MAC0499 - TRABALHO DE FORMATURA SUPERVISIONADO

Segmentação de tumores em imagens de ressonância magnética 3D

ALUNA

Daniela Gonzalez Favero

SUPERVISORES

Roberto Marcondes Cesar Junior Hugo Neves de Oliveira

Apoio à pesquisa

CNPq

Auxílio financeiro à autora deste trabalho.

FAPESP

Apoio FAPESP #2015/22308-2 e #2017/50236-1.

Motivação

Anotação de imagens de ressonância magnética (MRIs)

Para segmentação de estruturas e detecção de anomalias.

Mais especificamente, MRIs pediátricas e fetais

A literatura sobre esse campo é escassa.

Ganho de tempo e acurácia

As anotações feitas clinicamente costumam ser demoradas e ambíguas.

Dois Conjuntos de Dados

Desafio BraTS 2019

335 MRIs cerebrais de pacientes adultos com glioma

Fetal Tissue Annotation Challenge 2021

Desafio FeTA 2021

80 MRIs de encéfalos fetais, podendo conter patologias ou não

As regiões de interesse do conjunto de dados BraTS

Sub-regiões do glioma. Em (A) é possível ver WT (amarelo) em T2-FLAIR, em (B) o TC (vermelho) visível em T2 e em (C) o ET (em azul) e o tecido necrótico, ambos visíveis em T1Gd. À direita, cada região segmentada é combinada na MRI. Figura extraída de (**Bakas, Reyes et al., 2018**).

As regiões de interesse do conjunto de dados FeTA

Regiões encefálicas do feto a serem segmentadas. LCR externo em verde escuro, GM em amarelo, WM em marrom, ventrículos em azul, cerebelo em vermelho, deep GM em laranja e tronco cerebral em verde claro. Figura extraída de (**Payette et al., 2021**).

Desafios

Cenário de small-data

Conjuntos de dados médicos são escassos e ruidosos

Imagens 3D

As MRIs analisadas são volumétricas, exigindo operações de processamento tridimensionais e mais espaço na memória do computador.

Metodologia

Redes Neurais Convolucionais (CNNs)

A utilização do aprendizado de máquina sobre imagens

Métodos clássicos ou de *shallow learning* costumam obter resultados não acurados.

Camadas convolucionais conectadas

Utilização de convoluções para obter informações espaciais das imagens.

Diversas arquiteturas

As camadas e suas conexões são definidas pela arquitetura escolhida.

Arquiteturas utilizadas neste trabalho

U-Net 3D

Descrita em (Çiçek et al., 2016).

V-Net

Descrita em (Milletari et al., 2016).

HighResNet 3D

Ou **HR3N**, descrita em (Li et al., 2017).

SkipDenseNet 3D

Ou SDN, descrita em (Bui et al., 2017).

Med3D Descrita em (S. Chen et al., 2019).

Duas Pipelines

Simples

Especialista

A Primeira *Pipeline*

A MRI inteira submetida à rede gera a predição das sub-regiões do tumor.

A MRI inteira submetida à rede gera a predição das estruturas do encéfalo fetal.

Redes Especialistas

Uma pipeline mais refinada

Segmenta-se uma região de interesse em vez da imagem toda.

Uma rede generalista G e uma especialista S

A rede generalista *G* é executada sobre a imagem toda e, em seguida, *S* é executada sobre a região de interesse determinada por *G*.

A *Pipeline* Especialista no Conjunto BraTS

A MRI inteira submetida à rede G gera a predição binária do tumor inteiro. Então, a Rol obtida a partir da saída de G é submetida à rede S, gerando a segmentação das três regiões do tumor (WT, ET e NET).

A Pipeline Especialista no Conjunto FeTA

A MRI inteira submetida à rede G gera a predição binária das regiões do cerebelo, substância cinzenta profunda e o tronco cerebral. A RoI obtida a partir da saída de G é submetida à rede S, gerando a segmentação das três regiões escolhidas.

Resultados

Resultados Quantitativos no BraTS

Métrica	V-Net	U-Net	HR3N	SDN	Med3D
DSC	0.5444	0.5828	0.49	0.6618	0.556
loU	0.4583	0.4991	0.4091	0.5525	0.4491

Coeficiente Dice (DSC) e Índice de Jaccard (IoU) da primeira pipeline executada sobre os dados do BraTS.

Métrica	Estratégia	V-Net	U-Net	HR3N	SDN	Med3D
DSC	G	0.8132	0.5775	0.7498	0.8287	0.7159
	S	0.6699	0.3103	0.3046	0.6404	0.3821
loU	G	0.6852	0.406	0.5998	0.7075	0.5575
	5	0.5593	0.2681	0.266	0.5236	0.3061

Métricas DSC e IoU da segunda pipeline executada sobre os dados do BraTS, comparando as execuções de **G** e **S**.

Resultados Qualitativos no BraTS

Segmentação das sub-regiões do glioma. As colunas indicam, em ordem, fatias sagitais da imagem **X**, a região de interesse, o rótulo da região e as predições $\hat{\mathbf{Y}}$ da primeira pipeline, da rede generalista e da rede especialista.

Resultados Quantitativos no FeTA

Métrica	V-Net	U-Net	HR3N	SDN	Med3D
DSC	0.861	0.8355	0.8072	0.8749	0.7848
loU	0.7635	0.7267	0.6884	0.7844	0.6586

Métricas DSC e IoU da primeira pipeline executada sobre os dados do FeTA.

Métrica	Estratégia	V-Net	U-Net	HR3N	SDN	Med3D
DSC	G	0.8864	0.8094	0.7465	0.7711	0.8119
	S	0.8996	0.8363	0.5905	0.9011	0.9313
loU	G	0.7959	0.6798	0.5955	0.6275	0.6833
	5	0.8233	0.7296	0.4866	0.8263	0.8741

Métricas DSC e IoU da segunda pipeline executada sobre os dados do FeTA, comparando as execuções de **G** e **S**.

Resultados Qualitativos no FeTA

Segmentação das sub-regiões do encéfalo fetal. As colunas indicam, em ordem, fatias sagitais da imagem \mathbf{X} , a região de interesse, o rótulo da região e as predições $\hat{\mathbf{Y}}$ da primeira pipeline, da rede generalista e da rede especialista.

Conclusões

Resultados e trabalhos futuros

Foi possível obter segmentações acuradas

Principalmente ao segmentar encéfalos fetais, as redes especialistas obtiveram alta acurácia em suas predições.

Para o futuro, análises de volumetria

É possível obter informações úteis clinicamente a partir das segmentações.

Detecção de patologias em MRIs fetais/pediátricas

O próximo passo é automatizar a detecção de patologias nessas imagens.

Obrigada! Dúvidas?

Acesso ao trabalho completo

LINUX.IME.USP.BR/~DANIFAVERO/MAC0499

Bibliografia

[Bakas, Reyes et al. 2018] Spyridon Bakas, Mauricio Reyes *et al.* "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge". Em: arXiv preprint arXiv:1811.02629 (2018).

[Payette et al. 2021] Kelly Payette *et al.* "An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset". Em: Scientific Data 8.1 (2021), pgs. 1–14.

[Çiçek et al. 2016] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox e Olaf Ronneberger. "3d u-net: learning dense volumetric segmentation from sparse annotation". Em: International conference on medical image computing and computer-assisted intervention. Springer. 2016, pgs. 424–432.

[Milletari et al. 2016] Fausto Milletari, Nassir Navab e Seyed-Ahmad Ahmadi. "Vnet: fully convolutional neural networks for volumetric medical image segmentation". Em: 2016 fourth international conference on 3D vision (3DV). IEEE. 2016, pgs. 565–571.

Bibliografia

[Li et al. 2017] Wenqi Li *et al.* "On the compactness, efficiency, and representation of 3d convolutional networks: brain parcellation as a pretext task". Em: International conference on information processing in medical imaging. Springer. 2017, pgs. 348– 360.

[Bui et al. 2017] Toan Duc Bui, Jitae Shin e Taesup Moon. "3d densely convolutional networks for volumetric segmentation". Em: arXiv preprint arXiv:1709.03199 (2017).

[S. Chen et al. 2019] Sihong Chen, Kai Ma e Yefeng Zheng. "Med3d: transfer learning for 3d medical image analysis". Em: arXiv preprint arXiv:1904.00625 (2019).