
Florestas geradoras maximais de custo mínimo em grafos dinâmicos
Chung Jin Shian Orientadora: Cristina Gomes Fernandes

Departamento de Ciência da Computação, Instituto de Matemática, Estatística e Ciência da Computação,
Universidade de São Paulo

Resumo

Grafos dinâmicos permitem modelar problemas em
que o grafo sofre alterações ao longo do tempo. Um
dos problemas fundamentais nesse contexto é a ma-
nutenção de uma árvore geradora de custo mínimo
de um grafo dinâmico. Estudamos vários algorit-
mos propostos por Holm, de Lichtenberg e Tho-
rup [1] para variantes desse problema. O foco foi
no algoritmo para manter uma floresta maximal de
custo mínimo (MSF) no contexto decremental, em
que se dá suporte eficiente à remoção de arestas.
Esse algoritmo foi implementado e testado em gra-
fos dinâmicos com dezenas de milhares de vértices.

Conexidade em grafos dinâmicos
O problema da conexidade em grafos dinâmicos visa
uma implementação eficiente da biblioteca abaixo:

• grafoDinâmico(n): contrói e devolve um grafo
dinâmico com n vértices e sem arestas;

• conectadosGD(G, u, v): devolve verdadeiro se
os vértices u e v estão na mesma componente de G
e falso caso contrário;

• adicioneGD(G, u, v): adiciona a aresta uv no
grafo G;

• removaGD(G, u, v): remove a aresta uv do
grafo G.

Ideia: Fatiar o grafo G em níveis. Cada aresta de G
possui um nível entre 1 e ⌈lg n⌉, onde n é o número
de vértices de G. Uma aresta, ao ser inserida em G,
começa com o nível ⌈lg n⌉ e, durante o algoritmo, seu
nível vai sendo decrementado. Seja Gi o subgrafo de G
com as arestas de G de nível menor ou igual a i. Para
cada nível i, o algoritmo mantém uma floresta maximal
Fi de Gi. Além disso, ele mantém também o subgrafo
Ri de G com as arestas de nível i que não estão em Fi,
chamadas de arestas reserva.

Cada grafo Ri é mantido por suas listas de adjacências.
Já cada floresta Fi é mantida em uma estrutura de dados
específica para florestas dinâmicas, baseada em Euler
tour trees. Cada componente de Fi é armazenada como
uma Euler tour tree. Em nossa implementação, Euler
tour trees são implementadas como splay trees.

a

b

c

de

T

a

b

c

de

digrafo Euleriano

trilha Euleriana
ad

ab cd

dc

dd cc

da

ae

ea

ee aa

bb

ba

Euler tour
tree de T

O algoritmo mantém as seguintes invariantes:

• Fi é floresta maximal de Gi para 1 ≤ i ≤ ⌈lg n⌉;
• Fi ⊆ Fi+1 para 1 ≤ i ≤ ⌈lg n⌉ − 1;
• Cada componente de Fi tem no máximo 2i vértices.

Nos pseudocódigos abaixo, esboçamos a remoção de
uma aresta do grafo. As Euler tour trees carregam in-
formação extra para que a implementação das linhas 6,
7, 10 e 11 do método substituaAresta seja eficiente.

Na nossa implementação, que utiliza splay trees, alguns
dos métodos têm consumo amortizado por operação.

• grafoDinâmico(n): O(n lg n);
• conectadosGD(G, u, v): amortizado O(lg n);
• adicioneGD(G, u, v): amortizado O(lg n);
• removaGD(G, u, v): amortizado O(lg2 n).

MSF decremental
O problema da manutenção de uma MSF decremental
do grafo visa uma implementação eficiente dos métodos
da biblioteca abaixo:

• MSFDecremental(n, E): constrói e devolve o
grafo ponderado G com n vértices e as arestas pon-
deradas dadas no conjunto E;

• consultePesoMSF(G): devolve o peso de uma
MSF do grafo ponderado G;

• removaMSF(G, u, v): remove a aresta uv do
grafo ponderado G.

Ideia: No loop das linhas 10 a 15 do método
substituaAresta, busca-se por uma aresta substituta
numa ordem arbitrária. Na implementação da MSF de-
cremental, a ideia é olhar as arestas candidatas à substi-
tuta em ordem crescente de peso. Para isso, as listas de
adjacências de Ri são substituídas por min-heaps, onde
a chave para um vizinho v é o peso da aresta uv. As-
sim, nas linhas 11 e 14 do substituaArestaMSF, basta
procurar por uma aresta em Ri que incida em Tu, que
tenha o menor peso e que conecte Tu e Tv, para poder-
mos manter o peso mínimo de uma MSF do grafo ao
longo das remoções de arestas.

Na figura abaixo, veja que, nas linhas 11 e 14, passa-
mos a procurar uma aresta de peso mínimo em Ri inci-
dente a Tu. As linhas 1 a 10 são idênticas às do método
substituaAresta.

Abaixo está o consumo de tempo da implementação:

• MSFDecremental(n, E): O(|E| lg n);
• consultePesoMSF(G): O(1);
• removaMSF(G, u, v): amortizado O(lg2 n).

Testamos a remoção das arestas de um grafo G com
20.000 vértices e mais de 140.000 arestas, realizando uma
comparação da performance do algoritmo de Kruskal e
da MSF decremental que implementamos.

Comentários finais
No texto do TCC, além da descrição detalhada dos algo-
ritmos apresentados aqui bem como de suas análises de
consumo de tempo, também descrevemos brevemente a
ideia por trás de um algoritmo para o problema da MSF
totalmente dinâmico, que dá suporte eficiente não só à
remoção de arestas, como também à inserção de arestas.
Esse algoritmo faz uso do algoritmo da MSF decremen-
tal apresentado acima.

Informações e contato
Para mais informações, acesse a página do trabalho:
https://linux.ime.usp.br/~cjinshian/
Endereço para contato: cjinshian77@usp.br

Referências
[1] Holm, J., de Lichtenberg, K., Thorup, M., “Poly-

Logarithmic Deterministic Fully-Dynamic Algo-
rithms for Connectivity, Minimum Spanning Tree,
2-Edge, and Biconnectivity,” Journal of the ACM,
48(4): 723–760, 2001.

https://linux.ime.usp.br/~cjinshian/
cjinshian77@usp.br

	Referências

