
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

Integrating the KWorkflow system with
the Lore archives

Enhancing the Linux kernel developer
interaction with mailing lists

David de Barros Tadokoro

Final Essay

mac 499 — Capstone Project

Supervisor: Paulo Meirelles

Co-supervisor: Rodrigo Siqueira

São Paulo

2023

The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

To all my family and friends.

i

Acknowledgedments

"Courage need not to be remebered, for it is never forgotten."

— Princess Zelda, The Legend of Zelda: Breath of the Wild

First, I would like to thank Rodrigo Siqueira and Paulo Meirelles for the continuous

support given to me throughout the year related to the confection of this capstone project

and in various aspects of my academic, professional, and personal life. Likewise, I would

like to thank Aquila Macedo, Melissa Wen, Magali Lemes, Rubens Neto, and all the people

involved in the KWorkflow community for the invaluable interactions that they provided

me. I cannot forget to mention Nelson Lago for helping me structure experiments, fix

LaTeX errors, and much more.

I would also like to thank the Instituto of Matemática e Estatística da Universidade

de São Paulo (IME-USP) and all its professors, colleagues, and employees for providing

me great experiences through these four years in the Bachelor of Computer Science

course.

Last but certainly not least, I would like to thank all my family and friends for all the

support and companionship given me throughout my life.

Resumo

David de Barros Tadokoro. Integrando sistema KWorkflow os arquivos do Lore:
Aprimorando a interação do desenvolvedor do kernel Linux com as listas de email.
Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2023.

O kernel do Linux é um projeto de software livre bem estabelecido com trinta anos de desenvolvimento.

Combinado com utilitários do Projeto GNU, o ecossistema GNU/Linux é fundamental para operar serviços

críticos em nossa sociedade, como a Internet. Com um modelo de contribuição único, o kernel do Linux é

desenvolvido colaborativamente por milhares de contribuidores e mantenedores que residem em todo o

mundo por meio de correio eletrônico e listas de email. Muitos projetos oferecem soluções para os processos

e práticas envolvidos no desenvolvimento do kernel do Linux, e o sistema KWorkflow (kw) tem como objetivo

fornecer um ambiente unificado que aprimora os fluxos de trabalho desses desenvolvedores. O projeto kw

carecia de uma ferramenta que contemplasse as interações dos desenvolvedores com as listas de email para

revisão de patches, e o foco deste trabalho foi produzir um novo módulo (com essa funcionalidade) no

ambiente kw que aprimorasse esse fluxo de trabalho. O módulo chama-se patch-hub e integra o ambiente

kw com os arquivos do Lore - uma aplicação Web que hospeda arquivos atualizados das listas de email

relacionadas ao desenvolvimento do kernel do Linux - para oferecer uma interface de usuário (UI) baseada em

terminal para os patchsets enviados para as listas de email. Um Sistema de Gerenciamento de Banco de Dados

(SGBD) foi integrado ao projeto kw como uma tarefa preliminar, constituindo uma base para o patch-hub e

impactando positivamente o projeto em outras frentes, como na coleta de dados e no desempenho. Esse

novo recurso foi implementada usando o padrão de projeto arquitetural Model-View-Controller (MVC) e o

modelo matemático de computação Finite-State Machine (FSM), o que garantiu componentes fracamente

acoplados que são simples de manter e expandir. Ao exibir sequências de menus de terminal para o usuário

navegar, o patch-hub fornece os serviços de disponibilizar as listas de email arquivadas no Lore, exibir um

registro dos patchsets mais recentes enviados para listas de email específicas, fazer consultas baseadas em

strings, marcar patchsets para acesso rápido no futuro e aplicar ações sobre eles. O estado atual do módulo

integrado ao projeto kw não apenas valida uma ferramenta que aprimora as interações com listas de email,

como também proporciona oportunidades para trabalhos futuros que continuarão a aprimorar o patch-hub

e a experiência do desenvolvedor do kernel do Linux.

Palavras-chave: Kernel Linux. KWorkflow. Arquivos do Lore. lore.kernel.org. Modelo de contribuição.

Software livre.

Abstract

David de Barros Tadokoro. Integrating the KWorkflow system with the Lore
archives: Enhancing the Linux kernel developer interaction with mailing lists.

Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University

of São Paulo, São Paulo, 2023.

The Linux kernel is a well-established free software project with thirty years of development. Combined

with utilities from the GNU Project, the GNU/Linux ecosystem is fundamental for operating critical services in

our society, like the Internet. With a unique contribution model, the Linux kernel is collaboratively developed

by thousands of contributors and maintainers who reside worldwide through electronic mail and mailing

lists. Many projects offer solutions to the processes and practices involved in the Linux kernel development,

and the KWorkflow (kw) system aims to provide a unified environment that enhances the workflows of these

developers. The kw project lacked a tool that contemplated the developers’ interactions with the mailing lists

for patch reviewing, and this work’s focus was to produce a feature in the kw environment that enhanced

this workflow. The feature is named patch-hub, and it integrates the kw environment with the Lore archives

- a Web application hosting updated archives of mailing lists related to the Linux kernel development - to

offer a terminal-based user interface (UI) to the patchsets sent to the mailing lists. A Database Management

System (DBMS) was integrated into the kw project as a preliminary task, constituting a base for patch-hub

and positively affecting the project on other fronts, such as data collection and performance. The feature

was implemented using the Model-View-Controller (MVC) architectural design pattern and the Finite-State

Machine (FSM) mathematical model of computation, which ensured loosely coupled components that are

simple to maintain and expand. By displaying sequences of terminal menus for the user to navigate, patch-

hub provides the services of retrieving the mailing lists archived on Lore, displaying a record of the latest

patchsets sent to target mailing lists, querying based on strings, bookmarking patchsets for future quick

access, and applying actions on them. The current state of the feature merged in the kw project not only

validates a tool that enhances the interactions with mailing lists but also lays the foundation for future

works that will keep on enhancing patch-hub and the experience of Linux kernel developers.

Keywords: Linux kernel. KWorkflow. Lore archives. lore.kernel.org. Contribution model. Free software.

vii

List of abbreviations

OS Operating System

SCM Source Code Management

DAWS Developer Automation Workflow System

DBMS Database Management System

DDL Data Definition Language

DML Data Manipulation Language

FLOSS Free/Libre/Open-Source Software

CLI command-line interface

SQL Structured Query Language

ERD Entity-Relationship Diagram

MVC Model-View-Controller

UI User Interface

FSM Finite-State Machine

DFSM deterministic Finite-State Machine

NFSM non-deterministic Finite-State Machine

TUI terminal user interface

API Application Programming Interface

IPC Inter-Process Communication

IP Internet Protocol

URL Uniform Resource Locator

viii

List of Figures

1.1 Diagram of patch lifecycle on the Linux kernel project. 6

1.2 Patch way until merging into Linux mainline. 6

1.3 kw project structure. 9

1.4 Example of archive of Lore . 11

3.1 Diagram of interaction between components in the MVC 22

3.2 Diagram of a Finite-State Machine with four states. 24

3.3 Diagram of a non-deterministic Finite-State Machine with four states. . . 24

3.4 Dialog examples . 26

3.5 patch-hub Dashboard . 32

3.6 patch-hub MVC diagram . 34

3.7 Dialog box displayed when there are no bookmarked patchsets. 36

3.8 Dialog box displayed with list of bookmarked patchsets. 36

4.1 HTTP request-response behavior . 39

4.2 HTTP request message format . 40

4.3 HTTP response message format . 41

4.4 Marvel Comics API interactive documentation 42

4.5 Marvel Comics API URL generator . 42

4.6 Lore API diagram . 43

4.7 Lore API responses . 44

4.8 Lore API pagination . 45

4.9 Lore API filtering . 46

4.10 Lore API Atom feed response . 46

A.1 patch-hub listing of archived mailing lists on Lore. 65

A.2 patch-hub menu with registered mailing lists. 65

A.3 patch-hub listing of latest patchsets from target mailing list. 66

A.4 patch-hub handling of individual patchset. 67

ix

A.5 patch-hub menu with bookmarked patchsets. 67

A.6 patch-hub capability of querying Lore archives based on string. 68

A.7 patch-hub setting of configurations through the feature. 68

A.8 patch-hub terminal adaptability. 69

List of Tables

1.1 List of kw features. 8

2.1 Trade-offs of using a file-based database approach. 14

2.2 kw library functions for interacting with SQLite3. 18

2.3 Comparison of time using perf stat for running the whole test suite

before and after introducing SQLite3 to kw. 19

List of Programs

1.1 Example of Bash script with expansions. 10

1.2 Example of Bash script with keywords and redirections. 11

2.1 Example of part of /etc/passwd . 14

2.2 Example of entry in the kw former statistics database. 15

2.3 Example of contents from pomodoro/tags. 15

2.4 Example of contents of Pomodoro sessions data from a single day. 16

2.5 is_tag_already_registered after SQLite3 introduction 18

2.6 is_tag_already_registered before SQLite3 introduction 19

3.1 Dialog checklist command. 27

3.2 create_directory_selection_screen function implementation. . . . 28

3.3 Simplified listing of src/patch_hub.sh. 30

x

3.4 Simplified listing of src/ui/patch_hub/patch_hub_core.sh. 31

3.5 Listing of the handle_exit . 31

3.6 Listing of the show_dashboard handler function 32

3.7 Listing of show_bookmarked_patches. 34

3.8 Listing of list_patches. 35

4.1 Example of HTTP request message. 40

4.2 Example of HTTP response message. 40

4.3 Example of query string. 41

4.4 patch-hub Model data structures . 47

4.5 Implementation of retrieve_available_mailing_lists. 48

4.6 Implementation of download. 49

4.7 Implementation of fetch_latest_patchsets_from. 50

4.8 Implementation of reset_current_lore_fetch_session. 50

4.9 Implementation of compose_lore_query_url_with_verification. . . 51

4.10 Implementation of pre_process_xml_result. 52

4.11 Template of XML result of mailing list patches and correspondent pre-

processed version. 53

4.12 Implementation of process_patchsets 54

4.13 Implementation of download_series . 56

4.14 Implementation of add_patchset_to_bookmarked_database 57

4.15 Implementations of remove_patchset_from_bookmark_by_url and re-

move_patchset_from_bookmark_by_index 57

4.16 Implementation of save_new_lore_config 58

xi

Contents

Introduction 1

1 Linux kernel development 5
1.1 Linux Kernel contribution model . 5

1.2 KWorkflow system . 7

1.2.1 Bash overview . 9

1.3 Lore archives . 11

2 Database Management System of KWorkflow 13
2.1 File-Based Databases . 13

2.1.1 How kw managed its databases 14

2.2 Database Management Systems . 16

2.2.1 The choice of SQLite3 as the DBMS 17

2.3 From a file-based database to a DBMS approach 18

3 patch-hub User Interface 21
3.1 Background . 21

3.1.1 The View and Controller roles of MVC 21

3.1.2 Finite-State Machines . 23

3.2 The Dialog tool . 25

3.3 Using Dialog as a framework in KWorkflow 27

3.4 patch-hub User Interface implementation 29

3.4.1 patch-hub entry point . 29

3.4.2 The Finite-State Machine of patch-hub 30

3.4.3 View and Controller components of patch-hub 33

3.4.4 patch-hub execution example 33

4 patch-hub Model 37
4.1 Background . 37

xii

4.1.1 The Model role of MVC . 37

4.1.2 Web applications . 38

4.2 Lore archives API . 43

4.2.1 Query parameters . 45

4.3 patch-hub Model implementation . 47

4.3.1 Listing available mailing lists . 48

4.3.2 Listing patchsets of a mailing list 49

4.3.3 Handling individual patchsets . 55

4.3.4 Managing feature configurations 58

5 Final Remarks 59

6 Personal Appreciation 63

Appendixes

A Demonstration of the patch-hub feature 65

B List of contributions to the KWorkflow project 71

References 73

1

Introduction

Computers are crucial tools that are pervasive in the modern world. Computer systems
range from Personal Computers used by the general public for everyday activities to em-
bedded systems that are present in a substantial portion of automobiles employing critical
tasks. While not a strict requirement, computers commonly comprise two interacting
parts: hardware and software. The physical electronic components of a computer are its
hardware, while the set of programs and data that control the operation of the hardware
is the software. In this sense, software can adopt various forms to instruct hardware. A
program written in Machine Language, which uses zeroes and ones to code instructions
specific to a piece of hardware, is a form of software. Programs can also rely on other
programs to create abstractions that reduce the dependency on hardware specifications
and provide a more readable and logical way of programming. Programs that more directly
instruct hardware are of Low-Level, while the ones that use other programs to abstract its
details are of High-Level.

From the perspective of High-Level programs that rely on Low-Level programs to use
computer resources for any purpose, an Operating System (OS) is the complex piece of
software that serves as the interface between these two levels of programming. From an
alternative standpoint, an OS serves as the component responsible for managing these
computer resources because they are both limited and require coordination to avoid
conflicts when multiple pieces of software are using them. In summary, we can derive
that OSes are fundamental in making computers more efficient and reliable because they
manage computer resources efficiently and reliably. Also, OSes provide an environment for
developers that is simpler and closer to natural language in terms of programming, which
results in software production that is more diverse and faster in rate when compared with
programming strictly at a Low Level.

The main component of an OS is its kernel, which commonly encapsulates all its
core functionality, and the software that absorbs all hardware details of the components
it supports (called device drivers). A great example of an OS kernel is the Linux kernel.
The Linux kernel was officially released by Linus Torvalds on October 5, 1991, as version
0.0.2, inspired by the UNIX and MINIX OSes. As a kernel does not constitute a fully
functional OS, Linux was combined with utilities developed by the GNU Project

1 to
form the Free/Libre/Open-Source Software (FLOSS)2 GNU/Linux OS, which meant that

1 The GNU Project was announced by Richard Stallman on September 27, 1983, to provide a complete
collection of free software to society, including a full operating system.

2 In this work, the acronym “FLOSS” is used as a representative for “Free Software”, “Open Source Software”
(OSS), and “Free/Open Source Software”(FOSS)

2

0 | INTRODUCTION

it could be freely obtained, run, copied, modified, studied and distributed. The creation
of GNU/Linux constituted a revolution as, although the GNU Project provided almost
all software components to build a FLOSS OS, attempts to make a kernel for it were
unsuccessful. Countless modified versions of the original GNU/Linux exist that are fine-
tuned to work best in specific scenarios. Today, the GNU/Linux ecosystem plays a critical
role in various aspects of computing and technology on a global scale. The Internet
infrastructure (routers, switches, and the like that compose the Internet core) and the
majority of servers that provide essential services to society run some form of a GNU/Linux
OS. Also, GNU/Linux plays an educational role as its source code is available for anyone
to study and is a good reference for a real-world functional OS.

Focusing on the Linux kernel, the project has been collaboratively developed for
more than 30 years, practically since its inception. As time passes, the project becomes
progressively larger and more complex. Due to the fact that the Linux kernel plays a vital
role in our society, that the project continues to grow in an accelerated manner, and that
the workforce needs to be scaled and continuously supplanted, the processes and practices
that constitute the workflows of both contributors and maintainers needs to be optimized,
simplified, and automatized. The complexity of a system should not relate to the complexity
of developing the system. In this context, many tools support Linux kernel developers
with services that enhance their workflows. Among the tools that aim to enhance the
Linux developer workflow, the KWorkflow (kw) system is distinguishable, as it intends to
be a unified environment that provides solutions that act on diverse fronts. For example,
the typical processes of compiling and installing a Linux kernel are contemplated in the
system, as well as the practice of running a script to check for code style violations.

Besides getting more extensive and complex, the project influx of contributions also
grows fast, so a single person or group cannot fully understand and maintain the whole
codebase. As a solution, the Linux kernel contribution model employs a Chain of Command

model to break down the responsibility of maintaining the project into smaller portions,
called subsystems. Each subsystem has one or more maintainers responsible for deciding
which changes are accepted into the correspondent subsystem. Other maintainers evaluate
the accepted changes, repeating this process until Linus Torvalds merges them into an
official Linux release. Electronic mail is the medium used to propagate changes between
contributors, maintainers, and anyone interested in helping in the reviewing process.
Mailing lists

3 are instrumental and act as the public record of all interaction between the
developing communities of the Linux kernel (this includes discussions, considering that
not only changes flow through the mailing lists). There are some disadvantages to using
mailing lists from the contribution model perspective. However, the most outstanding is
that it requires developers to actively subscribe to consult the messages that flow through
a mailing list. An on-demand approach to consult these messages is possible through the
Lore archives, which aggregate updated archives of all mailing lists related to Linux kernel
development.

Before this work, kw lacked a tool (called feature in the project) that improved the
interaction with the mailing list for reviewing changes, unlike sending changes to the

3 In this text context, a mailing list is a list of email addresses, in which each address is a recipient to every
message sent to the mailing list.

0 | INTRODUCTION

3

corresponding lists and maintainers that was already contemplated with a feature in the
project. In other words, there was an essential workflow in Linux development that kw did
not cover. With this in mind, this work focused on studying the interactions of Linux kernel
developers with the mailing lists and implementing a new feature to the kw project named
patch-hub that provided a user-friendly interface with the Lore archives integrated with
the kw environment.

The patch-hub feature was implemented using the Model-View-Controller architectural
design pattern and the Finite-State Machine computational model. Concepts of database
systems, User Interface (UI), and Web applications were also necessary in designing and
developing the feature. By the end of this work, although there are future works that
this author will do, the feature reached a functional state that validated the idea of an
integrated interface to the Lore archives in the kw project.

The remainder of this capstone project consists of six more chapters. Chapter 1 is
dedicated to further discussing the Linux kernel, its contribution model, the kw system,
and the Lore archives. Chapter 2 focuses on outlining the integration of kw with a Database

Management System (DBMS) that was a pre-requisite for implementing patch-hub. Chap-
ter 3 and Chapter 4 delve into the concepts and implementations of patch-hub UI and
patch-hub Model, respectively, which are the two major components that constitute the
feature. Chapter 5 are the final remarks that summarize and conclude this work and also
present future works that are planned to be done by the author. Finally, Chapter 6 describes
the author’s learnings and experiences while working on this project and throughout his
undergraduate education.

5

Chapter 1

Linux kernel development

In the context of Operating Systems (OSes), a kernel is the most fundamental part of the
system. The kernel is the one program running at all times on a computer with complete
control over everything in the system by managing hardware resources and providing an
interface for hardware and software components (Silberschatz et al., 2012).

The Linux kernel is a FLOSS project released under the GNU General Public License
(GPL) created by Linus Torvalds in 1991. The project has been collaboratively developed
and grown in size and scale. As an illustration of the kernel community size, version
5.8, released in August 2020, had a codebase consisting of almost 70 thousand files that
amounted to approximately 28.4 million lines of code (Stewart et al., 2020). During
the development cycle for version 6.4, released in June 2023, a total of 1980 developers
contributed to the project, from which 282 made their first contribution 1.

The Linux kernel is the base for many Operating Systems that play a critical role in
the functioning of our society. As of October 23, 2023, Linux-based Operating Systems
power 37.4% of all websites 2. Beyond that, 96.3% of the top one million web servers run a
Linux-base Operating System 3. By these statistics, we can derive that the Linux kernel is
fundamental for adequately operating the Internet.

1.1 Linux Kernel contribution model
The Linux project is extensive, and the flow of changes is high. As there are many

contexts, the project is broken down into smaller and more logical parts called subsystems.
Each subsystem generally has an official upstream repository (also called a kernel tree)
associated with a dedicated portion of the code, an exclusive public mailing list, and a set
of maintainers. The public mailing list serves as the medium in which changes are sent
from the contributors and reviewed by the community, and overall discussions occur. By
dividing the project into subsystems, maintainers can specialize in some portions of the

1 Source: https://lwn.net/Articles/936113/
2 Source: https://w3techs.com/technologies/details/os-linux
3 Source: https://www.zdnet.com/home-and-office/networking/can-the-internet-exist-without-linux/

https://lwn.net/Articles/936113/
https://w3techs.com/technologies/details/os-linux
https://www.zdnet.com/home-and-office/networking/can-the-internet-exist-without-linux/

6

1 | LINUX KERNEL DEVELOPMENT

codebase, improving the code quality and making the reviewing process more efficient.
Patches are the unit for changes in the Linux project and are similar to the commit entity of
the Git Source Code Management (SCM) system 4. Figure 1.1 is a diagram that illustrates
a patch lifecycle from its conception until it is merged into the correspondent upstream
repository.

Figure 1.1: Diagram of patch lifecycle on the Linux kernel project.

There are subsystems for core parts of the Linux kernel, like Process Management,
Memory Management, and Virtual File System. The vast majority of subsystems and
lines of code, though, are destined for device drivers. These software components make
hardware usable by the Linux kernel and, by extension, any software that builds upon the
kernel. For example, the AMD Display Core subsystem handles the GPU scan-out in AMD
Graphics Processing Units (GPUs).

Figure 1.2: Patch way until merging into Linux mainline.

Most importantly, a unique repository called the mainline is maintained by Linus
Torvalds, and it is the base for many other kernels, such as the stable version, which most
of the distributions use. Every incorporated patch in any new main version of Linux must
ultimately be merged by Linus Torvalds. However, just like the codebase is broken down

4 https://git-scm.com/

https://git-scm.com/

1.2 | KWORKFLOW SYSTEM

7

into subsystems, the responsibility to select which and when patches are going into the
mainline is shared with the correspondent maintainer or group of maintainers. This aspect
of the contribution model is similar to a Chain of Command model, in which maintainers
serve as gatekeepers to patches sent by contributors; those maintainers send the selected
patches to other maintainers, and so on, until patches reach Linus Torvalds, who has the
final say in if or when the patch will be incorporated, but, as the volume of patchsets is
high, Linus Torvalds cannot thoroughly review each one and trusts that maintainers below
the chain do not send bad patchsets. Figure 1.2 is a diagram illustrating the way a patch
takes until it is merged into the Linux mainline.

In the contribution model, contributors send patches via email to the respective main-
tainers and dedicated mailing lists. Conversely, in the classic approach to consuming the
influx of patches submitted, maintainers and anyone who desires to help in the reviewing
process have to subscribe to the mailing lists, trust the correct mail distribution, and consult
their mailboxes. In this approach, reviewers may lose patches if they are not subscribed to
the mailing list when the patch was sent to the subscribers or if sending the patch to the
given reviewer fails.

1.2 KWorkflow system
Linux kernel development includes many diverse sub-projects but entails general pro-

cesses and practices that compose common workflows for most developers. For example,
compiling the Linux kernel from source (also known as building) is a standard process in
most workflows of Linux developers to test changes and a common practice to guarantee
that changes did not introduce compilation errors. Building the kernel is a heavily automat-
able task, and using tools can simplify and accelerate development. Besides automation,
the process can be optimized by tools that offer complimentary services, like listing the
number of modules being compiled and kernel release name or integrate with the LLVM

5

toolchain. Other typical processes and practices present in Linux kernel development are
installing a Linux kernel image (deploying), managing compilation configuration files,
sending patches through email to the correct mailing lists and maintainers, reviewing
patches, and debugging using the dmesg 6 log.

The Linux project provides a fundamental development tool, the checkpatch.pl script.
The file is located in a Linux kernel source tree at scripts/checkpatch.pl and it is a Perl

script used to check for code style
7 violations in patches. Note how, technically, a Linux

developer can avoid using checkpatch.pl to check for code style violations in his/her
patches; nonetheless, its use is almost standard because of its robustness and reliability for
this practice.

Considering this context of tools that can enhance the workflows of Linux kernel

5 The LLVM Project is a collection of modular and reusable compiler and toolchain technologies (for reference,
see https://llvm.org/)

6 dmesg is used to examine or control the kernel ring buffer (for reference, see https://man7.org/linux/
man-pages/man1/dmesg.1.html).

7 Set of rules and conventions that standardizes the writing of source code, making reading and understanding
it more efficient, while also helping to avoid the introduction of errors.

https://llvm.org/
https://man7.org/linux/man-pages/man1/dmesg.1.html
https://man7.org/linux/man-pages/man1/dmesg.1.html

8

1 | LINUX KERNEL DEVELOPMENT

developers, KWorwflow, also known as KernelWorkflow or just kw, is a Developer Automa-

tion Workflow System (DAWS) 8 that provides many features that simplify and optimize
workflows related to Linux development. Quoting from the project website – “kw has
a simple mission: reduce the environment and setup overhead of developing for Linux”.
Moreover, kw provides a unified interface for all its features.

Some kw features are more practical ones that automate and simplify core processes
in Linux development, like kw build and kw deploy, which encompass many services
related to compiling and installing Linux kernels, respectively. On the other hand, kw
amasses other features that can be used by developers to indirectly improve their workflows,
like kw device to retrieve basic information about the hardware of a target machine, kw
remote to manage remote machines for easy access, and kw pomodoro to create and
manage timeboxes using the Pomodoro time management technique. Table 1.1 exhibits
some kw features and their surmised descriptions 9. Currently, kw has a total count of 23
features that cover a wide variety of situations that fundamentally aim to improve the
workflows of Linux developers.

kw feature Description
kw build Manage Linux kernel compilation

kw codestyle Wrap and extend checkpatch.pl
kw config Manage kw local and global configurations
kw deploy Manage Linux kernel installation

kw init Create local kw environment
kw kernel-config-manager Manage Linux .config files

kw mail Send patches through email
kw maintainers Get maintainers and mailing lists of patches
kw patch-hub User Interface to lore.kernel.org archives

Table 1.1: List of kw features.

In particular, this work focuses on the domain of kw patch-hub, its design and im-
plementation. The kw is a FLOSS project, and its official repository is hosted in GitHub
at https://github.com/kworkflow/kworkflow. From the contributor perspective, the kw
project has well-defined code style rules and a modular architecture, which lowers the
difficulty barrier for new contributors and makes the project more organized and ro-
bust. Figure 1.3 is a diagram with the project structure of kw emphasizing its modular
architecture. Succinctly, the structure is composed of a file that serves as kw entry point
named kw (HUB) on the diagram, dedicated files for each feature named Components,
library files named Libraries, and specific files for code that is very mutable or too specific
named Plugins (Neto, 2022). More details about the project structure can be found at
https://kworkflow.org/content/project_structure.html.

8
Developer Automation Workflow System is a definition proposed by this work that was created in conjunction
with the kw community, based on the definition Version Control System used by Git.

9 Man pages for all kw features, along with other relevant information, are available at the project website
https://kworkflow.org

https://github.com/kworkflow/kworkflow
https://kworkflow.org/content/project_structure.html
https://kworkflow.org

1.2 | KWORKFLOW SYSTEM

9

Figure 1.3: kw project structure.

1.2.1 Bash overview
KWorkflow is entirely implemented in Bash

10 script. As this text analyzes imple-
mentations for the patch-hub feature and other code excerpts from the kw project, this
subsection aims to outline Bash concepts referenced in the following chapters.

Bash is an acronym for Bourne-Again SHell and is a wordplay with Stephen Bourne,
the author of the sh shell, which is the ancestor of Bash. A Shell is a macro processor
that executes commands, and a macro processor is a program that expands text and
symbols to create more extensive expressions. In this sense, Bash is both a command
interpreter and a programming language (known as Bash script). As a command interpreter,
Bash provides an interface for the invocation of programs through commands 11 which
are compositions of sequences of characters (called tokens in Bash). As a programming
language, files containing sequences of commands combined with reserved keywords that
provide fundamental Bash operations can constitute new programs from which a whole
system can be built.

Bash is a command interpreter, so Bash scripts are interactively interpreted line by
line. In summary, when executing a script, Bash follows these steps for each line 12:

1. Reads its input from the script.

2. Breaks the input into tokens.

3. Parses the tokens into simple and compound commands.

4. Performs the various shell expansions.

5. Performs any necessary redirections.

10 Bash is a typical shell that was first created to be the shell, or command language interpreter, for the GNU
operating system (for reference, see https://www.gnu.org/software/bash/manual/bash.html).

11 Shells are also known as command-line interfaces (CLIs).
12 Source: https://www.gnu.org/software/bash/manual/bash.html#Shell-Operation

https://www.gnu.org/software/bash/manual/bash.html
https://www.gnu.org/software/bash/manual/bash.html#Shell-Operation

10

1 | LINUX KERNEL DEVELOPMENT

6. Executes the command.

7. Waits for the command to complete and collects its exit status.

Bash has many expansions, but the most important are shell parameter expansions,
command substitutions, and arithmetic expansions. Shell parameter expansions are in the
form of $<parameter>, in which parameter is the symbol that references a variable that
stores a value (this value can be empty, or the variable can be unset), and the token is
expanded to the value of parameter. Command substitutions are in the form of $(<com-
mand>), in which command is a command that Bash can execute, and the expansion is
the output from the execution of command. Arithmetic expansions are in the form of $((
<expression>)), in which expression represents an arithmetic expression, and the
result from the evaluation of the expression is the expansion. As an illustration, Program 1.1
is a Bash script that simply assigns the value 15 to fifteen using an arithmetic expansion,
then assigns the value 0 to zero using a command substitution (the command echo outputs
the values passed as arguments), and, finally outputs the value 15 minus 15 is 0 using
two shell parameter expansions.

Program 1.1 Example of Bash script with expansions.

1 fifteen=$((10 + 5))
2 zero=$(echo ’0’)
3 echo "15 minus $fifteen is $zero"

From Program 1.1, another essential aspect of Bash syntax is noticeable: quoting.
Character sequences enclosed in single quotes are treated as a single token, with the
literal value of each character being preserved. In contrast, sequences enclosed in double
quotes are susceptible to expansions. For example, if, in line 3 of Program 1.1, the argu-
ment to echo was ’15 minus $fifteen is $zero’, the outputted value would be 15
minus $fifteen is $zero, as no expansion would occur. It is imperative to note the
special parameter expansions $<positive-integer>, that expands to the argument of
number positive integer, and $?, that expands to the exit status of the last command
executed.

The following reserved keywords constitute fundamental operations: function to
define a function (that is treated like a command), local and declare to declare variables,
if-then-else-elif for conditionals, and for-until-while for loops. Also, there are
reserved metacharacters to denote input and output redirections, like > to redirect output,
< to redirect input, and | to pipe the output of one command to the input of another.
Program 1.2 exemplifies the use of some reserved keywords and redirections. The function
delete_foo accepts an argument that is stored in the local variable string, then there is
a conditional that, in case the value of string is foo, an empty value is outputted, and,
otherwise pipes the echo and sed 13 commands to output the value of string without the
literal foo. In the last line of Program 1.2, delete_foo is called with an argument Hello
fooWorld! and redirects the output of the call to the file hello_world.txt, to which the
contents of the file end up being Hello World!.

13 sed is a command to manipulate and process streams (for reference, see https://man7.org/linux/man-pages/
man1/sed.1p.html)

https://man7.org/linux/man-pages/man1/sed.1p.html
https://man7.org/linux/man-pages/man1/sed.1p.html

1.3 | LORE ARCHIVES

11

Program 1.2 Example of Bash script with keywords and redirections.

1 function delete_foo()
2 {
3 local string="$1"
4
5 if [["$string" == ’foo’]]; then
6 echo ’’
7 else
8 echo "$string" | sed ’s/foo//’
9 fi

10 }
11
12 delete_foo ’Hello fooWorld!’ > hello_world.txt

1.3 Lore archives
The Linux development mailing lists archives on lore.kernel.org, referred to as Lore

archives or just Lore throughout the text, is a Web application that offers on-demand
access to mailing lists related to the development of Linux, either directly or indirectly
(for instance, there is a dedicated mailing list for the development of Git). Lore uses the
public-inbox

14 technology, which describes itself as “an ’archives first’ approach to mailing
lists” and implements the sharing of a mailbox via Git to complement or replace traditional
mailing lists. The technology also aims to be easy to deploy and manage. As such, it
encourages projects to run their instances with minimal overhead.

Figure 1.4: Screenshot of the bpf mailing list archive on Lore accessed using a Web browser (visited

on November 20, 2023).

Lore offers on-demand access to the mailing lists related to Linux development because
it consumes each list as a subscriber (a more reliable one) and provides the service of
consulting these lists at the users will without needing a subscription or even an email
account. Users can consult the archives in an HTML format using a Web browser, for
example, or through Atom feeds 15. Figure 1.4 is a screenshot of the top of the bpf mailing

14 https://public-inbox.org/README.html
15 Atom is an XML-based document format that describes lists of related information known as “feeds” (source:

lore.kernel.org
https://public-inbox.org/README.html

12

1 | LINUX KERNEL DEVELOPMENT

list archive accessed using a Web browser.

Compared with the subscribing approach of consulting mailing lists, Lore presents
a more flexible, reliable, and organized solution for reviewers on the Linux contribution
model. There is no need to receive and store a high volume of mail just to consult a small
portion of it, despite keeping a local copy of a complete archive through mirroring being
arguably more straightforward and robust using Lore.

The Lore archives also offer an API that allows other applications to integrate. Although
the documentation on the API is scarce, incorporating Lore into the workflow of Linux-
related developers, especially maintainers, can enhance the process of patch reviewing. It
is pertinent to note that not all messages that flow through the mailing lists are patches.
Messages can also be discussions that do not contain code and replies to other messages.
A more specific definition of a patch, in the context of Lore, is a message that contains
code differentials

16. It is also worth distincting patches from what we refer to in the text as
patchsets. The former are individual messages with code differentials. At the same time,
the latter indicates a set of patches related to a broader and common context (similar to
commits and Pull Requests in GitHub 17).

In the kw project, the patch-hub feature is being developed to integrate the Lore
archives with the kw environment to provide for the patch-reviewing side of the Linux
contribution model (kw mail already covers the patch-sending side of the model). The
feature objective is to be a terminal-based hub for consulting patchsets from the available
mailing lists, applying actions integrated with the kw environment on specific patchsets,
and providing other services such as bookmarking patchsets. Chapter 3 and Chapter 4
discuss in details patch-hub concepts, design, and implementation. Chapter 2 disserts
about the management of databases in the kw project as integrating the project with a
Database Management System was a prerequisite for patch-hub.

https://datatracker.ietf.org/doc/html/rfc4287).
16 A code differential, also called code diff or diff, is a text that represents changes made to a set of source

code files between two different versions and that can be used to transition these files from one version to
another.

17 https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/
proposing-changes-to-your-work-with-pull-requests/about-pull-requests

https://datatracker.ietf.org/doc/html/rfc4287
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

13

Chapter 2

Database Management System of
KWorkflow

The kw project had many features that relied on storing and manipulating user data;
the project employed data access by directly interacting with the files that composed the
databases. This approach was functional but compromised maintainability and scalabil-
ity.

As patch-hub (see Chapters 3 and 4) would need a more robust system to manage
user data, and the whole project would benefit from an approach that provided developers
with an easier way to interact with the databases, we integrated a Database Management

System (DBMS) to kw. The DBMS chosen was SQLite3, as it fulfilled all the requirements
from kw developing community.

We divided this chapter into three sections:

1. Overview of flat-file databases, and description of how kw used to manage its
databases;

2. Overview of Database Management Systems and the requirements that led to choos-
ing SQLite3;

3. Description of how kw currently manages its databases and an empirical benefit
from adopting a DBMS.

2.1 File-Based Databases

A file-based database
1, also called a flat-file database, is a straightforward way to

represent data records that have no structured interrelationship, leaving the database
application (i.e., the part of the application that manages the storing, retrieving, and
manipulation of data) with the responsibility of knowing how data is organized within
files and where those files are stored.

1 https://web.archive.org/web/20090320001015/http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+
Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf, pg. 11

https://web.archive.org/web/20090320001015/http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf
https://web.archive.org/web/20090320001015/http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf

14

2 | DATABASE MANAGEMENT SYSTEM OF KWORKFLOW

As an illustration, imagine a developer building an application that manipulates data,
and the developer has to store this data not on main memory but on persistent memory
because, for example, the application does not run continuously, and it will need to be
accessed later. One way to address this problem is by creating a file and outputting the
data to this file. It can be a plain text file or a binary file, but in any case, the developer has
to manage two things:

1. Where the file is being stored to insert, update, remove, and retrieve data from the
correct file.

2. The format of how the data is stored to manipulate it correctly.

The file described in the illustration constitutes a file-based database. There are trade-
offs to using this approach, and we list the pros and cons in Table 2.1 below.

Pro/Con Description Effect

Pro
Developer does not need to configure and

learn an external system like a DBMS More agility in development

Pro
Simpler databases like /etc/passwd

(Program 2.1) do not need to scale Straightforward implementation

Con
Application needs to know details

about the file structure of stored data Added complexity to application

Con
Application needs to know details

about the format of stored data Added complexity to application

Table 2.1: Trade-offs of using a file-based database approach.

Program 2.1 Example of part of /etc/passwd

1 root:x:0:0::/root:/bin/bash
2 bin:x:1:1::/:/usr/bin/nologin
3 daemon:x:2:2::/:/usr/bin/nologin
4 mail:x:8:12::/var/spool/mail:/usr/bin/nologin
5 ftp:x:14:11::/srv/ftp:/usr/bin/nologin
6 http:x:33:33::/srv/http:/usr/bin/nologin

2.1.1 How kw managed its databases
kw is an XDG-compliant2 application. The XDG Base Directory Specification defines

base directories relative to which files for different contexts should be located. As an
example, the user-specific configuration files base directory is defined by the environment
variable $XDG_CONFIG_HOME which, if empty or not set, a default equal to ∼/.config
should be used.

In this sense, kw stores user-specific data files at ∼/local/share/kw, and three sub-
directories contained files that represented the kw databases:

2 https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

2.1 | FILE-BASED DATABASES

15

• ∼/local/share/kw/statistics: For all statistics collected by kw related to the kw
build and kw deploy features, that provides users with many services for compiling
and installing Linux kernels, respectively.

• ∼/local/share/kw/pomodoro: For the report on Pomodoro sessions related to the
kw pomodoro feature, which provides users with a terminal-based utility to create
Pomodoro sessions3.

• ∼/local/share/kw/configs: For files and metadata managed by the kw kernel-
config-manager feature that provides users services for managing Linux kernel
configuration files.

For each of the directories above, there was a specific file structure that stored one or
more file-based databases. In the following subsections, we will elaborate more on these
databases.

Statistics database

In the case of statistics, a file path statistics/<year>/<month>/<day> represented
statistics collected at <month>/<day>/<year>. For example, Program 2.2 could be a line in
the file located at statistics/23/08/23, meaning that a kw build command started on
August 23, 2023, and lasted for 8 minutes and 17 seconds (497 seconds).

Program 2.2 Example of entry in the kw former statistics database.

1 build 497

Pomodoro sessions database

For the report on Pomodoro sessions, there was a similar file structure to represent dates,
with each line in a file pomodoro/<year>/<month>/<day> being a Pomodoro session that
started at <month>/<day>/<year>. Differently from the statistics, though, each line/entry
was comma separated, had a different number of attributes, and had an optional attribute.
On top of that, there was a file pomodoro/tags for storing tags used by the kw pomodoro
feature to group sessions.

Program 2.3 Example of contents from pomodoro/tags.

1 tag1
2 tag2
3 tag3

As an example, a valid file structure for the Pomodoro sessions database for re-
port would be the file pomodoro/tags with the contents of Program 2.3, and a file po-
modoro/2023/10/26 with the contents of Program 2.4.

3 https://en.wikipedia.org/wiki/Pomodoro_Technique

https://en.wikipedia.org/wiki/Pomodoro_Technique

16

2 | DATABASE MANAGEMENT SYSTEM OF KWORKFLOW

Program 2.4 Example of contents of Pomodoro sessions data from a single day.

1 tag1,300s,00:20:30,description 1
2 tag3,10m,12:10:00
3 tag1,1h,14:45:00,description 2
4 tag2,2h,20:05:00

This file structure meant that there were three groups for the Pomodoro sessions
labeled tag1, tag2, and tag3, and that on October 26, 2023, each session pertained to the
group in the first column, lasted for the time in the second column, started at the time in
the third column, and, optionally, had a description in the fourth column.

Linux kernel .config files database

The Linux kernel compilation is configured via a special file named .config. When us-
ing kw kernel-config-manager, full .config files are stored inside configs/configs,
and metadatafiles are stored inside configs/metadata.

For example, for a .config file managed by kw named debian-optimized there
would be a file configs/configs/debian-optimized that would be the actual .con-
fig file, as well as a metadata file configs/metadata/debian-optimized containing a
description for this particular configuration file.

2.2 Database Management Systems

Although the approach delineated in previous section was functional and fairly simple
when considered separately, each feature had to implement and manage its own file-based

databases with its own details. This made the code hard to scale and more coupled with
these particularities of where and how the data was stored.

A Database Management System (DBMS) is a dedicated software that serves as an
interface for applications (or end-users) and the database itself for storing, retrieving,
and manipulating data. It specifically should provide the applications (or users) with the
following (Ullman, 2007):

1. Ability to create databases (the actual data records) and their schema (the logical
structure of the data) using a Data Definition Language (DDL).

2. Allow Querying, i.e., fetching the stored data using conditionals and modifying the
data stored using a language called Query Language, or Data Manipulation Language

(DML).

3. Support storage of large amounts of data persistently, keeping it secure from acci-
dents and unauthorized use.

4. Control concurrent data accesses from many users simultaneously while keeping it
consistent with each transaction.

2.2 | DATABASE MANAGEMENT SYSTEMS

17

Following the construction of the earlier sections, an application uses a DBMS to
delegate the how and where the data is stored while also providing additional services
like complex querying of data that use joins and aggregation, authentication, and crash
recovery.

As mentioned in Section 2.1.1, replacing the file-based databases approach used by a
DBMS, all the explicit data manipulation would be delegated to the DBMS. In turn, kw
would only have to care for configuring the DBMS, creating the database schemas, and
using a unified interface for interacting with the DBMS for data querying and manipula-
tion.

2.2.1 The choice of SQLite3 as the DBMS
DBMSs are vast and diverse, proposing different solutions for different problems. To

introduce a DBMS to kw, it needed to fulfill the following requirements:

• Be a FLOSS project: to keep up with the project philosophy.

• Have a CLI (Command-Line Interface) for easy integration with Bash: maintaining
the project in pure Bash.

• Have a small footprint: to keep the kw installation light.

• Run on user space: for security.

• Be a Relational DBMS4: to leverage the high performance of the Structured Query
Language (SQL) for queries.

• Be portable: to be something easy to set up.

The DBMS selected was SQLite3 5 6, as it is Public Domain (not exactly FLOSS, but far
from proprietary), has a CLI interface, sizes less than 1 MB as of July 04, 20237, runs on
user space, and is Relational. PostgreSQL8 was a candidate, as it is a popular open-source
Relational DBMS, has a CLI named psql, but is not as lightweight and portable as SQLite3.
TinyDB9 was also considered, as it is a lightweight open-source and portable DBMS but is
not Relational (it is a document-oriented DBMS), and does not have a CLI (we would need
to use Python).

4 Also called a SQL DBMS, it has data structured in tables, favoring relationships by joining tables and
aggregation of data.

5 https://www.sqlite.org/index.html
6 SQLite3 technically belongs to the family of embedded databases, as it is a library that developers embed in

applications rather than being a standalone application. Nevertheless, in the kw project, SQLite3 absorbs
most functionalities that a normal DBMS would, and SQLite3 is often defined as one, so we use this linguistic
abuse throughout the text.

7 https://www.sqlite.org/footprint.html, visited in November 01, 2023.
8 https://www.postgresql.org/
9 https://tinydb.readthedocs.io/en/latest/

https://www.sqlite.org/index.html
https://www.sqlite.org/footprint.html
https://www.postgresql.org/
https://tinydb.readthedocs.io/en/latest/

18

2 | DATABASE MANAGEMENT SYSTEM OF KWORKFLOW

2.3 From a file-based database to a DBMS approach

Neto, 2022 started the migration from a file-based database to a DBMS approach. This
section describes the evolution of this migration provided in this current work.

The introduction of SQLite3 into kw entailed adapting all features that directly or
indirectly used the kw databases by removing the explicit management of the data files
and integrating them with the SQLite3 interface. These features are:

• kw build.

• kw deploy.

• kw kernel-config-manager.

• kw report.

• kw backup.

Function Signature Operation
insert_into <table> <columns> <entries> Insertion

select_from <table> <columns> Querying
remove_from <table> <match_conditions> Deletion
replace_into <table> <columns> <entries> Update

execute_sql_script <script_path> Execute SQL script
execute_command_db <sql_command> Execute SQL command

Table 2.2: kw library functions for interacting with SQLite3.

With the SQLite3, all kw databases are stored in the file ∼/.local/share/kw/kw.db
(instead of having multiple subdirectories at ∼/.local/share/kw for each database).
Now, the code does not have to manage where the data is stored, reducing its complexity.
Additionally, SQLite3 provides an efficient and straightforward CLI interface, which en-
ables us to create a set of library functions that are wrappers for SQLite3 commands to
simplify even further how the data is stored, retrieved, deleted, and manipulated by kw.
These library functions are implemented in the file src/lib/kw_db.sh. Table 2.2 lists the
functions’ signatures and the operations to which they correspond.

Program 2.5 Function is_tag_already_registered from src/pomodoro.sh after
SQLite3 introduction that uses a SQL conditional for a query.

1 function is_tag_already_registered()
2 {
3 local tag_name="$1"
4 local is_tag_registered=’’
5
6 is_tag_registered=$(select_from "tag WHERE name IS ’${tag_name}’")
7
8 [[-n "${is_tag_registered}"]] && return 0
9 return 1

10 }

2.3 | FROM A FILE-BASED DATABASE TO A DBMS APPROACH

19

These wrappers support most SQL expressions, and the first four functions cover
practically all interactions needed between kw and the databases. Program 2.5 is an
example of a query using the SQL conditional WHERE <attribute> IS <value> to check
if there is a Pomodoro tag with a given name registered in the database in the function
is_tag_already_registered. Program 2.6 shows the implementation of the same func-
tion before introducing SQLite3 into kw. By comparing the two implementations, we can
see that the latter needs to know that the file that stores the target database is defined by
the KW_POMODORO_TAG_LIST variable and that it contains only a tag name per line, while
the former only needs to know the name of the table that represents the Pomodoro tags
database.

Program 2.6 Function is_tag_already_registered from src/pomodoro.sh before
SQLite3 introduction.

1 function is_tag_already_registered()
2 {
3 local tag
4
5 tag="$*"
6
7 tag="\<$tag\>" # \<STRING\> forces the exact match
8 grep -q "$tag" "$KW_POMODORO_TAG_LIST"
9 return "$?"

10 }

Although each database (statistics, Pomodoro sessions, and Linux kernel .config files)
still has its entities and relationships, the way that any data is inserted, queried, deleted,
and updated is the same by using these library calls. That standardizes how the data is
stored, which further reduces its complexity.

Besides these benefits that were the actual motive for the DBMS introduction, we
should notice a collateral benefit: performance. As kw used to manage many plain-
text files spread across many directories and subdirectories, kw coordinated these input
and output operations, which were slow compared to a DBMS that focuses on database
management and accesses a single binary file.

perf stat time output
Before Introduction 55.084 +- 0.136 seconds time elapsed (+- 0.25%)

After Intoduction 38.9413 +- 0.0955 seconds time elapsed (+- 0.25%)

Table 2.3: Comparison of time using perf stat for running the whole test suite before and after

introducing SQLite3 to kw.

To further investigate this performance improvement, we used the script
run_tests.sh for running the project automated tests was used. In combination
with the perf10 performance analyzing tool, the whole test suite was run ten times, both
before and after the SQLite3 introduction by using the command perf stat –repeat
10 ./run_tests.sh. Table 2.3 compares the time output of perf stat for running the
whole test suite before and after introducing SQLite3 to kw. By analyzing the table, we
can notice almost 30% decrease in time.

10 https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

21

Chapter 3

patch-hub User Interface

The patch-hub feature implements an adapted version of the Model-View-Controller

(MVC) architectural design pattern (Fowler, 2012). We split the feature into two
parts:

• The patch-hub User Interface (UI) that, in terms of the MVC design pattern, corre-
sponds to the roles of the View and the Controller, and it is implemented using the
Finite-State Machine (FSM) model and the Dialog tool1. Conceptually, the View is
responsible for displaying information, and the Controller is responsible for taking
user input, manipulating the Model, and updating the View accordingly.

• The patch-hub Model that corresponds to the Model role of the MVC design pattern.
The Model role is to represent all the domain-related information.

In this chapter, we describe the patch-hub UI, and it is divided into four sections:

1. Background concepts: overviews of the View and Controller roles of the MVC
architectural design pattern and Finite-State Machines.

2. Outline of the Dialog tool.

3. How the Dialog is used as a framework in kw.

4. Description of the implementation of patch-hub UI.

3.1 Background

3.1.1 The View and Controller roles of MVC
The MVC has two principal separations (Fowler, 2012):

1. Separation between the presentation (UI) and Model.

2. Separation between the View and Controller.

1 https://invisible-island.net/dialog/manpage/dialog.html

https://invisible-island.net/dialog/manpage/dialog.html

22

3 | PATCH-HUB USER INTERFACE

The first separation is one of the most fundamental heuristics of good software design,
while the second is desirable but less important (Fowler, 2012). A UI can be regarded
as a combination of the View and Controller components. The former is responsible for
displaying information to the user. At the same time, the latter is responsible for managing
user interaction, manipulating the Model component (which represents all the information
about the domain), and updating the View (or Views, if there is more than one) (Fowler,
2012).

As an illustration, consider an application that, at a certain point, displays a menu
with a list of options and prompts the user to navigate the options and choose one. The
View handles the design of the menu and how each piece of information is displayed. The
Controller handles the press of a button to move the menu cursor to another option and
signals the View to reflect this update. The Controller is also responsible for signaling
the Model for any necessary action, for instance, storing the option chosen by the user
in a database. In patch-hub UI, the Dialog tool serves as both components, as it will be
discussed in Section 3.2.

Notice in the illustration that the View and Model components do not interact directly,
only through the Controller component. Hence, the application can have multiple View
components while implementing one Controller, one Model, and two interfaces: an inter-
face for the Controller and Model and another for the Controller and the multiple Views.
Figure 3.1 is a diagram describing the interaction between components in the MVC.

Figure 3.1: Diagram describing the interaction between components in the Model-View-Controller

architectural design pattern.

To strictly adhere to the original MVC pattern, it is imperative to isolate the View
and Controller components and implement a well-defined interface between them, as
emphasized by the separation (2). Nevertheless, design patterns can be used as templates
and adapted to solve specific problems better. In this regard, not enforcing separation (2)
entails a trade-off.

3.1 | BACKGROUND

23

The benefit of not following separation (2) is that the UI can be built as a single
component while maintaining separation (1) between the UI and the Model. Keeping
separation (1) decouples domain logic from presentation and allows Model developers - who
have to be concerned about business policies, database interactions, authentication, and
other problems - to focus on building a more robust application core. A good detachment
between UI and the Model also allows better testability of those components, as it is easier
to test the domain logic without having to mock visual and user-interactive components,
and vice versa. The drawback of not following the mentioned rule is that implementing
multiple Views is more complex, as adding a new View is not as straightforward as
following a well-defined interface, and it is harder to implement and test visualization and
user interaction separately.

3.1.2 Finite-State Machines

Finite-State Machine (FSM), or Finite-State Automaton (FSA), is a mathematical model
of computation of an abstract machine that can model various problems in the computer
software and hardware fields (Hopcroft et al., 2006). A formal definition says that an FSM
is a 5-tuple (a list of five objects) (Sipser, 1996):

1. A finite set of states the FSM can be on.

2. A finite set of input symbols that the FSM processes called alphabet.

3. Rules for moving, also called a transition function, that defines the transitions from a
state 𝐴 to a state 𝐵, depending on the state 𝐴 and the input symbol 𝑋 that the FSM
receives.

4. A start state, that is the state the FSM begins execution.

5. A subset of the finite set of states called the set of accept states, which ends the FSM
execution.

From the formal definition above, we can derive that an FSM is an abstract machine that
can be on a finite number of states, but only one is active at once. The machine receives
input symbols and transitions between states based on the transition function. Notice
that not every two states must have a transition from one to the other. In other words,
if the machine is in state 𝐴, there may be no input symbol in the alphabet that triggers
a transition to a specific state 𝐵. From the definition, there can also be no transitions or
states. Examples of FSM inputs are characters inputted by a human using a keyboard to
software (the FSM) and signals being sent from a sensor to another device (the FSM).

Figure 3.2 is a diagram of an FSM that has four states, A, B, C, and D, and only receives
inputs 0 and 1. The labeled circles represent the states, and the arrows represent the
transitions. The 0s and 1s, on the side of the arrows, represent the input needed for the
transition. We could omit transitions that take the machine to the same state, but they are
explicit in the figure to illustrate that not every input triggers a state change.

24

3 | PATCH-HUB USER INTERFACE

Figure 3.2: Diagram of a Finite-State Machine with four states.

Types of Finite-State Machines

FSMs can be of two types (Hopcroft et al., 2006): a deterministic Finite-State Machine
(DFSM) and a non-deterministic Finite-State Machine (NFSM). An FSM is a DFSM if it
follows two restrictions:

1. Each transition is totally and uniquely defined by its starting state and necessary
inputs.

2. For a transition to happen, the FSM needs to receive input.

Figure 3.2 is also an example of a DFSM.

NFSMs do not need to follow these restrictions. DFSMs are a subset of NFSMs. In
simpler terms, for DFSMs, the machine only transitions between two states when well-
defined inputs occur (that is why it is called deterministic), and for NFSMs, this is not true.
Hence, a transition between two states has a probability of happening with the machine
receiving, or not, a set of inputs.

Figure 3.3: Diagram of a non-deterministic Finite-State Machine with four states.

Figure 3.3 is a diagram of an NFSM, which builds upon Figure 3.2. The only difference

3.2 | THE DIALOG TOOL

25

is that the former adds two transitions to the latter:

1. Transition from state A to state C by receiving 0.

2. Transition from state B to state C by receiving 1.

These additions turn the previous DFSM into an NFSM because the machine in state
A can, probabilistically, transition to state C or stay in state A by receiving 0. The same
happens when the machine is in state B and receives 1. It can, probabilistically, transition
to state A or state D.

Applications of the Finite-State Machine model

A classic example of an FSM is a traffic light, which has three states: green light, yellow
light, and red light. Suppose the traffic light is in the green light state. It will transition to
the yellow state when the green light timer expires. Then, when the yellow light timer
expires, it transitions to the red light state, and so on. Notice that the input, in this case, is
the expiration of a timer. Notice that a traffic light is a DFSM, as transitions only occur
when input is received (a timer expires), and the starting state and the input totally define
one.

A well-known application of the FSM model in software development is for building
user interfaces. Usually, UIs display information to the user, collect and process input (not
necessarily from the user), and then display more information to the user, repeating the
loop. In this regard, a UI can be modeled as an FSM by abstracting each iteration of the loop
or a sequence of iterations as states and the inputs as triggers for transitions. Depending
on the application domain, a DFSM or a NFSM can be used to model the problem.

As Section 3.4 discusses further, a DFSM is used to model patch-hub UI since the
patch-hub feature is designed to have a finite set of states (although the number increases
with development) and a well-defined set of inputs. The inputs in the feature are user
inputs and responses to web requisitions. Even though the response to a web requisition
is not deterministic, considering there is a finite number of responses for each type of
requisition, handling responses is deterministic, making the DFSM model suitable for
patch-hub UI.

3.2 The Dialog tool
Dialog is a program capable of displaying dialog boxes from shell scripts. Dialog was

written by Savio Lam and was first released on December 17, 1993. The project is now
maintained by Thomas Dickey2.

Through CLI commands, dialog boxes created by Dialog are used to expose informa-
tion and collect input from the user. A dialog box is a terminal user interface (TUI) that
provides several types of dialog boxes that Dialog can create, each adapted to a different
user interaction.

2 https://invisible-island.net/dialog/dialog.html

https://invisible-island.net/dialog/dialog.html

26

3 | PATCH-HUB USER INTERFACE

(a) yesno dialog box.

(b) checklist dialog box.

Figure 3.4: Two dialog boxes created by Dialog, adapted from https://github.com/tolik-punkoff/
dialog-examples.

https://github.com/tolik-punkoff/dialog-examples
https://github.com/tolik-punkoff/dialog-examples

3.3 | USING DIALOG AS A FRAMEWORK IN KWORKFLOW

27

Figure 3.4a is a screenshot of the yesno dialog box, which displays a text message
and two buttons, a Yes and a No button. The user can change the highlighted button by
pressing the left and right arrow keys of the keyboard and select the highlighted button by
pressing the enter key from the keyboard. Selecting a button closes the dialog box and sets
the exit status (denoted by the parameter $?) to 0 if the Yes button was selected and to 1 if
the No button was selected. Figure 3.4b is an example of the checklist dialog box that,
similar to the yesno dialog box, displays a message with two buttons and, additionally,
displays a list of items with descriptions in the format of a checklist. Besides using the left
and right arrow keys to navigate through the buttons, the user can change the highlighted
item of the list with the up and down keys and check it by pressing the space bar key from
the keyboard. Like the yesno box, selecting the leftmost button (labeled OK) sets the exit
status to 0, while selecting the rightmost button (labeled Cancel) sets the exit status to 1.
Moreover, independent of the button selected, the list of items checked is outputted to the
standard error stream (file descriptor number 2).

Each dialog box can be customized. For all boxes, the box title, the message inside the
box, the button labels, and the dimensions of the box can be overridden. Other configura-
tions specific to certain boxes can be done. The checklist box can have extra buttons,
items in the list with or without description, and checked items when the box is first
displayed. These customizations are passed as arguments to the Dialog command. For
example, Program 3.1 is the entire command that generates the box in Figure 3.4b.

Program 3.1 Dialog command that produces Figure 3.4b box when run.

1 dialog --backtitle "No Such Organization" \
2 --title "CHECKLIST BOX" "$@" \
3 --checklist "Hi, this is a checklist box. You can use this to \n\
4 present a list of choices which can be turned on or \n\
5 off. If there are more items than can fit on the \n\
6 screen, the list will be scrolled. You can use the \n\
7 UP/DOWN arrow keys, the first letter of the choice as a \n\
8 hot key, or the number keys 1-9 to choose an option. \n\
9 Press SPACE to toggle an option on/off. \n\n\

10 Which of the following are fruits?" 25 61 5 \
11 "Apple" "It’s an apple." off \
12 "Dog" "No, that’s not my dog." on \
13 "Orange" "Yeah, that’s juicy." off \
14 "Chicken" "Normally not a pet." off \
15 "Cat" "No, never put a dog and a cat together!" on \
16 "Fish" "Cats like fish." on \
17 "Lemon" "You know how it tastes." on

Theme customizations, i.e., the color scheme, box edges, along with other customiza-
tions, are set in the .dialogrc file. By default, Dialog uses the $HOME/.dialogrc file.
Prepending a command with DIALOGRC=<path_to_dialogrc> uses a specific file.

3.3 Using Dialog as a framework in KWorkflow
As Dialog creates many types of dialog boxes, each customizable, the program can be

used as a low-level framework for building TUIs. Using library functions to wrap Dialog
commands makes the use of the program more robust because it reduces code duplication,
allows the creation of function signatures that are both simpler and follow the project

28

3 | PATCH-HUB USER INTERFACE

code style, makes it possible to add optimizations (like default height and width of the
dialog box), and enables unit testing of the functions.

In the kw project, the file src/lib/dialog_ui.sh implements many functions to
build interactive terminal screens using Dialog. Program 3.2 is the implementation of the
create_directory_selection_screen function, which creates a dialog box that allows
the user to select a directory path in the file system.

Program 3.2 Implementation of the function create_directory_selection_screen
that creates a dialog box to select a directory path in the file system.

1 function create_directory_selection_screen()
2 {
3 local starting_path="$1"
4 local box_title="$2"
5 local height="$3"
6 local width="$4"
7 local flag="$5"
8 local cmd
9

10 flag=${flag:-’SILENT’}
11 height=${height:-’15’}
12 width=${width:-’80’}
13
14 # Escape all single quotes to avoid breaking arguments
15 box_title=$(str_escape_single_quotes "$box_title")
16
17 cmd=$(build_dialog_command_preamble "$box_title")
18 # Add help button
19 cmd+=" --help-button"
20 # Add directory selection screen
21 cmd+=" --dselect ’${starting_path}’"
22 # Set height and width
23 cmd+=" ’${height}’ ’${width}’"
24
25 [["$flag" == ’TEST_MODE’]] && printf ’%s’ "$cmd" && return 0
26
27 run_dialog_command "$cmd" "$flag"
28 }

3.4 | PATCH-HUB USER INTERFACE IMPLEMENTATION

29

All library functions in src/lib/dialog_ui.sh adhere to the pattern shown in Pro-
gram 3.2, which is delineated as:

1. Arguments of Dialog options are converted into function arguments: Con-
sider the function argument box_title, which is the argument of the Dialog option
–title. In this case, the function caller must only conform to the function signature
without knowing the correspondent option of box_title.

2. Optional arguments fallback to default values: Notice how the arguments flag,
height, and width fallback to default values in lines 10, 11, and 12, respectively, of
Program 3.2, in case they are empty.

3. String arguments have single quotes escaped to avoid breaking Dialog com-
mands: As the commands are run as a single Bash command, unescaped single
quotes dismember string argument, which can break the Dialog command, resulting
in crashes.

4. Dialog commands are built incrementally: Building the command in steps
makes the code more organized and allows the addition of common excerpts, like
line 17 of Program 3.2, which adds a preamble with theme customizations, dialog
box title, and dialog box message.

5. Support for unit testing: By passing the argument flag with the value TEST_MODE,
the function builds the Dialog command and outputs it without running it, which
allows unit testing, as it is only necessary to check the issued command. This
procedure enhances the efficiency of the tests, given that dialog boxes are not
rendered.

The pattern described above simplifies, standardizes, and optimizes the use of Dialog
for creating TUIs, not only for the patch-hub feature but also throughout the whole kw
project. Characteristics number (1), (2), and (3) of the pattern provide a more straight-
forward and solid API for creating dialog boxes, while characteristics number (4) and (5)
result in more robust implementations of these library functions.

From the MVC architectural design pattern perspective, it is essential to point out
that, when building TUIs using Dialog, the View and the Controller components are
inherently coupled, as dialog boxes display information and collect user input. Besides
the drawbacks of not separating View from Controller discussed in Section 3.1.1, Dialog
imposes a limit on user interactiveness, such as four being the maximum number of
buttons for some types of dialog boxes (this number is inferior for other types). However,
Dialog fulfills patch-hub prerequisites for the Controller component in terms of user
interactiveness.

3.4 patch-hub User Interface implementation

3.4.1 patch-hub entry point
The code style of kw demands that each feature have a dedicated file inside the src/

directory. Henceforth, the file src/patch_hub.sh is dedicated to the patch-hub feature.

30

3 | PATCH-HUB USER INTERFACE

Program 3.3 Simplified listing of src/patch_hub.sh.

1 # The ‘patch_hub.sh‘ file is the entrypoint for the ‘patch-hub‘
2 # feature that follows kw codestyle. As the feature is screen-driven, it is implemented
3 # as a state-machine in files stored at the ‘src/ui/patch_hub‘ directory.
4
5 declare -gA options_values
6
7 include "${KW_LIB_DIR}/ui/patch_hub/patch_hub_core.sh"
8
9 function patch_hub_main()

10 {
11 if [["$1" =~ -h|--help]]; then
12 patch_hub_help "$1"
13 exit 0
14 fi
15
16 parse_patch_hub_options "$@"
17 if [["$?" -gt 0]]; then
18 complain "${options_values[’ERROR’]}"
19 patch_hub_help
20 return 22 # EINVAL
21 fi
22
23 patch_hub_main_loop
24 return "$?"
25 }
26
27 function parse_patch_hub_options()
28 {
29 ...
30 }
31
32 function patch_hub_help()
33 {
34 ...
35 }

This file represents a component in the project structure, which must adhere to the
component code style 3. Program 3.3 is a simplified listing of src/patch_hub.sh.

Notice that at the top of the file, a function named patch_hub_main is de-
fined, which is the entry point to the feature. At the end of the file, the functions
parse_patch_hub_options and patch_hub_help are defined, which parses the options
passed to the feature and displays the feature help (either a short help or the man-page),
respectively. After entering the feature through patch_hub_main, there is a check to
determine if the help should be displayed, then it parses the feature options, and, finally, it
calls the function patch_hub_main_loop, which is not defined in src/patch_hub.sh,
but rather in src/ui/patch_hub/patch_hub_core.sh.

3.4.2 The Finite-State Machine of patch-hub
Unlike other features in kw that have all feature-specific actions handled by functions

defined in the file that represents a component, patch-hub implements the core of the
feature in files at the src/ui/patch_hub directory.

The reasoning for this different approach, is that patch-hub is screen-driven, and each

3 https://kworkflow.org/content/project_structure.html#components

https://kworkflow.org/content/project_structure.html#components

3.4 | PATCH-HUB USER INTERFACE IMPLEMENTATION

31

screen is abstracted to a state of an FSM. For each state, a set of actions with a similar
structure happens:

• Display dialog boxes of state.

• Collect (capture) and process (interpret) user input for each dialog box.

• Transition to next state.

Program 3.4 Simplified listing of src/ui/patch_hub/patch_hub_core.sh.

1 declare -gA screen_sequence
2
3 function patch_hub_main_loop()
4 {
5 while true; do
6 case "${screen_sequence[’SHOW_SCREEN’]}" in
7 ’dashboard’)
8 dashboard_entry_menu
9 ;;

10 ’lore_mailing_lists’)
11 show_lore_mailing_lists
12 ;;
13 ’latest_patchsets_from_mailing_list’)
14 show_latest_patchsets_from_mailing_list
15 ;;
16 ’patchset_details_and_actions’)
17 show_patchset_details_and_actions "${screen_sequence[’SHOW_SCREEN_PARAMETER’]}"
18 ;;
19 esac
20
21 handle_exit "$?"
22 done
23 }

Implementing these similar actions for each state on the same source file is not as
beneficial as breaking each state of the FSM into small standardized files. Most states of
the FSM used in patch-hub have a dedicated file in src/ui/patch_hub.

As mentioned in Subsection 3.4.1, the execution, eventually, enters the func-
tion patch_hub_main_loop. From this point until the end of the execution,
the feature behaves as an FSM. Program 3.4 is a simplified listing of src/ui/-
patch_hub/patch_hub_core.sh.

Program 3.5 Listing of the handle_exit

1 function handle_exit()
2 {
3 local exit_status="$1"
4
5 case "$exit_status" in
6 1 | 22 | 255)
7 clear
8 exit 0
9 ;;

10 esac
11 }

Notice that each case in the switch-case of Program 3.4 is a state of the FSM, and the
value of screen_sequence[’SHOW_SCREEN’] defines the active state. When the flow of

32

3 | PATCH-HUB USER INTERFACE

execution enters patch_hub_main_loop, it sets the default starting state to dashboard
and enters a while loop with a conditional equal to the Bash boolean value of true, which
causes an infinite while loop. The execution never returns from patch_hub_main_loop,
only exits the shell with the built-in command exit4 through the function handle_exit,
that is implemented in src/ui/patch_hub/patch_hub_core.sh and is listed in Pro-
gram 3.5.

Calls to handle_exit occur at least once at each iteration of the infinite while loop at
line 47 of Program 3.4. The function causes the shell to exit if the argument passed is the
integer 1, 22, or 255.

Program 3.6 Listing of the show_dashboard handler function

1 function show_dashboard()
2 {
3 menu_list_string_array=(
4 ’Registered mailing list’
5 ’Bookmarked patches’
6 ’Search in Lore’
7 ’Settings’
8)
9

10 create_menu_options ’Dashboard’ ’’ ’menu_list_string_array’
11 ret="$?"
12
13 [["$ret" != 0]] && handle_exit "$ret"
14
15 case "$menu_return_string" in
16 0) # Registered mailing list
17 screen_sequence[’SHOW_SCREEN’]=’registered_mailing_lists’
18 ;;
19 1) # Bookmarked patches
20 screen_sequence[’SHOW_SCREEN’]=’bookmarked_patches’
21 ;;
22 2) # Search in Lore
23 screen_sequence[’SHOW_SCREEN’]=’search_string_in_lore’
24 ;;
25 3) # Settings
26 screen_sequence[’SHOW_SCREEN’]=’settings’
27 ;;
28 esac
29 }

Each state of the FSM comprises one or more dialog boxes created by the handler
functions prefixed with show_ called inside each case of the switch case of Program 3.4.
For example, the state dashboard is represented by only one dialog box that shows a
menu for the user to choose one option from a list. Figure 3.5 is a screenshot of the single
dialog box of the dashboard state, and Program 3.6 is the listing of the show_dashboard
handler function.

Figure 3.5: Screenshot of the patch-hub Dashboard

4 https://man7.org/linux/man-pages/man1/exit.1p.html

3.4 | PATCH-HUB USER INTERFACE IMPLEMENTATION

33

The dialog box in Figure 3.5 is created by the create_menu_options function from
the kw Dialog library discussed in Section 3.3. Depending on the user interaction, which
can be selecting the button labeled OK or the button labeled Exit with a specific menu
highlighted, the FSM transitions to a different state (or stops execution). In case the user
selects the OK button, create_menu_options returns with a value 0 (this value is captured
by ret="$?"), and the index of the selected menu in the screen is stored into the variable
menu_return_string, and the next state in the FSM that represents the chosen menu is
set to the variable screen_sequence[’SHOW_SCREEN’]. Then show_dashboard returns
with a value zero, handle_exit is called, but the shell does not exit, and the next state
is handled, repeating the loop. In case the user selects the Exit button, the return value
is one instead of zero, which is used by show_dashboard to call handle_exit with an
argument of 1, which causes the shell to exit and stop the execution of patch-hub.

3.4.3 View and Controller components of patch-hub
The patch-hub feature is implemented in three components that adapt the Model-

View-Controller (MVC) architectural design pattern to the problem of creating a hub for
the public mailing lists archived on https://lore.kernel.org.

The View component in patch-hub is represented by the src/lib/dialog_ui.sh
file, which contains functions that create dialog boxes, as discussed in Section 3.3. The
mentioned file is the View component, as all the display responsibilities discussed in
Subsection 3.1.1 of the component are managed using only the functions defined in it.
The same file partly represents the Controller component of the feature, given that dialog
boxes collect (but do not process) user input.

Other responsibilities of the Controller for processing the user input, if necessary,
interacting with the Model component, and updating the View are overseen by the files
inside the directory src/ui/patch_hub. The functions defined in these files process the
user input returned by the dialog boxes, interact with the Model (src/lib/lore.sh), if
necessary, and creates new dialog boxes. Figure 3.6 is a diagram of the architecture of
patch-hub considering the MVC pattern.

3.4.4 patch-hub execution example
It is important to stress that the FSM computational model and the MVC architectural

design pattern implemented by patch-hub are complementary, as the abstraction of states
for managing the flow of execution in the feature does not conflict with the components
architecture of the feature.

The following example illustrates the flow of execution of patch-hub concerning the
FSM model and MVC pattern. Consider the feature in execution in the state dashboard, like
in Figure 3.5. At this moment, the execution is waiting for user input (from the MVC per-
spective, the execution is at the top of Figure 3.6). Suppose the user selects the Bookmarked

patches menu, which displays a list of the patchsets that the user has bookmarked. The
user input is collected by the dialog box and processed by the show_dashboard function,
which transitions the FSM from the dashboard to the bookmarked_patches state (line
38 of Program 3.6), and the execution enters the show_bookmarked_patches function.

https://lore.kernel.org

34

3 | PATCH-HUB USER INTERFACE

Figure 3.6: Diagram of the architecture of patch-hub highlighting components of the MVC pattern.

Program 3.7 Listing of show_bookmarked_patches.

1 function show_bookmarked_patches()
2 {
3 local fallback_message
4
5 get_bookmarked_series bookmarked_series
6
7 fallback_message=’kw could not find any bookmarked patches.’$’\n’$’\n’
8 fallback_message+=’Try bookmarking patches in the menu "Registered mailing list"’
9 list_patches ’Bookmarked patches’ bookmarked_series "${fallback_message}"

10 }

3.4 | PATCH-HUB USER INTERFACE IMPLEMENTATION

35

Program 3.8 Listing of list_patches.

1 function list_patches()
2 {
3 local menu_title="$1"
4 local -n _target_array_list="$2"
5 local fallback_message="$3"
6
7 if [[-z "${_target_array_list}"]]; then
8 create_message_box ’Error’ "${fallback_message}"
9 screen_sequence[’SHOW_SCREEN’]=’dashboard’

10 return 2 # ENOENT
11 fi
12
13 create_menu_options "${menu_title}" ’’ ’_target_array_list’ ’’ ’’ ’Return’
14 ret="$?"
15
16 case "$ret" in
17 0) # OK
18 case "${screen_sequence[’SHOW_SCREEN’]}" in
19 ’latest_patchsets_from_mailing_list’)
20 screen_sequence[’PREVIOUS_SCREEN’]=’latest_patchsets_from_mailing_list’
21 screen_sequence[’SHOW_SCREEN_PARAMETER’]=${list_of_mailinglist_patches["

$menu_return_string"]}
22 ;;
23 ’bookmarked_patches’)
24 screen_sequence[’PREVIOUS_SCREEN’]=’bookmarked_patches’
25 menu_return_string=$((menu_return_string + 1))
26 screen_sequence[’SHOW_SCREEN_PARAMETER’]=$(get_bookmarked_series_by_index "

$menu_return_string")
27 ;;
28 esac
29 screen_sequence[’SHOW_SCREEN’]=’patchset_details_and_actions’
30 ;;
31 1) # Exit
32 handle_exit "$ret"
33 ;;
34 3) # Return
35 screen_sequence[’SHOW_SCREEN’]=’dashboard’
36 ;;
37 esac
38 }

Program 3.7 is the listing of the show_bookmarked_patches function, and Program 3.8 is
the listing of the list_patches helper function used by the former.

At show_bookmarked_patches, the get_bookmarked_patches call happens, trig-
gering a request to the Model component, which can result in one of two types of re-
sponse:

1. An empty list, i.e., there are no patchsets bookmarked by the user.

2. A list with the patchsets bookmarked by the user.

Nevertheless, the execution returns from the Model and calls list_patches. In case
number (1), the test in line 8 of Program 3.8 is successful, and the dialog box of Fig-
ure 3.7 is displayed. Then, when the user selects OK, a transition to the dashboard state
occurs.

The test in line 8 of Program 3.8 fails for case number (2). As such, a dialog box with a
list of the bookmarked patchsets (Figure 3.8) is shown to the user. The user can select the
OK button with a specific bookmarked patchset highlighted, which triggers a transition

36

3 | PATCH-HUB USER INTERFACE

Figure 3.7: Dialog box displayed when there are no bookmarked patchsets.

Figure 3.8: Dialog box displayed with list of bookmarked patchsets.

to the state show_patchset_details_and_actions, or select the Return button, that
triggers a transition to dashboard, instead, or even select the Exit button, stopping the
execution of the feature.

37

Chapter 4

patch-hub Model

As discussed in Chapter 3, two major components constitute the architecture of patch-
hub. One of them is the patch-hub Model. The patch-hub Model manages all data about
the problem domain. Some of its responsibilities are:

• Fetching and manipulating data from the Linux mailing lists archives hosted at
https://lore.kernel.org.

• Managing the database of domain-related data.

• Providing data to the UI for presentation.

This chapter is dedicated to describing the patch-hub Model, and it is divided into
three sections:

1. Background concepts: overviews of the Model role of the MVC architectural design
pattern and Web applications.

2. Description of the Lore archives API.

3. Description of the implementation of patch-hub Model.

4.1 Background

4.1.1 The Model role of MVC
The Model component can be described as the non-visual object containing all data

and behavior not used for the UI (Fowler, 2012). This component represents the core of
the application as it incorporates every domain logic, like business rules and database
interactions.

The Model being a critical component in the architecture, it is beneficial to enforce
the distinction between UI and Model, presented in Subsection 3.1.1, for better testability
and to decouple the presentation and user interaction from domain logic. Automated
tests are more straightforward to implement and more efficient to run because there is no
need for mocking visual components or user interaction. The quality of the tests is also

https://lore.kernel.org

38

4 | PATCH-HUB MODEL

enhanced because they make more fundamental assertions as they check the actual inputs
and outputs of the Model, i.e., the requests and responses of the Model. The decoupling of
the UI and the Model streamlines the development of the Model while also making it easier
to add new Views or entire UIs. That is the rationale behind adapting the original MVC
pattern by combining the View and Controller components while keeping a well-defined
interface between the UI and the Model (see Figure 3.6).

To demonstrate the Model role, consider a Web application. This application exposes a
single URL that, when visited, serves the user with an HTML page with a question and a
field to input the answer to the question. For this event to happen, the application takes
some actions. First, when the Web request to the URL arrives at the server, the Controller
component processes it and requests the information needed to the Model, which, in this
case, is the question to be presented to the user. Supposing several questions are available
in the application database, the Model decides which question to return and interacts
with the database to fetch it. Finally, it responds to the Controller requisition with the
question, and the Controller requests to the View the creation and presentation of the
HTML page.

Expanding upon this illustration, suppose that when the user submits the answer, the
application posts the answer to a web forum. The Controller collects and processes the
answer and requests the Model to post it in the forum. The Model, in turn, uses the forum
API to post the answer directly and then responds to the Controller with some information
(like the success or failure of the operation).

In the example, notice how the Model only needs to follow the API between it and the
Controller, surmised by the requests and responses made to and from the Model. Besides,
the Model encapsulates every action related to the domain logic, like fetching the question
and posting the answer.

4.1.2 Web applications

The World Wide Web

The World Wide Web, commonly known as the Web, is a distributed application that
uses the client-server architecture, with many public servers accessible through the Internet
that serve to requesting clients webpages that reference other public servers 1.

The client-server architecture is a distributed application structure, which divides the
application into two processes, the client and the server process 2, that communicate and
synchronize their actions using an Inter-Process Communication (IPC) mechanism (Kurose
and Ross, 2012). In the context of the Web, the server process is a perpetual process
that waits for requests from client processes and responds them with a status code and,
optionally, a document called a webpage.

In Web applications, the client and server processes are designed to be run on different
machines connected to the Internet. By using an Internet Protocol (IP) address and port

1 https://developer.mozilla.org/en-US/docs/Glossary/World_Wide_Web
2 A process is an instance of a computer program that is being executed. A program is a static entity, while

the process is a dynamic one.

https://developer.mozilla.org/en-US/docs/Glossary/World_Wide_Web

4.1 | BACKGROUND

39

number the processes are accessible, no matter where the machines physically are. It is
important to distinct the Internet from the Web, as the former is an application that uses
the Internet infrastructure to operate.

The most common type of webpages are HTML files, which use Hypertext to reference
other webpages in, potentially, other Web servers. As such, the application name, The

Web, can be understood as an analogy to a spider web, in which the nodes on the web
are the many servers directly accessible through unique identifiers, and the edges are the
references in the webpages served that interconnect the servers.

Web clients usually run on the end-users devices, like desktops, laptops, mobile devices,
and the like, while Web servers often run on datacenters scattered around the world.
Because servers are, in theory, perpetual processes that are always waiting for request
or handling requests, the Web operates on-demand, meaning that end-users can access
resources at any time.

The HTTP Protocol

Figure 4.1: Diagram exemplifying the role of the HTTP protocol in a Web application (source: Kurose

and Ross, 2012).

Although through the Internet infrastructure, the client and server processes of a Web
application are addressable, the standardized communication that establishes well-defined
requests and responses between the processes that make the Web viable is the HTTP
Protocol. HTTP is the fundamental application layer protocol of the Web, in the five-layer
model (Kurose and Ross, 2012). In every communication between the Web client and
the Web server, there is an exchange of HTTP messages. There are two types of HTTP
messages: request messages and response messages. Figure 4.1 is a diagram that exemplifies
the role of HTTP in a Web application.

HTTP request messages are sent from the Web client to the Web server. Figure 4.2 is a

40

4 | PATCH-HUB MODEL

Figure 4.2: General format of an HTTP request message (source: Kurose and Ross, 2012).

Program 4.1 Example of HTTP request message.

1 GET /path/to/resource HTTP/1.1
2 Host: www.website.com
3 Connection: close
4 Accept−language: pt−BR

diagram of the format of HTTP request messages, and Program 4.1 is an example of an
HTTP request.

HTTP request methods define the types of requests that a Web client can make.
Standard HTTP methods are the GET method to retrieve whatever information (in the
form of an entity) the resource represents, the POST and PUT to insert data through the
message body in the Web server, and the HEAD method that generates the same HTTP
response as the request with a GET method would, but without the actual resource.

Program 4.2 Example of HTTP response message.

1 HTTP/1.1 200 OK
2 Connection: close
3 Date: Fri, 17 Nov 2023 13:05:04 GMT
4 Server: Apache/2.2.3 (CentOS)
5 Last−Modified: Fri, 17 Nov 2023 13:05:04 GMT
6 Content−Length: 6821
7 Content−Type: text/html
8

9 (data data data data data ...)

After receiving and interpreting request messages from the client, the server responds
with an HTTP response message. Figure 4.3 is a diagram of the format of HTTP response
messages, and Program 4.2 is an example of an HTTP response.

4.1 | BACKGROUND

41

Figure 4.3: General format of an HTTP response message (source: Kurose and Ross, 2012).

Status codes of HTTP responses are three-digit positive integers that are the result of
the server attempting to process and satisfy the HTTP request. For example, the status code
and its explanatory phrase 200 OK indicate that the server has successfully understood,
accepted, and handled the request.

Query Strings

Even though the POST method is intended to pass data to the server in an HTTP
request using its message body, this can also be achieved by using query strings. These
strings are appended to the end of a base URL to pass data from the Web client to the
Web servers using a GET or HEAD method. The question mark character ‘?’ marks the
start of a query string. The string itself consists of pairs of query parameters and values
that are separated by the ampersand character & (parameter and value are separated by
the equal sign character ‘=’). To illustrate, Program 4.3 is a query string that assigns the
values cat and yellow to the parameters animal and color, respectively, for the base URL
https://url.com/resource.

Program 4.3 Example of query string that assigns cat and yellow to animal and color
parameters, respectively.

1 https://url.com/resource?animal=cat&color=yellow

Web application API

As servers from Web applications are public and accessible through the Internet, not
only can users make requests through Web browsers, but other applications can use the
services of a Web application by consuming its API. In this context, a Web application API
refers to the HTTP requests and responses interface that a Web application offers to other
applications, no matter if this interface was created with the intent of being used by other
developers to build applications or not.

https://url.com/resource

42

4 | PATCH-HUB MODEL

An example of Web API intended to be used as a component for other applications
is the Marvel Comics API 3, which demands an account creation to be used. It has exten-
sive documentation that comprehensively explains how to make requests and interpret
responses. Figure 4.4 is a screenshot of interactive documentation that lists the available
endpoints (accessible URLs for Web clients) and provides a way to build URLs with query
strings (Figure 4.5).

Figure 4.4: Screenshot of Marvel Comics API interactive documentation.

Figure 4.5: Example of custom URL built with Marvel Comic API Interactive Documentation.

There are also Web applications that provide little to no support for other developers,
both in terms of documentation and the service not being designed to be used as a
component by other applications. Considering that there are no legal infringements, it is
possible to use reverse engineering to understand the API of most Web applications, as
one can use the intended Web client (a Web browser, for instance) to use the Web service
and experiment with the requests and responses of the interactions.

3 https://developer.marvel.com/

https://developer.marvel.com/

4.2 | LORE ARCHIVES API

43

4.2 Lore archives API

Lore offers an API 4 for requesting data about the archived mailing lists and the mails,
called messages, that flow through them. More specifically, the API can be used for listing
available mailing lists and messages of a given mailing list. For both types of listings,
arguments can be passed to produce more specific queries based on time, author, string
matching, and others. Individual messages are also downloadable as mbox

5 files using
Lore API.

From the perspective of HTTP messages and considering the context of the patch-hub
feature, the GET request method is used for all HTTP requests. Additional information is
passed to a request with query strings instead of using the POST method. HTTP responses
contain webpages in the form of HTML files, Atom feeds in the form of XML files, or
individual messages in the form of mbox files.

Lore API has three main endpoints:

• https://lore.kernel.org or https://lore.kernel.org/lists.html: request listings of the
available mailing lists archived on Lore.

• https://lore.kernel.org/<mailing-list>: request listings of the messages of an available
mailing list with the name mailing-list.

• https://lore.kernel.org/<mailing-list>/<message-id>/raw: request mbox file of indi-
vidual message, in which message-id is the identifier of a message on the mailing-
list list.

Figure 4.6 is a diagram delineating the three types of requests and responses of Lore
API that are used in the context of patch-hub, and Figures 4.7 are screenshots of each
type of response viewed in a Web browser.

Figure 4.6: Diagram delineating the three types of requests and responses of Lore API that occur in

patch-hub.

4 The documentation on the API is scarce, so the description exposed in this section is based on testing and
experimenting with the Lore archives.

5 Mbox is a standard format for storing messages. It is usually used for email files.

https://lore.kernel.org
https://lore.kernel.org/lists.html
https://lore.kernel.org/<mailing-list>
https://lore.kernel.org/<mailing-list>/<message-id>/raw

44

4 | PATCH-HUB MODEL

(a) https:// lore.kernel.org.

(b) https:// lore.kernel.org/amd-gfx .

(c) https:// lore.kernel.org/git/alpine.LFD.0.999.0708181547400.30176@woody.
linux-foundation.org/raw .

Figure 4.7: Screenshots of the three types of responses from Lore API viewed in a Web browser.

https://lore.kernel.org
https://lore.kernel.org/amd-gfx
https://lore.kernel.org/git/alpine.LFD.0.999.0708181547400.30176@woody.linux-foundation.org/raw
https://lore.kernel.org/git/alpine.LFD.0.999.0708181547400.30176@woody.linux-foundation.org/raw

4.2 | LORE ARCHIVES API

45

4.2.1 Query parameters

As mentioned earlier, arguments for listing requests (this does not apply to individual
messages) to the Lore API are passed using query strings that are appended to the base
URL of the request. This subsection describes the query parameters used in the context of
the patch-hub feature.

Query parameter o

Lore API responses with listings are paginated. Pages have 200 entries at maximum,
and the query parameter o value determines the starting index of the returned listing.
Figure 4.8a is a screenshot of the first page of the available mailing lists, while Figure 4.8b
is the second page. Notice at the bottom of the screenshots that the range of results
corresponds to the value of the query parameter o (in the case of the first page, the value of
o defaults to 0). This pagination also occurs when listing the messages of a given mailing
list.

(a) First page of available mailing lists. (b) Second page of available mailing lists.

Figure 4.8: Screenshots illustrating the pagination of Lore API responses.

Query parameter q

The query parameter q filters messages from a given mailing list that fulfill certain
conditions. In the form of q=<string>, this parameter filters messages that have a string
match with string in any field of the message. Furthermore, Lore provides support for
more fine-grained filtering based on specific fields of the message with the use of prefixes 6.
Common search engine operators like AND, OR, +, and - are also supported. For illustration,
Figure 4.9a is a listing of the git mailing list filtering messages that have the term rebase

in the subject field, while Figure 4.9b additionally filters messages sent by Linus Torvalds
and that do not contain the term bug in the message body.

46

4 | PATCH-HUB MODEL

(a) Messages from the git mailing list that contain the term rebase in the subject.

(b) Messages from the git mailing list that contain the term rebase in the subject, that

were sent by Linus Torvalds and that do not have the term bug in the body.

Figure 4.9: Screenshots illustrating filtering of messages in Lore API.

Figure 4.10: Simplified correspondent Atom feed of listing shown on Figure 4.9b.

4.3 | PATCH-HUB MODEL IMPLEMENTATION

47

Query parameter x

When requesting the listing of messages from a mailing list, the exact itemization
can be responded as an HTML webpage or as an XML Atom feed. The former behavior
is the default, and the latter is achieved by setting the x query parameter to A. Even
though the sequence of messages is the same in both types of responses, messages in
the XML Atom feeds contain more attributes like author email address, timestamp, and
message ID. Figure 4.10 is the correspondent simplified Atom feed of the listing shown on
Figure 4.9b.

4.3 patch-hub Model implementation
As stated in Subsection 4.1.1, the Model component contains all application logic

unrelated to the View or Controller. patch-hub Model comprises a few data structures
used at runtime and several functions that manipulate domain-specific data or encapsulate
some domain logic. These functions and data structures are organized in the library
file src/lib/lore.sh, which is relatively different from other library files in the kw
project. Due to the data structures that hold information about the state of the execution,
src/lib/lore.sh is not just like a collection of functions with a shared context. Pro-
gram 4.4 is a listing with the declaration of the mentioned data structures. Notice how
these structures are declared as global variables to emulate the attributes of an object from
the Object-Oriented Programming paradigm. As Bash does not have Lexical Scoping

7, the
only way to represent a state that is manipulated by multiple function calls is through
global variables.

Program 4.4 patch-hub Model data structures declared in src/lib/lore.sh.

1 # List of available mailing list in Lore
2 declare -gA available_lore_mailing_lists
3
4 # List of patchsets from a target mailing list. Each entry is a string with
5 # the following attributes separated by ‘SEPARATOR_CHAR‘:
6 #
7 # author-name,author-email,version,total-patches,patchset-title,message-ID
8 declare -gA mailing_list_patchsets
9

10 # Number of patchsets processed in current Lore fetch session.
11 # Also, the size of ‘mailing_list_patchsets‘.
12 declare -g PATCHSETS_PROCESSED=0
13
14 # Value of query parameter ‘o‘ from the Lore API that determines the minimum
15 # excluding entry index of the page. This value is associated with the
16 # current Lore fetch session.
17 declare -g MIN_INDEX=0

From the perspective of tasks that patch-hub Model has to accomplish, the itemization
below surmises its responsibilities:

6 Supported filters can be checked at https://lore.kernel.org/amd-gfx/_/text/help (this is the help page related
to the amd-gfx list, but all lists support the same set of filters).

7 Lexical scoping, also called Static Scoping, dictates that free variables in a procedure are taken to refer to
bindings made by enclosing procedure definitions; that is, they are looked up in the environment in which
the procedure was defined (Abelson and Sussman, 1996).

https://lore.kernel.org/amd-gfx/_/text/help

48

4 | PATCH-HUB MODEL

• Listing available mailing lists.

• Listing patchsets of a mailing list.

• Handling individual patchsets.

• Managing feature configurations.

The following subsections explain in depth what each task entails and how patch-hub
Model is implemented to accomplish them.

4.3.1 Listing available mailing lists
To list the available mailing lists archived on Lore, patch-hub Model makes

an HTTP GET request to the endpoint https://lore.kernel.org. This request
is responded with an HTML file containing the record of the available mailing
lists. patch-hub Model processes this HTML file and stores the processed mailing
lists in the available_lore_mailing_lists global array. Program 4.5 is a listing
of the retrieve_available_mailing_lists function that encapsulates this logic,
and Program 4.6 is the implementation of the download function defined in sr-
c/lib/web.sh.

Program 4.5 Implementation of retrieve_available_mailing_lists.

1 function retrieve_available_mailing_lists()
2 {
3 local flag="$1"
4 local index=’’
5 local pre_processed
6
7 flag=${flag:-’SILENT’}
8
9 setup_cache

10
11 download "$LORE_URL" "$MAILING_LISTS_PAGE" "$CACHE_LORE_DIR" "$flag" || return "$?"
12
13 # Note: "$LIST_PAGE_PATH" expands to "${CACHE_LORE_DIR}/${MAILING_LISTS_PAGE}"
14 pre_processed=$(sed -nE -e ’s/^href="(.*)\/?">\1<\/a>$/\1/p; s/^ (.*)$/\1/p’ "${LIST_PAGE_PATH}

")
15
16 while IFS= read -r line; do
17 if [[-z "$index"]]; then
18 index="$line"
19 else
20 available_lore_mailing_lists["$index"]="$line"
21 index=’’
22 fi
23 done <<< "$pre_processed"
24 }

From the architectural aspect, the Controller component (that is part of patch-
hub UI) requests to the Model a listing of the archived mailing lists using a call
to retrieve_available_mailing_lists, that returns the lists through avail-
able_lore_mailing_lists; then, the Controller requests the View component to
display this information using the same data structure.

4.3 | PATCH-HUB MODEL IMPLEMENTATION

49

Program 4.6 Implementation of download.

1 function download()
2 {
3 local url="$1"
4 local output=${2:-’page.xml’}
5 local output_path="$3"
6 local flag="$4"
7
8 if [[-z "$url"]]; then
9 complain ’URL must not be empty.’

10 return 22 # EINVAL
11 fi
12
13 flag=${flag:-’SILENT’}
14
15 output_path="${output_path:-${KW_CACHE_DIR}}"
16
17 cmd_manager "$flag" "curl --silent ’$url’ --output ’${output_path}/${output}’"
18 }

4.3.2 Listing patchsets of a mailing list

To list patchsets of a target mailing list, patch-hub Model uses an analog approach
to the one used to list the available mailing lists. Overall, it composes and makes an
HTTP GET request to a Lore endpoint that is returned with a resource containing a
list of entries, which are then processed and stored in a global array. Nevertheless, each
step is considerably more complex when compared to listing the available mailing lists.
Program 4.7 is a listing of fetch_latest_patchsets_from, which is the function that
implements this behavior by dividing this task into subtasks and delegating responsibilities
to other functions.

Overview of fetching latest patchsets

The first thing to notice in Program 4.7 is that the function is essentially a while loop
that repeats a set of subtasks until the value page times patchsets_per_page is greater
than PATCHSETS_PROCESSED. As context, patch-hub UI displays the latest patchsets of
a target mailing list using pagination (this pagination is not the same as the one done
by the Lore API mentioned in Subsection 4.2.1). The user can request older pages, as
well as go back to previous rendered pages in this fetch session, so patch-hub UI, using
fetch_latest_patchsets_from, requests a specific range of patchsets for patch-hub
Model by passing the page and the patchsets_per_page arguments. The variable PATCH-
SETS_PROCESSED is one of the global variables used by patch-hub Model (Program 4.4)
to store the number of patchsets that have already been processed in the current fetch
session, to avoid fetching patchsets that were already processed.

The end of a fetch session is the resetting of the data structures that compose
the state of the session, and it occurs when patch-hub UI uses the function re-
set_current_lore_fetch_session defined on src/lib/lore.sh that is listed in Pro-
gram 4.8.

50

4 | PATCH-HUB MODEL

Program 4.7 Implementation of fetch_latest_patchsets_from.

1 function fetch_latest_patchsets_from()
2 {
3 local target_mailing_list="$1"
4 local page="$2"
5 local patchsets_per_page="$3"
6 local additional_filters="$4"
7 local flag="$5"
8 local raw_xml
9 local lore_query_url

10 local xml_result_file_name
11 local pre_processed_patches
12 local xml_result_file_name
13 local lore_query_url
14 local raw_xml
15 local ret
16
17 flag=${flag:-’SILENT’}
18 xml_result_file_name="${target_mailing_list}-patches.xml"
19
20 while [["$PATCHSETS_PROCESSED" -lt "$((page * patchsets_per_page))"]]; do
21 lore_query_url=$(compose_lore_query_url_with_verification "$target_mailing_list" "$MIN_INDEX"

"$additional_filters")
22 ret="$?"
23 [["$ret" != 0]] && return "$ret"
24
25 download "$lore_query_url" "$xml_result_file_name" "$CACHE_LORE_DIR" "$flag"
26 ret="$?"
27 [["$ret" != 0]] && return "$ret"
28
29 if is_html_file "${CACHE_LORE_DIR}/${xml_result_file_name}"; then
30 return 22 # ENOENT
31 fi
32
33 raw_xml=$(< "${CACHE_LORE_DIR}/${xml_result_file_name}")
34
35 if [["$raw_xml" == ’</feed>’]]; then
36 break
37 fi
38
39 pre_processed_patches=$(pre_process_xml_result "${CACHE_LORE_DIR}/${xml_result_file_name}")
40 process_patchsets "$pre_processed_patches"
41
42 MIN_INDEX=$((MIN_INDEX + LORE_PAGE_SIZE))
43 done
44 }

Program 4.8 Implementation of reset_current_lore_fetch_session.

1 function reset_current_lore_fetch_session()
2 {
3 mailing_list_patchsets=()
4 PATCHSETS_PROCESSED=0
5 MIN_INDEX=0
6 }

4.3 | PATCH-HUB MODEL IMPLEMENTATION

51

Building the request URL

The response of a request for the base URL https://lore.kernel.org/<mailing-
list> is an HTML file with a list of message threads ordered by their received time on the
Lore servers (Figure 1.4 is an example of this of response). Two characteristics of this type
of response require patch-hub Model to adapt the request: the items in the list returned do
not contain all the information needed by patch-hub, and discussion threads and replies
are not filtered out. Another point to be considered is the pagination of listing responses
by the Lore API.

To overcome these three complications, patch-hub Model uses the Lore API query
parameters mentioned in Subsection 4.2.1 to build the request URL. The URL is built
by the function compose_lore_query_url_with_verification (listed on Program 4.9)
and captured by the variable lore_query_url. Notice on line 17 of Program 4.9 three
assignments:

• x=A to request an Atom feed XML that contains the information needed by patch-
hub for each patchset on the returned list.

• o=$min_index to set the earliest message of the page requested, managing the
pagination of Lore response.

• q=rt:..+AND+NOT+s:Re to filter out reply messages. The parameter q accepts the
composition of filters with the keyword AND. The prefix s: filters based on the
subject of the message, so NOT+s:Re filters out messages that have the string Re
on the subject, as reply messages subjects practically always start with this string.
The prefix rt: filters based on the received time of the message accepting values
as time ranges, with rt:.. representing a time range that is open-ended on both
ends; this is redundant as it means “messages that were received at any time”, but it
is used because Lore API does not accept a NOT keyword as the start of a value for
parameter q.

Program 4.9 Implementation of compose_lore_query_url_with_verification.

1 function compose_lore_query_url_with_verification()
2 {
3 local target_mailing_list="$1"
4 local min_index="$2"
5 local additional_filters="$3"
6 local query_filter
7 local query_url
8
9 if [[-z "$target_mailing_list" || -z "$min_index"]]; then

10 return 22 # EINVAL
11 fi
12
13 if [[! "$min_index" =~ ^-?[0-9]+$]]; then
14 return 22 # EINVAL
15 fi
16
17 query_filter="?x=A&o=${min_index}&q=rt:..+AND+NOT+s:Re"
18 [[-n "$additional_filters"]] && query_filter+="+AND+${additional_filters}"
19 query_url="${LORE_URL}/${target_mailing_list}/${query_filter}"
20 printf ’%s’ "$query_url"
21 }

52

4 | PATCH-HUB MODEL

Take note of the optional argument additional_filters that is present in both
fetch_latest_patchsets_from and compose_lore_query_url_with_verification.
This argument can be used to apply any other filter supported by the query parameter q
to the request, and, at the moment, patch-hub uses it to search arbitrary strings in the
Lore archives.

Making the HTTP request and verifying the response

After building the correct URL, patch-hub makes the HTTP GET request to the Lore
API (line 25 of Program 4.7), which responds with a resource. Then, there are two checks
to account for special cases: the first to confirm that the returned resource is not an HTML
file, which is responded when the request could not be handled, and the second to assert
that it is not an empty XML file, which is responded when the value of the query parameter
o is greater or equal than the index of the oldest message in the archive (i.e., there are
no more patches to fetch from the target mailing list). If the first check fails, the function
returns with an error code that the Controller can handle. If the second check fails, the
break keyword is used to get out of the while loop, as having no patches left to fetch
means that the function can return even though the number of patchsets processed did
not reach the value required by the loop condition. In the common case, the request is
correctly handled by Lore API, and the resource responded is an XML Atom feed that
represents a single page of the target mailing list.

Processing patchsets

As mentioned in Section 1.3, we consider the word patch as an individual message in a
mailing list containing code differentials. In contrast, patchset is a set of patches that are
supposed to have a shared context. Also, for each patchset, a single message is elected as
the representative of the series, usually the first message 8. However, the listing returned
by the HTTP GET request in the previous step is of patches, not patchsets. The design of
patch-hub considers patchsets as the feature unit. Hence, the patch-hub Model has to
process the response to consider only representative messages and to get the necessary
information for them.

Program 4.10 Implementation of pre_process_xml_result.

1 function pre_process_xml_result()
2 {
3 local xml_file_path="$1"
4 local xpath_query
5 local raw_xml
6 local -r NAME_EXP=’//entry/author/name/text()’
7 local -r EMAIL_EXP=’//entry/author/email/text()’
8 local -r TITLE_EXP=’//entry/title/text()’
9 local -r LINK_EXP=’//entry/link/@href’

10
11 raw_xml=$(< "$xml_file_path")
12 xpath_query="${NAME_EXP}|${EMAIL_EXP}|${TITLE_EXP}|${LINK_EXP}"
13 printf ’%s’ "$raw_xml" | xpath -q -e "$xpath_query"
14 }

8 In this case, we use message and not patch, because the first patch of a patchset can be a cover letter, which is
an introductory message without code differentials that comments and delineates the context of the series.

4.3 | PATCH-HUB MODEL IMPLEMENTATION

53

On line 39 of Program 4.7, the XML resource with the list of patches is pre-processed
using the function pre_process_xml_result, which consists of trimming the unneces-
sary information of the XML into the variable pre_processed_patches. Program 4.10 is
a listing of pre_process_xml_result, that shows the use of the xpath tool 9 to filter four
attributes of patches in the XML returned: author name and email, patch title, and URL of
resource in the Lore archives (this is interchangeable with the message ID). It is important
to point that pre_process_xml_result returns the same list of patches returned by the
Lore API, but trimmed.

Program 4.11 Template of XML result of mailing list patches and correspondent pre-
processed version.

1 # Simplified template of XML returned by Lore
2 <?xml version="1.0" encoding="us-ascii"?>
3 <feed>
4 <entry>
5 <author>
6 <name>AUTHOR-NAME</name>
7 <email>AUTHOR-EMAIL</email>
8 </author>
9 <title>MESSAGE-SUBJECT</title>

10 <updated>RECEIVED-TIME</updated>
11 <link href="MESSAGE-ID"/>
12 <id>...</id>
13 <thr:in-reply-to .../>
14 <content>...</content>
15 </entry>
16 <entry>
17 ...
18 </entry>
19 ...
20 </feed>
21
22 # Pre-processed version of XML returned by Lore
23 AUTHOR-NAME
24 AUTHOR-EMAIL
25 MESSAGE-SUBJECT
26 href="MESSAGE-ID"
27 ...

As an illustration, Program 4.11 is the general pattern of the XML file returned by Lore
when requesting the listing of a target mailing list as an Atom feed with the correspondent
pre-processed version.

On line 40 of Program 4.7, process_patchsets uses the pre-processed list of
patches to generate the correspondent list of patchsets and stores it in the global ar-
ray mailing_list_patchsets. Conceptually, process_patchsets parses the list of pre-
processed patches, finding representative messages of patchsets. For each representative
message, the function launches a background process

10 that parallelizes the processing
of patchsets. The processed patchsets are stored in a temporary directory, and after all
background processes finish execution, the processed patchsets are loaded into the mail-
ing_list_patches data structure.

9 Tool for querying XPath statements in XML files (for reference, see https://www.w3.org/TR/xpath/).
10 A Bash command terminated with the ampersand character & executes asynchronously in a subshell (for

reference, see https://www.gnu.org/software/bash/manual/bash.html#Lists).

https://www.w3.org/TR/xpath/
https://www.gnu.org/software/bash/manual/bash.html#Lists

54

4 | PATCH-HUB MODEL

Program 4.12 Implementation of process_patchsets

1 function process_patchsets()
2 {
3 local pre_processed_patches="$1"
4
5 shared_dir_for_parallelism=$(mktemp --directory)
6 starting_index="$PATCHSETS_PROCESSED"
7 count=0
8 i=0
9

10 while IFS= read -r line; do
11 if [["$line" =~ ^[[:space:]]href=]]; then
12 patch_url=$(str_get_value_under_double_quotes "$line")
13
14 if is_introduction_patch "$patch_url"; then
15 thread_for_process_patch "$PATCHSETS_PROCESSED" "$shared_dir_for_parallelism" "

$processed_patchset" "$patch_url" "$patch_title" &
16 pids[i]="$!"
17 ((i++))
18 ((PATCHSETS_PROCESSED++))
19 fi
20
21 processed_patchset=’’
22 count=0
23 continue
24 fi
25
26 case "$count" in
27 0) # NAME
28 processed_patchset="$(process_name "$line")${SEPARATOR_CHAR}"
29 ;;
30 1) # EMAIL
31 processed_patchset+="${line}${SEPARATOR_CHAR}"
32 ;;
33 2) # TITLE
34 patch_title="$line"
35 ;;
36 esac
37
38 ((count++))
39 done <<< "$pre_processed_patches"
40
41 for pid in "${pids[@]}"; do
42 wait "$pid"
43 done
44
45 for i in $(seq "$starting_index" "$((PATCHSETS_PROCESSED - 1))"); do
46 mailing_list_patchsets["$i"]=$(< "${shared_dir_for_parallelism}/${i}")
47 done
48 }

4.3 | PATCH-HUB MODEL IMPLEMENTATION

55

Program 4.12 is a listing of process_patchsets. Regarding the function implementa-
tion, it first creates a temporary directory using mktemp, then it enters the while loop and
iterates through the pre-processed list of patches returned by pre_process_xml_result
finding representative messages using the function is_introduction_patch and
launching a background process using the function thread_for_process_patch
to handle each representative message. Each background process executes a set of
subtasks to define the data that compose an entry of mailing_list_patches (the
attributes and format are described in Program 4.4) and stores this data in the tem-
porary directory shared_dir_for_parallelism. Finally, after every background
process finishes its tasks, the processed patchsets are loaded into the data structure
mailing_list_patchsets.

It is pertinent to note that the executing shell that enters process_patchsets is the
one that iterates through the while loop, launches the background processes, and halts
execution until the termination of each one (lines 50 to 52 of Program 4.12). This original
executing shell waits for the end of the background processes to synchronize them, as using
the parallel processes to load data into mailing_list_patchsets would allow concurrent
accesses to this shared data structure, which could lead to race conditions (Pacheco,
2011).

From the macroscopic view of listing the patchsets of a mailing list, in case the total
number of patchsets processed in the current fetch session is less than what the caller
of fetch_latest_patchsets_from required, another iteration of the while loop occurs
for the next page of the target mailing list archive (the page is updated in line 42 of
Program 4.7).

4.3.3 Handling individual patchsets
The patch-hub feature main objective is to provide a TUI of the Lore archives for patch

reviewers. Listing the available mailing lists and the patchsets of a target list is not helpful
if the feature does not allow patch reviewers to manipulate individual patchsets.

In patch-hub Model, each manipulation is implemented as one or more functions rep-
resenting an action on the target patchset. Currently, two actions are supported: download
the patchset applicable mbox file to a specific directory and add a bookmark to a patchset
or remove it.

The download of a patchset to a specific directory entails the use of the request to
Lore API for the mbox file of patches, as explained in Section 4.2. This request is not made
directly by patch-hub Model, which uses the b4 tool 11 to download the whole series in
a single mbox file, without including the cover letter and that is ready to be applied in a
Git repository with git am. Program 4.13 is a listing of download_series, which is the
function used to handle the download of a patchset action.

patch-hub Model manages a database for bookmarks that serves as a record for
easy access to selected patchsets. This database is implemented as a flat-file database
(see Section 2.1). The actions provided by the model are the adding and removing of

11 https://b4.docs.kernel.org/en/latest/

https://b4.docs.kernel.org/en/latest/

56

4 | PATCH-HUB MODEL

Program 4.13 Implementation of download_series

1 function download_series()
2 {
3 local series_url="$1"
4 local save_to="$2"
5 local flag="$3"
6 local series_filename
7 local cmd
8 local ret
9

10 flag=${flag:-’SILENT’}
11
12 if [[-z "$series_url" || -z "$save_to"]]; then
13 return 22 # EINVAL
14 fi
15
16 cmd_manager "$flag" "mkdir --parents ’${save_to}’"
17 ret="$?"
18 if [["$ret" != 0]]; then
19 complain "Couldn’t create directory in ${save_to}"
20 return "$ret"
21 fi
22
23 series_filename=$(extract_message_id_from_url "$series_url")
24
25 series_url=$(replace_http_by_https "$series_url")
26
27 cmd="b4 --quiet am ’${series_url}’ --no-cover --outdir ’${save_to}’ --mbox-name ’${

series_filename}.mbx’"
28 cmd_manager "$flag" "$cmd"
29 ret="$?"
30 if [["$ret" == 1]]; then
31 complain ’An error occurred during the execution of b4’
32 complain "b4 command: ${cmd}"
33 elif [["$ret" == 2]]; then
34 complain ’b4 unrecognized arguments’
35 complain "b4 command: ${cmd}"
36 else
37 printf ’%s/%s.mbx’ "$save_to" "$series_filename"
38 fi
39
40 return "$ret"
41 }

patchsets to and from this database. Implementing both involves explicitly managing
the file used as the database for bookmarks. Program 4.14 is a listing of the function
add_patchset_to_bookmarked_database that adds the patchset to the database. In
contrast, Program 4.15 is a listing of remove_patchset_from_bookmark_by_url and
remove_patchset_from_bookmark_by_index, which provide the removal of patchsets
from the database.

As a side note on the development process of patch-hub, we used a flat-file database
approach to implement the database for bookmarks since the requirements for the patchset
entity (from a theoretical database modeling perspective) were not well-defined, so we
chose to postpone the integration of the feature with the kw database system that uses
SQLite3 (see Chapter 2).

New actions on individual patchsets are in development, like the integration of patch-
hub with the features kw build and kw deploy, which would provide the compilation
and installation of Linux kernel instances modified by patchsets. Other actions, from

4.3 | PATCH-HUB MODEL IMPLEMENTATION

57

Program 4.14 Implementation of add_patchset_to_bookmarked_database

1 function add_patchset_to_bookmarked_database()
2 {
3 local raw_patchset="$1"
4 local download_dir_path="$2"
5 local timestamp
6 local count
7
8 create_lore_bookmarked_file
9

10 timestamp=$(date ’+%Y/%m/%d %H:%M’)
11
12 count=$(grep --count "${raw_patchset}" "${BOOKMARKED_SERIES_PATH}")
13 if [["$count" == 0]]; then
14 {
15 printf ’%s%s’ "${raw_patchset}" "${SEPARATOR_CHAR}"
16 printf ’%s%s’ "${download_dir_path}" "${SEPARATOR_CHAR}"
17 printf ’%s\n’ "$timestamp"
18 } >> "${BOOKMARKED_SERIES_PATH}"
19 fi
20 }

Program 4.15 Implementations of remove_patchset_from_bookmark_by_url and re-
move_patchset_from_bookmark_by_index

1 function remove_patchset_from_bookmark_by_url()
2 {
3 local patchset_url="$1"
4
5 if [[! -f "${BOOKMARKED_SERIES_PATH}"]]; then
6 return 2 # ENOENT
7 fi
8
9 patchset_url=$(printf ’%s’ "$patchset_url" | sed ’s/\//\\\//g’)

10
11 sed --in-place "/${patchset_url}/d" "${BOOKMARKED_SERIES_PATH}"
12 }
13
14 function remove_series_from_bookmark_by_index()
15 {
16 local series_index="$1"
17
18 if [[! -f "${BOOKMARKED_SERIES_PATH}"]]; then
19 return 2 # ENOENT
20 fi
21
22 sed --in-place "${series_index}d" "${BOOKMARKED_SERIES_PATH}"
23 }

58

4 | PATCH-HUB MODEL

displaying patch contents inside the feature to replying with tags like Reviewed-by and
adding inline comments, are scheduled to be added in the future.

4.3.4 Managing feature configurations
Like other features in the kw project, patch-hub has a configuration file managed

by kw. More specifically, a file named lore.config resides in the etc directory of the
project repository that holds general configurations of the feature. For example, the
number of patchsets per page displayed when listing from a target mailing list is set in this
configuration file, as well as the available mailing lists that the user selected as favorites

(referred to as registered mailing lists).

Program 4.16 Implementation of save_new_lore_config

1 function save_new_lore_config()
2 {
3 local setting="$1"
4 local new_value="$2"
5 local lore_config_path="$3"
6
7 if [[! -f "$lore_config_path"]]; then
8 complain "${lore_config_path}: file doesn’t exists"
9 return 2 # ENOENT

10 fi
11
12 sed --in-place --regexp-extended "s<(${setting}=).*<\1${new_value}<" "$lore_config_path"
13 }

patch-hub Model provides a unified interface for managing this configuration with
the function save_new_lore_config, that is listed in Program 4.16.

59

Chapter 5

Final Remarks

The focus of this work was to delineate the integration of the Lore archives - a Web
application that hosts archives of mailing lists related to the Linux kernel development -
and KWorkflow (kw) - a system that aims to provide a unified environment that enhances
the workflows of Linux developers. In terms of technological results, this study resulted in
two main contributions to the kw project:

1. Integration of KWorkflow with a Database Management System (DBMS) (see Chap-
ter 2).

2. Integration of KWorkflow with the Lore archives through the development of the
patch-hub feature (see Chapters 3 and 4).

The kw project used a file-based database approach to manage its databases, which
was functional but not scalable or efficient. The migration to a DBMS approach using the
SQLite3 DBMS was made as a preliminary task to implement the patch-hub feature, which
would benefit from this approach change. The DBMS integration with kw had short-term
positive effects, like considerably reducing the execution time of the automated unit tests
suite, and will probably have future positive effects on the maintainability and scalability
of the codebase.

Before this work, no feature in kw enhanced the Linux developer workflow of interact-
ing with the public mailing lists for patch review. The on-demand characteristic of the Lore
archives made possible the creation of patch-hub, a feature in the kw project to provide
a user-friendly terminal-based interface to the flow of patchsets sent to the mailing lists
related to the Linux kernel development. patch-hub also strives to offer integrations with
other kw features by taking advantage of the unified environment provided by the system.
The careful design of patch-hub architecture, which uses the Model-View-Controller

(MVC) design pattern and the Finite-State Machine (FSM) mathematical computational
model, assures that the feature has loosely coupled components that are well-defined and,
therefore, makes the feature more maintainable, testable, and robust. A direct benefit of
implementing the MVC pattern is that it is possible to add another type of UI, for example,
a Web UI, using the same core component of the feature (i.e., reusing patch-hub Model).
On the other hand, modeling patch-hub UI using the FSM model simplified and organized
the implementation of the feature screens. Besides that, the screens of patch-hub use

60

5 | FINAL REMARKS

the Dialog tool as a framework, and a side-effect of implementing the feature was the
addition of a generic library for creating terminal user interfaces (TUIs) to the kw project.
Finally, it is worth highlighting that, although it will be further expanded and refined,
patch-hub is a functional feature that validated a tool in the kw environment to enhance
the interaction with mailing lists. Screenshots that demonstrate the patch-hub feature
are in Appendix A.

Moreover, the author became a maintainer of the kw project in 2023. Thus, other results
were not discussed in this capstone project; the most notable 1 were the miscellaneous
contributions to the kw project. A full listing is in Appendix B, but we emphasize these
contributions:

1. Addition of Zsh native completions to the project.

2. Addition of tracing and profiling capabilities to the project.

A shell completion system suggests command names, option names, and values for
choice, file, and path parameter types when a specific key is pressed (usually, the TAB key).
Bash completions were natively implemented into the kw project, while Zsh completions
were emulated using the Bash ones, producing errors that broke Zsh users’ prompts.
For Zsh users, not only did the addition of native completions fix the issues, but it also
enhanced their user experience, as the Zsh completion system offers a great variety of
functionalities that were explored in the implementation. This is further discussed in a
blog post by the author 2.

Motivated by optimizing the execution time of fetching and processing patchsets
from the Lore archives, two mechanisms were introduced into the kw project: tracing
capabilities and generating execution profiles. The former relates to producing reports
about the flow of execution, and the latter uses these reports to create different profiles that
describe the flow of execution that can be used for debugging and finding performance
bottlenecks. A dedicated page on the kw official website is a tutorial for using these two
mechanisms 3.

The work done in this study creates opportunities for future work. Even though
functional, the performance of patch-hub for fetching and processing patchsets is not
ideal and can be optimized, as the bottleneck was determined using the tracing and profiling
capabilities mentioned above, and a solution has already been drafted. With the desired
performance, the next logical step would be to expand the functionalities of patch-hub,
specifically integrating it with kw build and kw deploy, and adding the possibility of
replying individual patches with commit tags like Reviewed-by and Tested-by, and with
inline comments. Incorporating these expansions establishes the core functionalities of the
feature, allowing for studies on the processes and practices in the Linux kernel development
to be conducted using patch-hub to collect data.

1 Three patchsets were sent and merged into the Linux kernel mainline and can be checked at the
following links: https://lore.kernel.org/amd-gfx/20230306022427.437022-1-davidbtadokoro@gmail.com/,
https://lore.kernel.org/amd-gfx/20230307225341.246596-1-davidbtadokoro@usp.br/, and https://lore.kernel.
org/amd-gfx/20230307191417.150823-1-davidbtadokoro@usp.br/.

2 https://davidbtadokoro.github.io/posts/adding-support-for-native-zsh-completions/
3 https://kworkflow.org/content/tracingandprofiling.html

https://lore.kernel.org/amd-gfx/20230306022427.437022-1-davidbtadokoro@gmail.com/
https://lore.kernel.org/amd-gfx/20230307225341.246596-1-davidbtadokoro@usp.br/
https://lore.kernel.org/amd-gfx/20230307191417.150823-1-davidbtadokoro@usp.br/
https://lore.kernel.org/amd-gfx/20230307191417.150823-1-davidbtadokoro@usp.br/
https://davidbtadokoro.github.io/posts/adding-support-for-native-zsh-completions/
https://kworkflow.org/content/tracingandprofiling.html

5 | FINAL REMARKS

61

These future works (except the one about the conduction of studies) are tracked in
a public Kanban board on GitHub Projects 4. It is important to stress that the author
was invited to continue this work in a doctorate in Computer Science to collaborate to
evolve the research in FLOSS and Linux Kernel conducted by IME-USP Systems Group.
Accordingly, the future works mentioned above will be studied, and the patch-hub feature
will continue to be further developed.

4 A Kanban board is an agile project management tool designed to help visualize work, limit work-in-progress,
and maximize efficiency. The patch-hub tracking Kanban board is available at https://github.com/orgs/
kworkflow/projects/2/views/1.

https://github.com/orgs/kworkflow/projects/2/views/1
https://github.com/orgs/kworkflow/projects/2/views/1

63

Chapter 6

Personal Appreciation

I had no programming or Computer Science background when I began my Bachelor of
Computer Science undergraduate education. I have always had a great interest in anything
related to computers, so when I decided to switch courses (I took three semesters in
Bachelor of Physics prior), I knew for sure that Computer Science would be the right field
for my life.

Almost four years after the start of my undergraduate studies, I came in contact with
plenty of exciting topics in the Computer Science field, like building a virtual processor,
designing and implementing a network protocol to play tic-tac-toe, writing a monography
on Spectre and Meltdown, doing mathematical proof on graphs, and many others.

However, the experiences that I lived through this last year made me grow in all aspects
of my academic, professional, and personal life. The interactions with the KWorkflow
(kw) community - which I got to know through the Laboratory of Extreme Programming

discipline - led to the work done in this capstone project, to the participation in the Google

Summer of Code 2023 (GSoC 23) as a contributor 1, and to put into practice all the knowledge
that I obtained during my undergraduate education. From learning how to contribute to a
free software project to having patches merged into the Linux mainline and diving deep
into Git mechanics, Web applications, Linux kernel concepts, and the like, my experiences
in the kw project truly consolidated the hard and soft skills that I amassed through these
four years. Before my experiences with the kw project, I felt unsure about these skills and
thought they were not solid because they were only applied in controlled environments of
the Bachelor of Computer Science course. After a year of continuously contributing to the
kw project, I became a maintainer and, today, help the project’s progress on both sides by
developing and reviewing code.

During the weekly meetings of the kw project, when I was just starting as a contributor,
Rodrigo Siqueira presented me with two fronts that were merged and became the object
of this study: the integrations of a Database Management System (DBMS) and the Lore

1 Link to the GSoC 23 page in the past programs archive: https://summerofcode.withgoogle.com/
archive/2023/projects/eqFrXfAz. Link to my GSoC 23 final report: https://davidbtadokoro.github.io/posts/
gsoc23-final-report/

https://summerofcode.withgoogle.com/archive/2023/projects/eqFrXfAz
https://summerofcode.withgoogle.com/archive/2023/projects/eqFrXfAz
https://davidbtadokoro.github.io/posts/gsoc23-final-report/
https://davidbtadokoro.github.io/posts/gsoc23-final-report/

64

6 | PERSONAL APPRECIATION

archives with the kw environment. These two topics quickly became my focus and my
capstone project, from which I derived many learnings.

Compared to when I started the undergraduate course, I still feel overwhelmed by how
diverse and vast the Computer Science field is and how fast it is evolving. Nevertheless, I
understood that learning creates as many questions as it solves them and that there is no
such thing as mastering an entire field. As I finish my undergraduate studies, I feel eager
to keep on this unspeakably rewarding journey of learning about computers.

65

Appendix A

Demonstration of the patch-hub
feature

Figure A.1: patch-hub listing of archived mailing lists on Lore.

Figure A.2: patch-hub menu with registered mailing lists.

66

APPENDIX A

(a) Page 1 of latest patchsets from amd-gfx mailing list.

(b) Page 4 of latest patchsets from amd-gfx mailing list.

Figure A.3: patch-hub listing of latest patchsets from target mailing list.

A | DEMONSTRATION OF THE PATCH-HUB FEATURE

67

(a) Individual patchset details and actions.

(b) Dialog box to select specific directory to download patchset.

(c) Loading notification (present throughout patch-hub).

(d) Dialog box confirming action (present throughout patch-hub).

Figure A.4: patch-hub handling of individual patchset.

Figure A.5: patch-hub menu with bookmarked patchsets.

68

APPENDIX A

Figure A.6: patch-hub capability of querying Lore archives based on string.

(a) Settings menu.

(b) Setting kernel tree target branch configuration.

(c) Setting patchsets per page configuration.

Figure A.7: patch-hub setting of configurations through the feature.

A | DEMONSTRATION OF THE PATCH-HUB FEATURE

69

Figure A.8: patch-hub ability to adapt to terminal configurations (dimensions, color scheme, fonts,

and the like).

71

Appendix B

List of contributions to the
KWorkflow project

Below is the complete listing, in chronological order, of the merged pull requests made
by the author to the KWorkflow project, which accounts for the contributions made this
year 1.

• src: update: add self-update mechanism to kw

• tests: report_test: Fix terminal and file outputs from test_save_data_to()

• Allow some kw deploy commands to be run outside kernel tree

• documentation: man: kw: Revise deploy subsection

• src: kw_remote: Fix not failing when missing valid options

• src: kw_remote: Fix remove remote that is prefix of other remote

• Revise kw remote man page

• Add support for native Zsh completions

• documentation: dependencies: Add curl and xpath dependencies

• src: upstream_patches_ui: Add help option

• src: upstream_patches_ui: Fix list_patches menu title

• src: upstream_patches_ui: Add loading screen for delayed actions

• src: upstream_patches_ui: Add bookmark feature

• src: upstream_patches_ui: Fix Dashboard screen message box

• Integrate kw_bd to the project and add migration script

• src: lib: lore: Use b4 tool for downloading patch series

1 patch-hub used to be called upstream-patches-ui, so pull requests that refer to the latter are related to
the former.

https://github.com/kworkflow/kworkflow/pull/731
https://github.com/kworkflow/kworkflow/pull/767
https://github.com/kworkflow/kworkflow/pull/768
https://github.com/kworkflow/kworkflow/pull/769
https://github.com/kworkflow/kworkflow/pull/770
https://github.com/kworkflow/kworkflow/pull/771
https://github.com/kworkflow/kworkflow/pull/772
https://github.com/kworkflow/kworkflow/pull/773
https://github.com/kworkflow/kworkflow/pull/794
https://github.com/kworkflow/kworkflow/pull/795
https://github.com/kworkflow/kworkflow/pull/804
https://github.com/kworkflow/kworkflow/pull/806
https://github.com/kworkflow/kworkflow/pull/808
https://github.com/kworkflow/kworkflow/pull/812
https://github.com/kworkflow/kworkflow/pull/836
https://github.com/kworkflow/kworkflow/pull/843

72

APPENDIX B

• Add Bash and Zsh completions for upstream-patches-ui

• src: upstream-patches-ui: Add basic feature documentation

• Add ’Settings’ menu for upstream-patches-ui

• upstream-patches-ui: dialog’s severe bugs with certain arguments

• src: upstream_patches_ui: Fix ’New Patches’ screen title bug

• Adding ’Apply’ action and ’Kernel Config File’ setting menu to kw upstream-patches-
ui

• src: upstream_patches_ui: Replace undefined help function call

• src: upstream_patches_ui: Fix relative paths in ’Kernel Tree Path’

• Refactor upstream-patches-ui feature

• upstream-patches-ui: Controller refactoring

• src: patch_hub: Rename upstream-patches-ui feature to patch-hub

• patch-hub: Revise ’Patchsets Details and Actions’ screen

• patch-hub: Refactor lore mailing lists screen

• src: lib: remote: Fix ssh connection fail message with remote.config

• src/lib/dialog_ui: Reduce duplicated code and add pattern to file

• kw patch-hub: Add reliable fetch of latest patchsets from mailing list

• patch-hub: Fix bug and refactor ’Registered Mailing Lists’ screen

• src: ui: patch_hub: patch_hub_core: Fix ’Registered Mailing Lists’ message box

• patch-hub: Add query based on string functionality

• src: mail: Add ’additional_emails’ configuration

• Add tracing to kw and introduce kw profiler

• src: _kw: Add Zsh completion for kw build –full-cleanup option

• documentation: conf: Fix deprecated navigation_with_keys setting bug

• patch-hub: Update handler function of dashboard state

https://github.com/kworkflow/kworkflow/pull/844
https://github.com/kworkflow/kworkflow/pull/845
https://github.com/kworkflow/kworkflow/pull/853
https://github.com/kworkflow/kworkflow/pull/855
https://github.com/kworkflow/kworkflow/pull/861
https://github.com/kworkflow/kworkflow/pull/862
https://github.com/kworkflow/kworkflow/pull/862
https://github.com/kworkflow/kworkflow/pull/867
https://github.com/kworkflow/kworkflow/pull/868
https://github.com/kworkflow/kworkflow/pull/873
https://github.com/kworkflow/kworkflow/pull/874
https://github.com/kworkflow/kworkflow/pull/877
https://github.com/kworkflow/kworkflow/pull/878
https://github.com/kworkflow/kworkflow/pull/885
https://github.com/kworkflow/kworkflow/pull/887
https://github.com/kworkflow/kworkflow/pull/888
https://github.com/kworkflow/kworkflow/pull/889
https://github.com/kworkflow/kworkflow/pull/892
https://github.com/kworkflow/kworkflow/pull/895
https://github.com/kworkflow/kworkflow/pull/904
https://github.com/kworkflow/kworkflow/pull/909
https://github.com/kworkflow/kworkflow/pull/917
https://github.com/kworkflow/kworkflow/pull/918
https://github.com/kworkflow/kworkflow/pull/948
https://github.com/kworkflow/kworkflow/pull/960

73

References

[Abelson and Sussman 1996] Harold Abelson and Gerald Jay Sussman. Structure and

interpretation of computer programs. The MIT Press, 1996 (cit. on p. 47).

[Fowler 2012] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2012 (cit. on pp. 21, 22, 37).

[Hopcroft et al. 2006] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages, and Computation (3rd Edition). USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. isbn: 0321455363 (cit. on
pp. 23, 24).

[Kurose and Ross 2012] James F. Kurose and Keith W. Ross. Computer Networking: A

Top-Down Approach (6th Edition). 6th. Pearson, 2012. isbn: 0132856204 (cit. on
pp. 38–41).

[Neto 2022] Rubens G. Neto. Simplificando o processo de contribuição para o kernel

Linux. 2022. url: https://www.linux.ime.usp.br/~rubensn/mac0499/monografia/
monografia_entrega.pdf (cit. on pp. 8, 18).

[Pacheco 2011] Peter Pacheco. An Introduction to Parallel Programming. 1st. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. isbn: 9780123742605
(cit. on p. 55).

[Silberschatz et al. 2012] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Operating System Concepts. 9th. Wiley Publishing, 2012. isbn: 1118063333 (cit. on
p. 5).

[Sipser 1996] Michael Sipser. Introduction to the Theory of Computation. 1st. Interna-
tional Thomson Publishing, 1996. isbn: 053494728X (cit. on p. 23).

[Stewart et al. 2020] K Stewart, S Khan, D German, et al. “2020 linux kernel history
report”. Linux Foundation, Version v5, Aug 8 (2020) (cit. on p. 5).

[Ullman 2007] Jeffrey D Ullman. A first course in database systems. Pearson Education
India, 2007 (cit. on p. 16).

https://www.linux.ime.usp.br/~rubensn/mac0499/monografia/monografia_entrega.pdf
https://www.linux.ime.usp.br/~rubensn/mac0499/monografia/monografia_entrega.pdf

	Introduction
	Linux kernel development
	Linux Kernel contribution model
	KWorkflow system
	Bash overview

	Lore archives

	Database Management System of KWorkflow
	File-Based Databases
	How kw managed its databases

	Database Management Systems
	The choice of SQLite3 as the DBMS

	From a file-based database to a DBMS approach

	patch-hub User Interface
	Background
	The View and Controller roles of MVC
	Finite-State Machines

	The Dialog tool
	Using Dialog as a framework in KWorkflow
	patch-hub User Interface implementation
	patch-hub entry point
	The Finite-State Machine of patch-hub
	View and Controller components of patch-hub
	patch-hub execution example

	patch-hub Model
	Background
	The Model role of MVC
	Web applications

	Lore archives API
	Query parameters

	patch-hub Model implementation
	Listing available mailing lists
	Listing patchsets of a mailing list
	Handling individual patchsets
	Managing feature configurations

	Final Remarks
	Personal Appreciation
	Demonstration of the patch-hub feature
	List of contributions to the KWorkflow project
	References

