floresta 𝐹𝑖, usaremos um mapa hash nó que armazena,
para cada par de vértices (𝑢, 𝑣), um apontador para o nó do elemento 𝑢𝑣 na floresta 𝐹𝑖,
se tal nó existe (ou NIL caso não exista).

Como representamos uma Euler tour tree por uma árvore binária de busca, cada nó 𝑝

possui apontadores para o filho esquerdo, filho direito e seu pai. Na descrição de nossa
implementação, denotamos tais apontadores por p.esq, p.dir e p.pai, respectivamente. O
motivo de usar o apontador para o pai é por conta da operação splay.

Além disso, para extrairmos as pontas de um nó de aresta 𝑝 que representa 𝑥𝑦, cha-
mamos (𝑥, 𝑦) ∶= p.vértices. Em um nó de vértice 𝑞 que representa 𝑥𝑥 , podemos extrair as
pontas do nó 𝑞 chamando (𝑥, 𝑥) ∶= q.vértices. Extrair as pontas dos nós será importante
como veremos em vários métodos posteriormente.

A seguir, descreveremos a funcionalidade de cada tipo de nó, bem como outros atributos
relevantes que lhe pertencem.

2.4.3 Nó de aresta
Como já observamos, na floresta 𝐹𝑖, há arestas de nível ≤ 𝑖. Para percorrermos as

arestas de nível 𝑖 de uma componente de 𝐹𝑖 eficientemente, os nós da floresta 𝐹𝑖 têm um
atributo extra booleano chamado éNível, que, em caso de um nó de aresta, indica se tal
aresta da floresta 𝐹𝑖 é de nível 𝑖.

Além disso, todos os nós da floresta armazenam um contador chamado arestasDeNível,
com a quantidade de nós em sua subárvore que têm o atributo éNível verdadeiro. Sempre
que modificarmos alguma das árvores binárias da floresta 𝐹𝑖, devemos manter este contador
com o valor correto. Na nossa implementação, a atualização deste contador é feita na
operação splay sempre que essa executa alguma rotação.

A rotina abaixo do Programa 2.5 é usada para alterar para 𝑏 o valor do atributo
éNível para uma aresta 𝑢𝑣. Ela é acionada sempre que adicionamos uma aresta ao grafo, e
também quando uma aresta é rebaixada. Tal rotina utiliza um método auxiliar chamado
atualizeArestasDeNível, descrito no Programa 2.6.

Programa 2.5 atualizeÉNível(𝐹, 𝑢, 𝑣, 𝑏)
Entrada: Recebe uma floresta 𝐹 , pontas 𝑢 e 𝑣 de uma aresta de 𝐹 , e um booleano 𝑏 .
Efeito: Atualiza o atributo éNível do nó 𝑢𝑣 da floresta 𝐹 e o contador arestasDeNível.
1 arestaUV ← F.nó[u, v]
2 splay(arestaUV)
3 arestaUV.éNível ← b
4 atualizeArestasDeNível(arestaUV)

18

2 | CONEXIDADE EM GRAFOS DINÂMICOS

Programa 2.6 atualizeArestasDeNível(p)
Entrada: Recebe um nó 𝑝.
Efeito: Atualiza o contador arestasDeNível de 𝑝.
1 c ← 0
2 se p.esq ≠ NIL então
3 c ← c + p.esq.arestasDeNível
4 se p.dir ≠ NIL então
5 c ← c + p.dir.arestasDeNível
6 se p.éNível então
7 c ← c + 1
8 p.arestasDeNível ← c

Como se pode ver, o Programa 2.6 consome tempo O(1). Já o Programa 2.5 consome
tempo amortizado O(lg 𝑛) por conta da operação splay. Veja que ambos os métodos não
alteram a floresta 𝐹𝑖, alteram apenas a forma de uma das árvores binárias que a representam.
Portanto, todas as três invariantes são preservadas.

Usando o mesmo exemplo da Figura 2.11 na Seção 2.4.1, podemos ilustrar como estaria
o atributo arestasDeNível de cada nó na árvore. Na nossa implementação, os vértices são
identificados por inteiros de 1 a 𝑛 e, para uma aresta 𝑢𝑣, usamos o atributo éNível apenas
para o nó de 𝑢𝑣 com 𝑢 < 𝑣.

𝑎𝑑

4

𝑎𝑏

1
𝑐𝑑

2

𝑑𝑐

0

𝑑𝑑

0
𝑐𝑐

0

𝑑𝑎

1
𝑎𝑒

1

𝑒𝑎

0
𝑒𝑒

0
𝑎𝑎

0

𝑏𝑏

0

𝑏𝑎

0

Figura 2.12: Árvore de uma das componentes da floresta 𝐹𝑖, onde nós pintados em vermelho indicam
arestas de nível 𝑖, e logo possuem o atributo éNível verdadeiro. Embaixo de cada nó temos o valor do
contador arestasDeNível.

Na Figura 2.12, note que os nós ab e ba representam a mesma aresta. Assim, para
evitar a duplicação do atributo éNível, optamos por colocar este atributo como verdadeiro
somente nos nós de aresta cujos vértices estão em ordem lexicográfica. Então, no nosso
exemplo, nós do tipo ba, da, dc e ea vão ter este atributo falso.

Lembre-se que a remoção de uma aresta 𝑢𝑣 de nível 𝑖 da floresta 𝐹𝑖 quebra uma compo-
nente de 𝐹𝑖 em duas, 𝑇𝑢 e 𝑇𝑣. Sendo 𝑇𝑢 a menor das duas, a rotina substituaAresta realiza
o rebaixamento das arestas de nível 𝑖 de 𝑇𝑢 para 𝑖 − 1. Para fazer isso de forma eficiente,
introduzimos um método auxiliar chamado procureArestaDeNível. Esse método utiliza
o atributo arestasDeNível para encontrar um a um, numa árvore da floresta 𝐹𝑖, os nós
de arestas de nível 𝑖.

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

19

Programa 2.7 procureArestaDeNível(𝑝)
Entrada: Recebe um nó 𝑝 de uma floresta com o contador arestasDeNível > 0.
Saída: Devolve um nó de aresta da subárvore do nó com éNível verdadeiro.
1 se p.éNível então
2 retorne p
3 se p.esq ≠ NIL e p.esq.arestasDeNível > 0 então
4 retorne procureArestaDeNível(p.esq)
5 senão
6 retorne procureArestaDeNível(p.dir)

Veja que o Programa 2.7 não altera o grafo, e, portanto, as invariantes são preservadas.
Como a Euler tour tree é balanceada, então o consumo de tempo de cada percurso é
O(lg 𝑛) (amortizado em nossa implementação, onde sempre realizamos um splay no nó
devolvido). Assim, se temos 𝑘 arestas de nível 𝑖 da árvore a serem rebaixadas, então a
busca por essas 𝑘 arestas custará tempo O(𝑘 lg 𝑛).

A rotina procureArestaDeNível será usada na rotina substituaAresta, que será
descrita na Seção 2.4.7.

2.4.4 Nó de vértice
Na rotina substituaAresta, para percorrermos as arestas reserva de nível 𝑖 incidentes

a vértices da árvore 𝑇𝑢 em busca de uma aresta substituta, cada nó da floresta 𝐹𝑖 possui um
booleano chamado incideArestaReservaDeNível, que é verdadeiro somente se o nó é um
nó de vértice, e o vértice em questão é ponta de alguma aresta reserva de nível 𝑖. Dessa
forma, se 𝑢𝑣 é aresta reserva de nível 2, então os nós de vértice de 𝑢 e de 𝑣 em 𝐹2 terão
o atributo incideArestaReservaDeNível como verdadeiro.

Cada nó das florestas também guardará um contador arestasReservasDeNível, que
armazena a quantidade de nós em sua subárvore com o atributo incideArestaReservaDeNível
verdadeiro. Esse contador deve ser mantido atualizado quando é feita qualquer alteração
em uma das árvores binárias que representam as florestas. Na nossa implementação, a
atualização é feita na operação splay, sempre que essa executa uma rotação.

O campo incideArestaReservaDeNível de um nó de vértice 𝑢 pode mudar de valor quando
houver inserções e remoções de arestas reserva que possuem como uma da suas pontas o
vértice 𝑢. Portanto, mostraremos dois métodos, incrementeArestasReservasDeNível
e decrementeArestasReservasDeNível, que modificam este campo e atualizam o con-
tador arestasReservasDeNível chamando atualizeArestasReservasDeNível, descrito
no Programa 2.10 abaixo.

O método decrementeArestasReservasDeNível do Programa 2.8 atualiza o campo
incideArestaReservaDeNível de um nó de vértice 𝑢 para falso quando ele não tem mais
elementos em sua lista de adjacências das arestas reserva, isto é, quando não há mais
nenhuma aresta reserva do nível da floresta incidente nele. A assinatura R[u] retorna o
conjunto de vizinhos da lista de adjacências de 𝑢.

20

2 | CONEXIDADE EM GRAFOS DINÂMICOS

Programa 2.8 decrementeArestasReservasDeNível(𝐹, 𝑅, 𝑢)
Entrada: Recebe um vértice 𝑢 da floresta 𝐹 e uma lista de adjacências 𝑅.
Efeito: Atualiza o campo incideArestaReservaDeNível para falso se necessário.
1 vérticeU ← F.nó[u, u]
2 se R[u] = ∅ então
3 splay(vérticeU)
4 vérticeU.incideArestaReservaDeNível ← falso
5 atualizeArestasReservasDeNível(vérticeU)

Já o método incrementeArestasReservasDeNível do Programa 2.9 atualiza o atri-
buto incideArestaReservaDeNível de um nó de vértice 𝑢 para verdadeiro quando adicionamos
um vértice 𝑣 na lista de adjacências de 𝑢 e 𝑣 é o primeiro elemento de sua lista de adjacências,
pois isso indica que 𝑢 passa a ser incidente à aresta reserva 𝑢𝑣.

Programa 2.9 incrementeArestasReservasDeNível(𝐹, 𝑅, 𝑢)
Entrada: Recebe um vértice 𝑢 da floresta 𝐹 e uma lista de adjacências 𝑅.
Efeito: Atualiza o campo incideArestaReservaDeNível para verdadeiro se necessário.
1 vérticeU ← F.nó[u, u]
2 se |R[u]| = 1 então
3 splay(vérticeU)
4 vérticeU.incideArestaReservaDeNível ← verdadeiro
5 atualizeArestasReservasDeNível(vérticeU)

Programa 2.10 atualizeArestasReservasDeNível(𝑝)
Entrada: Recebe um nó 𝑝.
Efeito: Atualiza o contador arestasReservasDeNível de 𝑝.
1 c ← 0
2 se p.esq ≠ NIL então
3 c ← c + p.esq.arestasReservasDeNível
4 se p.dir ≠ NIL então
5 c ← c + p.dir.arestasReservasDeNível
6 se p.incideArestaReservaDeNível então
7 c ← c + 1
8 p.arestasReservasDeNível ← c

O Programa 2.10 consome tempo O(1). Já os Programas 2.8 e 2.9 consomem tempo
O(lg 𝑛), amortizado em nossa implementação por conta das operações splay. Como estes
três métodos não alteram a floresta 𝐹𝑖, alteram apenas a forma de uma das árvores binárias
que a representam, então as três invariantes são preservadas.

Usando o mesmo exemplo da Figura 2.11 na Seção 2.4.1, podemos ilustrar como estaria
o atributo arestasReservasDeNível de cada nó na árvore.

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

21

𝑎𝑑

5

𝑎𝑏

3
𝑐𝑑

2

𝑑𝑐

2

𝑑𝑑

1
𝑐𝑐

1

𝑑𝑎

0
𝑎𝑒

0

𝑒𝑎

2
𝑒𝑒

1
𝑎𝑎

1

𝑏𝑏

1

𝑏𝑎

0

Figura 2.13: Árvore de uma das componentes da floresta 𝐹𝑖, onde nós pintados em verde indicam nós de
vértices com o atributo incideArestaReservaDeNível verdadeiro. No nosso exemplo, todos os vértices são
ponta de alguma aresta reserva de nível 𝑖. Embaixo de cada nó temos o contador arestasReservasDeNível.

No substituaAresta acionado na floresta 𝐹𝑖, após rebaixarmos as arestas de nível 𝑖
de 𝑇𝑢, precisamos procurar por uma aresta substituta. Para isso, precisamos buscar por
uma aresta reserva de nível 𝑖, com uma ponta em 𝑇𝑢 e outra em 𝑇𝑣, para que consigamos
reconectar as duas componentes de 𝐹𝑖 separadas pela remoção de 𝑢𝑣.

Para resolver este problema de maneira eficiente, usa-se uma estratégia semelhante
à que usamos para buscar arestas de nível 𝑖 em 𝑇𝑢. Introduzimos um método auxiliar
chamado procureNóIncideArestaReservaDeNível, que devolve um vértice de 𝑇𝑢 que
incide em alguma aresta reserva de nível 𝑖. Assim, podemos percorrer cada vizinho desse
vértice em 𝑅𝑖 para verificar se a aresta entre eles liga 𝑇𝑢 a 𝑇𝑣.

Programa 2.11 procureNóIncideArestaReservaDeNível(𝑝)
Entrada: Recebe um nó da floresta 𝑝 com o contador arestasReservasDeNível > 0.
Saída: Devolve um nó de vértice da subárvore de 𝑝 com incideArestaReservaDeNível
verdadeiro.
1 se p.incideArestaReservaDeNível então
2 retorne p
3 se p.esq ≠ NIL e p.esq.arestasReservasDeNível > 0 então
4 retorne procureNóIncideArestaReservaDeNível(p.esq)
5 senão
6 retorne procureNóIncideArestaReservaDeNível(p.dir)

Veja que o Programa 2.11 não altera o grafo, e, portanto, as invariantes são preservadas.
Como a Euler tour tree é balanceada, o consumo de tempo do Programa 2.11 é O(lg 𝑛)

(amortizado em nossa implementação, que sempre aciona a rotina splay no nó devolvido).

A rotina procureNóIncideArestaReservaDeNível será usada na rotina substitu-
aAresta, que será descrita na Seção 2.4.7.

2.4.5 Versão completa da rotina de adição de arestas
Nesta seção, apresentamos uma versão completa da rotina adicioneGD mostrada na

Seção 2.3, para incorporar os atributos descritos nas seções anteriores.

22

2 | CONEXIDADE EM GRAFOS DINÂMICOS

Programa 2.12 adicioneGD(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺, com 𝑢 < 𝑣.
Efeito: Adiciona a aresta 𝑢𝑣 no grafo 𝐺.
1 L ←𝐺.nívelMax
2 𝐺.nível[𝑢, 𝑣] ←𝐿

3 se conectadosFD(𝐺.𝐹𝐿, 𝑢, 𝑣) então ⊳ 𝑢𝑣 é aresta reserva
4 adicioneLA(𝐺.𝑅𝐿, 𝑢, 𝑣)
5 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑢)
6 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑣)
7 senão
8 adicioneFD(𝐺.𝐹𝐿, 𝑢, 𝑣)
9 atualizeÉNível(𝐺.𝐹𝐿, 𝑢, 𝑣, verdadeiro)

Nesta versão final, veja que as linhas 5 e 6 são necessárias para que os campos incideA-
restaReservaDeNível e arestasReservasDeNível dos nós de vértice 𝑢 e 𝑣 estejam corretos. Já
a linha 9 define o atributo éNível do nó de aresta 𝑢𝑣 como verdadeiro em 𝐹𝐿, quando ela é
aresta da floresta, e atualiza o campo arestasDeNível de todos os nós da floresta.

Atualizamos os atributos desses nós que descrevemos para fazermos a remoção eficiente
de arestas, cuja rotina será descrita também com ajustes na Seção 2.4.6. Note que o método
adicioneGD do Programa 2.12 continua tendo o mesmo consumo de tempo do Programa 2.3
após esses ajustes, ou seja, O(lg 𝑛) amortizado.

2.4.6 Versão completa da rotina de remoção de arestas
Nessa seção, apresentamos uma versão completa da rotina removaGD apresentada no

Programa 2.4, incorporando os atributos descritos na Seção 2.4.4.

Programa 2.13 removaGD(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices adjacentes 𝑢 e 𝑣 do grafo 𝐺.
Efeito: Remove a aresta 𝑢𝑣 do grafo 𝐺.
1 L ←𝐺.nívelMax
2 i ←𝐺.nível[𝑢, 𝑣]
3 𝐺.nível[𝑢, 𝑣] ← NIL ⊳ marcamos 𝑢𝑣 como removida
4 se uv ∈ G.𝐹𝐿 então ⊳ 𝑢𝑣 é aresta da floresta
5 para j ← i até L faça
6 removaFD(𝐺.𝐹𝑗, 𝑢, 𝑣)
7 substituaAresta(𝐺, 𝑖, 𝑢, 𝑣)
8 senão ⊳ 𝑢𝑣 é aresta reserva
9 removaLA(𝐺.𝑅𝑖, 𝑢, 𝑣)

10 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑢)
11 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑣)

A diferença entre as duas versões de removaGD é que a segunda tem as linhas 10 e
11 a mais. Tais linhas são necessárias para que o campo incideArestaReservaDeNível e o
contador arestasReservasDeNível dos nós estejam corretos, visto que, ao remover uma

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

23

aresta reserva, precisamos verificar se os vértices incidentes a ela ainda são incidentes
a alguma outra aresta reserva de 𝑅.

Agora falta descrever a rotina substituaAresta. Da mesma forma que a primeira
versão, nesta segunda versão removaGD também consumirá tempo amortizado O(lg

2
𝑛)

mais o custo do substituaAresta.

2.4.7 Rotina de substituição de aresta
A rotina de substituição da aresta substituaAresta está descrita no Programa 2.14

abaixo, onde usaremos vários dos métodos auxiliares apresentados nas Seções 2.4.3 e 2.4.4.
Além disso, usaremos dois métodos auxiliares chamados rebaixeNívelDaAresta e tes-
teSubstituta, que serão explicados de maneira detalhada no momento em que estivermos
explicando cada trecho do código de substituaAresta. O atributo tam, que existe em
todos os nós da floresta, guarda o número de nós na subárvore de cada nó.

Programa 2.14 substituaAresta(𝐺, 𝑖, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺, e o nível 𝑖 da aresta removida 𝑢𝑣.
Efeito: Adiciona uma aresta substituta no grafo, se ela existir.
1 L ←𝐺.nívelMax
2 para j ← i até 𝐿 faça
3 𝑇𝑢 ← splay(𝐺.𝐹𝑗 .nó[𝑢, 𝑢]) ⊳ torna o nó 𝑢𝑢 raiz de 𝑇𝑢

4 𝑇𝑣 ← splay(𝐺.𝐹𝑗 .nó[𝑣, 𝑣]) ⊳ torna o nó 𝑣𝑣 raiz de 𝑇𝑣

5 se 𝑇𝑢.tam > 𝑇𝑣.tam então
6 𝑇𝑢 ↔ 𝑇𝑣

7 enquanto 𝑇𝑢.arestasDeNível > 0 faça
8 nóXY ← procureArestaDeNível(𝑇𝑢)
9 𝑇𝑢 ← splay(nóXY)

10 rebaixeNívelDaAresta(𝐺, nóXY, j)
11 enquanto 𝑇𝑢.arestasReservasDeNível > 0 faça
12 nóXX ← procureNóIncideArestaReservaDeNível(𝑇𝑢)
13 𝑇𝑢 ← splay(nóXX)
14 (𝑥 , 𝑥) ← nóXX.vértices
15 para 𝑦 ∈ 𝐺.𝑅𝑗 [𝑥] faça
16 se testeSubstituta(𝐺, 𝑥, 𝑦, 𝑗) então
17 retorne

Para explicar o substituaAresta do Programa 2.14, descreveremos a função de cada
trecho do código. Vamos assumir de início que estamos aplicando as operações de remoção
em um grafo 𝐺 de 𝑛 vértices. Lembre-se que, ao removermos uma aresta 𝑢𝑣 da floresta
de nível 𝑖, precisamos procurar uma substituta partindo de 𝑅𝑖, e se não encontrarmos,
passamos a buscar em 𝑅𝑖+1, … , 𝑅𝐿. A linha 2 faz exatamente essa iteração sobre os níveis 𝑖
até 𝐿. Suponha que estamos na iteração 𝑗 da linha 2, ou seja, já removemos 𝑢𝑣 de 𝐹𝑖, … , 𝐹𝑗−1

e não encontramos aresta substituta em 𝑅𝑖, … , 𝑅𝑗−1.

Nas linhas 3 e 4, obtemos as árvores 𝑇𝑢 e 𝑇𝑣, que foram derivadas da floresta 𝐹𝑗 , já que
uma componente desta foi quebrada em duas após a remoção de 𝑢𝑣. As operações splay
puxam os nós 𝑢 e 𝑣 para raiz de 𝑇𝑢 e 𝑇𝑣, respectivamente. As linhas 5 e 6 garantem que

24

2 | CONEXIDADE EM GRAFOS DINÂMICOS

|𝑇𝑢| ≤ |𝑇𝑣| como já discutido na Seção 2.3.4.

Nas linhas 7 a 10, realizamos o processo de rebaixar as arestas de 𝑇𝑢 de nível 𝑗 . Na linha 7,
temos um laço que terminará quando todas as arestas de nível 𝑗 tiverem sido rebaixadas, isto
é, quando o contador arestasDeNível do nó raiz de 𝑇𝑢 estiver nulo. Na linha 8, utilizamos o
método auxiliar procureArestaDeNível, que retornará um nó de aresta de nível 𝑗 , ou seja,
que possui o éNível verdadeiro. Para cada nó de aresta retornado, acionamos splay nele.
Em seguida, o rebaixamos chamando o método rebaixeNívelDaAresta, descrito abaixo.

Programa 2.15 rebaixeNívelDaAresta(𝐺, 𝑝, 𝑗)
Entrada: Recebe o grafo 𝐺, um nó de aresta 𝑝 da floresta 𝐹𝑗 que é raiz de uma árvore e
tem nível 𝑗 .
Efeito: Rebaixa o nível do nó de aresta 𝑝.
1 (𝑥 , 𝑦) ← p.vértices
2 𝐺.nível[𝑥, 𝑦] ← j − 1
3 atualizeÉNível(𝐺.𝐹𝑗, 𝑥, 𝑦, falso)
4 adicioneFD(𝐺.𝐹𝑗−1, 𝑥, 𝑦)
5 atualizeÉNível(𝐺.𝐹𝑗−1, 𝑥, 𝑦, verdadeiro)

No Programa 2.15, atualizamos o nível do nó de aresta 𝑥𝑦 de 𝑗 para 𝑗 − 1. Note que o
nó 𝑝 é raiz de sua árvore pois foi feito um splay neste nó antes da chamada a rebaixeNí-
velDaAresta, na linha 9 do Programa 2.14. Ademais, como rebaixamos 𝑥𝑦 de 𝐹𝑗 para 𝐹𝑗−1,
então em 𝐹𝑗 atualizamos o seu atributo éNível para falso, e em 𝐹𝑗−1 atualizamos este atributo
para verdadeiro. Veja que rebaixeNívelDaAresta consome tempo amortizado 𝑂(lg 𝑛).

Voltando ao Programa 2.14, nas linhas 11 a 17, procuramos por uma aresta substituta
de nível 𝑗 . Similarmente à linha 7, a linha 11 é um laço que terminará quando não existirem
mais arestas reserva de nível 𝑗 incidentes a 𝑇𝑢 (ou seja, quando o contador arestasReservas-
DeNível do nó raiz de 𝑇𝑢 estiver nulo) ou quando achamos uma aresta substituta.

Na linha 12, acionamos procureNóIncideArestaReservaDeNível, que retornará um
nó de vértice 𝑥𝑥 que incide em alguma aresta reserva de nível 𝑗 . Depois, acionamos splay
em 𝑥𝑥 . Na linha 14, obtemos o vértice 𝑥 do nó 𝑥𝑥 e percorremos todos os vizinhos 𝑦 na
lista de adjacências de 𝑥 na linha 15, pois queremos testar se 𝑥𝑦 é uma aresta substituta.

Para isso, chamamos o método auxiliar testeSubstituta na linha 16, descrito no
Programa 2.16. Como o nome sugere, o método testa se 𝑥𝑦 é uma aresta substituta, devol-
vendo verdadeiro se 𝑥𝑦 for e falso caso contrário. Quando o método devolve verdadeiro,
chegamos à linha 17 do Programa 2.14, terminando o algoritmo. Caso contrário, conti-
nuamos percorrendo os vizinhos 𝑦 da lista de adjacências de 𝑥 e chamando o mesmo
método várias vezes.

2.4 | ESTRUTURA INTERNA DO GRAFO DINÂMICO

25

Programa 2.16 testeSubstituta(𝐺, 𝑥, 𝑦, 𝑗)
Entrada: Recebe o grafo 𝐺, as pontas 𝑥 e 𝑦 do nó 𝑥𝑦 e o nível 𝑗 .
Saída: Devolve verdadeiro se a aresta 𝑥𝑦 é substituta e falso caso contrário.
1 removaLA(𝐺.𝑅𝑗, 𝑥, 𝑦)
2 decrementeArestasReservasDeNível(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑥)
3 decrementeArestasReservasDeNível(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑦)
4 se conectadosGD(𝐺, 𝑥, 𝑦) então ⊳ a aresta 𝑥𝑦 não é substituta
5 𝐺.nível[𝑥, 𝑦] ← j − 1
6 adicioneLA(𝐺.𝑅𝑗−1, 𝑥, 𝑦)
7 incrementeArestasReservasDeNível(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑥)
8 incrementeArestasReservasDeNível(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑦)
9 retorne falso

10 senão ⊳ a aresta 𝑥𝑦 é substituta
11 L ←𝐺.nívelMax
12 para k ← j até 𝐿 faça
13 adicioneFD(𝐺.𝐹𝑘, 𝑥, 𝑦)
14 se x > y então
15 x ↔ y
16 atualizeÉNível(𝐺.𝐹𝑗, 𝑥, 𝑦, verdadeiro)
17 retorne verdadeiro

No Programa 2.16, a linha 1 remove a aresta reserva 𝑥𝑦 de 𝑅𝑗 , independentemente se
tal aresta é substituta ou não, pois ou ela será rebaixada, ou será uma aresta substituta,
que será incluída em 𝐹𝑗 . Se 𝑥𝑦 não é substituta, então ela é rebaixada para 𝑅𝑗−1, como
visto na Seção 2.3.4. Se ela é substituta, então se tornará uma aresta da floresta de nível 𝑗
conectando 𝑇𝑢 a 𝑇𝑣.

As linhas 2 e 3 atualizam os atributos dos nós de vértice 𝑥 e 𝑦, visto que removemos
𝑥𝑦 de 𝑅𝑗 . As linhas 4 a 9 englobam o caso em que os vértices 𝑥 e 𝑦 estão em 𝑇𝑢, isto é,
quando conectadosGD(G, x, y) retorna verdadeiro. Isso quer dizer que 𝑥𝑦 não é uma
aresta substituta, e por isso precisamos rebaixá-la de 𝑅𝑗 para 𝑅𝑗−1, além de atualizar os atri-
butos dos nós de vértice 𝑥 e 𝑦 em 𝐹𝑗−1 ao acionar incrementeArestasReservasDeNível.
Devolvemos falso porque, neste caso, 𝑥𝑦 não é aresta substituta.

Veja que conectadosGD(G, x, y) só devolverá falso quando 𝑥 está em 𝑇𝑢 e 𝑦 está
em 𝑇𝑣, pois assim os dois vértices estariam em componentes separadas da floresta 𝐹𝑗 . Este
caso, abordado nas linhas 10 a 17 do Programa 2.16, mostra que encontramos 𝑥𝑦 como
uma aresta substituta, e finalizamos o algoritmo incluindo 𝑥𝑦 em todas as florestas 𝐹𝑘, para
𝑘 = 𝑗, … , 𝐿, para manter a invariante (II). Além disso, se a aresta substituta encontrada é
de nível 𝑗 , precisamos atualizar o atributo éNível do nó desta aresta em 𝐹𝑗 para verdadeiro
quando a adicionamos na floresta 𝐹𝑗 , como acontece na linha 16. Por fim, devolvemos
verdadeiro pois, neste caso, achamos uma aresta substituta.

Veja que, no Programa 2.16, o trecho que compreende as linhas 4 a 9 possui custo
amortizado O(lg 𝑛). Isso quer dizer que, enquanto as arestas que estamos testando não
forem substitutas, o método testeSubstituta será acionado várias vezes com esse custo
de tempo. No momento em que encontrarmos uma substituta, testeSubstituta será
acionado uma única vez e consumirá tempo amortizado O(lg

2
𝑛) por causa das linhas 12

26

2 | CONEXIDADE EM GRAFOS DINÂMICOS

e 13, e assim o algoritmo será finalizado.

Agora, explicaremos o custo da rotina substituaAresta. No pior caso, uma execução
desta rotina pode consumir muito tempo. Por exemplo, se o grafo já está com 𝑚 = Θ(𝑛2)

arestas inseridas, todas de nível 𝐿, pode ocorrer uma remoção que aciona o substituaA-
resta e que acarreta o rebaixamento de Θ(𝑛2) arestas, a um custo Ω(𝑛2 lg 𝑛).

No entanto, para chegar a essa situação, teriam ocorrido Θ(𝑛2) inserções, cada uma
com um custo bem mais barato, de O(lg 𝑛). Isso sugere que possivelmente uma análise
amortizada do custo das operações leve a um custo por operação mais baixo.

Agora mostraremos que, se ocorreram 𝑡 operações de inserção e remoção de arestas
desde a criação do grafo, então o custo total de tal sequência de operações é O(𝑡 lg

2
𝑛), o

que resulta em um custo amortizado por operação de O(lg
2
𝑛).

Para tanto, cada inserção será responsável não apenas pelo custo da inserção de uma
aresta 𝑒, mas também pelo custo de todos os rebaixamentos sofridos por 𝑒 no decorrer de
todas as remoções que ocorrerem após a inserção de 𝑒. Isso quer dizer que a inserção da
aresta 𝑒 vai pagar por cada execução das linhas 7 a 10 do Programa 2.14 e das linhas 4 a 9

do Programa 2.16 que processa a aresta 𝑒. Como a inserção custa O(lg 𝑛) e essas linhas
custam O(lg 𝑛) e são executadas O(lg 𝑛) vezes, pois 𝑒 pode ser rebaixada no máximo ⌈lg 𝑛⌉

vezes, o custo pago por uma inserção é O(lg
2
𝑛).

Já uma remoção de aresta, executada pelo Programa 2.13, custa O(lg
2
𝑛) mais o custo

do substituaAresta. O custo do substituaAresta é O(lg2 𝑛) excluindo-se as execuções
das linhas 7 a 10 do Programa 2.14, assim como as linhas 4 a 9 do Programa 2.16. Des-
considerando estas linhas onde ocorrem rebaixamentos de arestas, cada iteração do para
da linha 2 do Programa 2.14 possui custo O(lg 𝑛) enquanto uma aresta substituta não for
encontrada, ou seja, excetuando as linhas 10 a 17 do Programa 2.16.

No momento em que encontrarmos uma substituta, as linhas 10 a 17 do Programa 2.16
serão executadas uma única vez e consumirão tempo O(lg

2
𝑛) devido às linhas 12 e 13,

terminando o algoritmo logo em seguida. Assim, como a linha 2 do Programa 2.14 pode
ser executada no máximo O(lg 𝑛) vezes, temos que substituaAresta consome tempo
amortizado O(lg

2
𝑛) por operação de remoção.

Com isso, concluímos que o custo total de uma sequência de 𝑡 inserções e remoções é
O(𝑡 lg

2
𝑛), e assim cada inserção e remoção consome tempo amortizado O(lg

2
𝑛).

27

Capítulo 3

Algoritmo para MSF decremental

Neste capítulo, estudaremos o problema da árvore geradora mínima em grafos dinâ-
micos. Dado um grafo conexo 𝐺 com um custo associado a cada uma de suas arestas, o
problema da árvore geradora mínima consiste em determinar uma árvore geradora de 𝐺

com custo mínimo, onde o custo de uma árvore é a soma dos custos de suas arestas. Como
estamos interessados em grafos dinâmicos, é natural remover a restrição de que o grafo
seja conexo, e neste caso considerar florestas geradoras maximais de custo mínimo (MSF,
do inglês, minimum spanning forest). Chamamos um grafo com um custo associado a
cada aresta de grafo ponderado.

O problema da árvore geradora mínima em grafos ponderados (conexos) estáticos
pode ser resolvido eficientemente, por exemplo, pelos algoritmos de Kruskal e de Prim. O
algoritmo de Kruskal utiliza uma estrutura de dados clássica conhecida como union-find,
enquanto que o algoritmo de Prim utiliza uma fila de prioridades. Não há na literatura
uma versão destes algoritmos para grafos dinâmicos. Isso talvez se deva à característica
essencialmente sequencial destes algoritmos, que modificam suas estruturas internas
conduzidos por uma ordem de eventos. Uma alteração no grafo poderia levar a uma
alteração em toda a sequência de eventos nesses algoritmos a partir de um certo ponto, e
com isso não há uma versão eficiente deles que acomode alterações no grafo.

Por outro lado, Holm, de Lichtenberg e Thorup [4] propuseram uma adaptação do seu
algoritmo para conexidade em grafos dinâmicos, apresentado no Capítulo 2, para que este
mantenha, de maneira eficiente, uma floresta geradora maximal de custo mínimo em um
grafo ponderado que pode sofrer remoções de arestas. Ou seja, eles propuseram um algo-
ritmo que resolve de maneira eficiente o problema que chamamos de MSF decremental.
Neste capítulo, descreveremos esse algoritmo, que é uma adaptação do algoritmo descrito
no Capítulo 2 para que este passe a resolver o problema da MSF decremental.

3.1 Biblioteca da MSF decremental
Implementar o algoritmo decremental para florestas geradoras maximais de custo

mínimo resume-se à construção da seguinte biblioteca de forma eficiente:

• MSFDecremental(𝑛, 𝐸): contrói e devolve um grafo ponderado 𝐺 com 𝑛 vértices

28

3 | ALGORITMO PARA MSF DECREMENTAL

e as arestas ponderadas dadas no conjunto 𝐸;

• consultePesoMSF(𝐺): devolve o peso de uma MSF do grafo ponderado 𝐺;

• removaMSF(𝐺, 𝑢, 𝑣): remove a aresta 𝑢𝑣 do grafo ponderado 𝐺.

Note que, diferente da biblioteca do algoritmo de conexidade em grafos dinâmicos,
apresentada na Seção 2.3, na MSF decremental não temos um método equivalente a adi-
cioneGD disponível para o usuário. Em nossa implementação [7], para criarmos um grafo
𝐺 de 𝑛 vértices e 𝑚 arestas ponderadas dadas em 𝐸, acionamos MSFDecremental(𝑛, 𝐸),
onde criamos, como no problema da conexidade em grafos dinâmicos, ⌈lg 𝑛⌉ florestas
dinâmicas e ⌈lg 𝑛⌉ listas de adjacências, com 𝑛 vértices isolados. Em seguida, ordenamos e
inserimos as 𝑚 arestas de 𝐸 em ordem crescente de peso, usando uma biblioteca pronta do
C++ para ordená-las, que consome tempo esperado O(𝑚 lg 𝑛). Estas 𝑚 arestas são inseridas
uma a uma acionando uma rotina que chamamos de adicioneMSF(u, v, w), onde 𝑢 e
𝑣 são pontas da aresta e 𝑤 é o peso dela.

A rotina adicioneMSF é acionada somente dentro do construtor e tem custo amortizado
O(lg 𝑛). Ela é uma versão da adicioneGD que acomoda os pesos das arestas como veremos
adiante. Por ser uma rotina privada, ou seja, não está disponível para o usuário, após a
inserção destas arestas, não são permitidas mais operações de inserção, somente de remoção
de arestas. Para o usuário, então, só estarão disponíveis as rotinas consultePesoMSF e
removaMSF. Discutiremos brevemente a versão totalmente dinâmica no Capítulo 5, que
inclui a rotina de adição de arestas para o usuário.

O construtor MSFDecremental, devido à ordenação de arestas e à chamada ao mé-
todo adicioneMSF, possui consumo de tempo O(𝑚 lg 𝑛). Já a rotina consultePesoMSF
possui consumo de tempo O(1). Como estes dois métodos são mais simples, passaremos
brevemente sobre eles, e detalharemos mais a rotina removaMSF, que possui a rotina
auxiliar substituaArestaMSF implementada de maneira diferente do substituaAresta
do algoritmo de conexidade em grafos dinâmicos.

Usaremos várias definições já apresentadas no algoritmo de conexidade em grafos
dinâmicos, incluindo as mesmas invariantes apresentadas na Seção 2.2.1, os mesmos
tipos de arestas da Seção 2.2.2 e nós das florestas apresentados na Seção 2.4.2. A seguir,
apresentaremos as rotinas da MSF decremental e alguns ajustes a serem feitos.

3.1.1 Listas de adjacências
Na Seção 2.2.2, apresentamos a biblioteca de listasDeAdjacências, onde usamos

um mapa hash para inserir ou remover um vértice 𝑣 da lista de 𝑢, além de percorrer os
vizinhos da lista de 𝑢. No algoritmo da MSF decremental, quando removemos uma aresta
de nível 𝑖 da floresta 𝐹𝑖, uma componente desta será quebrada em duas, 𝑇𝑢 e 𝑇𝑣, da mesma
forma que no algoritmo de conexidade em grafos dinâmicos. A diferença é que, no caso da
MSF decremental, precisamos buscar por uma aresta substituta que tenha o menor peso
e que ligue 𝑇𝑢 a 𝑇𝑣. Não podemos simplesmente percorrer todos os vizinhos 𝑦 de cada
vértice 𝑥 em 𝑇𝑢, verificar se 𝑥𝑦 reconecta as componentes separadas e se é de menor peso
dentre todas as substitutas, já que isso seria ineficiente.

Assim, fica claro que seria bom percorrer as arestas reserva em ordem crescente de peso

3.2 | AJUSTES NAS INVARIANTES

29

e testar se alguma é substituta nesta ordem. Por isso, em vez de usar um mapa hash para
armazenar os vizinhos de cada vértice, usa-se um min-heap. Na verdade, como estamos
trabalhando com nós de vértice e de aresta, cada nó de vértice 𝑢 guardará um min-heap
com os vizinhos de 𝑢 em 𝑅𝑖, onde a chave dessa estrutura de dados para um vizinho 𝑣 será
o peso da aresta 𝑢𝑣. Nós de aresta também guardarão um min-heap, porém vazio.

Os métodos principais (remoção, inserção e extração do vértice de chave mínima) que
usamos no min-heap consomem tempo O(lg 𝑛) usando uma implementação tradicional de
heap, como a descrita no Capítulo 6 de Thomas H. Cormen et al. [2]. O resto dos métodos
(consulta de um vértice de chave mínima, da quantidade de elementos na min-heap e se
a min-heap está vazia) consomem tempo constante, e eles serão necessários para buscar
uma aresta substituta de peso mínimo, como descreveremos mais à frente.

Como o min-heap é uma estrutura de dados bastante conhecida, não iremos descrever
a sua implementação em detalhes. O objetivo é ressaltar as diferenças entre as listas de
adjacências utilizadas no algoritmo de conexidade em grafos dinâmicos e na MSF decre-
mental, e como essa mudança afetará o comportamento do método substituaArestaMSF
da MSF decremental.

Assim, com base na implementação clássica do min-heap, podemos definir a biblioteca
das listas de adjacências da MSF decremental.

• listasDeAdjacênciasMSF(𝑛): constrói e devolve um grafo com 𝑛 vértices e sem
arestas, representado por listas de adjacências armazenadas em min-heaps;

• adicioneLAMSF(𝑅, 𝑢, 𝑣, 𝑤): adiciona o vértice 𝑢 na lista de adjacências de 𝑣 em
𝑅 e vice-versa, considerando que o peso de 𝑢𝑣 é 𝑤;

• removaLAMSF(𝑅, 𝑢, 𝑣): remove o vértice 𝑢 da lista de adjacências de 𝑣 em 𝑅 e
vice-versa;

• consulteMinLAMSF(𝑅, 𝑢): retorna um par (𝑣, 𝑤), onde 𝑣 é um vértice do min-heap
de 𝑢 em 𝑅 com chave mínima 𝑤;

Uma chamada à rotina adicioneLAMSF(𝑅, 𝑢, 𝑣, 𝑤) adiciona o par (𝑢, 𝑤) no min-
heap de 𝑣 e também adiciona o par (𝑣, 𝑤) no min-heap de 𝑢, consumindo tempo O(lg 𝑛).
Similarmente, uma chamada à rotina removaLAMSF(𝑅, 𝑢, 𝑣) remove o par (𝑢, 𝑤) do
min-heap de 𝑣 e também remove o par (𝑣, 𝑤) do min-heap de 𝑢, consumindo também tempo
O(lg 𝑛). Já o método consulteMinLAMSF consome tempo O(1), já que estamos apenas
consultando a chave mínima do min-heap de um vértice.

3.2 Ajustes nas invariantes
Como agora estamos tratando de florestas geradoras maximais de custo mínimo (MSFs),

ajustaremos somente a primeira invariante, onde substituímos o termo floresta maximal
por MSF, como se pode ver abaixo.

(I) 𝐹𝑖 é uma MSF de 𝐺𝑖 para todo 1 ≤ 𝑖 ≤ ⌈lg 𝑛⌉;

(II) 𝐹𝑖 ⊆ 𝐹𝑖+1 para todo 1 ≤ 𝑖 ≤ ⌈lg 𝑛⌉ − 1;

30

3 | ALGORITMO PARA MSF DECREMENTAL

(III) Cada componente da floresta 𝐹𝑖 possui no máximo 2𝑖 vértices.

Além disso, uma invariante extra, que envolve o peso das arestas reserva, será usada
para garantir a correção do novo algoritmo:

(IV) Toda aresta reserva de nível 𝑖 incidente a um vértice 𝑢 tem peso menor ou igual
ao peso das arestas reserva de nível maior que 𝑖 incidentes a 𝑢, para todo 1 ≤ 𝑖 ≤

⌈lg 𝑛⌉ − 1.

A partir deste momento, usaremos estas quatro invariantes e mostraremos como elas
são preservadas no decorrer das modificações no grafo e como garantem o funcionamento
do algoritmo.

3.3 Rotinas da biblioteca da MSF decremental

3.3.1 Criação do grafo
O construtor MSFDecremental é bem parecido com o do grafo dinâmico, descrito

na Seção 2.3.1. Além das variáveis de classe existentes que criamos para o grafo 𝐺 no
algoritmo de conexidade em grafos dinâmicos, armazenaremos o peso da MSF numa
variável chamada pesoMSF, que será simplesmente retornada quando consultarmos o peso
da MSF decremental corrente, chamando consultePesoMSF.

Também incluiremos um atributo do grafo chamado peso, que é um mapa hash que
armazena o peso das arestas. Para armazenar o peso 𝑤 de uma aresta 𝑢𝑣, basta chamarmos
𝐺.peso[u, v] ← 𝑤. O atributo peso será fundamental para recalcular a variável pesoMSF
no decorrer das remoções de arestas do grafo.

Dessa forma, podemos apresentar o construtor da MSF decremental no Programa 3.1,
que usa a rotina adicioneMSF apresentada no Programa 3.2.

Programa 3.1 MSFDecremental(𝑛, 𝐸)
Entrada: Recebe o número 𝑛 de vértices do grafo e um conjunto 𝐸 de arestas.
Saída: Devolve um grafo 𝐺 com 𝑛 vértices e 𝑚 arestas ponderadas.
1 L ←⌈lg 𝑛⌉

2 𝐺.nívelMax ← L
3 𝐺.pesoMSF ← 0
4 para 𝑖 ← 1 até 𝐿 faça
5 𝐺.𝐹𝑖 ← florestaDinâmica(𝑛)
6 𝐺.𝑅𝑖 ← listasDeAdjacênciasMSF(𝑛)
7 𝐺.nível ← novoMapaHash(𝑛)
8 𝐺.peso ← novoMapaHash(𝑛)
9 ordene(𝐸) ⊳ ordena as arestas do conjunto 𝐸 em ordem crescente de peso

10 para cada aresta (𝑢, 𝑣, 𝑤) em 𝐸 faça
11 adicioneMSF(𝐺, 𝑢, 𝑣, 𝑤)
12 retorne G

Podemos notar algumas diferenças quando comparamos o construtor MSFDecremental
com o construtor grafoDinâmico. Na MSF decremental, além de inicializarmos ⌈lg 𝑛⌉ listas

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

31

de adjacências e ⌈lg 𝑛⌉ florestas dinâmicas, ordenamos as arestas do conjunto 𝐸 em ordem
crescente de peso e inserimos uma a uma chamando adicioneMSF, que está descrita
abaixo. Note que esta é a primeira versão do método adicioneMSF. A versão completa
dele será descrita na Seção 3.3.5.

Programa 3.2 adicioneMSF(𝐺, 𝑢, 𝑣, 𝑤)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺, com 𝑢 < 𝑣, e o peso 𝑤 da aresta 𝑢𝑣.
Efeito: Adiciona a aresta 𝑢𝑣 de peso 𝑤 no grafo 𝐺.
1 L ←𝐺.nívelMax
2 𝐺.nível[𝑢, 𝑣] ←𝐿

3 𝐺.peso[𝑢, 𝑣] ←𝑤

4 se conectadosFD(𝐺.𝐹𝐿, 𝑢, 𝑣) então ⊳ 𝑢𝑣 é aresta reserva
5 adicioneLAMSF(𝐺.𝑅𝐿, 𝑢, 𝑣, 𝑤)
6 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑢)
7 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑣)
8 senão
9 𝐺.pesoMSF ←𝐺.pesoMSF + w

10 adicioneFD(𝐺.𝐹𝐿, 𝑢, 𝑣)
11 atualizeÉNível(𝐺.𝐹𝐿, 𝑢, 𝑣, verdadeiro)

Como citado antes, a rotina adicioneMSF é acionada apenas em MSFDecremental.
Ademais, a única diferença entre a adicioneMSF e a adicioneGD que vimos na Seção 2.4.5
é que, na primeira, estamos guardando o peso das arestas quando as inserimos no grafo.
Portanto, adicioneMSF também consome tempo amortizado O(lg 𝑛).

Para adicioneMSF, a invariante (I) é preservada para o nível 𝑖 = ⌈lg 𝑛⌉, já que estamos
inserindo as arestas do grafo em ordem crescente de peso. Essa construção basicamente
simula o algoritmo de Kruskal. Como estamos inserindo arestas de nível ⌈lg 𝑛⌉ em 𝐹⌈lg 𝑛⌉, en-
tão as florestas de níveis inferiores não são afetadas, mantendo-se, assim, as invariantes (II),
(III) e (IV) também.

3.3.2 Consulta de peso da MSF
A rotina consultePesoMSF, que devolve o peso de uma MSF do grafo 𝐺, está descrita

abaixo.

Programa 3.3 consultePesoMSF(𝐺)
Entrada: Recebe o grafo dinâmico 𝐺.
Saída: Devolve o peso de uma MSF de 𝐺.
1 retorne 𝐺.pesoMSF

É fácil ver que consultePesoMSF consome tempo O(1). Ademais, como não estamos
alterando nem o grafo𝐺 nem as florestas de𝐺, então as quatro invariantes são preservadas.

3.3.3 Remoção de arestas
A remoção de arestas também é semelhante à do algoritmo de conexidade em grafos

dinâmicos. A diferença é que a busca por alguma aresta substituta, feita na substituaA-

32

3 | ALGORITMO PARA MSF DECREMENTAL

restaMSF agora, é dada por ordem crescente de peso das arestas reserva.

Quando removemos de 𝐹𝑖 uma aresta 𝑢𝑣 de nível 𝑖, quebramos uma componente desta
floresta em 𝑇𝑢 e 𝑇𝑣, com |𝑇𝑢| ≤ |𝑇𝑣|, e rebaixamos todas as arestas de 𝑇𝑢, da mesma forma
que fazíamos antes em substituaAresta. Porém, agora buscamos alguma aresta reserva
de peso mínimo dentre todas as arestas reserva em 𝑅𝑖 incidente a 𝑇𝑢, e testamos se ela é
uma substituta. Se não é, a rebaixamos para 𝑅𝑖−1 e buscamos a próxima de peso mínimo
em 𝑅𝑖 incidente a 𝑇𝑢. Por causa da invariante (IV), quando achamos uma substituta, essa é
a substituta de menor peso e conseguimos manter o peso da MSF do grafo, reconectando
as duas componentes separadas devido à remoção de 𝑢𝑣.

Para facilitar o entendimento da substituição de aresta na MSF decremental, demons-
traremos a remoção de uma aresta 𝑢𝑣 da floresta em uma série de imagens. Na Figura 3.1,
temos um grafo ponderado 𝐺 e assumiremos que essa é a primeira remoção depois da
criação do grafo. No nosso exemplo, 𝐺 tem 𝑛 = 10 vértices. Sabemos que ⌈lg 10⌉ = 4, logo
o nível máximo 𝐿 da floresta é 4 e, consequentemente, 𝐺 = 𝐺4. Como, na construção, todas
as inserções ocorrem no nível 𝐿 em 𝐹4, só temos arestas da floresta de nível 4, enquanto 𝐹3

contém apenas vértices isolados. Neste cenário, note que a remoção da aresta 𝑢𝑣 da floresta,
representada por uma linha tracejada na figura, acaba quebrando a única componente da
floresta 𝐹4 em duas, 𝑇𝑢 e 𝑇𝑣. Como 𝐹4 é a floresta maximal de nível máximo de 𝐺, então
removemos a 𝑢𝑣 somente de 𝐹4.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8
9

14

15

12

13

10

11

16

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

Figura 3.1: Um grafo ponderado 𝐺 de 10 vértices, onde as arestas pretas são da floresta 𝐹4, enquanto
as vermelhas são reservas. A aresta 𝑢𝑣 está prestes a ser removida. A floresta 𝐹4 de 𝐺 de cima contém
todas as arestas pretas recém-inseridas e as arestas vermelhas estão em 𝑅4. A floresta de baixo é a 𝐹3,
com os vértices isolados, e 𝑅3 também não tem nenhuma aresta.

O próximo passo é rebaixar todas as arestas de nível 4 em 𝑇𝑢 para o nível 3. Dessa
forma, as arestas de 𝑇𝑢 passam a estar em 𝐹3, como se pode ver na Figura 3.2, pois agora
elas passam a ser de nível 3. Como 𝑇𝑢 e 𝑇𝑣 em 𝐹4 ficaram separadas após a remoção de
𝑢𝑣, precisamos encontrar, se existir, uma aresta reserva que possa reconectá-las. Note que
agora precisamos percorrer as arestas reserva em ordem de peso. Entretanto, percorrer
todas as arestas reserva de 𝑅4 incidentes a 𝑇𝑢 e selecionar a de menor peso é ineficiente. Isso
porque, se a aresta de peso mínimo não é uma substituta, teremos que buscar a próxima de

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

33

menor peso e fazer esse processo novamente, o que acaba comprometendo a performance
do algoritmo. Por isso, explicaremos como implementar essa busca eficiente por uma
aresta substituta de menor peso na Seção 3.3.4.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8

14

15

12

13

10

11

16

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

3

Figura 3.2: Representação da remoção da aresta 𝑢𝑣 em 𝐺. As arestas de nível 4 de 𝑇𝑢 foram rebaixadas
para o nível 3, o que pode ser visto na floresta 𝐹3.

Na Figura 3.3, percorremos as arestas reserva em ordem de peso em 𝑅4 que tenham
uma das pontas em 𝑇𝑢. Para cada aresta percorrida, verificamos se a outra ponta dela
incide em algum vértice de 𝑇𝑣. No nosso exemplo, olhamos para as arestas reserva em 𝑅4,
antes de encontrarmos a substituta, nesta ordem: bu (peso 12) e 𝑢𝑐 (peso 13). Veja que
as rebaixamos para 𝑅3 por não serem substitutas.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8

14

15

16
12

13

10

11

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

3
12

13

Figura 3.3: Representação da busca por uma aresta substituta em 𝑅4. As arestas reserva de nível 4
que estão tracejadas foram percorridas em ordem crescente de peso e estão prestes a serem removidas
de 𝑅4, pois foram rebaixadas para o nível 3, como se pode ver em 𝑅3.

Assim, a próxima aresta reserva de menor peso em 𝑅4 que olharemos é a 𝑎𝑑, de peso
14. Como ela conecta 𝑇𝑢 a 𝑇𝑣, chamamos adicioneFD(𝐹4, 𝑎, 𝑑) e 𝑎𝑑 passa a ser uma

34

3 | ALGORITMO PARA MSF DECREMENTAL

aresta da floresta, ou seja, é removida de 𝑅4. Como 𝑖 = 4 é o nível máximo do grafo nesse
exemplo, não precisamos chamar esta rotina para níveis superiores e então terminamos
a execução do algoritmo. A Figura 3.4 ilustra essa etapa do algoritmo.

Nível 4
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8

14

15

16 10

11

Nível 3 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

3
12

13

Figura 3.4: Representação do grafo com a aresta substituta 𝑎𝑑 por ser a de menor peso em 𝑅4 que
conecta 𝑇𝑢 a 𝑇𝑣, tornando-se uma aresta da floresta 𝐹4.

A partir dessas imagens, percebe-se que o método removaMSF, descrito abaixo, é bem
semelhante ao método removaGD, exceto que no primeiro precisamos recalcular o peso da
MSF de𝐺 quando removemos uma aresta da floresta. Note que o removaMSF descrito abaixo
é a primeira versão deste método. Descreveremos a sua versão completa na Seção 3.3.6

Programa 3.4 removaMSF(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices adjacentes 𝑢 e 𝑣 do grafo 𝐺.
Efeito: Remove a aresta 𝑢𝑣 do grafo 𝐺.
1 L ←𝐺.nívelMax
2 i ←𝐺.nível[𝑢, 𝑣]
3 𝐺.nível[𝑢, 𝑣] ← NIL ⊳ marcamos 𝑢𝑣 como removida
4 se uv ∈ G.𝐹𝐿 então ⊳ 𝑢𝑣 é aresta da floresta
5 w ←𝐺.peso[𝑢, 𝑣]
6 𝐺.pesoMSF ←𝐺.pesoMSF − 𝑤

7 para j ← i até L faça
8 removaFD(𝐺.𝐹𝑗, 𝑢, 𝑣)
9 substituaArestaMSF(𝐺, 𝑖, 𝑢, 𝑣)

10 senão ⊳ 𝑢𝑣 é aresta reserva
11 removaLAMSF(𝐺.𝑅𝑖, 𝑢, 𝑣)
12 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑢)
13 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑣)

O método substituaArestaMSF, que é uma versão ajustada de substituaAresta,
será descrito mais adiante. Por enquanto, sabemos que removaMSF consome tempo O(lg2 𝑛)
mais o custo de substituaArestaMSF.

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

35

3.3.4 Ajustes em nós das florestas
No algoritmo de conexidade em grafos dinâmicos, vimos que os nós da floresta guardam

dois campos, incideArestaReservaDeNível e éNível, além de dois contadores, arestasDeNível
e arestasReservasDeNível. Mostramos também alguns métodos que atualizam e utilizam
estes campos para realizar a busca eficiente de uma aresta substituta.

Para o algoritmo da MSF decremental, além destes campos apresentados, precisaremos
de dois campos extras para cada nó da floresta: peso e pesoMínimo. O primeiro campo
armazena o peso de um nó de aresta (nós de vértice guardam ∞ neste campo). Na floresta
𝐹𝑖, cada nó de vértice sabe facilmente o peso mínimo de uma aresta reserva de 𝑅𝑖 incidente
nele. Assim, o campo pesoMínimo de cada nó 𝑝 de floresta guarda o peso mínimo de uma
aresta reserva de 𝑅𝑖 incidente a algum vértice cujo nó está na subárvore de 𝑝.

Como o peso de cada aresta ponderada nunca muda, então não precisamos atualizar o
seu peso. Entretanto, à medida que vamos removendo arestas da floresta 𝐹𝑖, quebramos
alguma componente dela em duas e precisamos buscar alguma aresta substituta para
reconectar as duas componentes separadas. Assim, quando procuramos por alguma aresta
substituta em 𝑅𝑖, podemos neste processo rebaixar algumas arestas de 𝑅𝑖 para 𝑅𝑖−1 e o peso-
Mínimo dos nós em 𝐹𝑖 e em 𝐹𝑖−1 precisa ser atualizado. Se em 𝑅𝑖 acharmos uma substituta,
ela se tornará uma aresta da floresta 𝐹𝑖 e precisamos também atualizar o pesoMínimo de
alguns nós em 𝐹𝑖, que agora será o peso mínimo dentre as arestas reserva restantes em 𝑅𝑖.

Por isso, fica claro que precisamos de um método que atualize o campo pesoMínimo dos
nós. Para isso, criamos o método atualizePesoMínimo, que está descrito abaixo. Na nossa
implementação, ele é usado em métodos quando estamos fazendo alguma alteração em 𝑅𝑖, e
também é usado ao acionarmos as operações splay, sempre que essa executa uma rotação.

Programa 3.5 atualizePesoMínimo(𝐹, 𝑅, 𝑢)
Entrada: Recebe um vértice 𝑢, as listas de adjacências 𝑅 e a floresta 𝐹 .
Efeito: Atualiza o atributo pesoMínimo do nó de vértice 𝑢.
1 nóUU ← F.nó[𝑢, 𝑢]
2 splay(nóUU)
3 c ←∞

4 se nóUU.esq ≠ NIL e nóUU.esq.pesoMínimo < c então
5 c ← nóUU.esq.pesoMínimo
6 se nóUU.dir ≠ NIL e nóUU.dir.pesoMínimo < c então
7 c ← nóUU.dir.pesoMínimo
8 se R[𝑢] ≠ ∅ então
9 (𝑣, 𝑤) ← consulteMinLAMSF(𝑅, 𝑢)

10 se w < c então
11 c ←w
12 nóUU.pesoMínimo ← c

Como se pode ver, o Programa 3.5 consome tempo amortizado O(lg 𝑛) por conta da
operação splay. Além disso, ele não altera a floresta 𝐹 , altera somente a forma de uma das
árvores binárias que a representam. Portanto, todas as quatro invariantes são preservadas.

Para entendermos como estes dois campos extras aparecem em cada nó da floresta,

36

3 | ALGORITMO PARA MSF DECREMENTAL

usaremos um exemplo de um grafo ponderado 𝐺 de 5 vértices e 7 arestas ponderadas, como
se pode ver na Figura 3.5. A Figura 3.6 mostra estes campos nos nós da floresta 𝐹𝐿 de 𝐺.

𝑎 𝑏

𝑐𝑑𝑒

1

2

34

5

67

Figura 3.5: Grafo ponderado 𝐺 de 5 vértices e 7 arestas ponderadas. Arestas pretas são da floresta e
formam a MSF de 𝐺, enquanto as vermelhas são arestas reserva.

𝑎𝑑

(3, 5)

𝑎𝑏

(1, 5)
𝑐𝑑

(2, 5)

𝑑𝑐

(2, 5)

𝑑𝑑

(∞, 5)

𝑐𝑐

(∞, 6)

𝑑𝑎

(3, ∞)
𝑎𝑒

(4, ∞)

𝑒𝑎

(4, 5)
𝑒𝑒

(∞, 5)

𝑎𝑎

(∞, 7)

𝑏𝑏

(∞, 6)

𝑏𝑎

(1, ∞)

Figura 3.6: Árvore da única componente da floresta 𝐹𝐿 do grafo 𝐺 da Figura 3.5, onde embaixo de
cada nó há um par de números. O primeiro número indica o atributo peso do nó, enquanto o segundo
número indica o atributo pesoMínimo, calculado através dos nós em sua subárvore.

A seguir, o Programa 3.6 apresenta o método procureNóIncideArestaDePesoMínimo,
que procura e retorna o nó de vértice que incide em uma aresta reserva de peso mínimo.
Ele será usado no método substituaArestaMSF, que descreveremos na Seção 3.3.8.

Programa 3.6 procureNóIncideArestaDePesoMínimo(𝑅, 𝑝)
Entrada: Recebe um nó 𝑝 de uma floresta com o atributo arestasReservasDeNível > 0 e as
listas de adjacências 𝑅.
Saída: Devolve um nó de vértice incidente a uma aresta reserva de peso mínimo.
1 c ←∞

2 (x, y) ← p.vértices
3 se 𝑥 = 𝑦 e R[x] ≠ ∅ então ⊳ verificamos se 𝑝 é um nó de vértice
4 (𝑣, 𝑤) ← consulteMinLAMSF(𝑅, 𝑝)
5 c ←w
6 se c ≠ ∞ e p.pesoMínimo = c então
7 retorne p
8 se p.esq ≠ NIL e p.esq.pesoMínimo = p.pesoMínimo então
9 retorne procureNóIncideArestaDePesoMínimo(𝑅, p.esq)

10 senão
11 retorne procureNóIncideArestaDePesoMínimo(𝑅, p.dir)

Veja que o Programa 3.6 não altera o grafo, e, portanto, as invariantes são preservadas.
Como a Euler tour tree é balanceada, o consumo de tempo de cada percurso é O(lg 𝑛)

(amortizado em nossa implementação, onde sempre realizamos um splay no nó devolvido).

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

37

3.3.5 Versão completa da rotina de adição de arestas
A versão completa do método adicioneMSF está descrita abaixo. Ao inserirmos uma

aresta reserva 𝑢𝑣 em 𝑅𝐿, precisamos atualizar o atributo pesoMínimo dos nós de vértice
𝑢 e 𝑣 de 𝐹𝐿, como se pode ver nas linhas 6 e 7. Isso porque se o peso de 𝑢𝑣 é o menor
dentre todas as arestas reserva inseridas em 𝑅𝐿 até o momento, o campo pesoMínimo de
𝑢 e de 𝑣 então passa a ser o peso de 𝑢𝑣. Assim, a complexidade de tempo da versão final
de adicioneMSF continua sendo O(lg 𝑛).

Programa 3.7 adicioneMSF(𝐺, 𝑢, 𝑣, 𝑤)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺, com 𝑢 < 𝑣, e o peso 𝑤 da aresta 𝑢𝑣.
Efeito: Adiciona a aresta 𝑢𝑣 de peso 𝑤 no grafo 𝐺.
1 L ←𝐺.nívelMax
2 𝐺.nível[𝑢, 𝑣] ←𝐿

3 𝐺.peso[𝑢, 𝑣] ←𝑤

4 se conectadosFD(𝐺.𝐹𝐿, 𝑢, 𝑣) então ⊳ 𝑢𝑣 é aresta reserva
5 adicioneLAMSF(𝐺.𝑅𝐿, 𝑢, 𝑣, 𝑤)
6 atualizePesoMínimo(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑢)
7 atualizePesoMínimo(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑣)
8 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑢)
9 incrementeArestasReservasDeNível(𝐺.𝐹𝐿, 𝐺.𝑅𝐿, 𝑣)

10 senão
11 𝐺.pesoMSF ←𝐺.pesoMSF + w
12 adicioneFD(𝐺.𝐹𝐿, 𝑢, 𝑣)
13 atualizeÉNível(𝐺.𝐹𝐿, 𝑢, 𝑣, verdadeiro)

3.3.6 Versão completa da rotina de remoção de arestas
A versão completa do método removaMSF está descrita abaixo.

Programa 3.8 removaMSF(𝐺, 𝑢, 𝑣)
Entrada: Recebe dois vértices adjacentes 𝑢 e 𝑣 do grafo 𝐺.
Efeito: Remove a aresta 𝑢𝑣 do grafo 𝐺.
1 L ←𝐺.nívelMax
2 i ←𝐺.nível[𝑢, 𝑣]
3 𝐺.nível[𝑢, 𝑣] ← NIL ⊳ marcamos 𝑢𝑣 como removida
4 se uv ∈ G.𝐹𝐿 então ⊳ 𝑢𝑣 é aresta da floresta
5 w ←𝐺.peso[𝑢, 𝑣]
6 𝐺.pesoMSF ←𝐺.pesoMSF − 𝑤

7 para j ← i até L faça
8 removaFD(𝐺.𝐹𝑗, 𝑢, 𝑣)
9 substituaArestaMSF(𝐺, 𝑖, 𝑢, 𝑣)

10 senão ⊳ 𝑢𝑣 é aresta reserva
11 removaLAMSF(𝐺.𝑅𝑖, 𝑢, 𝑣)
12 atualizePesoMínimo(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑢)
13 atualizePesoMínimo(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑣)
14 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑢)
15 decrementeArestasReservasDeNível(𝐺.𝐹𝑖, 𝐺.𝑅𝑖, 𝑣)

38

3 | ALGORITMO PARA MSF DECREMENTAL

Ao removermos uma aresta reserva 𝑢𝑣 de𝑅𝑖, precisamos atualizar o atributo pesoMínimo
dos nós de vértice 𝑢 e 𝑣 de 𝐹𝑖, como se pode ver nas linhas 12 e 13. Isso porque se o peso de
𝑢𝑣 era o menor dentre todas as arestas reserva restantes, então o atributo pesoMínimo de
𝑢 e de 𝑣 passa a ser o peso da aresta reserva de segundo menor peso em 𝑅𝑖 incidente a 𝑢 ou
𝑣. Assim, a complexidade de tempo da versão final de removaMSF continua sendo O(lg

2
𝑛)

mais o custo da rotina substituaArestaMSF, que será descrita na Seção 3.3.8.

3.3.7 Busca por uma aresta substituta
Agora, veremos em detalhes porque, ao removermos uma aresta 𝑢𝑣 de nível 𝑖, uma

aresta substituta de menor peso está em um 𝑅𝑗 com 𝑗 ≥ 𝑖 menor possível. Será que não há
uma aresta substituta no nível 𝑗 + 1 que seja mais leve que uma substituta do nível 𝑗?

Primeiramente, é fácil perceber que, se removermos uma aresta de nível 𝑖 de 𝐹𝑖 e 𝑖 ≠ 𝐿,
sabemos que alguma aresta de nível 𝑖 + 1 da floresta 𝐹𝑖+1 já tinha sido removida antes, o que
causou o rebaixamento de algumas arestas de nível 𝑖 + 1 para o nível 𝑖. Lembre-se que não
há inserção de arestas depois que as remoções (e rebaixamentos) começam a ocorrer.

Sabemos, então, que algumas arestas de 𝐹𝑖+1 foram rebaixadas para 𝐹𝑖. Para facilitar
o entendimento deste cenário, ilustraremos um grafo com as florestas 𝐹𝑖 e 𝐹𝑖+1, além de
𝑅𝑖 e 𝑅𝑖+1, como se pode ver na Figura 3.7. Nela, podemos supor que a aresta 𝑢𝑣 já foi
removida, quebrando a componente de 𝐹𝑖+1 em 𝑇𝑢 e 𝑇𝑣. Além disso, todas as arestas de
𝑇𝑢 foram rebaixadas para 𝐹𝑖. As arestas reserva 𝑢𝑏 e 𝑢𝑐 foram rebaixadas de 𝑅𝑖+1 para
𝑅𝑖, já que estamos percorrendo em ordem crescente de peso das arestas reserva de 𝑅𝑖+1

para buscar uma aresta substituta.

Nível 𝑖 + 1
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8

14

15

16
12

13

10

11

Nível 𝑖 𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

3
12

13

Figura 3.7: Representação da busca por uma aresta substituta em 𝑅𝑖+1. As arestas reserva de nível 𝑖+1

que estão tracejadas foram percorridas em ordem crescente de peso e estão prestes a serem removidas
de 𝑅𝑖+1, pois foram rebaixadas para o nível 𝑖, como se pode ver em 𝑅𝑖.

Logo na Figura 3.8, temos a aresta 𝑎𝑑 escolhida para ser uma substituta de menor peso
que reconecta 𝑇𝑢 e 𝑇𝑣, tornando-se uma aresta da floresta. Note que, em 𝑅𝑖, as arestas
reserva com as duas pontas em 𝑇𝑢 de 𝐹𝑖 (neste caso, 𝑢𝑏 e 𝑢𝑐) possuem peso menor que
as arestas reserva com duas pontas em 𝑇𝑢 de 𝐹𝑖+1 (neste caso, 𝑎𝑐). Isso acontece porque,

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

39

quando percorremos as arestas reserva em ordem crescente de peso, aproveitamos para
rebaixar aquelas com as duas pontas em 𝑇𝑢 até encontrarmos uma que conecte 𝑇𝑢 e 𝑇𝑣.

Ainda na Figura 3.8, a aresta bc, de nível 𝑖, está prestes a ser removida, o que acabaria
quebrando uma componente da floresta 𝐹𝑖 em 𝑇𝑏 e 𝑇𝑐. Para reconectar 𝑇𝑏 e 𝑇𝑐, observe
que apenas 𝑢𝑐 seria percorrida e já é substituta, como se pode ver na Figura 3.9. Embora
𝑎𝑐 e 𝑐𝑣 também sejam substitutas incidentes a 𝑇𝑐, pelo fato de elas estarem em 𝑅𝑖+1 e pela
invariante (IV), elas são mais pesadas que 𝑢𝑐, que está em 𝑅𝑖.

Nível 𝑖 + 1
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12

3

4

56 7

8

14

15

16 10

11

Nível 𝑖

𝑇𝑏

𝑇𝑐

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

3
12

13

Figura 3.8: Representação do grafo com a aresta substituta 𝑎𝑑 por ser a de menor peso em 𝑅𝑖+1 que
conecta 𝑇𝑢 a 𝑇𝑣, tornando-se uma aresta da floresta 𝐹𝑖+1. A próxima aresta a ser removida é bc, que
está tracejada, e quebra uma componente de 𝐹𝑖 em 𝑇𝑏 e 𝑇𝑐 .

Nível 𝑖 + 1
𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ

𝑇𝑢 𝑇𝑣

12 4

56 7

8

14

15

16 10

11

13

Nível 𝑖

𝑇𝑏

𝑇𝑐

𝑢

𝑎

𝑏

𝑐

𝑣

𝑑

𝑒 𝑓

𝑔

ℎ
12

12

13

Figura 3.9: Representação do grafo com a aresta da floresta bc removida de 𝐹𝑖 e de 𝐹𝑖+1, e a aresta
reserva 𝑢𝑐 é escolhida como a substituta por ser a de menor peso que reconecta 𝑇𝑏 e 𝑇𝑐 .

40

3 | ALGORITMO PARA MSF DECREMENTAL

3.3.8 Rotina de substituição de aresta
Para descrever a rotina substituaArestaMSF do Programa 3.9, usaremos vários dos

métodos auxiliares já apresentados, além de alguns métodos e campos novos adicionados
aos nós das florestas, que vimos na Seção 3.3.4. Mostraremos também a rotina testeSubs-
titutaMSF, que é uma versão ajustada da rotina testeSubstituta que vimos antes.

Programa 3.9 substituaArestaMSF(𝐺, 𝑖, 𝑢, 𝑣)
Entrada: Recebe dois vértices 𝑢 e 𝑣 do grafo 𝐺, e o nível 𝑖 da aresta removida 𝑢𝑣.
Efeito: Adiciona uma aresta substituta de peso mínimo em 𝐺, se ela existir.
1 L ←𝐺.nívelMax
2 para j ← i até 𝐿 faça
3 𝑇𝑢 ← splay(𝐺.𝐹𝑗 .nó[𝑢, 𝑢]) ⊳ torna o nó 𝑢𝑢 raiz de 𝑇𝑢

4 𝑇𝑣 ← splay(𝐺.𝐹𝑗 .nó[𝑣, 𝑣]) ⊳ torna o nó 𝑣𝑣 raiz de 𝑇𝑣

5 se 𝑇𝑢.tam > 𝑇𝑣.tam então
6 𝑇𝑢 ↔ 𝑇𝑣

7 enquanto 𝑇𝑢.arestasDeNível > 0 faça
8 nóXY ← procureArestaDeNível(𝑇𝑢)
9 𝑇𝑢 ← splay(nóXY)

10 rebaixeNívelDaAresta(𝐺, nóXY, j)
11 enquanto 𝑇𝑢.arestasReservasDeNível > 0 faça
12 nóXX ← procureNóIncideArestaDePesoMínimo(𝑅𝑗, 𝑇𝑢)
13 𝑇𝑢 ← splay(nóXX)
14 (𝑥 , 𝑥) ← nóXX.vértices
15 (𝑦, 𝑤) ← consulteMinLAMSF(𝑅𝑗, 𝑥)
16 se testeSubstitutaMSF(𝐺, 𝑥, 𝑦, 𝑗) então
17 retorne

Veja que já vimos as linhas 1 a 10 do Programa 3.9, pois elas são exatamente iguais a esse
mesmo trecho do código do Programa 2.14. Isso quer dizer que o rebaixamento de arestas
da floresta acontece da mesma forma que no algoritmo de conexidade em grafos dinâmicos.
O que muda é somente a forma como procuramos por alguma aresta substituta.

Sendo assim, explicaremos o código da linha 11 em diante. A linha 11, como também
já visto, é um laço que terminará quando não existirem mais arestas reserva de nível 𝑗
incidentes a 𝑇𝑢 (ou seja, quando o contador arestasReservasDeNível do nó raiz de 𝑇𝑢 estiver
nulo) ou quando achamos uma aresta substituta.

A linha 12 é onde acionamos o método procureNóIncideArestaDePesoMínimo, para
obtermos um nó de vértice incidente a uma aresta reserva de peso mínimo. Assim, obtemos
esta aresta chamando consulteMinLAMSF na linha 15, onde obtemos um par (𝑦, 𝑤).

Em seguida, basta testarmos se a aresta 𝑥𝑦 de peso mínimo 𝑤 é uma aresta substituta
que reconecta 𝑇𝑢 a 𝑇𝑣. Para isso, na linha 16 chamamos testeSubstitutaMSF, descrita
no Programa 3.10.

3.3 | ROTINAS DA BIBLIOTECA DA MSF DECREMENTAL

41

Programa 3.10 testeSubstitutaMSF(𝐺, 𝑥, 𝑦, 𝑗)
Entrada: Recebe o grafo 𝐺, as pontas 𝑥 e 𝑦 da aresta 𝑥𝑦 e o nível 𝑗 .
Saída: Remove 𝑥𝑦 de 𝑅𝑗 e, caso 𝑥𝑦 seja substituta, adiciona 𝑥𝑦 a 𝑅𝑗 e devolve verdadeiro.
Caso contrário, adiciona 𝑥𝑦 a 𝑅𝑗−1 e devolve falso.
1 removaLAMSF(𝐺.𝑅𝑗, 𝑥, 𝑦)
2 decrementeArestasReservasDeNível(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑥)
3 decrementeArestasReservasDeNível(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑦)
4 atualizePesoMínimo(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑥)
5 atualizePesoMínimo(𝐺.𝐹𝑗, 𝐺.𝑅𝑗, 𝑦)
6 w ←𝐺.peso[𝑥, 𝑦]
7 se conectadosFD(𝐺.𝐹𝑗, 𝑥, 𝑦) então ⊳ a aresta 𝑥𝑦 não é substituta
8 𝐺.nível[𝑥, 𝑦] ← j − 1
9 adicioneLAMSF(𝐺.𝑅𝑗−1, 𝑥, 𝑦, 𝑤)

10 atualizePesoMínimo(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑥)
11 atualizePesoMínimo(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑦)
12 incrementeArestasReservasDeNível(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑥)
13 incrementeArestasReservasDeNível(𝐺.𝐹𝑗−1, 𝐺.𝑅𝑗−1, 𝑦)
14 retorne falso
15 senão ⊳ a aresta 𝑥𝑦 é substituta
16 L ←𝐺.nívelMax
17 𝐺.pesoMSF ←𝐺.pesoMSF + 𝑤

18 para k ← j até 𝐿 faça
19 adicioneFD(𝐺.𝐹𝑘, 𝑥, 𝑦)
20 se x > y então
21 x ↔ y
22 atualizeÉNível(𝐺.𝐹𝑗, 𝑥, 𝑦, verdadeiro)
23 retorne verdadeiro

Na rotina testeSubstitutaMSF, precisamos atualizar a variável pesoMSF de 𝐺 quando
encontramos uma aresta substituta, além de chamar os devidos métodos auxiliares (acio-
namos removaLAMSF e adicioneLAMSF em vez de removaLA e adicioneLA). Além disso,
como estamos rebaixando arestas reserva, precisamos atualizar o atributo pesoMínimo
dos nós de vértice afetados, acionando a rotina atualizePesoMínimo nas linhas 4, 5, 10
e 11 do Programa 3.10.

Veja que o trecho que compreende as linhas 7 a 14 do Programa 3.10 possui custo
amortizado O(lg 𝑛). Isso quer dizer que, enquanto as arestas que estamos testando não
forem substitutas, o método testeSubstitutaMSF será acionado várias vezes com esse
custo de tempo. No momento em que encontrarmos uma substituta, testeSubstitutaMSF
será acionado uma única vez e consumirá tempo amortizado O(lg

2
𝑛) por causa das linhas

18 e 19, e assim o algoritmo será finalizado.

Agora, explicaremos o custo da rotina substituaArestaMSF. Usaremos o mesmo
argumento da amortização da rotina substituaAresta, apresentado na Seção 2.4.7.

No pior caso, uma execução da rotina substituaArestaMSF pode consumir muito
tempo. Por exemplo, se o grafo já está com 𝑚 = Θ(𝑛2) arestas inseridas, todas de ní-
vel 𝐿, pode ocorrer uma remoção que aciona o substituaArestaMSF e que acarreta o
rebaixamento de Θ(𝑛2) arestas, a um custo Ω(𝑛2 lg 𝑛).

42

3 | ALGORITMO PARA MSF DECREMENTAL

No entanto, para chegar a essa situação, teriam ocorrido Θ(𝑛2) inserções, cada uma
com um custo bem mais barato, de O(lg 𝑛). Isso sugere que possivelmente uma análise
amortizada do custo das operações leve a um custo por operação mais baixo.

Agora mostraremos que, se ocorreram 𝑡 operações de inserção e remoção de arestas
desde a criação do grafo, então o custo total de tal sequência de operações é O(𝑡 lg

2
𝑛), o

que resulta em um custo amortizado por operação de O(lg
2
𝑛).

Para tanto, cada inserção será responsável não apenas pelo custo da inserção de uma
aresta 𝑒, mas também pelo custo de todos os rebaixamentos sofridos por 𝑒 no decorrer
de todas as remoções que ocorrerem após a inserção de 𝑒. Isso quer dizer que a inserção
da aresta 𝑒 vai pagar por cada execução das linhas 7 a 10 do Programa 3.9 e das linhas
7 a 14 do Programa 3.10 que processa a aresta 𝑒. Como a inserção custa O(lg 𝑛) e essas
linhas custam O(lg 𝑛) e são executadas O(lg 𝑛) vezes, pois 𝑒 pode ser rebaixada no máximo
⌈lg 𝑛⌉ vezes, o custo pago por uma inserção é O(lg

2
𝑛).

Já uma remoção de aresta, executada pelo Programa 3.8, custa O(lg
2
𝑛) mais o custo

do substituaArestaMSF. O custo do substituaArestaMSF é O(lg
2
𝑛) excluindo-se as

execuções das linhas 7 a 10 do Programa 3.9, assim como as linhas 7 a 14 do Programa 3.10.
Desconsiderando estas linhas onde ocorrem rebaixamentos de arestas, cada iteração do
para da linha 2 do Programa 3.9 possui custo O(lg 𝑛) enquanto uma aresta substituta não
for encontrada, ou seja, excetuando as linhas 15 a 23 do Programa 3.10.

No momento em que encontrarmos uma substituta, as linhas 15 a 23 do Programa 3.10
serão executadas uma única vez e consumirão tempo O(lg

2
𝑛) devido às linhas 18 e 19,

terminando o algoritmo logo em seguida. Assim, como a linha 2 do Programa 3.9 pode
ser executada no máximo O(lg 𝑛) vezes, temos que substituaAresta consome tempo
amortizado O(lg

2
𝑛) por operação de remoção.

Com isso, concluímos que o custo total de uma sequência de 𝑡 inserções e remoções é
O(𝑡 lg

2
𝑛), e assim cada inserção e remoção consome tempo amortizado O(lg

2
𝑛).

43

Capítulo 4

Testes experimentais

Neste capítulo, apresentaremos alguns testes de comparação de performance entre o
algoritmo descrito no Capítulo 3 e uma versão do algoritmo de Kruskal adaptado para
o problema da MSF decremental. Os experimentos foram realizados em um computador
pessoal com as seguintes configurações:

• Sistema operacional Ubuntu 24.04.3 LTS (kernel 6.8.0-49-generic);

• Processador Intel Core i5-8265U (4 núcleos, 8 threads), arquitetura x86_64;

• Memória RAM de 7,6 GB;

• GPU Intel UHD Graphics 620.

Para calcular a duração de tempo de uma operação em milissegundos, utilizamos a
biblioteca chrono da linguagem C++. Além disso, o experimento não considera o tempo
para inicializar um grafo com 𝑛 vértices e 𝑚 arestas. Considera apenas o tempo para as
remoções das arestas e para as consultas ao peso de uma MST.

Foi implementado um gerador de grafos aleatórios, seguindo o modelo 𝐺(𝑛, 𝑝) de
Erdős-Rényi, onde 𝑛 é o número de vértices e 𝑝 é a probabilidade da existência de cada
aresta. É sabido que, no modelo 𝐺(𝑛, 𝑝) de Erdős-Rényi, o limiar para conexidade é 𝑝 = ln 𝑛

𝑛
.

Nos nossos experimentos, usamos o valor 𝑝 =
lg 𝑛

𝑛
> ln 𝑛

𝑛
, 𝑛 > 1. Assim, temos que o

número esperado de arestas nos grafos gerados é dado por 𝑛(𝑛−1) lg 𝑛

2𝑛
. Ademais, a cada aresta

é atribuído um peso inteiro no intervalo de 1 a 𝑛.

Cada arquivo de teste gerado possui a primeira linha com os valores 𝑛 e 𝑚, seguida de
𝑚 linhas da forma 𝑢 𝑣 𝑤, onde 𝑤 é o peso da aresta 𝑢𝑣. Ademais, temos outras 𝑘 linhas
da forma 𝑢 𝑣, que representam uma lista aleatória das arestas a serem removidas. Nos
experimentos, cada grafo gerado possui 𝑛 = 20.000 vértices, o que dá um número esperado
de arestas de 142.000, e removemos 𝑘 = 25.600 arestas, o que foi suficiente para demonstrar
a eficiência do algoritmo para MSF decremental.

Nos nossos experimentos, geramos seis grafos 𝐺𝑖, 0 ≤ 𝑖 ≤ 5, com cinco listas aleatórias
distintas de arestas para cada. Inicialmente, avaliamos o grafo 𝐺0 considerando a remoção
de 25.600 arestas em cinco listas distintas. Para cada lista, registramos o peso de uma MST

44

4 | TESTES EXPERIMENTAIS

após a remoção de um certo número de arestas e o tempo de execução, em milissegundos,
dos dois algoritmos. Depois, calculamos a média dos cinco testes realizados.

Já para outros cinco grafos, realizamos os mesmos experimentos de 𝐺0, usando apenas
a primeira lista de arestas gerada para cada grafo, tendo em vista que os cinco testes eram
muito semelhantes. Os resultados dos testes foram apresentados em tabelas e gráficos
gerados por programas escritos em Python 3.

Para cada grafo, realizamos a remoção de arestas em lotes sucessivos. Após cada lote de
remoções, imprimimos o peso de uma MST correspondente ao estado atual do grafo e, em
seguida, dobramos o tamanho do lote. Assim, removemos 100, 200, 400, … , 25.600 arestas,
registrando o tempo acumulado das remoções e o peso de uma MST após cada etapa.

Todos os arquivos de teste mencionados neste capítulo, bem como os geradores de-
senvolvidos, estão disponíveis no diretório src/tests/ da nossa implementação [7]. Os
arquivos de teste gerados possuem um nome genérico graph_i_permutation_j, 0 ≤ 𝑖 ≤ 5

e 0 ≤ 𝑗 ≤ 4, e o programa que gera os arquivos de teste se chama randomGraphGenera-
tor.cpp. Neste programa, é possível configurar o valor de 𝑛 e de 𝑝 do modelo 𝐺(𝑛, 𝑝) de
Erdős-Rényi, além do número de grafos e de permutações a serem gerados. Por fim, os
programas em Python para geração de tabelas e gráficos são chart.py e graph.py, cujos
valores devem ser alterados de acordo com os resultados de cada teste.

4.1 Algoritmo de Kruskal
O algoritmo de Kruskal foi implementado de uma forma que permita remoção de

arestas. Utilizamos Union-Find como a parte central do algoritmo. Na inicialização do
construtor, ordenamos o vetor de 𝑚 arestas em ordem crescente de peso, usando o método
sort da linguagem C++, que consome tempo esperado 𝑂(𝑚 lg𝑚). Em seguida, inserimos
as arestas no grafo, em ordem crescente de peso.

Toda vez que removermos uma aresta 𝑢𝑣, precisamos reordenar as arestas restantes
em ordem crescente de peso. Para isso, basta deslocar as arestas a partir de 𝑢𝑣 de uma
posição para cima no vetor, o que consome tempo 𝑂(𝑚).

4.2 Grafo 𝐺0

O grafo 𝐺0 gerado tem 142.069 arestas, que é um número próximo do esperado. A
seguir, mostraremos os resultados das remoções em 𝐺0 de algumas listas de arestas, visto
que o comportamento dos gráficos e valores das tabelas são muito semelhantes.

É importante ressaltar que, como o algoritmo derivado de Kruskal consome tempo
𝑂(𝑚) por remoção de aresta, optamos por fazer uma compressão de valores dos eixos 𝑥
e 𝑦 dos gráficos para evitar a sobreposição dos números, preservando ainda a aparência
de crescimento linear.

4.2 | GRAFO 𝐺0

45

4.2.1 Primeira lista de arestas

Figura 4.1: Desempenho dos dois algoritmos em 𝐺0 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

Figura 4.2: Desempenho dos dois algoritmos em 𝐺0 na primeira lista de arestas.

4.2.2 Segunda lista de arestas

Figura 4.3: Desempenho dos dois algoritmos em 𝐺0 na segunda lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

46

4 | TESTES EXPERIMENTAIS

Figura 4.4: Desempenho dos dois algoritmos em 𝐺0 na segunda lista de arestas.

4.2.3 Tempo médio de execução das cinco listas de arestas

Figura 4.5: Tempo médio de execução obtido a partir de cinco listas de arestas de 𝐺0.

Figura 4.6: Comparação do tempo médio de execução dos dois algoritmos ao longo de cinco listas de
arestas de 𝐺0.

4.3 | GRAFOS 𝐺1, 𝐺2, 𝐺3, 𝐺4 E 𝐺5

47

4.3 Grafos 𝐺1, 𝐺2, 𝐺3, 𝐺4 e 𝐺5

Neste experimento, realizamos os mesmos experimentos de 𝐺0, mas usando apenas a
primeira lista aleatória de arestas de outros cinco grafos. Isso porque vimos na Seção 4.2
que os resultados entre as diferentes listas aleatórias de um mesmo grafo são bem parecidos.
Por isso, focamos no desempenho dos dois algoritmos em grafos aleatórios distintos. O
grafo 𝐺1 gerado tem 142.589 arestas; o grafo 𝐺2 tem 142.954 arestas; o grafo 𝐺3 tem 142.734

arestas; o grafo 𝐺4 tem 142.402 arestas; e o grafo 𝐺5 tem 143.216 arestas.

4.3.1 Grafo 𝐺1

Figura 4.7: Desempenho dos dois algoritmos em 𝐺1 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

Figura 4.8: Desempenho dos dois algoritmos em 𝐺1 na primeira lista de arestas.

48

4 | TESTES EXPERIMENTAIS

4.3.2 Grafo 𝐺2

Figura 4.9: Desempenho dos dois algoritmos em 𝐺2 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

Figura 4.10: Desempenho dos dois algoritmos em 𝐺2 na primeira lista de arestas.

4.3.3 Grafo 𝐺3

Figura 4.11: Desempenho dos dois algoritmos em 𝐺3 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

4.3 | GRAFOS 𝐺1, 𝐺2, 𝐺3, 𝐺4 E 𝐺5

49

Figura 4.12: Desempenho dos dois algoritmos em 𝐺3 na primeira lista de arestas.

4.3.4 Grafo 𝐺4

Figura 4.13: Desempenho dos dois algoritmos em 𝐺4 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

Figura 4.14: Desempenho dos dois algoritmos em 𝐺4 na primeira lista de arestas.

50

4 | TESTES EXPERIMENTAIS

4.3.5 Grafo 𝐺5

Figura 4.15: Desempenho dos dois algoritmos em 𝐺5 na primeira lista de arestas, exibindo o peso de
uma MST após a remoção de cada lote de arestas.

Figura 4.16: Desempenho dos dois algoritmos em 𝐺5 na primeira lista de arestas.

4.3.6 Tempo médio de execução dos cinco grafos

Figura 4.17: Tempo médio de execução obtido a partir de cinco grafos.

4.4 | CONCLUSÃO

51

Figura 4.18: Comparação do tempo médio de execução dos dois algoritmos considerando cinco grafos
distintos.

4.4 Conclusão
A partir dos experimentos realizados, verifica-se que os grafos gerados para os testes

apresentam um número de arestas próximo do valor esperado para um grafo do modelo
𝐺(𝑛, 𝑝), com 𝑝 =

lg 𝑛

𝑛
. Além disso, os resultados indicam que, nos gráficos de tempo de exe-

cução, o algoritmo derivado de Kruskal apresenta um crescimento aproximadamente linear
em função do número de arestas removidas, enquanto o algoritmo para MSF decremental
exibe um padrão de crescimento compatível com o esperado que é polilogarítmico.

As tabelas de resultados, por outro lado, evidenciam a diferença significativa no tempo
de execução entre os dois algoritmos durante o processo de remoção de arestas, diferença
esta que já se mostra perceptível mesmo nas primeiras remoções realizadas.

Portanto, observa-se que os experimentos conduzidos sobre diferentes grafos aleatórios
com o mesmo número de vértices produzem gráficos e tabelas com comportamentos seme-
lhantes no que tange ao tempo de execução, indicando consistência nos resultados obtidos.

Por fim, seria interessante usar essas implementações para testar os algoritmos em
grafos vindos de aplicações reais.

53

Capítulo 5

Conclusões

Neste trabalho, estudamos, implementamos e apresentamos um algoritmo para a MSF
decremental. Esse algoritmo é uma adaptação do algoritmo para conexidade em grafos
dinâmicos. Essencialmente, a adaptação consiste em trocar a estrutura de dados usada
para armazenar as arestas reserva de listas de adjacências para min-heaps.

Estudamos também o algoritmo de Holm, de Lichtenberg e Thorup [4] para o problema
da MSF dinâmica, no qual se quer dar suporte eficiente também a inserções de arestas a
qualquer momento. Esse algoritmo também é uma adaptação do algoritmo para conexidade
em grafos dinâmicos, mas é uma adaptação mais extensa e complexa, que utiliza uma
implementação adaptada do algoritmo para MSF decremental que implementamos.

A adaptação agora troca a estrutura de dados usada para armazenar as florestas dinâmi-
cas. Em vez de Euler tour trees, esse algoritmo usa as chamadas top trees, que são versões
de uma árvore introduzida por Alstrup et al. [1] e denominada de topological trees.

Inicialmente, será descrito resumidamente o motivo principal de usar top trees no
algoritmo, em vez de Euler tour trees. Nas Euler tour trees, um caminho não corresponde a
um segmento contínuo ao longo do percurso da Euler tour tree. Isso dificulta a manutenção
eficiente de informações sobre caminhos na árvore, como, por exemplo, o peso máximo
no caminho entre dois vértices dados, que é importante ao inserir uma aresta que forma
um circuito no grafo, pois temos que decidir se ela deve substituir uma aresta da MSF. Por
causa disso, os autores do artigo sugeriram o uso de top trees para armazenar e retornar
dados sobre qualquer caminho entre dois vértices numa árvore.

Top trees são árvores binárias que suportam adição e remoção de arestas. A construção
delas se baseia em uma sequência de merges e splits, que acabam destruindo e recons-
truindo nós e arestas da árvore. Conforme Alstrup et al. [1], para uma floresta dinâmica
de 𝑛 vértices podemos manter top trees de altura O(lg 𝑛) implementando as operações
mencionadas com uma sequência deO(lg 𝑛) merges e splits. Podemos, então, definir uma
operação que retorna o peso máximo de um caminho entre dois vértices em tempo O(lg 𝑛),
que será fundamental na operação de inserção de arestas do algoritmo para MSF dinâmica.

Holm, de Lichtenberg e Thorup [4] propuseram um algoritmo para MSF dinâmica
que mantém uma MSF que suporta adições e remoções de arestas em tempo amortizado

54

5 | CONCLUSÕES

O(lg
4
𝑛) por operação. A ideia deste algoritmo é manter uma MSF decremental 𝐹 de um

grafo 𝐺 de 𝑛 vértices e 𝑚 arestas, como também um conjunto  = {𝐺0, … , 𝐺𝐿}, 𝐿 = ⌈lg𝑚⌉,
de subgrafos de 𝐺, de modo que para cada 𝐺𝑖 manteremos uma MSF decremental 𝐹𝑖,
implementada com top trees.

As arestas de 𝐹 são chamadas de arestas da floresta globais e as arestas de𝑅 = 𝐸(𝐺)\𝐹

são chamadas de arestas reserva globais, onde 𝑅 corresponde à lista de arestas reserva
retornadas pelas estruturas decrementais de . É nesta lista que iremos procurar uma
aresta substituta de menor peso para reconectar as componentes separadas de 𝐹 quando
removemos alguma aresta da floresta global.

Similarmente, as arestas de 𝐹𝑖 são chamadas de arestas da floresta locais e as arestas
de 𝑅𝑖 = 𝐸(𝐺𝑖)\𝐹𝑖 de arestas reserva locais. Além disso, todas as arestas de 𝐹 estarão
em alguma 𝐹𝑖, ou seja, 𝐹 ⊆ ⋃𝑖 𝐹𝑖.

Para inserir uma aresta 𝑢𝑣, temos dois casos a considerar:

• se 𝑢 e 𝑣 não estão conectados, então basta inserir a aresta 𝑢𝑣 em 𝐹 ;

• caso contrário, temos dois casos:

– se o caminho entre 𝑢 e 𝑣 onde contiver uma aresta 𝑤 cujo peso é maior que o
de 𝑢𝑣, então substituímos 𝑤 por 𝑢𝑣, e atualizamos  com 𝑤;

– caso contrário, atualizamos  com 𝑢𝑣.

Já para remover uma aresta 𝑢𝑣, primeiramente removemos todas as ocorrências desta
aresta nos 𝐺𝑖’s. Se 𝑢𝑣 for uma aresta de 𝐹 , a removemos de 𝐹 e verificamos se em 𝑅 há
arestas que reconectem as componentes separadas de 𝐹 . Se houver, escolhemos uma de
menor peso dentre elas. Finalmente, independentemente de 𝑢𝑣 ser uma aresta da floresta
global ou aresta reserva global, atualizamos  com 𝑅.

O artigo explica em detalhes sobre como esta atualização de  é feita, e para isso ele se
baseia fortemente na estrutura das top trees para podermos implementar este algoritmo
para MSF dinâmica mais eficientemente, tanto em termos de espaço quanto de consumo de
tempo. No final da Seção 5 do artigo, é mencionado que a implementação deste algoritmo
consome espaço 𝑂(𝑚 lg 𝑛).

Até o momento, fica claro que há uma certa cadeia de dependências entre os algo-
ritmos que estudamos e implementamos. Dessa forma, seria interessante apresentar os
detalhes de como implementar a biblioteca deste algoritmo para MSF dinâmica. Mas, para
isso, precisaríamos modificar a implementação da biblioteca da conexidade em florestas
dinâmicas, que passaria a manter top trees no lugar de Euler tour trees. Como a nossa
implementação da biblioteca de Euler tour trees possui um consumo de tempo diferente
da implementação de top trees apresentada em Holm, de Lichtenberg e Thorup [4], a
biblioteca que implementamos do algoritmo de conexidade em grafos dinâmicos teria
a sua complexidade de tempo alterada, visto que este passaria a manter componentes
destas florestas dinâmicas ajustadas.

Além disso, ajustes na biblioteca do algoritmo de conexidade em grafos dinâmicos
alterariam, por sua vez, o consumo de tempo da biblioteca que implementamos do algoritmo
para MSF decremental. É após todos estes ajustes que, finalmente, poderíamos implementar

5 | CONCLUSÕES

55

o algoritmo para a MSF dinâmica proposto por Holm, de Lichtenberg e Thorup [4] na
Seção 5 do artigo deles.

Em suma, dada a complexidade de se realizar estes ajustes nos algoritmos já implemen-
tados, não houve tempo de implementá-lo e optamos por não descrever uma biblioteca
deste algoritmo para MSF dinâmica.

57

Bibliografia

[1] Stephen Alstrup et al. “Maintaining Information in Fully-Dynamic Trees with Top
Trees”. Em: (2003). arXiv:cs/0310065v2, revised 21 Nov 2003. arXiv: cs / 0310065
[cs.DS] (ver p. 53).

[2] Thomas H. Cormen et al. Introduction to Algorithms. 3ª ed. Cambridge, MA: MIT
Press, 2009. isbn: 978-0262033848 (ver pp. 2, 29).

[3] Monika Rauch Henzinger e Valerie King. “Randomized dynamic graph algorithms
with polylogarithmic time per operation”. Em: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing (STOC ’95). Las Vegas, Nevada, USA: Association
for Computing Machinery, 1995, pp. 519–527. isbn: 0897917189. doi: 10.1145/225058.
225269 (ver p. 16).

[4] Jacob Holm, Kristian de Lichtenberg e Mikkel Thorup. “Poly-Logarithmic Deter-
ministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree,
2-Edge, and Biconnectivity”. Em: Journal of the ACM 48.4 (2001), pp. 723–760.
url: https : / / citeseerx . ist . psu . edu / document ? repid = rep1& type = pdf&doi =
1f63499a9cb43f0f4d6a56b37de551c7e0c94971 (ver pp. 1, 3, 5, 6, 15, 16, 27, 53–55).

[5] Dexter C. Kozen. The Design and Analysis of Algorithms. New York, NY: Springer-
Verlag, 1991. isbn: 0-387-97687-6 (ver p. 6).

[6] Arthur Henrique Dias Rodrigues. “Algoritmos para conexidade em grafos dinâmicos”.
Master’s thesis. São Paulo, Brazil: Universidade de São Paulo, 2024 (ver p. 5).

[7] Chung Jin Shian. Repositório Git. 2025. url: https://github.com/cjinshian27/TCC
(acesso em 26/06/2025) (ver pp. 3, 7, 28, 44).

[8] Daniel D. Sleator e Robert E. Tarjan. “Self-adjusting binary search trees”. Em: Journal
of the ACM 32.3 (1985), pp. 652–686. issn: 0004-5411. doi: 10.1145/3828.3835. url:
https://doi.org/10.1145/3828.3835 (ver p. 6).

https://arxiv.org/abs/cs/0310065
https://arxiv.org/abs/cs/0310065
https://doi.org/10.1145/225058.225269
https://doi.org/10.1145/225058.225269
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1f63499a9cb43f0f4d6a56b37de551c7e0c94971
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1f63499a9cb43f0f4d6a56b37de551c7e0c94971
https://github.com/cjinshian27/TCC
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/3828.3835

	Introdução
	Conexidade em grafos dinâmicos
	Conexidade em florestas dinâmicas
	Biblioteca do grafo dinâmico
	Fatiamento do grafo em níveis
	Tipos de arestas do grafo

	Rotinas da biblioteca do grafo dinâmico
	Criação do grafo
	Consultas de conexidade
	Inserções de arestas
	Remoção de arestas

	Estrutura interna do grafo dinâmico
	Euler tour trees
	Nós das florestas
	Nó de aresta
	Nó de vértice
	Versão completa da rotina de adição de arestas
	Versão completa da rotina de remoção de arestas
	Rotina de substituição de aresta

	Algoritmo para MSF decremental
	Biblioteca da MSF decremental
	Listas de adjacências

	Ajustes nas invariantes
	Rotinas da biblioteca da MSF decremental
	Criação do grafo
	Consulta de peso da MSF
	Remoção de arestas
	Ajustes em nós das florestas
	Versão completa da rotina de adição de arestas
	Versão completa da rotina de remoção de arestas
	Busca por uma aresta substituta
	Rotina de substituição de aresta

	Testes experimentais
	Algoritmo de Kruskal
	Grafo G0
	Primeira lista de arestas
	Segunda lista de arestas
	Tempo médio de execução das cinco listas de arestas

	Grafos G1, G2, G3, G4 e G5
	Grafo G1
	Grafo G2
	Grafo G3
	Grafo G4
	Grafo G5
	Tempo médio de execução dos cinco grafos

	Conclusão

	Conclusões
	Bibliografia

