Florestas geradoras maximais de custo minimo em grafos dinamicos

Chung Jin Shian

Orientadora: Cristina Gomes Fernandes

Departamento de Ciencia da Computacao, Instituto de Matematica, Estatistica e Ciéncia da Computacao,

Universidade de Sao Paulo

Resumo

Grafos dinamicos permitem modelar problemas em
que o grafo sofre alteracoes ao longo do tempo. Um
dos problemas fundamentais nesse contexto é¢ a ma-
nutencao de uma arvore geradora de custo minimo
de um grafo dinamico. Estudamos varios algorit-
mos propostos por Holm, de Lichtenberg e Tho-
rup |1] para variantes desse problema. O foco foi
no algoritmo para manter uma floresta maximal de
custo minimo (MSF) no contexto decremental, em
que se da suporte eficiente a remocao de arestas.
Esse algoritmo foi implementado e testado em gra-
fos dindmicos com dezenas de milhares de vértices.

Conexidade em grafos dindmicos

O problema da conexidade em grafos dindmicos visa
uma implementacao eficiente da biblioteca abaixo:

e grafoDindmico(n): controi e devolve um grafo
dindmico com n vértices e sem arestas:;

e conectadosGD(G, u, wv): devolve verdadeiro se
os vértices u e v estao na mesma componente de GG
e falso caso contrario;

e adicioneGD((G, w, v): adiciona a aresta uv no
erafo G;

e removaGD(G, w, v): remove a aresta wv do

erafo GG.

Ideia: Fatiar o grafo G em niveis. Cada aresta de G
possui um nivel entre 1 e [lgn]|, onde n é o nimero
de vértices de G. Uma aresta, ao ser inserida em G,
comega com o nivel [lgn| e, durante o algoritmo, seu
nivel vai sendo decrementado. Seja GG; o subgrafo de G
com as arestas de G de nivel menor ou igual a ¢. Para
cada nivel ¢, o algoritmo mantém uma floresta maximal
F; de G;. Além disso, ele mantém também o subgrafo
R; de G com as arestas de nivel ¢ que nao estao em Fj,
chamadas de arestas reserva.

Cada grafo R; ¢ mantido por suas listas de adjacéncias.
Ja cada floresta F; ¢ mantida em uma estrutura de dados
especifica para florestas dinamicas, baseada em Euler
tour trees. Cada componente de F; é armazenada como
uma Euler tour tree. Em nossa implementacao, Euler
tour trees sao implementadas como splay trees.

digrafo FEuleriano

Euler tour trilha Euleriana

O algoritmo mantém as seguintes invariantes:

e F; ¢é floresta maximal de G; para 1 <1 < [lgn];
o I;C Fiyyparal <i<[lgn]—1;

e Cada componente de F; tem no maximo 2" vértices.

Nos pseudocodigos abaixo, esbocamos a remocao de
uma aresta do grafo. As Euler tour trees carregam in-
formacao extra para que a implementacao das linhas 6,
7,10 e 11 do método substituaAresta seja eficiente.

removaGD(G, u, v)

Entrada: Recebe dois vértices u e v adjacentes do grafo G.
Efeito: Remove a aresta uv do grafo G.

1 i« G.nivellu, v]

2 nivel[u, v] «+ NIL > marcamos uv como removida
3 L « G.nivelMax

4 se uve GF entio > uv é aresta da floresta
5 para j « iaté L faca

6 removaFD(G.F;, u, v) > remove uv da floresta F;
7 substituaAresta(G, i, u, v)

8 senio > uv € aresta reserva
9 removalLA(G.R;, u, v) &> remove uv do grafo R;

substituaAresta(G, i, u, v)
Entrada: Recebe dois vértices u e v de componentes distintas do grafo G, e um nivel i.
Efeito: Adiciona a floresta, se existir, uma aresta de G substituta para xy, de nivel = i.
L « G.nivelMax
para j « iaté L faca
Ty + splay(G.F;.no|u, ul)
T, +splay(G.F;.nolv,v])
se T,.tam > T,.tamentao T, « T,
enquanto T.arestasDeNivel = 0 faca
no XY < procureArestaDeNivel (T,)
T, « splay (néXY)
rebaixeNivelDaAresta((, noXY,)
enquanto T,.arestasReservasDeNivel = 0 faca
no XX « procureNéIncideArestaReservaDeNivel (Ty)
T, < splay(noXX)
(x, x) + noXX.vértices
para y € G.R;|x]| faca
se testeSubstituta(G, x, y, j) entao retorne

> torna o noé uu raiz da componente de u em F;
> torna o no vv raiz da componente de v em F;

> rebaixa as arestas de T, de nivel j

W o = & B W k=

&> ha arestas reserva de nivel j

[
=

incidentes a T,,7

=
o k=

> se é substituta, inclui e termina, senao rebaixa

=
[s

testeSubstituta(G, x, y, j)

Entrada: Recebe dois vértices adjancentes x e y do grafo G e um nivel j.

Saida: Devolve verdadeiro se a aresta xy ¢é substituta e falso caso contrario.
1 removalA(G.R;, x, y)

2 se conectadosGD(G, x, y) entao > a aresta xy nao € substituta
3 G.nivellx,y] «j-1

4 adicionelA(G.Rj—y, x, y) > xy passa a ser reserva de nivel j — 1
5 retorne falso

6 senao t> a aresta xy € substituta
7 L « G.nivelMax

8 para k « jaté L faca > adiciona xy as florestas Fj, ..., F;
9 adicionefFD(G.Fy, x, y)

10 retorne verdadeiro

Na nossa implementacao, que utiliza splay trees, alguns
dos métodos tém consumo amortizado por operacao.

grafoDindmico(n): O(nlgn);
conectadosGD (G, u, wv): amortizado O(lg n);
adicioneGD(G, u, wv): amortizado O(lgn);

removaGD(G, u, v): amortizado O(lg* n).

MSF degemental

O problema da manutencao de uma MSE decremental
do grafo visa uma implementacao eficiente dos métodos
da biblioteca abaixo:

e MSFDecremental(n, FE): constroi e devolve o
orafo ponderado G com n vértices e as arestas pon-
deradas dadas no conjunto E:

e consultePesoMSF((G): devolve o peso de uma
MSEF' do grafo ponderado G;

e removaMSF((G, w, v): remove a aresta uwv do
erafo ponderado G.

Ideia: No loop das linhas 10 a 15 do método
substituaAresta, busca-se por uma aresta substituta
numa ordem arbitraria. Na implementacao da MSFE' de-
cremental, a ideia € olhar as arestas candidatas a substi-
tuta em ordem crescente de peso. Para isso, as listas de
adjacéncias de R; sao substituidas por min-heaps, onde
a chave para um vizinho v é o peso da aresta uv. As-
sim, nas linhas 11 e 14 do substituaArestaMSF, basta
procurar por uma aresta em R; que incida em T}, que
tenha o menor peso e que conecte T}, e T}, para poder-
mos manter o peso minimo de uma MSF do grafo ao
longo das remocoes de arestas.

Na figura abaixo, veja que, nas linhas 11 e 14, passa-
mos a procurar uma aresta de peso minimo em R; inci-
dente a T;,. As linhas 1 a 10 sao idénticas as do método
substituaAresta.

substituaArestaMSF(G, 1, u, v)
Entrada: Recebe dois vértices u e v de componentes distintas do grafo G, e um nivel i.
Efeito: Adiciona a floresta, se existir, uma aresta de G substituta para xy, de nivel > i.
L « G.nivelMax
para j « iaté L faca
T, « splay(G.Fy.nélu, ul)
T, « splay(G.Fy.nd[v,v])
se T,.tam= T,.tamentao T, « T,
enquanto T,.arestasDeNivel = 0 faca
noXY <« procureArestaDeNivel (T,)
T, « splay (néXY)
rebaixeNivelDaAresta(G, noXY, j)
enquanto T, .arestasReservasDeNivel = 0 faca

C> torna o no uu raiz da componente de u em F;
t> torna o nd vv raiz da componente de v em F;

W o = o N b W ke

-
=

noXx := procureNéIncideArestabePesoMinimo(R;, Ty)
T, < splay(noXX)

(x, x) « noOXX vértices

(¥, w) := consulteMinLAMSF(R;, x)
se testeSubstitutaMsSF(G, x, y, j) entao retorne

= e
B W ke

> vizinho de x de aresta de peso
minimo em R;

[
w

Abaixo esta o consumo de tempo da implementacao:

e MSFDecremental(n, FE): O(|E|lgn);
e consultePesoMSF(G): O(1);
e removaMSF((G, w, v): amortizado O(lg2 n).

Testamos a remocao das arestas de um grafo G com
20.000 vértices e mais de 140.000 arestas, realizando uma
comparacao da performance do algoritmo de Kruskal e
da MSF decremental que implementamos.

250000 Comparacao de desempenho: Algoritmo de Kruskal vs MSF Decremental

—8— Algoritmo de Kruskal
200000 4 —®— MSF Decremental

100000 A

50000 +

25000 A

10000 A

Tempo da execucao em milissegundos

5000 ~
2500 A
1000 A

250 A
10 A

:

—_—

|

o
o
<
©o

100
200
400
800
1600
3200
12800
25600 -

Nidmero de arestas removidas

Arestas removidas peso da MST | Algoritmo de Kruskal (ms) MSF Decremental {ms)

100 33759198 B13 5

200 33799435 1634 12

400 33846203 3268 23

800 33966269 6527 51

1600 34146709 13057 133

3200 34535747 26085 211

6400 35314449 52854 366

12800 37131685 106333 649

25600 40782042 223986 1118

Comentarios finais

No texto do TCC, além da descricao detalhada dos algo-
ritmos apresentados aqui bem como de suas analises de
consumo de tempo, tambéem descrevemos brevemente a
ideia por tras de um algoritmo para o problema da MSF
totalmente dindmico, que da suporte eficiente nao so6 a
remocao de arestas, como também a insercao de arestas.
Esse algoritmo faz uso do algoritmo da MSFEF decremen-
tal apresentado acima.

Informacoes e contato

Para mais informagoes, acesse a pagina do trabalho:
https://linux.ime.usp.br/~cjinshian/

Endereco para contato: cjinshian77@usp.br

Referéncias

[1] Holm, J., de Lichtenberg, K., Thorup, M., “Poly-
Logarithmic Deterministic Fully-Dynamic Algo-
rithms for Connectivity, Minimum Spanning Tree,
2-Edge, and Biconnectivity,” Journal of the ACM,
48(4): 723-760, 2001.

https://linux.ime.usp.br/~cjinshian/
cjinshian77@usp.br

	Referências

