UNIVERSIDADE DE SA0 PAuLo
INSTITUTO DE MATEMATICA E ESTATISTICA
BACHARELADO EM CIENCIA DA COMPUTAGAO

LKML5Ws: Linux Mailing List Dataset

Eduardo Mendes Lopes

MONOGRAFIA FINAL

MAC 499 — TRABALHO DE
FORMATURA SUPERVISIONADO

Supervisor: Rafael Passos

Cossupervisor: Paulo Meirelles

S30 Paulo
2025

O conteudo deste trabalho é publicado sob a licengca CC BY 4.0

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Agradecimentos

No tultimo dia de aula como graduando, acabei pegando o circular até em casa, como de
costume, e, no 6nibus, fui relembrando os anos que passei até chegar a esse dia. Lembrei-me
de quando eu era apenas uma crianca saindo do Maranhdo e me mudando para o Parana;
lembrei dos meus anos dificeis no curso técnico em Eletronica na UTFPR; dos meus dias e

noites estudando para o vestibular; e, finalmente, de todos os meus dias na USP.

As coisas até aqui nunca foram faceis. Batalhei e lutei muito, mas acredito que as coisas
realmente valiosas na vida nunca sao. Por isso, agradeco enormemente aos meus pais e
a minha familia por sempre me apoiarem e incentivarem nas minhas decisdes; a minha
avo e ao meu avo, que faleceram e nao puderam ver o neto se formando, mas acredito
que estariam muito felizes; aos meus amigos, por sempre estarem comigo em todos os

momentos, virando noites no IME para estudar para provas e EPs.

Agradeco também aos meus professores, que sdo pessoas incriveis e que me ensinaram
muito ao longo desses anos, especialmente ao professor Paulo Meirelles, que desde a Rede
Linux me acompanha e incentiva. Agradeco ao meu orientador, Rafael Passos, por toda

a paciéncia e pelos ensinamentos, e ao David e ao Arthur por também fazerem parte
deste TCC.

Por fim, agradego a USP e ao seu programa de apoio estudantil, que me possibilitou

estar em Sao Paulo e custear meus estudos.

Resumo

Eduardo Mendes Lopes. LKML5Ws: Linux Mailing List Dataset. Monografia (Ba-
charelado). Instituto de Matematica e Estatistica, Universidade de Sdo Paulo, Sdo Paulo,
2025.

O kernel Linux é um dos projetos de Software Livre mais complexos e influentes da atualidade, sendo
desenvolvido de forma colaborativa ha mais de trés décadas por meio de um modelo baseado em revisdes
publicas realizadas em listas de discussdo por e-mail. Embora sistemas de controle de versio registrem as
alteragdes finais incorporadas a base de codigo, uma parcela significativa do esfor¢o envolvido no processo
de desenvolvimento, incluindo revisdes, testes, debates e rejeicdes de contribui¢des, permanece documentada
exclusivamente nessas listas de discussédo. Diante desse cenario, este trabalho tem como objetivo principal a
construgdo de um dataset abrangente que possibilite a investigagdo dos processos sociais e técnicos que

antecedem a aceitacdo de contribui¢des no kernel Linux.

Na primeira parte deste trabalho, apresenta-se uma contextualizacdo do desenvolvimento do kernel
Linux, bem como os principais softwares que ddo suporte a esse processo. Na segunda parte, descreve-se
a metodologia empregada para a coleta, extracdo e estruturacio dos dados, assim como os fundamentos
conceituais que orientam a obtengéo de e-mails a partir do Kernel Lore Archive. Como resultado, é apresentado
o0 LKML5Ws, um conjunto de dados com mais de 20 milhdes de e-mails provenientes de 345 listas de discussao,
totalizando mais de 200 GB de dados brutos, compactados em mais de 55 GB de arquivos no formato Parquet.
Por fim, é apresentada uma analise exploratoria com o LKML5Ws que demonstra seu potencial para revelar
diferencas na dindmica de revisio e teste entre distintos subsistemas do Kernel, evidenciando tendéncias
divergentes na participacdo da comunidade ao longo do tempo, bem como propostas de usos futuros

para o dataset.

Esse conjunto de dados oferece uma visdo ampla do desenvolvimento do kernel ao explicitar: no que
consiste cada contribuicdo (what), quando ela foi proposta (when), quem participou (who), para qual lista
foi submetida (where) e por que se tornou, ou nio, parte do cédigo (why). Além disso, busca contribuir
para ampliar a base empirica disponivel a comunidade de Engenharia de Software, oferecendo uma nova
perspectiva sobre os aspectos sociais e técnicos que moldam a evolugdo de um dos mais emblematicos

projetos de Software Livre.

Palavras-chave: Kernel Linux. Mailing Lists. Lore Archive. Software Livre.

Abstract

Eduardo Mendes Lopes. LKML5Ws: Linux Mailing List Dataset. Capstone Project
Report (Bachelor). Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo
Paulo, 2025.

The Linux kernel is one of the most complex and influential Free Software projects today, having been
developed collaboratively for more than three decades through a model based on public reviews conducted
on email mailing lists. Although version control systems record the final changes incorporated into the
codebase, a significant portion of the effort involved in the development process, including reviews, testing,
discussions, and the rejection of contributions, remains documented exclusively in these mailing lists. In this
context, the main objective of this work is to build a comprehensive dataset that enables the investigation of

the social and technical processes that precede the acceptance of contributions into the Linux kernel.

In the first part of this work, we provide background on the development of the Linux kernel, as well
as an overview of the main software tools that support this process. In the second part, we describe the
methodology used for data collection, extraction, and structuring, along with the conceptual foundations
that guide the retrieval of emails from the Kernel Lore Archive. As a result, we present LKML5Ws, a
dataset containing more than 20 million emails from 345 mailing lists, totaling over 200 GB of raw data,
compressed into more than 55 GB of files in Parquet format. Finally, we present an exploratory analysis
using LKML5Ws that demonstrates its potential to reveal differences in review and testing dynamics across
distinct kernel subsystems, highlighting divergent trends in community participation over time, as well

as proposing future uses for the dataset.

This dataset provides a broad view of kernel development by making explicit what each contribution
consists of (what), when it was proposed (when), who participated (who), which mailing list it was submitted
to (where), and why it did or did not become part of the codebase (why). In addition, it aims to expand the
empirical foundation available to the Software Engineering community by offering a new perspective on the

social and technical aspects that shape the evolution of one of the most emblematic Free Software projects.

Keywords: Kernel Linux. Mailing Lists. Lore Archive. Free/Libre Software.

Lista de abreviaturas

SO
FLOSS
LKML
CC/Cc
rc

LTS
MTA
DNS
MDA
POP3
IMAP
NNTP
Blob
HTTP
HTTPS
HTML
SHA-1
URL
UTEF-8
CSV

Sistema Operacional

Free/Libre and Open Source Software
Linux Kernel Mailing List

Carbon Copy

Release Candidate

Long Term Support

Mail Transfer Agent

Domain Name System

Mail Delivery Agent

Post Office Protocol version 3
Internet Message Access Protocol
Network News Transfer Protocol
Binary Large Object

Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Hypertext Markup Language

Secure Hash Algorithm 1

Uniform Resource Locator

Unicode Transformation Format - 8-bit

Comma-separated values

viii

Lista de figuras

4.1

5.1

8.1
8.2
8.3
8.4
8.5

3.6
8.7
8.8

9.1
9.2

10.1

Representacao das URLs padronizadas no public-inbox.
Exemplo de query aceitapeloLEL

Exemplo de instrucdo no Lore para realizar o mirror dos dados.
Exemplo do campo chaset preenchido. L.
Exemplo de e-mail que segue um padrao bem definido de body..
Exemplo de um header de e-mail.
Ilustragdo de uma hierarquia de e-mails exibida pela plataforma Lore. O e-
mail mais acima é uma mensagem de apresentacdo de mudancas, seguindo
temos na ordem de indentacgao os patchs em si com as trocas de mensagens
logoabaixo.
Esquema de dados do dataset.
Exemplo de e-mail que nao segue o padrdo proposto.
I[lustracao da organizacdo do Hive partition de acordo com as listas de

diSCUSSAO. e

Exemplo de configuracdo do arquivo config.yml.

Menu interativo do projeto. Lo Lo

Grafico ilustrativo da variacdo do niumero de testadores e revisores ao

longodotempo.

18

19

26
28
29
30

30
31
32

33

35
36

38

Lista de tabelas

4.1 Prefixos usados pelo Xapian para otimizar pesquisas.

Lista de programas

8.1 Exemplo de query feita em Python carregando o arquivo Parquet.

34

ix

Sumario

Introducao

O Processo de Desenvolvimento e Contribuicao para o Kernel Linux

Infraestrutura de Comunicacio e Arquitetura de E-mail no Linux

2.1 Agentes de Transporte e o Protocolo SMTP
2.2 Agentes de Entrega e Armazenamento
2.3 Protocolos de Acesso e Leitura IMAP versus NNTP)

Introducao sobre o kernel lore archive

Arquitetura do Public-Inbox

4.1 Armazenamento e versionamento baseadoem Git
4.2 Ingestdodemensagens
43 Modelodeacessodee-mail, .
44 Indexacdoepesquisa
4.5 Estabilidade e portabilidade de links

LEI (Local Email Interface)
O software B4
O que sao trailers

Metodologia de extracio e armazenamento de emails

8.1 Extracdodee-mails
8.2 Interpretacdo dos dados contidos nos e-mails
83 Parserdosdados

8.4 Organizacgao dos dados em formato colunar

Como executar o projeto

10
10
10

13

15
15
16
16
16
18

19

21

23

25
25
26
28
31

35

xii

10 Resultados

11 Trabalhos relacionados

12 Conclusao

Referéncias

37

41

43

45

Introducao

Os computadores constituem ferramentas essenciais para o funcionamento do mundo
moderno. Os sistemas computacionais variam desde computadores pessoais, utilizados pelo
publico em geral para atividades cotidianas, até sistemas embarcados presentes em uma
parcela significativa de automoveis, aeronaves e industrias, nos quais desempenham tarefas
criticas. Embora néo seja um requisito estrito, os computadores sdo, em geral, compostos
por duas partes interdependentes: hardware e software. O hardware corresponde aos
componentes eletronicos fisicos do sistema, enquanto o software compreende o conjunto
de programas e dados responsaveis por controlar e coordenar o funcionamento desse
hardware.

O software pode assumir diferentes formas para instruir o hardware. Programas escritos
diretamente em linguagem de maquina, que utilizam sequéncias de zeros e uns para
codificar instrucdes especificas de um determinado processador, representam o nivel mais
baixo de abstragao. Por outro lado, programas podem ser desenvolvidos sobre camadas
adicionais de software, criando abstracoes que reduzem a dependéncia das especificacdes
do hardware e tornam o desenvolvimento mais legivel, estruturado e produtivo. Nesse
contexto, programas que interagem diretamente com o hardware sao classificados como
de baixo nivel, enquanto aqueles que se apoiam em abstracdes fornecidas por outros
programas sdo considerados de alto nivel.

Do ponto de vista dos programas de alto nivel, que dependem de software de baixo nivel
para acessar recursos computacionais, o sistema operacional (SO) é um software que atua
como intermediario entre esses dois niveis. Além disso, 0 SO é o componente responsavel
por gerenciar os recursos do computador, como processador, memoria, dispositivos de
entrada e saida, que sdo tipicamente limitados e precisam ser coordenados para evitar
conflitos quando multiplos programas os utilizam simultaneamente. Dessa forma, os
sistemas operacionais sao fundamentais para garantir eficiéncia, seguranca e confiabilidade
no uso dos recursos computacionais.

O principal componente de um sistema operacional é o seu kernel, responsavel por
encapsular suas funcionalidades centrais e por abstrair os detalhes de hardware por meio
de componentes especificos, conhecidos como drivers. Um importante exemplo de kernel
de sistema operacional é o Kernel Linux. O kernel Linux foi lancado oficialmente por Linus
Torvalds em 5 de outubro de 1991, na versdo 0.0.2, inspirado nos sistemas operacionais
UNIX e MINIX. Como um kernel isolado e unicamente néo constitui um sistema operacional
completo, o Linux foi combinado com os utilitarios desenvolvidos pelo Projeto GNU,!

1 O Projeto GNU foi anunciado por Richard Stallman em 27 de setembro de 1983, para fornecer uma colegio

INTRODUCAO

resultando no sistema operacional GNU/Linux, classificado como Software Livre e de
Codigo Aberto (Free/Libre and Open Source Software — FLOSS).? Esse modelo garante aos
usuarios a liberdade de obter, executar, estudar, modificar e redistribuir o software.

A criagdo do GNU/Linux representou uma grande ruptura no desenvolvimento de
sistemas operacionais. Embora o projeto GNU ja disponibilizasse praticamente todos os
componentes necessarios para a construgao de um SO FLOSS, as tentativas anteriores de
desenvolver um kernel proprio ndo haviam obtido sucesso. Assim, com o surgimento do
Kernel Linux se preencheu essa lacuna e possibilitou a consolidacdo de um ecossistema
completo, amplamente adotado nas décadas seguintes.

Atualmente, existem inumeras variagdes do GNU/Linux, adaptadas para operar de
forma otimizada em diferentes contextos e plataformas. O ecossistema GNU/Linux de-
sempenha um papel central na infraestrutura computacional global, sendo amplamente
utilizado em servidores, dispositivos de rede que compdem o nucleo da Internet, siste-
mas embarcados e ambientes educacionais. O acesso irrestrito ao coédigo-fonte torna o
GNU/Linux uma referéncia pratica e amplamente utilizada no ensino e na pesquisa em
sistemas operacionais.

No que se refere especificamente ao kernel Linux, o projeto vem sendo desenvolvido
de forma colaborativa ha mais de 30 anos. Com o passar do tempo, o projeto torna-
se progressivamente maior e mais complexo. Além disso, o volume de contribuicdes
ao projeto também cresce rapidamente, de modo que uma Unica pessoa ou grupo nio
consegue compreender e manter toda a base de codigo. Como solugdo, o modelo de
contribui¢do do kernel Linux emprega um modelo de cadeia de comando de forma a
dividir a responsabilidade de manuten¢do do projeto em porc¢des menores, chamadas
de subsistemas. Cada subsistema possui um ou mais mantenedores responsaveis por
decidir quais mudancas (patches) sdo aceitas no subsistema correspondente. Assim, essas
mudangas vao subindo na hierarquia de processos até que Linus Torvalds as incorpore
em um lancamento oficial do Linux.

Esse modelo de desenvolvimento distribuido é fortemente sustentado pelo sistema de
controle de versao Git. O Git foi criado por Linus Torvalds em 2005 como resposta direta as
limitacdes das ferramentas existentes a época para lidar com o volume, a descentralizacdo
e a velocidade do desenvolvimento do kernel Linux. Desde entio, o Git tornou-se um
componente essencial do fluxo de trabalho do projeto, permitindo o versionamento eficiente
do codigo, a manutencao de multiplas arvores de desenvolvimento e a integracdo segura
de contribuicdes oriundas de milhares de desenvolvedores distribuidos globalmente.

Apesar da existéncia do Git para o versionamento do codigo-fonte e plataformas
centralizadoras como GitHub e GitLab, o e-mail é o principal meio utilizado para propagar
mudangas entre contribuidores, mantenedores e demais participantes do processo de
revisdo. As listas de discussido desempenham um papel fundamental nesse ecossistema,
atuando como o registro publico e permanente das interacdes técnicas e sociais do de-
senvolvimento do kernel Linux.

completa de softwares livres para a sociedade, incluindo um sistema operacional completo.

% Neste trabalho, a sigla “FLOSS” é usada para representar “Free Software”, “Open Source Software”(0OSS), e
“Free/Open Source Software”(FOSS)

INTRODUCAO

Uma forma de acesso a esse historico de comunicagio é viabilizado por meio dos
arquivos do Lore, que agregam e mantém atualizados os registros de todas as listas de
discussdo relacionadas ao desenvolvimento do kernel Linux. Esses arquivos abrangem
desde listas de alto trafego e longa duracéo, como a Linux Kernel Mailing List (LKML), até
listas de menor atividade ou ja desativadas, como a linux-hotplug@vger.kernel.org.
No total, esses arquivos publicos compreendem dezenas de milhdes de mensagens.

Nesse sentido, apesar de haver commits que descrevem e explicam explicitamente as
mudancas de cada patch nos historicos do Git, uma parcela significativa dos comentarios
que viabilizaram a aceitacdo de contribuigdes, criticas que resultaram na rejeicao de patches
e discussdes conceituais que influenciaram decisdes arquiteturais raramente sao capturados
no histoérico de commits do Git. Dessa forma, as listas de discussio constituem uma fonte
inestimavel para compreender nao apenas o que foi modificado no kernel, mas por que
e como essas decisdes foram tomadas.

Neste contexto, este trabalho apresenta o dataset LKML5Ws, uma cole¢do abrangente
de contribuicdes extraidas de e-mails enviados as listas de discussdo do kernel Linux. Para
cada contribuicdo, o conjunto de dados disponibiliza: (i) a modificacdo de codigo associada
(what); (ii) a data de submissao (when); (iii) os papéis dos colaboradores auxiliares identi-
ficados nos trailers (who); (iv) a lista de discussdo de destino (where); e (v) a justificativa
apresentada pelo autor no corpo do e-mail (why).

Por fim, este Trabalho de Conclusdo de Curso pode ser estruturado logicamente em
trés secdes principais. A primeira secio, composta por sete capitulos, apresenta a con-
textualizacdo do processo de contribuicdo para o kernel Linux, abordando seus conceitos
fundamentais, fluxos de trabalho e softwares utilizados pela comunidade, bem como a
relevancia desses softwares para a extracdo dos dados. A segunda secido descreve deta-
lhadamente a metodologia de coleta, interpretacao, estruturacao e armazenamento dos
dados, tudo em um formato de arquivo colunar. Por ultimo, a terceira secdo, contendo
trés capitulos, apresenta os resultados obtidos, discute possiveis analises viabilizadas pelo
conjunto de dados, relaciona o trabalho com pesquisas existentes na literatura e aponta
limitacdes e direcdes para trabalhos futuros.

Capitulo 1

O Processo de Desenvolvimento e
Contribuicao para o Kernel Linux

O modelo de desenvolvimento do kernel Linux difere bastante dos fluxos de trabalho
existentes em projetos modernos que utilizam plataformas centralizadas de colaboragao,
como GitHub ou GitLab. Em esséncia, o kernel Linux caracteriza-se como um projeto
distribuido e descentralizado, estruturado a partir de uma hierarquia bem definida de
mantenedores e de um processo de revisdo de cddigo mediado pela troca de mensagens
por e-mail.

O fluxo de contribuicdo tem inicio no ambiente de desenvolvimento do proéprio progra-
mador. Para que um patch seja considerado para inclusao, é necessario seguir um conjunto
de diretrizes de padronizacdo que abrangem tanto boas praticas de codificacdo(LiNUux
DOCUMENTATION, 2025d) quanto o principio da atomicidade. Esse principio estabelece que
cada commit deve representar uma unica modificacao légica e atdmica. Por exemplo, a
correc¢do de um defeito em um driver de Wi-Fi e a alteracdo de uma variavel no subsistema
Bluetooth devem ser submetidas como dois patches independentes. Além do mais, ao
final da mensagem de commit, o desenvolvedor deve obrigatoriamente incluir a linha
Signed-off-by, contendo seu nome e endereco de e-mail, certificando a autoria e o
direito de licenciamento do c6digo, conforme definido pelo Developer Certificate of Origin
(DCO)(LiNux DOCUMENTATION, 2020).

Em contraste com o modelo tradicional de pull requests, a submissao de patches no kernel
Linux ocorre via e-mail. Para isso, o desenvolvedor utiliza scripts auxiliares disponibilizados
na propria arvore de codigo-fonte, como o get_maintainer.pl, para identificar a lista
de discussao apropriada e os mantenedores responsaveis pelo subsistema que esta sendo
modificado. Por exemplo, ao propor uma modificacdo em um driver USB, o script pode
indicar o envio do patch para a lista linux-usb@vger.kernel.org, com copia (CC) para
o mantenedor Greg Kroah-Hartman. O envio deve ser realizado estritamente em formato
texto plano, contendo a mensagem de commit e o diff correspondente das alteracoes
propostas. Quando multiplos patches sdo enviados simultaneamente, formando um patchset,

! codigo: https://archive.softwareheritage.org/browse/content/shal_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/
?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl

https://archive.softwareheritage.org/browse/content/sha1_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl
https://archive.softwareheritage.org/browse/content/sha1_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl

1 | O PROCESSO DE DESENVOLVIMENTO E CONTRIBUICAO PARA O KERNEL LINUX

torna-se necessaria a inclusao de uma mensagem introdutéria denominada cover letter,
cuja finalidade é contextualizar o objetivo geral das mudangas.

Apds a recepcdo do e-mail pela lista de discussdo, inicia-se o processo de revisao
propriamente dito. Inicialmente, ocorre a revisdo por pares, na qual desenvolvedores da
comunidade examinam o codigo, sugerem melhorias e apontam eventuais falhas. Por
fim, os mantenedores do subsistema realizam a avaliacdo final. Durante esse processo,
sdo adicionadas ao commit diversas tags que sinalizam o estado da revisdo, tais como
Reviewed-by, Acked-by e Tested-by, as quais serdo detalhadas em secio posterior. E
importante destacar que raramente um patch é aceito em sua primeira versao (v1); na
maioria dos casos, o autor precisa submeter multiplas iteracdes (v2, v3, etc.), incorporando
as sugestoes e correcdes apontadas pela comunidade.

Uma vez aprovado, o patch inicia sua progressao na hierarquia de desenvolvimento. O
mantenedor do subsistema aplica a alteragdo na branch do subsistema e, periodicamente,
o conjunto de mudancas acumuladas nessas branches é integrado em uma branch inter-
mediaria denominada linux-next(LINUX DOCUMENTATION, 2025a). O propésito dessa
etapa é identificar e resolver conflitos de integracdo entre diferentes subsistemas antes
que as altera¢des alcancem a branch principal.

O ciclo de desenvolvimento de uma nova versdo do kernel é iniciado imediatamente
apos o lancamento de uma versdo estavel anterior, com a abertura da chamada merge
window. Durante este periodo, que dura aproximadamente duas semanas, acontece o fluxo
de aceitacdo de codigo por Linus Torvalds, ele recebe e processa milhares de solicitagdes
de pull requests dos mantenedores de subsistemas. O critério para essa fase é que o codigo
submetido deve ser considerado "estavel'e ja ter passado por testes prévios em arvores de
integracdo (como a linux-next). Segundo a documentacéo oficial(LINUX DOCUMENTATION,
2025b), mudancas que néo estiverem maduras ou que nao foram integradas a tempo para
a janela de merge devem aguardar o proximo ciclo de desenvolvimento.

Ao final dessas duas semanas, Linus Torvalds declara o fechamento da merge window e
publica a primeira versdo candidata, denominada -rc1 (Release Candidate 1). A partir deste
momento, o foco do desenvolvimento muda: se deixa de aceitar novas funcionalidades
para priorizar a estabilidade do sistema. O objetivo principal dessa fase passa a ser a
identificacdo e correcdo de regressdes.?

O processo segue com lancamentos de novas versdes candidatas (-rc2, -rc3, etc.). O
ciclo de estabilizacdo dura, em média, entre sete e dez semanas. A decisdo de publicar a
versdo final e estavel cabe a Linus Torvalds, quando o volume de correcdes criticas diminui
a um nivel que indique maturidade do cédigo.

Uma vez publicada a versdo estavel na arvore Mainline, a responsabilidade por sua
manutencdo é mudada. Enquanto Linus inicia o proximo ciclo de desenvolvimento, uma
equipe dedicada a manutencéo de versdes estaveis (Stable Team) assume o suporte da versdo
recém-lancada. O processo de manutencio estavel consiste em correcoes de seguranca e
de erros criticos que foram descobertos na arvore principal. Essas versdes sio numeradas
com um terceiro digito (ex: 6.1.1, 6.1.2) e sdo as bases utilizadas por distribui¢ées como

2 defeitos introduzidos por mudangas recentes que fazem com que o sistema pare de funcionar como funcio-
nava anteriormente.

1 | O PROCESSO DE DESENVOLVIMENTO E CONTRIBUICAO PARA O KERNEL LINUX

Fedora, Ubuntu e Debian para fornecer um sistema robusto e seguro aos seus usuarios
finais. Algumas dessas versoes sdo selecionadas para suporte de longo prazo (LTS - Long
Term Support), garantindo atualizacdes de seguranca por varios anos.

Capitulo 2

Infraestrutura de Comunicacao e
Arquitetura de E-mail no Linux

Para compreender o ecossistema de desenvolvimento do kernel Linux, é fundamental
analisar ndo apenas o processo de escrita e submissdo de c6digo, mas também o funcio-
namento das listas de discussdo (mailing lists) e da infraestrutura de e-mails em sistemas
Unix/Linux. Nesse contexto, uma mailing list atua, essencialmente, como um mecanismo
de redistribuicdo de mensagens, funcionando como um “refletor” ou multiplexador de
comunicacoes entre seus participantes.

No contexto do servidor vger.kernel.org, responsavel por hospedar as principais
listas associadas ao projeto do Kernel Linux, o gerenciamento dessas listas é realizado,
predominantemente o sistema mlmmj.! Substituindo o antigo software Majordomo.? Para
realizar uma inscri¢ao hoje, o usuario deve enviar um e-mail, preferencialmente vazio, para
o endereco da lista desejada seguido da extensdo +subscribe(LINUX DOCUMENTATION,
2025f), como no exemplo linux-kernel+subscribe@vger.kernel.org.

Ao receber essa solicitagio, o servidor ignora o contetido do e-mail e inicia um processo
de confirmacéo automatica, enviando uma mensagem de retorno para validar a identidade
do remetente e evitar cadastros maliciosos ou acidentais. A inscri¢do so é efetivada apos o
usuario responder a esse e-mail de confirmacao, momento em que seu endereco é registrado
na base de dados e ele passa a receber as mensagens enviadas a lista. Esse modelo de
interacdo baseada em enderecos também simplifica o cancelamento da participacio, que
segue a mesma logica ao utilizar o sufixo +unsubscribe, garantindo um gerenciamento
mais seguro e eficiente para os colaboradores do projeto.

O trafego dessas mensagens depende da interacdo coordenada entre diferentes agentes
e protocolos, cada qual desempenhando fungdes especificas na arquitetura de e-mails
em sistemas Unix/Linux.

! https://codeberg.org/mlmmj/mlmmj

2 https://subspace.kernel.org/vger.kernel.org.html\#what-happened-to-majordomo

https://codeberg.org/mlmmj/mlmmj
https://subspace.kernel.org/vger.kernel.org.html\#what-happened-to-majordomo

10

2 | INFRAESTRUTURA DE COMUNICAGAO E ARQUITETURA DE E-MAIL NO LINUX

2.1 Agentes de Transporte e o Protocolo SMTP

O envio e o roteamento de mensagens através da Internet sao executados pelo protocolo
SMTP (Simple Mail Transfer Protocol)? O software responsavel por implementar esse
protocolo e encaminhar as mensagens até seus destinos é denominado MTA (Mail Transfer
Agent) (DENT, 2003). No ambiente Linux, exemplos conhecidos de MTAs incluem Postfix,
Exim e Sendmail. O MTA atua como um servidor de e-mail: ele recebe a mensagem do
usuario ou de outro servidor, resolve o endereco de destino por meio do DNS e realiza o
transporte da mensagem através da rede até o servidor destinatario.

2.2 Agentes de Entrega e Armazenamento

Uma vez que a mensagem alcanca o servidor de destino, o MTA delega a etapa final
do processo ao MDA (Mail Delivery Agent),' como os softwares Dovecot ou Procmail. A
funcdo do MDA consiste em armazenar a mensagem em um diretdrio local do usuario. No
ecossistema Linux, o formato de armazenamento mais difundido é o Maildir. Diferente de
formatos mais antigos, como o mbox, que concatenam as mensagens que chegam em um
unico arquivo, o Maildir armazena cada e-mail em um arquivo de texto individual. Essa
abordagem garante atomicidade nas operacdes de escrita e reduz o risco de corrupg¢éo de
dados em cenarios concorrentes. A estrutura basica do Maildir(UNIXx DOCUMENTATION,
2025) é organizada nos seguintes diretdrios:

« /Maildir/tmp/: armazena mensagens em processo de escrita ou entrega pelo
MDA;

« /Maildir/new/: contém mensagens entregues com sucesso, mas ainda nao aces-
sadas pelo usuario;

« /Maildir/cur/: reine mensagens que ja foram visualizadas ou processadas por
um cliente de e-mail.

2.3 Protocolos de Acesso e Leitura (IMAP versus
NNTP)

Para que o usuario final possa acessar as mensagens armazenadas, sdo disponibilizados
protocolos de leitura, dentre os quais mais conhecidos sdo o POP3° e o IMAP’ Este
ultimo é o mais utilizado em in-boxes pessoais, pois permite a sincronizacio do estado
das mensagens entre servidor e cliente.

Ja o protocolo NNTP (Network News Transfer Protocol)’ é particularmente eficiente na

% https://datatracker.ietf.org/doc/html/rfc5321
4 https://dl.acm.org/doi/pdf/10.17487/RFC5068
5 https://www.ietf.org/rfc/rfc1939.txt

® https://datatracker.ietf.org/doc/html/rfc3501
7 https://datatracker.ietf.org/doc/html/rfc3977

https://datatracker.ietf.org/doc/html/rfc5321
https://dl.acm.org/doi/pdf/10.17487/RFC5068
https://www.ietf.org/rfc/rfc1939.txt
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3977

2.3 | PROTOCOLOS DE ACESSO E LEITURA (IMAP VERSUS NNTP)

distribuicdo de grandes volumes de mensagens organizadas em estruturas hierarquicas de
discussdo (threads). Ele opera como um fluxo de noticias, possibilitando que os clientes
obtenham rapidamente apenas os cabecalhos de milhares de mensagens. Dessa forma, a
estrutura completa das discussdes pode ser reconstruida localmente, enquanto o conteudo
integral das mensagens é transferido apenas sob demanda.

11

Capitulo 3

Introducao sobre o kernel lore
archive

O lore.kernel.org é a principal plataforma de arquivamento e interface web das
listas de discussdo oficiais do Kernel Linux e de seus subprojetos relacionados. Ele atua como
o ponto centralizado de acesso aos arquivos de e-mails relacionados ao desenvolvimento
do Kernel, desempenhando papel fundamental na organizacdo das comunicagdes técnicas
do projeto.

Sua principal funcao é assegurar que toda a comunicacao do ecossistema, incluindo
discussoes técnicas, submissoes de patches e processos de revisao de codigo, seja armaze-
nada de forma permanente, clonavel e facilmente pesquisavel. Dessa maneira, o Kernel
Lore Archive contribui diretamente para a transparéncia e rastreabilidade do processo
de desenvolvimento do Kernel Linux.

Do ponto de vista técnico, o lore.kernel.org baseia-se no software public-inbox,
cuja arquitetura e funcionamento serdo abordados de forma mais aprofundada na se¢do
subsequente. Essa infraestrutura é mantida e operada pela propria comunidade do Kernel
Linux, de acordo com os principios de desenvolvimento aberto que direcionam o projeto.

O objetivo central do lore.kernel.org é oferecer a comunidade multiplas formas de
acesso ao histérico das discussdes técnicas. Esse acesso pode ocorrer por meio de uma
interface web, pela clonagem direta dos repositérios que armazenam os e-mails ou ainda
através do protocolo NNTP.

Sendo assim, o lore.kernel.org desempenha um papel crucial no ecossistema do
Kernel Linux, ao manter um registro historico completo das decisdes técnicas, debates e
da evolugao do codigo-fonte ao longo do tempo. Trata-se da principal ferramenta utilizada
pelos desenvolvedores para localizar patches recentes, revisar o historico de modificacoes
de componentes especificos e sincronizar espelhos (mirrors') dos arquivos de listas de
discussao.

! um mirror (espelho) é uma copia exata ou fiel de um site, servidor ou conjunto de dados, hospedada em um
servidor diferente do original. Essa técnica é usada para replicar dados em tempo real ou periodicamente,
garantindo que a informagéo esteja disponivel em multiplos locais geograficos ou maquinas.

13

Capitulo 4

Arquitetura do Public-Inbox

O public-inbox! é o software por baixo do lore.kernel.org. Ele é um software de
codigo aberto com o propdsito é fornecer uma solucdo descentralizada para arquivamento
de listas de discussao (mailing lists) para a comunidade de software livre e comunidades

técnicas, ele utiliza o git como mecanismo principal para realizar esse armazenamento.

Ele foi projetado para complementar ou substituir os sistemas tradicionais de listas de
discussdo, garantindo uma comunicagiao permanentemente arquivada, facilmente acessivel
e de facil replicagao.

O public-inbox é uma caixa de ferramentas que se utiliza de varias tecnologias para
servir determinados propositos.

4.1 Armazenamento e versionamento baseado em
Git

O uso do git no public-inbox(PuBLic-INBOXx DOCUMENTATION, 2025¢) é uma forma de
deixar o armazenamento e o versionamento facil e imutavel, pois ele transforma a lista
de e-mail em repositorio git aproveitando todas as ferramentas git padrio para guardar
esse historico. Cada e-mail é convertido em um objeto Blob (Binary Large Object)? que é a
estrutura usada pelo git para armazenamento de dados de arquivos. Para que esse blob seja
parte do historico, ele precisa ser referenciado por um objeto Tree e, subsequentemente, por
um objeto commit. Assim, o objeto blob armazena o contetido do e-mail, que se transforma
em um objeto commit, assim esse blob é referenciado dentro do Tree do commit com um
nome especifico, que é determinado pelo message-id do e-mail

O public-inbox, com versao v2(PUBLIC-INBOX DOCUMENTATION, 2025d), também tem
a funcionalidade de dividir os arquivos em multiplos repositorios chamados de “épocas”
(epochs). Em resumo, as épocas sdo multiplos repositorios Git, divididos por tamanho, que
juntos formam o arquivo completo da caixa de entrada. Como os repositorios das listas
de discussao do kernel Linux podem crescer para centenas de gigabytes. O git tem um

U https://public-inbox.org/public-inbox-overview.html

2 ¢ um objeto usado para armazenar o contetido binario de um arquivo

15

https://public-inbox.org/public-inbox-overview.html

16

4 | ARQUITETURA DO PUBLIC-INBOX

dificuldade de lidar com esses repositorios muito extensos. Assim, o public-inbox faz a
divisdo do repositorio em uma série de épocas, como git/0.git, git/l.git, git/2.git,
e assim por diante, cuja segmentacido é divida em aproximadamente um gigabytes. Essa
funcionalidade permite limitar o crescimento do historico em qualquer repositério unico,
tornando a clonagem e a manutencdo mais eficientes.

Ao ser um “repositorio Git",* todo o arquivo pode ser facilmente clonado, espelhado
e transferido para novos servidores sem perda ou divisdo do histdrico, garantindo a
descentralizacéo.

4.2 Ingestio de mensagens

O software também oferece formas de capturar e injetar esses e-mails no arquivo Git.
Diferente de um gerenciador de listas tradicional, que foca na distribuigao para assinantes
da lista, o public-inbox foca na preservacdo e acessibilidade das mensagens. Isso pode
ser feito de forma passiva, através do public-inbox-watch,' que monitora diretdrios
Maildir ou servidores externos para espelhar mensagens, ou de forma ativa, atuando como
um MDA (PuBLIc-INBOX DOCUMENTATION, 2025b). Neste dltimo caso, ele é integrado a
um MTA (como o Postfix) para receber mensagens e alimenta-las instantaneamente no
repositorio Git, garantindo que esteja sempre sincronizado com o trafego da lista.

4.3 Modelo de acesso de e-mail

O public-inbox oferece trés formas de acesso aos e-mails armazenados nele, a primeira
forma é por clonagem do repositério git, como ja mencionado antes, a segunda é através
de uma interface web subindo um servidor HTTP, permitindo consultas, visualizagio e
navegacao toda baseada em HTML (o que foi muito importante, pois para conseguir os
e-mails em formato texto simples, esse trabalho utilizou essa funcionalidade, como ira
ser especificado mais a frente) e a terceira forma ¢ NNTP permite que os usuarios leiam
o arquivo através do Network News Transfer Protocol, o que significa que o arquivo pode
ser acessado como um grupo de noticias.

4.4 Indexacio e pesquisa

Para tornar os arquivos de listas de discussdo facilmente acessiveis e pesquisaveis, o
public-inbox utiliza um mecanismo de full-text search,’ capaz de transformar um repo-
sitorio Git essencialmente estatico, eficiente para fins de armazenamento e distribuicao,
porém inadequado para consultas em larga escala, em um sistema de pesquisa rapido
e otimizado. Essa funcionalidade é particularmente relevante para a visualiza¢do das

* diferentemente de repositorio comum, quando se clona um repositério de e-mails, os dados dos e-mails
estdo contidos apenas nos arquivos .git.

* https://public-inbox.org/public-inbox-watch.html

> é um mecanismo que permite pesquisar palavras, termos e frases em grandes volumes de texto de forma
rapida e inteligente.

https://public-inbox.org/public-inbox-watch.html

4.4 | INDEXACAO E PESQUISA

mensagens por meio da interface HTTP, na qual a capacidade de busca eficiente é um
requisito fundamental.

Embora o Git oferece, nativamente, mecanismos de pesquisa, como o comando git
grep, tal abordagem ¢é inviavel quando aplicada em um repositdrio contendo milhoes de
arquivos, como ocorre nos arquivos das listas de discussao do Kernel Linux. Para contornar
essa limitagdo, o public-inbox integra-se ao Xapian,® uma biblioteca de recuperacio de
informacéo baseada em modelos probabilisticos, projetada para lidar de forma eficiente
com grandes volumes de dados textuais.

Durante o processo de indexacao(PuBLic-INBOX DOCUMENTATION, 2025a), o public-
inbox percorre os objetos do tipo blob armazenados no repositorio Git e realiza o proces-
samento necessario para popular o banco de dados do Xapian. Importante ressaltar que
o Xapian ndo armazena o conteudo integral das mensagens, uma vez que esse texto ja
se encontra preservado no repositério Git. Em vez disso, o sistema constréi um indice
invertido, estrutura de dados que associa termos relevantes aos documentos nos quais
eles ocorrem.

Nesse processo, o public-inbox decompde cada e-mail em seus componentes funda-
mentais, incluindo cabecalhos, como From, To e Subject, e o corpo da mensagem. Essas
informacdes sdo entdo encaminhadas ao Xapian, que realiza a tokenizacio dos termos e
aplica técnicas de normalizacdo linguistica, como a reducdo de palavras ao seu radical
(stemming)(XAPIAN DOCUMENTATION, 2025). Como resultado, variacdes morfologicas de
um mesmo termo, como “patching”, “patched” e “patches”, sdo indexadas sob um unico radi-
cal, por exemplo “patch”, permitindo que uma inica consulta recupere todas as ocorréncias
semanticamente relacionadas.

Além disso, o Xapian possibilita a atribuicdo de prefixos contextuais aos termos indexa-
dos,” permitindo diferenciar a ocorréncia de uma mesma palavra conforme sua posicio na
mensagem. Dessa forma, o public-inbox pode mapear termos encontrados no assunto, nos
cabecalhos ou no corpo do e-mail para prefixos distintos, assegurando que, por exemplo, a
palavra “Linux” presente no campo Subject seja tratada de maneira diferente daquela lo-
calizada no corpo da mensagem. A tabela 4.1 explicita os prefixos utilizados e os respectivos
componentes do e-mail aos quais estdo associados.

: Prefixo Xapian Exemplo de Termo
Campo do E-mail (Convenggo) Ifldexado
From (Autor) A (Author) Alinus (para "Linus")
Subject (Assunto) S (Subject) Skernel
Thread ID G (Group/Thread) G<msg-id>
Message-1D Q (Unique ID) Q<2023...@example.com>
Date (Armazenado como Value) Unix Timestamp
Body (Corpo) (Sem prefixo) kernel, bug, fix

Tabela 4.1: Prefixos usados pelo Xapian para otimizar pesquisas.

® https://xapian.org
7 https://public-inbox.org/public-inbox-searchquery.html

17

https://xapian.org
https://public-inbox.org/public-inbox-searchquery.html

18

4 | ARQUITETURA DO PUBLIC-INBOX

Para cada mensagem indexada, o Xapian cria uma entrada denominada documento,?
que armazena, entre outras informagdes, o identificador do blob correspondente no repo-
sitorio Git, usualmente representado por seu hash SHA-1. Assim, quando uma consulta
é realizada, o Xapian retorna os identificadores dos documentos que correspondem aos
termos pesquisados. Em seguida, o public-inbox utiliza o blob ID associado para recuperar
o conteudo original diretamente do repositério Git e apresenta-lo ao usuario.

4.5 Estabilidade e portabilidade de links

Uma caracteristica adicional do public-inbox é a garantia de persisténcia e estabilidade
dos links para mensagens arquivadas. Os permalinks® sdo estruturados com base no
cabecalho Message-1ID (definido pela RFC 5322'), que funciona como um identificador
globalmente tinico para cada e-mail (Figura 4.1). Ao adotar o Message-ID na composicio
das URLs, o sistema assegura que as referéncias permanecam validas mesmo diante de
migragdes de infraestrutura ou mudangas de dominio. Como consequéncia, preserva-se
a integridade das referéncias historicas, evitando a quebra de citacdes e facilitando a
auditabilidade do processo de desenvolvimento ao longo do tempo, independentemente
da evolugdo tecnoldgica dos servidores de hospedagem.

O 8 lore.kernel.org/bpf/20251203082402.78816-1-jolsa@kernel.org/T/#t

t functions and free the new one x/
nter(direct_functions, old _direct functions);
ctions = new _direct functions;

utex);

ns && old_direct_functions != EMPTY_HASH)
(&o1ld_direct_functions—>rcu, register_ftrace_direct_cb);

sh(old_filter_hash);

Figura 4.1: Representacdo das URLs padronizadas no public-inbox.

8 https://xapian.org/docs/glossary.html

% URLSs fixos e descritivos que direcionam para um contetdo especifico em um site (como um post, pagina ou
artigo), projetados para ndo mudar.

10 https://www.tech-invite.com/y50/tinv-ietf-rfc-5322.html

https://xapian.org/docs/glossary.html
https://www.tech-invite.com/y50/tinv-ietf-rfc-5322.html

Capitulo 5

LEI (Local Email Interface)

O LEI (Local Email Interface)' é uma ferramenta desenvolvida no ecossistema do public-
inbox e do lore.kernel.org com o objetivo de mitigar o problema da sobrecarga de
e-mails enfrentados por desenvolvedores de software livre. Em projetos de grande escala,
como o Kernel Linux, o volume diario de mensagens pode tornar inviavel a assinatura
integral de listas de discussao. Nesse contexto, o LEI atua como uma interface que permite
aos desenvolvedores criar assinaturas virtuais baseadas em regras de busca, recebendo
apenas o subconjunto de mensagens relevantes para o seu trabalho, sem a necessidade
de se inscrever em listas completas.

Do ponto de vista de software, o LEI é um utilitario de linha de comando que converte
consultas avancadas realizadas sobre os arquivos do public-inbox em feeds de e-mail
personalizados, os quais sdo entregues diretamente na caixa de entrada do usuario, seja em
formato Maildir local ou por meio de servidores IMAP remotos(RyABITSEV, 2021). Dessa
forma, o fluxo de trabalho baseado em e-mail é preservado, ao mesmo tempo em que se
reduz drasticamente o ruido de informacéo.

Entre suas funcionalidades, o LEI é capaz de realizar o download direto de mensa-
gens armazenadas no lore.kernel.org ou em quaisquer outros servidores configurados
na consulta. Para isso, ele utiliza a sintaxe de busca fornecida pelo Xapian (Figura 5.1),
permitindo a formulacdo de consultas complexas que combinam multiplos critérios, tais
como caminhos de arquivos, nomes de fung¢des, campos especificos do cabecalho e termos
presentes no corpo das mensagens.

(dfn:drivers/block/floppy.c OR dfhh:floppy_x OR s:floppy
OR ((ng:bug OR nqg:regression) AND nq:floppy))
AND rt:l.month.ago..

Figura 5.1: Exemplo de query aceita pelo LEL

Neste exemplo? de utilizagio acima, o LEI pode formular uma consulta que selecione

Uhttps://public-inbox.org/lei.html

2 referéncia: https://people.kernel.org/monsieuricon/lore-lei-part-1-getting-started

19

https://public-inbox.org/lei.html
https://people.kernel.org/monsieuricon/lore-lei-part-1-getting-started

20

5 | LEI (LOCAL EMAIL INTERFACE)

mensagens que:

referenciem arquivos especificos, por meio do prefixo "dfn";

« mencionem determinadas fungdes, utilizando o prefixo "dfthh";

nn,

« contenham o termo “floppy” no campo Subject, indicado pelo prefixo "s";

« mencionem termos como “‘bug” ou “regression” em conjunto com “floppy” no corpo
da mensagem;

« estejam restritas a um intervalo temporal especifico, como o ultimo més, por meio
do operador rt;

Ao executar o comando "lei q <consulta>", o LEI realiza a busca da mensagem
correspondente com base na consulta definida e entrega as mensagens correspondentes
em uma pasta local (Maildir) ou em uma caixa postal remota via IMAP.

De forma resumida, o LEI simplifica significativamente o acesso seletivo as listas
de discussdo relevantes, ao permitir que desenvolvedores tenham apenas os e-mails de
interesse por meio da sintaxe de consultas do Xapian. Além disso, a ferramenta mantém
o controle das mensagens ja processadas, evitando o download de e-mails previamente
entregues em execuc¢oes anteriores.

Capitulo 6

O software B4

O B4' é um utilitario de linha de comando muito utilizado pelos desenvolvedores
do Kernel Linux para automatizar e simplificar o fluxo de trabalho de desenvolvimento.
Conforme discutido anteriormente, o processo de desenvolvimento do Kernel Linux de-
pende da submissdo de codigo na forma de patches enviados por e-mail. Esse modelo
envolve multiplas versdes de um mesmo patch, ciclos sucessivos de revisio, a incluséo de
assinaturas e trailers de validacdo, bem como o acompanhamento de threads de discussdo
associadas a cada modificacdo proposta.

Nesse contexto, o B4 foi concebido com o objetivo de abstrair a complexidade desse fluxo
de trabalho. A ferramenta substitui cadeias extensas de comandos manuais, frequentemente
suscetiveis a erros, por operacdes mais simples, consistentes e padronizadas, reduzindo
o esfor¢o cognitivo do desenvolvedor e aumentando a confiabilidade do processo de
manipulagdo de patches.

Para desenvolvedores responsaveis por receber, revisar e aplicar patches em suas
branches Git, o B4 se mostra particularmente vantajoso. A ferramenta permite a recuperagio
automatica de threads completas a partir dos arquivos de listas de discussao, a comparacdo
entre diferentes versdes de um mesmo patch (v1, v2, v3, etc.) e a extracdo estruturada das
informacdes relevantes contidas nos e-mails. Entre essas informagoes destacam-se tanto
os metadados quanto elementos fundamentais do corpo das mensagens, como os trailers
de revisdo e o contetido propriamente dito dos diffs associados aos patches.

Essa capacidade de coletar e organizar dados de forma consistente foi essencial para o
desenvolvimento deste trabalho, uma vez que exemplifica formas consistentes de extrair
os metadados das listas de discussao.

! https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/mricon/b4

21

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/mricon/b4

Capitulo 7

O que sao trailers

De modo geral, trailers sdo linhas padronizadas de metadados adicionadas ao final da
mensagem de commit do Git ou ao corpo de um patch submetido por e-mail. Sua finalidade
é registrar, de forma explicita e estruturada, o historico de participagio, responsabilidade e
validagdo dos diferentes colaboradores envolvidos em um determinado patch.

No contexto do desenvolvimento do Kernel Linux, os trailers desempenham um papel
central, pois fornecem um registro formal de autoria, revisao e aprovacédo das contribuicdes.
Esse mecanismo é fundamental para sustentar o modelo de desenvolvimento distribuido
adotado pelo projeto, bem como para garantir conformidade com o Developer Certificate
of Origin (DCO), que estabelece as condicdes legais para a submissdo e redistribuicao
do cddigo.

Do ponto de vista sintatico, os trailers seguem um padrdo de pares Chave: Valor,
normalmente no formato:

Nome-do-Trailer: Nome Completo do autor <email@exemplo.com>

Essa padronizacdo permite que ferramentas automatizadas rastreiem e processem o
fluxo de um patch ao longo das listas de discussdo, desde sua submissdo inicial até sua
eventual integracdo ao repositorio principal. Por convengao(GIiT DOCUMENTATION, 2025),
os trailers sdo posicionados ao final da mensagem de commit, ap6s a descricao detalhada
da alteracdo, e geralmente separados do restante do texto por uma linha em branco e pelo
delimitador "---", utilizado em patches enviados por e-mail.

Uma vez que o patch é aplicado, os trailers passam a integrar permanentemente os
metadados do commit, tornando-se visiveis e auditaveis por meio de comandos como git
log. Dessa forma, preserva-se um historico das decisdes técnicas e das responsabilidades
associadas a cada modificacio.

No desenvolvimento do Kernel Linux, os trailers mais relevantes(LiINux DoCUMEN-
TATION, 2025e) estdo diretamente associados a autoria, a responsabilidade técnica e a
validacdo formal do cédigo, os principais sao:

« Signed-off-by: Trata-se do trailer mais essencial e, em praticamente todos os casos,
obrigatorio. Ele indica que o autor concorda explicitamente com os termos do DCO

23

7 | O QUE SAO TRAILERS

e declara possuir o direito de submeter o codigo sob a licenga do projeto, permitindo
seu uso e redistribuicio.

+ Acked-by: Utilizado para sinalizar que um mantenedor ou revisor concorda com a
alteracdo, ou com parte dela, ainda que nao tenha realizado uma revisao aprofundada
ou testes extensivos. E comumente usado por mantenedores de subsistemas para
aprovar mudancas que impactam suas areas de responsabilidade.

+ Reviewed-by: Indica que o patch foi efetivamente revisado por um colaborador, que
analisou o cddigo de forma detalhada e considera que ele cumpre seu proposito,
esta correto do ponto de vista técnico e segue as diretrizes de codificacdo do Kernel
Linux.

+ Tested-by: Aponta que o patch foi testado com sucesso em um ambiente especifico,
fornecendo evidéncia pratica de que a alteragdo funciona conforme esperado.

« Suggested-by / Reported-by: Esses trailers sdo utilizados para atribuir crédito a
colaboradores que sugeriram a modificagdo ou relataram o defeito que motivou a
criacdo do patch, refor¢ando a transparéncia e o reconhecimento das contribuicoes
indiretas ao desenvolvimento.

Em conjunto, os trailers constituem um mecanismo para a rastreabilidade e a auditabili-
dade do Kernel Linux, permitindo que o histoérico de cada contribuicdo seja compreendido
de forma clara e verificavel ao longo do tempo.

Capitulo 8

Metodologia de extracao e
armazenamento de emails

O objetivo central deste trabalho se resume na extracao integral dos e-mails disponiveis
na plataforma lore.kernel.org, com o propésito de disponibilizar essa massa de dados
de forma publica em um formato tabular, adequado a realizacdo de consultas e analises.

Para alcangar esse objetivo, definiu-se uma metodologia composta por quatro etapas
principais. Inicialmente, buscou-se identificar um mecanismo eficiente para extrair e
armazenar localmente os e-mails hospedados na plataforma lore. Em seguida, realizou-se
a interpretacdo do contetido desses arquivos em formato textual bruto. A terceira etapa
envolveu o desenvolvimento de um processo de parsing para transformar os dados extraidos
em uma estrutura mais organizada, bem como a aplicagido de tratamentos e normalizacdes
sobre esses dados estruturados. Por fim, os dados resultantes foram organizados em um
formato tabular, visando otimizar consultas e selecionar um formato de armazenamento
apropriado para essa finalidade.

8.1 Extracao de e-mails

Durante a investigacdo das possiveis abordagens para a extragdo e o armazenamento
local dos e-mails arquivados no lore, foram identificadas diferentes estratégias. A primeira
delas consistiu na extracio direto via HTTPS na instancia do lore.kernel.org, utilizando
a ferramenta LEI (Local Email Interface), descrita anteriormente na secéo 5. Essa ferramenta
tem como objetivo simplificar a aquisi¢do de e-mails por meio de comandos de terminal
relativamente simples.

Entretanto, esse método mostrou-se pouco adequado para a extracdo em larga escala.

A plataforma lore impde limitacdes de seguranca que interrompem downloads superiores
a aproximadamente 100 MB, o que inviabiliza a obtencdo completa de grandes volumes
de dados por meio dessa abordagem. Em razdo disso, essa estratégia foi descartada como
método principal de extracio direta. Ainda assim, a ferramenta LEI néo foi abandonada,
sendo reaproveitada em uma etapa posterior do processo.

Diante dessas limitacdes, optou-se por uma segunda abordagem, o download direto

25

26

8 | METODOLOGIA DE EXTRACAO E ARMAZENAMENTO DE EMAILS

dos repositorios de e-mails do Kernel Linux disponibilizados pela plataforma lore em
formato Git. A propria documentagdo' do lore descreve como qualquer usuério pode clonar
esses repositorios (Figura 8.1) e configurar um servidor local que espelha o contetdo
disponibilizado publicamente.

git clone --mirror https://lore.kernel.org/gfs2/0 gfs2/git/0.git

If you have public-inbox 1.1+ installed, you may
initialize and index your mirror using the following commands:

public-inbox-init -V2 --ng dev.linux.lists.gfs2 \
gfs2 ./gfs2 https://lore.kernel.org/gfs2 \
gfs2@lists.linux.dev

public-inbox-index ./gfs2

Figura 8.1: Exemplo de instrugao no Lore para realizar o mirror dos dados.

Internamente, a plataforma lore é baseada no software public-inbox, conforme discutido
na secao 4. O funcionamento desse sistema consiste, essencialmente, na extracao dos e-
mails armazenados nos repositorios Git e na criagdo de referéncias para cada mensagem
em um banco de dados full-text search, com o objetivo de viabilizar consultas eficientes.
Nesse contexto, comandos como public-inbox-init sdo responsaveis por configurar o
servidor local com informacdes como o caminho do repositoério Git, a versdo do software
utilizada e a URL de servico dos e-mails, enquanto o comando public-inbox-index
realiza a indexagdo das mensagens no banco de dados de busca.

Essa abordagem foi a escolhida neste trabalho para viabilizar a extracdo completa
dos e-mails. Inicialmente, realizou-se o download do repositoério de interesse. Em seguida,
configuraram-se as informagdes essenciais do public-inbox, procedeu-se com a indexacéo
das mensagens e, por fim, iniciou-se um servidor executando em localhost. A partir desse
ambiente local, a ferramenta LEI foi novamente utilizada, desta vez ndo para acessar
diretamente o servidor remoto do lore, mas sim o servidor public-inbox localmente confi-
gurado. Essa estratégia permitiu a extracao integral dos e-mails desejados, os quais foram
armazenados no diretério Maildir/cur em formato plain text, viabilizando as etapas
subsequentes de processamento e analise.

8.2 Interpretacdao dos dados contidos nos e-mails

Apos a extragdo e o armazenamento local de todos os e-mails, tornou-se necessario
compreender a estrutura interna dessas mensagens e definir uma estratégia para extrair
informacdes relevantes a partir de arquivos em formato de texto simples. Para isso, foi
fundamental analisar o padrdo de estruturacdo de e-mails no formato .eml? extensido
comumente utilizada para representar mensagens individuais contendo, em um dnico
arquivo, todo o conteido do e-mail, bem como lidar com os diferentes esquemas de

!fonte: https://lore.kernel.org/gfs2/_/text/mirror/

2 ¢ um padrio de arquivo de texto simples usado para salvar e-mails individuais, contendo todo o contetido
(cabegalho, corpo, anexos, formatacio) de uma mensagem, seguindo as normas RFC 822/5322.

https://lore.kernel.org/gfs2/_/text/mirror/

8.2 | INTERPRETACAO DOS DADOS CONTIDOS NOS E-MAILS

codificacdo (encoding) presentes nas mensagens, de modo a garantir a conversao adequada
para o padrao UTF-8.

A interpretacdo dos arquivos no formato .eml parte do entendimento de que esses
arquivos podem ser logicamente divididos em duas se¢des principais.> A primeira corres-
ponde ao cabecalho (header), que contém informacdes essenciais da mensagem, tais como
remetente (From), destinatario (To), assunto (subject), identificadores tinicos (Message-
ID), referéncias a mensagens anteriores no caso de respostas (In-Reply-To), além de
metadados técnicos, como o esquema de codificacdo utilizado (charset). A segunda se¢éo
corresponde ao corpo da mensagem (body), que, no contexto de submissdo de patches,
foco deste trabalho, foi subdividida em trés partes conceituais: (i) a mensagem textual
do contribuidor, na qual o autor descreve a motivacio e o contexto da alteracio; (ii) a
secdo de trailers, cuja relevancia é significativa por permitir rastrear revisdes, aprovacoes
e interacOes entre desenvolvedores; e (iii) o proprio patch, que contém o coédigo-fonte
proposto para integragao.

Diferentemente do cabecalho, que segue uma estrutura relativamente rigida baseada
em pares chave—valor, o corpo do e-mail ndo possui um formato estritamente padronizado.
Por se tratar de uma mensagem livre, ndo ha delimitadores universais que definam, de
forma explicita, o inicio e o fim de cada uma de suas se¢des. Essa auséncia de estrutura
formal representou um desafio substancial para a extracdo automatica e consistente das
informacdes contidas no corpo das mensagens.

Inicialmente, buscou-se desenvolver algoritmos de parsing baseados na estrutura conhe-
cida dos arquivos .eml. Nessa abordagem, o cabecalho é interpretado como um conjunto
de campos no formato Chave: Valor, enquanto o corpo da mensagem é identificado
a partir da primeira quebra de linha em branco que separa o cabecalho do conteudo
textual. A partir desse padrao, tentou-se construir um algoritmo capaz de abranger o maior
numero possivel de variacdes de e-mails, com o objetivo de estruturar adequadamente
as informacodes extraidas.

Entretanto, essa estratégia mostrou-se limitada diante da grande diversidade de for-
matos e estilos presentes nos e-mails arquivados no lore, o que dificultou a construgio
de um parser universal e robusto. Diante dessa complexidade, optou-se pela utilizagao
da biblioteca Email,* nativa da linguagem Python, que oferece suporte completo para
o parsing e a estruturacdo dessas mensagens. Essa biblioteca interpreta o conteido do
e-mail e o encapsula em uma estrutura de dados do tipo EmailMessage, abstraindo grande
parte das particularidades sintaticas do formato .eml. Para evitar erros decorrentes de
decodificacdo prematura, os arquivos sao inicialmente lidos em formato binario, essa
abordagem é crucial porque as mensagens de e-mail no lore frequentemente utilizam
diferentes esquemas de codificacdo (encodings)® em uma mesma estrutura. Um dnico
e-mail pode apresentar cabecalhos em US-ASCII, um corpo de mensagem em UTF-8 e
fragmentos de patches ou anexos em ISO-8859-1, permitindo que a biblioteca consiga fazer
a interpretacdo corretamente do conteudo.

3 fonte: https://datatracker.ietf.org/doc/html/rfc822
4 https://docs.python.org/3/library/email.html
> https://en.wikipedia.org/wiki/Character_encoding

https://datatracker.ietf.org/doc/html/rfc822
https://docs.python.org/3/library/email.html
https://en.wikipedia.org/wiki/Character_encoding

28

8 | METODOLOGIA DE EXTRACAO E ARMAZENAMENTO DE EMAILS

Outro desafio relevante enfrentado durante o desenvolvimento do parser foi a iden-
tificacdo e o tratamento adequado dos diferentes esquemas de codificacdo presentes nas
mensagens. Como as contribui¢des ao Kernel Linux provém de desenvolvedores distribui-
dos globalmente, é comum que tanto o corpo quanto determinados campos do cabecalho
utilizem codifica¢des distintas do UTF-8, como o padrao ISO-8859-1. Esse problema foi
igualmente mitigado por meio da biblioteca Email do Python, que identifica automatica-
mente o campo chaset® (Figura 8.2) especificado nos metadados da mensagem e realiza a
decodificagdo apropriada para UTF-8, garantindo a uniformizacéo do texto para as etapas
subsequentes de processamento e analise.

MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit

Xref: nntp.lore.kernel.org com.redhat.cluster-dev
Newsgroups: com.redhat.cluster—-devel
Path: nntp.lore.kernel.org!not-for-mail

Figura 8.2: Exemplo do campo chaset preenchido.

8.3 Parser dos dados

Conforme discutido na secdo anterior, a utilizacdo da biblioteca Email da linguagem
Python foi fundamental para a correta interpretagéo e estruturacido dos cabecalhos das
mensagens, bem como para a identificacdo precisa do corpo (body) e o tratamento adequado
da codificagdo (enconding). No entanto, para os objetivos deste trabalho, tornou-se também
relevante a extracdo de informacoes especificas contidas no corpo do e-mail, em especial
os trailers e o codigo propriamente dito, normalmente apresentados na forma de um
git diff

De modo geral, os e-mails que contém submissdes de patches seguem um formato
relativamente padronizado(LINUX DOCUMENTATION, 2025c). Inicialmente, a mensagem
apresenta um texto introdutorio no qual o desenvolvedor descreve as alteracdes propostas
e as motivacdes para sua implementagdo. Em seguida, encontra-se a secdo de trailers,
normalmente iniciada por um campo Signed-off-by, que referencia o autor do commit
e formaliza a concordancia com o Developer Certificate of Origin. Por fim, na parte final
do corpo do e-mail contém o patch em si (Figura 8.3), geralmente precedido por um
delimitador padrao, como uma linha iniciada por "---"

Com base nessa estrutura, buscou-se selecionar e extrair os dados que fossem re-
levantes tanto no contexto de mensagens de e-mails quanto no contexto especifico do
desenvolvimento do Kernel Linux. Assim, para a definicdo do esquema de dados do dataset,
foram utilizados campos do cabecalho presentes em praticamente todos os e-mails, tais

6 RFC que define esse padrio: https://www.ietf.org/rfc/rfc2045.txt

https://www.ietf.org/rfc/rfc2045.txt

8.3 | PARSER DOS DADOS

The stacktrace map can be easily full, which will lead to failure in
obtaining the stack. In addition to increasing the size of the map,
another solution is to delete the stack_id after looking it up from
the user, so extend the existing bpf_map_lookup_and_delete_elem()
functionality to stacktrace map types.

Signed-off-by: Tao Chen <chen.dylane@linux.dev>

include/linux/bpf.h | 2 +-
kernel/bpf/stackmap.c | 16 +++++++++++t+t++—
kernel/bpf/syscall.c | 8 +++++——

3 files changed, 20 insertions(+), 6 deletions(—)|

diff ——git a/include/linux/bpf.h b/include/linux/bpf.h
index 100644

—— a/include/linux/bpf.h

+++ b/include/linux/bpf.h

Figura 8.3: Exemplo de e-mail que segue um padrdo bem definido de body.

como From, To, Cc, Subject e Date (Figura 8.4). Esses campos foram representados como
strings, com excec¢ao do campo Date, que foi convertido para o tipo Datetime, visando
facilitar consultas temporais.

No que diz respeito a identificacdo unica das mensagens e as relagdes de encadeamento
entre e-mails, foram definidos trés campos adicionais: message-id, que representa o
identificador inico da mensagem; in-reply-to, que indica o e-mail ao qual a mensagem
atual responde; e references, que aponta para o e-mail ou conjunto de patches ao qual a
discussdo esta associada. Conforme explicado na secéo 1, é comum que desenvolvedores
submetam conjuntos de patches por meio de um e-mail inicial que fornece uma visao geral
das alteracoes, seguido por mensagens individuais contendo cada patch (patchset) (Figura
8.5). Nesse contexto, o campo references desempenha um papel central, pois permite
vincular ndo apenas os e-mails de resposta a um patch especifico, mas também ao e-mail
introdutério que contextualiza a modificagdo como um todo.

Com o objetivo de otimizar consultas e analises posteriores, como ja foi dito, o corpo
do e-mail foi subdividido em trés campos distintos. O primeiro, denominado raw_body,
armazena o conteudo completo do corpo da mensagem. O segundo, chamado code, contém

exclusivamente o coédigo do patch, isto é, o git diff associado a modificacido proposta.

Por fim, o campo trailers que foi definido como uma lista de estruturas (structs), nas quais
cada elemento armazena, o tipo do trailer (por exemplo, Signed-off-by, Tested-by,
Reviewed-by) e as informacdes do desenvolvedor associado, incluindo nome e endereco
de e-mail (Figura 8.6).

No que se refere ao processo de extracdo dessas informagdes, inicialmente optou-se pela
utilizaciio de expressdes regulares (regex’), para identificar padrdes especificos ao longo

7 regex é uma sequéncia de caracteres que define um padrio de busca para encontrar, validar ou manipular

29

8 | METODOLOGIA DE EXTRACAO E ARMAZENAMENTO DE EMAILS

From: Tao Chen <chen.dylane@linux.dev>
v To: ast@kernel.org,
daniel@iogearbox.net,
john.fastabend@gmail.com,
andrii@kernel.org,
martin. lau@linux.dev,
eddyz87@gmail. com,
song@kernel.org,
yonghong.song@linux.dev,
kpsingh@kernel.org,
sdf@fomichev.me,
haoluo@google. com,
jolsa@kernel.org
v Cc: bpf@vger.kernel.org,
linux-kernel@vger.kernel.org,
Tao Chen <chen.dylane@linux.dev>
Subject: [PATCH bpf-next v5 2/3] selftests/bpf: Refactor stacktrace_map
Date: Wed, 24 Sep 2025 00:58:48 +0800
Message-ID: <20250923165849.1524622-2-chen.dylane@linux.dev>
In-Reply-To: <20250923165849.1524622-1-chen.dylane@linux.dev>
References: <20250923165849.1524622-1-chen.dylane@linux.dev>

Figura 8.4: Exemplo de um header de e-mail.

Thread overview: 14+ messages (download: mbox.gz follow: Atom feed

-- links below jump to the message on this page --

2025-12-03 8:23 [PATCHv4 bpf-next 0/9] ftrace,bpf: Use single direct ops for bpf trampolines Jiri Olsa
2025-12-03 * [PATCHv4 bpf-next 1/9] ftrace,bpf: Remove FTRACE OPS_FL_JMP ftrace_ops flag Jiri Olsa
2025-12-03 ° Menglong Dong

2025-12-03 ® Jiri Olsa

2025-12-03 [PATCHv4 bpf-next 2/9] ftrace: Make alloc_and_copy_ ftrace_hash direct friendly Jiri Olsa
2025-12-03 [PATCHv4 bpf-next 3/9] ftrace: Export some of hash related functions Jiri Olsa
2025-12-03 [PATCHv4 bpf-next 4/9] ftrace: Add update_ftrace_direct_add function Jiri Olsa
2025-12-03 * bot+bpf-ci

2025-12-03 ® Jiri Olsa

2025-12-03
2025-12-03
2025-12-03
2025-12-03
2025-12-03

©

[PATCHv4 bpf-next 5/9] ftrace: Add update_ftrace_direct_del function Jiri Olsa
[PATCHv4 bpf-next 6/9] ftrace: Add update_ftrace_direct_mod function Jiri Olsa
[PATCHv4 bpf-next 7/9] bpf: Add trampoline ip hash table Jiri Olsa

[PATCHv4 bpf-next 8/9] ftrace: Factor ftrace_ops ops_func interface Jiri Olsa
[PATCHv4 bpf-next 9/9] bpf,x86: Use single ftrace_ops for direct calls Jiri Olsa

00 00 00 00O W WO \0

Figura 8.5: Ilustracdo de uma hierarquia de e-mails exibida pela plataforma Lore. O e-mail mais
acima é uma mensagem de apresentacdo de mudancas, seguindo temos na ordem de indentagdo os
patchs em si com as trocas de mensagens logo abaixo.

do corpo do e-mail. Contudo, essa abordagem mostrou-se limitada, uma vez que, apesar
da existéncia de um formato predominante, hd uma grande quantidade de mensagens que
apresentam variacdes sutis, como diferencas na posicdo dos elementos, uso de caracteres
nao padronizados ou pequenas alteracdes na formatacdo (Figura 8.7). Considerando que
o objetivo deste trabalho é catalogar e estruturar o maior nimero possivel de e-mails,
tornou-se evidente que um conjunto restrito de expressdes regulares nao seria suficiente
para lidar com a diversidade presente nos dados do lore.

Diante dessa limitacdo, optou-se por estudar o funcionamento do software B4, que ja

textos.

8.4 | ORGANIZACAO DOS DADOS EM FORMATO COLUNAR

Coluna Tipo Descricdo

from string Endereco de e-mail do remetente

to Lista de String Lista de e-mails para o envia

cc Lista de String Lista de e-mails de copia

subject String Assunta do e-mail

date Datetime Data e_harario fue o autor enviou
o e-mail

message-id String Identificadaor dnico do e-mail

message-id que o e-mail esta

in-reply-to String respondendo
. message-id de outros e-mails
references String i
referenciados pelo atual
raw_body String Corpa do e-mail
code String Codigo em formato git diff

Struct gque guarda o tipo da
trailers Lista de Structs assinatura e o nome e e-mail do
contribuidar

Figura 8.6: Esquema de dados do dataset.

disponibiliza mecanismos consolidados para a extracdo de trailers e de codigo a partir de
e-mails de patch. A partir da analise de seu codigo-fonte® e da replicagio parcial de sua
logica, foi possivel aprimorar significativamente as funcoes de extracdo desenvolvidas neste
trabalho. Essas melhorias incluiram a aplicagdo de etapas adicionais de padronizagéo e
normalizagio do texto, o uso de expressoes regulares mais especializadas para tratar corner
cases, bem como a substituicdo e limpeza de caracteres que dificultavam a identificacdo
correta dos elementos, seguindo estratégias semelhantes as empregadas pelo B4.

8.4 Organizacio dos dados em formato colunar

Apds o processo de tratamento e padronizagao dos dados, buscou-se uma forma eficiente
de disponibilizar o dataset de maneira publica. O uso do formato CSV? foi descartado devido

8 https://archive.softwareheritage.org/browse/content/shal_git:3d774f70c026a84a380798e7d1133a5686d4b371/
?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py

% é um formato de arquivo de texto simples usado para armazenar dados tabulares (como planilhas ou
bancos de dados), onde cada linha representa um registro e os campos (colunas) sio separados por virgulas,
facilitando a troca de dados entre diferentes programas.

31

https://archive.softwareheritage.org/browse/content/sha1_git:3d774f70c026a84a380798e7d1133a5686d4b371/?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py
https://archive.softwareheritage.org/browse/content/sha1_git:3d774f70c026a84a380798e7d1133a5686d4b371/?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py

32

8 | METODOLOGIA DE EXTRACAO E ARMAZENAMENTO DE EMAILS

Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.

commit a2699239ed1ba3537865b5dcbeb160bf3d5ectc9
Author: David Teigland <teigland@redhat.com>
Date: Thu Jul 10 13:45:50 2008 -0500

fenced/dlm_controld/gfs_controld: ccs/cman setup

Consistently set up and clean up ccs and cman.

Signed-off-by: David Teigland <teigland@redhat.com>

Summary of changes:

fence/fenced/fd.h

fence/fenced/main.c

fence/fenced/member_cman.c
group/dlm_controld/action.c -
group/dlm_controld/config.c L
group/dlm_controld/config.h +-
group/dlm_controld/dlm_daemon.h
group/dlm_controld/group.c ++
group/dlm_controld/main.c -+
group/dlm_controld/member_cman.c Fhtt b ———

Figura 8.7: Exemplo de e-mail que ndo segue o padrao proposto.

ao elevado volume de dados coletados, o que tornaria tanto o armazenamento quanto
o processamento pouco eficientes. Diante desse cenario, optou-se pela utilizacdo de um
formato de armazenamento colunar, projetado especificamente para analise e manipulacdo
de grandes volumes de dados.

Diferentemente de formatos orientados a linhas, como CSV ou planilhas eletrdnicas,
nos quais os dados sdo armazenados registro a registro, os formatos colunares organizam
as informacdes por coluna. Em outras palavras, todos os valores de um mesmo atributo,
como From, To, Cc, entre outros, sdo armazenados de forma contigua. Essa organizagio
favorece significativamente a compressao dos dados, uma vez que valores pertencentes
a mesma coluna tendem a apresentar alta similaridade, o que potencializa a eficiéncia
dos algoritmos de compressdo. Além disso, formatos colunares armazenam metadados
estatisticos, como valores minimos e maximos por bloco, o que permite a leitura seletiva
dos dados e reduz o volume de informagdes que precisa ser carregado durante a execucéo
de consultas analiticas.

Entre os formatos colunares mais amplamente utilizados destacam-se Parquet e ORC,
ambos projetos open source mantidos pela Apache Software Foundation. Para este trabalho,

8.4 | ORGANIZACAO DOS DADOS EM FORMATO COLUNAR

optou-se pelo uso do formato Parquet por dois motivos principais. Primeiramente, trata-
se de um formato amplamente adotado pela industria e pela comunidade académica, o
que resulta em maior disponibilidade de documentacédo e ferramentas de suporte. Em
segundo lugar, o Parquet apresenta excelente desempenho para leitura de dados altamente
comprimidos(IvANOV e PERGOLEST, 2020), caracteristica alinhada com o volume e a natureza
do dataset gerado neste projeto.

Além disso, foi adotada a estratégia de Hive Partitioning (ou particionamento Hive),
que consiste em uma convencio de organizacdo dos arquivos em diretorios hierarquicos,
baseada nos valores de uma ou mais colunas do conjunto de dados. Nesse modelo, os
arquivos Parquet sdo armazenados em uma estrutura de diretérios que reflete diretamente
os valores das colunas de particionamento.

Essa abordagem contribui de forma significativa para a eficiéncia das consultas, pois
permite que os mecanismos de processamento de dados realizem partition pruning,'® isto
é, acessem apenas os subconjuntos relevantes dos dados, evitando a leitura desnecessaria
de arquivos que ndo atendem aos critérios da consulta (Figura 8.8).

L— parsed/
— list=bpf/
| L— list_data.parquet
— list=rust-for-linux/

| L— list_data.parquet
L— list=linux-kernel/
L— list_data.parquet

Figura 8.8: Ilustracdo da organizacdo do Hive partition de acordo com as listas de discussao.
Como consequéncia, esse tipo de organizacao viabiliza consultas analiticas mais efi-
cientes, como, por exemplo (Programa 8.1):

Assim, o motor de busca nédo precisa percorrer todos os dados, ele apenas ira na
particdo que interessa.

19 https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\
#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D

33

https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D

8 | METODOLOGIA DE EXTRACAO E ARMAZENAMENTO DE EMAILS

Programa 8.1 Exemplo de query feita em Python carregando o arquivo Parquet.

import polars as pl

1

2

3 dataset = pl.scan_parquet("parsed/list=x/1list_data.parquet")
4 ctx = pl.SQLContext(emails=dataset)
5
6
7

Note que 'list' se torna uma coluna disponivel por causa das pastas
query = """ SELECT * FROM emails WHERE list = 'bpf' AND date >= '2023-01-01'
AND date <= '2023-12-31' "nn

O o

resultado = ctx.execute(query).collect() print(resultado)

Capitulo 9

Como executar o projeto

Para executar o projeto, é necessario inicialmente realizar o clone do repositério do
codigo-fonte.! Além disso, o0 ambiente no qual o projeto sera executado deve possuir os
pacotes Make e Docker previamente instalados e corretamente configurados.

Apos a instalacdo das dependéncias, o proximo passo consiste na configuracdo do
arquivo config.yml (Figura 9.1), localizado na raiz do projeto. Esse arquivo é responsavel
por definir os parametros de execucdo, incluindo a lista de discussao do Kernel Linux da
qual os e-mails serdo extraidos, bem como os filtros aplicados para a recuperacio das
mensagens. Esses filtros seguem a mesma logica e sintaxe das queries utilizadas pela
ferramenta LEI, conforme descrito na secio 5 deste trabalho.

config.yml 375B

nome da pasta que quer salvar
destination: "~/Mail/lore"

nome do modulo, digite all para pesquisar em todos
repository: "bpf"
repository: "gfs2"

filtro para fazer a pesquisa no lore, exemplo:
(dfn:drivers/block/floppy.c OR dfhh:floppy_* OR s:floppy
OR ((ng:bug OR ng:regression) AND ng:floppy))
AND rt:1.month.ago..
filter_query: >
rt:1l.years.ago..

Figura 9.1: Exemplo de configuracdo do arquivo config.yml.

Com o arquivo de configuracdo devidamente ajustado, deve-se executar, a partir da
raiz do projeto, o seguinte comando para a construcao da imagem Docker:

!link do repositério: https://gitlab.com/dudiszzz/tcc

35

https://gitlab.com/dudiszzz/tcc

36

9 | COMO EXECUTAR O PROJETO

make build

Esse comando é responsavel por preparar o ambiente de execucio, incluindo a ins-
talacdo das dependéncias necessarias e a configuracdo dos servigos utilizados ao longo
do fluxo de extracao e processamento dos dados.

Em seguida, o projeto pode ser executado por meio de dois modos distintos. O modo
padrao, sem interagdo com o usuario, pode ser iniciado com o comando:

make run

Alternadamente, é possivel executar o projeto em modo interativo utilizando o co-
mando:

make run-it

Nesse modo, é apresentado um menu interativo (Figura 9.2) que permite a execucio
individual das diferentes etapas do fluxo de extracdo, processamento e armazenamento
dos dados, possibilitando maior controle e flexibilidade durante a execucio.

docker run ——rm -it -v /Users/dudis/TCC/scrapping/mails:/root/Mail -e EXEC_MODE=iterative ubuntu-lei
iterative

? Escolha uma opgao: D

) Baixar repositdrios

Indexar repositdrios
Converter e-mail para texto
Parsear e-mails

Sair

Figura 9.2: Menu interativo do projeto.
Por fim, o projeto disponibiliza um conjunto de testes unitarios que podem ser exe-
cutados com o comando:
make test

Para a execucdo dos testes, é necessario que o interpretador da linguagem Python
esteja instalado localmente na maquina, uma vez que essa etapa nio é executada dentro
de um container Docker.

Capitulo 10

Resultados

O conjunto de dados resultante deste trabalho possui grande escala. Ao todo, foram
coletados mais de 200 GB de dados brutos de e-mails, correspondentes a mais de 20
milhdes de mensagens, que foram posteriormente interpretadas (parsed) e compactadas
em aproximadamente 55 GB de arquivos em formato Parquet. O dataset cobre 345 listas
de discussao, das quais cerca de 50% contém mais de 13.000 e-mails, enquanto o quartil
superior (25%) reune mais de 50.000 mensagens por lista, evidenciando a elevada atividade
de determinados subsistemas do kernel.

Esse volume expressivo de dados possibilita a realizacao de analises comparativas
detalhadas entre subsistemas do Kernel Linux, bem como investigacdes aprofundadas
sobre caracteristicas fundamentais do seu processo de desenvolvimento e manuten¢iao. Em
particular, ele permite observar padrdes de interacéo, revisdo e suporte da comunidade
que ndo sdo capturados por dados tradicionais de controle de versao.

Ao longo da ultima década, a comunidade do Kernel Linux tem manifestado preo-
cupagoes recorrentes acerca de possiveis limitagcdes de escalabilidade do modelo atual
(maintainership) do projeto (CORBET, 2013; DEAN, 2020; EDGE, 2018; VETTER, 2017). Estu-
dos recentes, baseados em revisdes de literatura, sugerem que essas preocupacdes nao se
restringem a percepgdes individuais de colaboradores, mas podem refletir um problema
estrutural mais profundo no modelo de desenvolvimento do Linux (PINHEIRO e MEIRELLES,
2024; TADOKORO et al., 2025; WEN, 2021).

Tanto este trabalho quanto os esforcos anteriores de pesquisa buscam investigar empi-
ricamente se ha evidéncias que sustentem tais alegacdes de insustentabilidade, frequente-
mente associadas ao fendomeno conhecido como maintainer overload. Nesse contexto, foi
recentemente desenvolvido o DUKS (Dashboard for Unified Kernel Statistics) (R. PAssos
et al., 2025), com o objetivo de apoiar analises quantitativas e temporais do desenvolvimento
do kernel. O dataset apresentado neste trabalho, denominado LKML5Ws, é particularmente
relevante para esse tipo de investigacdo, pois permite capturar a quantidade significa-
tiva de esfor¢o humano, interagéo social e discussao técnica que precede a aceitacao de
uma contribuicao, aspectos que nao sao visiveis apenas por meio dos dados de commits
armazenados no Git.

Como exemplo de aplicacdo do dataset, é possivel analisar a atuacao dos contribuidores

37

38

10 | RESULTADOS

Auxiliary Contributors

S | — org.freedesktop.lists.amd-gfx
- org.freedesktop.lists.intel-gfx
1500 ~ —— org.kernel.vger.linux-iio

org.kernel.vger.rust-for-linux

1250 | | [

750

=
o
o
o

Contributors
e

250 . ‘ 1 r_."f

N »
0
2020 2021 2022 2023 2024 2025 2026
Patch Date

Figura 10.1: Grdfico ilustrativo da variagdo do niimero de testadores e revisores ao longo do tempo.

de apoio, como revisores e testadores, por meio da leitura da coluna trailers, que registra
explicitamente tags como Reviewed-by e Tested-by. Além disso, a presenca de multiplas
listas de discussdo no conjunto de dados permite comparacdes entre subsistemas distintos
do kernel.

Ao comparar as listas Linux-1iio, amd-gfx, intel-gfx e rust-for-1linux, utilizando
uma sliding window de dois meses ao longo dos ultimos cinco anos, observa-se um com-
portamento heterogéneo na evolucdo da participacdo comunitaria. Apesar das diferencas
no numero absoluto de colaboradores em cada lista, a figura 10.1 evidencia tendéncias
divergentes no crescimento ou declinio do nimero de revisores e testadores desde 2020.

Os resultados indicam uma tendéncia de crescimento consistente na participacao
de revisores e testadores no subsistema amd-gfx, enquanto o subsistema intel-gfx
apresenta uma tendéncia oposta. Para o subsistema 1inux-iio, os dados sugerem relativa
estabilidade, com pouca variacdo na participacdo da comunidade ao longo do periodo
analisado. Em contrapartida, a lista rust-for-1inux, mais recente, demonstra uma rapida
atracdo de colaboradores, refletindo o interesse crescente da comunidade na adocéo da
linguagem Rust no Kernel Linux.

Esses resultados ilustram como o dataset pode orientar pesquisadores na identificacio
de potenciais gargalos (bottlenecks) no processo de desenvolvimento do kernel. No caso
especifico do subsistema 1inux-1io, por exemplo, pode ser necessario aprofundar a analise

10 | RESULTADOS

utilizando métricas complementares, como o nimero de patches submetidos, rejeitados
e aprovados, a fim de avaliar se a aparente estabilidade na participacdo de revisores e
testadores representa um risco a sustentabilidade do subsistema a médio ou longo prazo.

39

Capitulo 11

Trabalhos relacionados

Em consequéncia da incrivel adocao e popularidade que o projeto do Kernel Linux foi
conquistando ao longo dos anos, varios pesquisadores de engenharia de software fizeram
estudos relacionados ao Kernel e seu modelo de desenvolvimento. Desde a caracterizagao
do desenvolvimento de Software Livre (BALAGUER et al.,, 2017; D1as et al., 2021) até servir
como um estudo de caso ideal para ferramentas de analise de software (OCCHIPINTI et al,
2023; SuvorovV et al,, 2012), o kernel tem servido amplamente a comunidade de Engenharia
de Software. Além disso, o uso de listas de e-mail (mailing lists) como o principal meio de
comunicacdo em projetos de Software Livre também tem sido foco de trabalhos anteriores
(Guzz1 et al., 2013; SCHNEIDER et al., 2016).

E por consequéncia, a comunidade de mineracao de repositorios de software (mining
software repositories) tem contribuido com datasets que apoiam estudos sobre projetos
de Software Livre e o proprio kernel do Linux.

No sentido de caracterizar e compreender os colaboradores de Software Livre, Robles et
al. (ROBLES et al., 2014) realizaram uma pesquisa com mais de dois mil desenvolvedores para
capturar informacdes demograficas, formacdes educacionais e profissionais e preferéncias
pessoais de desenvolvimento.

Nas pesquisas de Passos, Czarnecki (L. PAssos e CZARNECKI, 2014) e German et al.
(GERMAN et al., 2015) criaram grandes conjuntos de dados que mostram a evolucdo da
base de cddigo do kernel do Linux. Enquanto Passos e Czarnecki trazem uma perspectiva
Unica orientada a recursos (feature oriented), German et al. se concentram em agregar
os dados do Git de multiplas arvores em um repositoério unificado, que eles chamam de
super-repositorio Git do Linux.

No entanto, nem Passos, Czarnecki ou German et al. exploram as listas de e-mail
do Linux. O trabalho de Xu e Zhou (XU e Znou, 2018) é particularmente relevante para
esse projeto, pois os autores criam um conjunto de dados com mais de 660 mil patches
enviados por e-mail e armazenados no site Linux Patchwork(referenciar) e os commits Git
aos quais esses patches se relacionam. Como o trabalho restringiu-se a apenas o arquivo
Patchwork, isso limitou o conjunto de dados dos autores a menos de 120 listas de e-mail
e a coleta de 9 anos de e-mails, enquanto esse trabalho se preocupou em coletar dados
de mais de 15 anos de desenvolvimento.

41

42

11 | TRABALHOS RELACIONADOS

Por fim, vale a pena ressaltar que o trabalho de Xu e Zhou néo analisa informacdes
relacionadas aos trailers e inclui apenas threads que contém patches, enquanto nesse
trabalho também inclui-se e-mails de discussao (discussion threads).

Capitulo 12

Conclusao

Embora as motivagdes iniciais deste trabalho fossem especificamente voltadas a criacdo
de um conjunto de dados capaz de contribuir para investigacdes sobre gargalos decorrentes
da sobrecarga de mantenedores, o dataset criado demonstra potencial para apoiar uma
ampla gama de estudos futuros. Do ponto de vista de escala, a expressiva quantidade
de e-mails coletados fornece uma boa base para analises aprofundadas dos padrdes de
comunicacio entre desenvolvedores, bem como entre desenvolvedores, mantenedores
€ revisores.

Além disso, trabalhos futuros podem, por exemplo, investigar a prevaléncia e os impac-
tos de comentarios grosseiros e rudes nas listas de discussdo do kernel Linux(EHSANT et al,
2024; GACHECHILADZE et al., 2017), buscando responder a questdes como: existe correlacdo
entre a ocorréncia de interacdes rudes e a escassez de mantenedores em determinadas
listas? A incivilidade tem aumentado ou diminuido ao longo do tempo? Além do mais, o
conjunto de dados possibilita identificar quais tipos de problemas sdo mais frequentemente
apontados durante o processo de revisao de c6digo(GONCALVES et al., 2025; RAHMAN et al.,
2025), como duplicacio de codigo, complexidade excessiva ou questdes de legibilidade.

Uma das contribuicdes mais relevantes do conjunto de dados LKML5Ws decorre da
estrutura adotada para o corpo de cada e-mail, segmentado em trés partes: uma segio de
trailers, uma secdo de cédigo e o contetudo inteiro da mensagem. Essa organizacdo permite
que estudos futuros explorem comparagdes entre métricas extraidas de diferentes branches
e subsistemas do kernel, com o objetivo de analisar os impactos dos diferentes modelos
de manutencao adotados ao longo da evolucao do projeto.

De forma mais especifica, o dataset viabiliza investigacdes como: quais subsistemas
apresentam o menor nimero de revisores por patch submetido? Quais exibem a maior razdo
entre linhas de c6digo modificadas e o nimero de mantenedores ativos? O comprimento
médio da descricao dos patches varia de maneira significativa entre diferentes arvores
do kernel?

Apesar de suas contribui¢des, o LKML5Ws apresenta algumas limitacdes. Em particular,
determinados e-mails podem aparecer duplicados quando uma mesma mensagem ¢ enviada
para multiplas listas de discussdo hospedadas no lore.kernel.org. Esse aspecto pode ser
tratado em extensdes futuras do conjunto de dados. Conforme descrito na publicacdo do

43

44

12 | CONCLUSAO

DUKS(R. Passos et al., 2025), trabalho que serviu de inspiracdo para este projeto, pretende-
se integrar as informacoes extraidas das listas de discussdo com dados do historico de
versdes coletadas a partir do Software Heritage(PIETRI et al, 2019).

Essa integracdo podera explorar o modelo de indexacdo baseado em hash adotado
pelo Software Heritage, no qual as alteracdes de codigo sdo indexadas por meio de um
ID exclusivo que usa um hash da proépria alteracdo de cédigo. Esse mecanismo impede o
armazenamento de conteido duplicado e, quando aplicado ao corpo completo dos e-mails,
permitira a eliminacdo de mensagens redundantes no conjunto de dados LKML5Ws.

Além disso, extensodes futuras podem explorar a flexibilidade da abordagem de coleta
adotada neste trabalho para incluir mensagens provenientes de outros grandes projetos de
Software Livre. Projetos do ecossistema GNU (como Emacs e GCC) e da Apache (como
HTTPD e Superset) disponibilizam arquivos de listas de discussdo no formato MBOX para
seus diversos subprojetos. A incorporacao desses dados, especialmente os mais antigos, é
particularmente relevante, considerando que apenas cerca de 25% dos e-mails atualmente
presentes no conjunto de dados foram enviados antes de 2014.

Por fim, espera-se que este trabalho de conclusédo de curso, ao apresentar um conjunto
de dados com mais de 20 milhdes de e-mails distribuidos em 345 listas de discusséo
hospedadas no arquivo Kernel Lore, ofereca uma visao ampla e abrangente do processo de
desenvolvimento do kernel Linux ao longo de sua histéria. Ao evidenciar no que consiste
cada contribui¢ido (what), quando ela foi inicialmente concebida (when), quem participou
de sua revisdo e aprovacdo (who), para qual lista foi submetida (where) e por que se
tornou, ou néo, parte do cddigo do kernel (why), o LKML5Ws tem o potencial de alimentar
pesquisas futuras sobre os aspectos técnicos e sociais que caracterizam um dos projetos
de Software Livre mais representativos da atualidade.

Referéncias

[BALAGUER et al. 2017] Federico BALAGUER et al. “Assessing code authorship: the case
of the linux kernel”. In: Open Source Systems: Towards Robust Practices. Springer-
Charm, 2017, pp. 151-163 (citado na pg. 41).

[CorBET 2013] Jonathan CORBET. On saying "no". Out. de 2013. URL: lwn.net/Articles/
571995/ (acesso em 05/11/2025) (citado na pg. 37).

[DEAN 2020] Sam DEAN. The maintainer’s paradox: balancing project and community.
Dez. de 2020. urL: https://www.linuxfoundation.org/blog/blog/the-maintainers-
paradox-balancing-project-and-community (acesso em 05/11/2025) (citado na

pg. 37).

[DENT 2003] Kyle D. DENT. Postfix: The Definitive Guide: A Secure and Easy-to-Use MTA
for UNIX. Sebastopol, CA: O’Reilly Media, Inc., 2003. 1sBN: 9781449378790 (citado
na pg. 10).

[D1as et al. 2021] Edson Dias et al. “What makes a great maintainer of open source
projects?” In: International Conference on Software Engineering (ICSE). IEEE, mai. de
2021, pp. 982-994. por: 10.1109/ICSE43902.2021.00093 (citado na pg. 41).

[EDGE 2018] Jake EDGE. Too many lords, not enough stewards. Jan. de 2018. URL: lwn.net/
Articles/745817/ (acesso em 05/11/2025) (citado na pg. 37).

[EHSANI et al. 2024] Ramtin EHsaNI, Mia Mohammad IMRAN, Robert Zi1ta, Kostadin
DAMEVSKI e Preetha CHATTERJEE. “Incivility in open source projects: a com-
prehensive annotated dataset of locked github issue threads”. In: Mining Software
Repositories Conference (MSR). ACM, 2024, pp. 515-519. 1sBN: 9798400705878. DOTI:
10.1145/3643991.3644887 (citado na pg. 43).

[GACHECHILADZE et al. 2017] Daviti GACHECHILADZE, Filippo LANUBILE, Nicole Novi-
ELLI e Alexander SEREBRENIK. “Anger and its direction in collaborative software
development”. In: International Conference on Software Engineering: New Ideas and
Emerging Results Track (ICSE-NIER). IEEE, 2017, pp. 11-14. 1SBN: 9781538626757.
por: 10.1109/ICSE-NIER.2017.18 (citado na pg. 43).

45

http://lwn.net/Articles/571995/
http://lwn.net/Articles/571995/
https://www.linuxfoundation.org/blog/blog/the-maintainers-paradox-balancing-project-and-community
https://www.linuxfoundation.org/blog/blog/the-maintainers-paradox-balancing-project-and-community
https://doi.org/10.1109/ICSE43902.2021.00093
http://lwn.net/Articles/745817/
http://lwn.net/Articles/745817/
https://doi.org/10.1145/3643991.3644887
https://doi.org/10.1109/ICSE-NIER.2017.18

46

REFERENCIAS

[GERMAN et al. 2015] Daniel M. GERMAN, Bram Apams e Ahmed E. HassaN. “A dataset
of the activity of the git super-repository of linux in 2012”. In: Mining Software
Repositories Conference (MSR). IEEE, 2015, pp. 470-473. 1SBN: 9780769555942 (citado
na pg. 41).

[GIT DOCUMENTATION 2025] GIT DOCUMENTATION. git-interpret-trailers Documentation.
Documentacio oficial do Git sobre manipulacao de trailers em mensagens de
commit. 2025. URL: https://git-scm.com/docs/git-interpret-trailers (acesso em
20/12/2025) (citado na pg. 23).

[GONGALVES et al. 2025] Pavlina Wurzel GONGCALVES, Pooja RaN1, Margaret-Anne Sto-
REY, Diomidis SPINELLIS e Alberto BaccHELLL “Code review comprehension:
reviewing strategies seen through code comprehension theories”. In: International
Conference on Program Comprehension (ICPC). 2025, pp. 589-601. po1: 10.1109/
ICPC66645.2025.00068 (citado na pg. 43).

[Guzzi et al. 2013] Anja Guzzi, Alberto BAccHELLI, Michele LaNzA, Martin PINZGER
e Arie van DEURSEN. “Communication in open source software development
mailing lists”. In: Mining Software Repositories Conference (MSR). IEEE, mai. de
2013, pp. 277-286. 1SBN: 978-1-4673-2936-1 (citado na pg. 41).

[Ivanov e PERGOLESI 2020] Todor IvaNnov e Max-Petre PERGOLESI. “The impact of co-
lumnar file formats on sql-on-hadoop engine performance: a study on orc and par-
quet”. Concurrency and Computation: Practice and Experience 32.3 (2020), €5523. DOIL:
10.1002/cpe.5523. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5523
(citado na pg. 33).

[LiNux DOCUMENTATION 2020] LiNUX DOCUMENTATION. Submitting patches: Sign your
work - the Developer’s Certificate of Origin. Documentacio oficial do Kernel Linux,
versao 5.7. 2020. URL: https://www.kernel.org/doc/html/v5.7/process/submitting-
patches.html#sign-your-work-the-developer-s-certificate-of-origin (acesso em
20/12/2025) (citado na pg. 5).

[Linux DOCUMENTATION 2025a] LINUX DOCUMENTATION. How the development process
works: Next trees. Documentacao oficial do processo de desenvolvimento (linux-
next). 2025. URL: https://www.kernel.org/doc/html/latest/process/2.Process.html#
next-trees (acesso em 20/12/2025) (citado na pg. 6).

[Linux DOCUMENTATION 2025b] LiNux DOCUMENTATION. How the development process
works: The Big Picture. Documentacéao oficial sobre o fluxo de desenvolvimento
do Kernel. 2025. urL: https://www.kernel.org/doc/html/latest/process/2.Process.
html#the-big-picture (acesso em 20/12/2025) (citado na pg. 6).

[LiNux DOCUMENTATION 2025c] LiNUX DOCUMENTATION. How to Get Your Change Into
the Linux Kernel (Submitting Patches). Guia oficial completo sobre o processo
de submissédo e revisdo de patches. 2025. URL: https://www.kernel.org/doc/
Documentation/process/submitting-patches.rst (acesso em 20/12/2025) (citado na

pg. 28).

https://git-scm.com/docs/git-interpret-trailers
https://doi.org/10.1109/ICPC66645.2025.00068
https://doi.org/10.1109/ICPC66645.2025.00068
https://doi.org/10.1002/cpe.5523
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5523
https://www.kernel.org/doc/html/v5.7/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://www.kernel.org/doc/html/v5.7/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://www.kernel.org/doc/html/latest/process/2.Process.html#next-trees
https://www.kernel.org/doc/html/latest/process/2.Process.html#next-trees
https://www.kernel.org/doc/html/latest/process/2.Process.html#the-big-picture
https://www.kernel.org/doc/html/latest/process/2.Process.html#the-big-picture
https://www.kernel.org/doc/Documentation/process/submitting-patches.rst
https://www.kernel.org/doc/Documentation/process/submitting-patches.rst

REFERENCIAS

[LiNux DOCUMENTATION 2025d] LINUX DOCUMENTATION. Linux kernel coding style. Ver-
sdo da documentacao oficial do processo de desenvolvimento do kernel. 2025. URL:
https://www.kernel.org/doc/Documentation/process/coding-style.rst (acesso em
20/12/2025) (citado na pg. 5).

[Linux DOCUMENTATION 2025e] LINUX DOCUMENTATION. Submitting patches: Using
Reported-by, Tested-by, Reviewed-by, Suggested-by and Fixes. Documentacao oficial
sobre atribuicdo de créditos e metadados em patches do Kernel. 2025. URL: https:
//www.kernel.org/doc/html/latest/process/submitting-patches.html#using-
reported - by - tested - by - reviewed - by - suggested - by - and - fixes (acesso em
20/12/2025) (citado na pg. 23).

[Linux DOCUMENTATION 2025f] LINUX DOCUMENTATION. Subscribing to Linux kernel
mailing lists. Instrucdes oficiais para participacédo nas listas de discussdo do Kernel.
2025. URL: https://subspace.kernel.org/subscribing.html (acesso em 20/12/2025)
(citado na pg. 9).

[OccuipiNTI et al. 2023] Gianlorenzo OccHIPINTI, Csaba NAGY, Roberto MINELLI e
Michele LANZA. “Syn: ultra-scale software evolution comprehension”. In: Interna-
tional Conference on Program Comprehension (ICPC). IEEE, mai. de 2023, pp. 69-73.
por: 10.1109/ICPC58990.2023.00020 (citado na pg. 41).

[L. PAassos e CZARNECKI 2014] Leonardo Passos e Krzysztof CZARNECKI. “A dataset of
feature additions and feature removals from the linux kernel”. In: Mining Software
Repositories Conference (MSR). ACM, 2014, pp. 376-379. 1sBN: 9781450328630. DOI:
10.1145/2597073.2597124 (citado na pg. 41).

[R. Passos et al. 2025] Rafael Passos, Arthur PiLoNE, David TADOKORO e Paulo MEIREL-
LES. “Streamlining analyses on the linux kernel with duks”. In: Software Visualiza-
tion Conference(VISSOFT). IEEE, 2025, pp. 125-128. po1: 10.1109/VISSOFT67405.
2025.00025 (citado nas pgs. 37, 44).

[PIETRI et al. 2019] Antoine P1ETRI, Diomidis SPINELLIS e Stefano ZaccHIROLI “The
software heritage graph dataset: public software development under one roof”. In:
Mining Software Repositories Conference (MSR). IEEE, mai. de 2019, pp. 138-142.
ISBN: 978-1-7281-3412-3 (citado na pg. 44).

[PINHEIRO e MEIRELLES 2024] Eduardo PINHEIRO e Paulo MEIRELLES. “Understanding
group maintainership model in the linux kernel development”. In: Software Visu-
alization, Maintenance and Evolution Conference (VEM). SBC, 2024, pp. 113-124
(citado na pg. 37).

[PuBLic-INBOX DOCUMENTATION 2025a] PuBLIC-INBOX DOCUMENTATION. public-inbox-
index - create and update search indices for public-inbox. Documentagdo sobre
a ferramenta de indexacdo e motor de busca do public-inbox. 2025. URL: https:
//public-inbox.org/public-inbox-index.html (acesso em 15/11/2025) (citado na

pg. 17).

47

https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://subspace.kernel.org/subscribing.html
https://doi.org/10.1109/ICPC58990.2023.00020
https://doi.org/10.1145/2597073.2597124
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://public-inbox.org/public-inbox-index.html
https://public-inbox.org/public-inbox-index.html

48

REFERENCIAS

[PuBLIc-INBOX DOCUMENTATION 2025b] PuBLIC-INBOX DOCUMENTATION. public-inbox-
mda - mail delivery agent for public-inbox. Documentacdo do agente de entrega de
e-mail do sistema public-inbox. 2025. URL: https://public-inbox.org/public-inbox-
mda.html (acesso em 15/11/2025) (citado na pg. 16).

[PuBLIic-INBOX DOCUMENTATION 2025¢c] PuBLIC-INBOX DOCUMENTATION. public-inbox-
vi-format - public-inbox v1 repository format. Documentagio técnica sobre o
formato de repositorio e indexacdo de mensagens. 2025. URL: https://public-
inbox.org/public-inbox-v1-format.html (acesso em 15/11/2025) (citado na pg. 15).

[PuBLIic-INBOX DOCUMENTATION 2025d] PuUBLIC-INBOX DOCUMENTATION. public-inbox-
v2-format - public-inbox v2 repository format. Documentagao técnica sobre o
formato de armazenamento escalavel para arquivos de mensagens. 2025. URL:
https://public-inbox.org/public-inbox-v2-format.html (acesso em 15/11/2025)
(citado na pg. 15).

[RAHMAN et al. 2025] Md Shamimur RaAHMAN, Zadia CopABUX e Chanchal K. Roy. “In-
vestigating the understandability of review comments on code change requests”.
In: Mining Software Repositories Conference (MSR). IEEE, 2025, pp. 539-551. por:
10.1109/MSR66628.2025.00087 (citado na pg. 43).

[ROBLES et al. 2014] Gregorio RoBLES, Laura Arjona REINA, Alexander SEREBRENIK,
Bogdan VASILESCU e Jesus M. GONZALEZ-BARAHONA. “Floss 2013: a survey dataset
about free software contributors: challenges for curating, sharing, and combining”.
In: Mining Software Repositories Conference (MSR). ACM, mai. de 2014, pp. 396-399.
ISBN: 978-1-4503-2863-0. DOI: 10.1145/2597073.2597129 (citado na pg. 41).

[RyaBITSEV 2021] Konstantin RYABITSEV. lore + lei, part 2: Now with IMAP. Blog técnico
sobre infraestrutura e ferramentas do Kernel Linux. Jan. de 2021. URL: https:
//people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap (acesso em
20/12/2025) (citado na pg. 19).

[SCHNEIDER ef al. 2016] Daniel SCHNEIDER, Scott SPURLOCK € Megan SQUIRE. “Diffe-
rentiating communication styles of leaders on the linux kernel mailing list”. In:
12th International Symposium on Open Collaboration. ACM, ago. de 2016, pp. 1-10.
ISBN: 978-1-4503-4451-7. (Acesso em 20/04/2025) (citado na pg. 41).

[Suvorov et al. 2012] Roman Suvorov, Meiyappan NAGAPPAN, Ahmed E. HAssAN,
Ying Zou e Bram Apams. “An empirical study of build system migrations in
practice: case studies on kde and the linux kernel”. In: Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 160—169. DOI:
10.1109/1CSM.2012.6405267 (citado na pg. 41).

[TADOKORO et al. 2025] David TADOKORO, Rodrigo SIQUEIRA e Paulo MEIRELLEs. “Can
the linux kernel sustain 30 more years of growth? toward mitigating bottlenecks in
its development model”. In: Brazilian Symposium on Software Engineering (SBES).
SBC, 2025, pp. 845-851. poI1: 10.5753/sbes.2025.11607 (citado na pg. 37).

https://public-inbox.org/public-inbox-mda.html
https://public-inbox.org/public-inbox-mda.html
https://public-inbox.org/public-inbox-v1-format.html
https://public-inbox.org/public-inbox-v1-format.html
https://public-inbox.org/public-inbox-v2-format.html
https://doi.org/10.1109/MSR66628.2025.00087
https://doi.org/10.1145/2597073.2597129
https://people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap
https://people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap
https://doi.org/10.1109/ICSM.2012.6405267
https://doi.org/10.5753/sbes.2025.11607

REFERENCIAS

[Unix DOCUMENTATION 2025] UNIX DOCUMENTATION. maildir(5) - Linux manual page.
Documentagio técnica sobre o formato de armazenamento de e-mail Maildir. 2025.

URL: https://www.unix.com/man_page/linux/5/maildir/ (acesso em 20/12/2025)
(citado na pg. 10).

[VETTER 2017] Daniel VETTER. Maintainers don’t scale. Jan. de 2017. urt: blog.ffwll.ch/
2017/01/maintainers-dont-scale.html (acesso em 05/11/2025) (citado na pg. 37).

[WEN 2021] Melissa Shihfan Ribeiro WEN. “What happens when the bazaar grows: a

comprehensive study on the contemporary Linux kernel development model”.

Tese de dout. Sdo Paulo, Brasil: University of Sdo Paulo, 2021 (citado na pg. 37).

[XAPIAN DOCUMENTATION 2025] XAPIAN DOCUMENTATION. Xapian Documentation:
Stemming. Documentacdo sobre algoritmos de radicalizacdo para motores de
busca. 2025. URL: https://xapian.org/docs/stemming.html (acesso em 15/11/2025)
(citado na pg. 17).

[Xu e Zuou 2018] Yulin Xu e Minghui ZHou. “A multi-level dataset of linux kernel
patchwork”. In: Mining Software Repositories Conference (MSR). IEEE, mai. de 2018,
pp- 54-57. URL: https://ieeexplore.ieee.org/document/8595178/ (citado na pg. 41).

49

https://www.unix.com/man_page/linux/5/maildir/
http://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
http://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
https://xapian.org/docs/stemming.html
https://ieeexplore.ieee.org/document/8595178/

	Introdução
	O Processo de Desenvolvimento e Contribuição para o Kernel Linux
	Infraestrutura de Comunicação e Arquitetura de E-mail no Linux
	Agentes de Transporte e o Protocolo SMTP
	Agentes de Entrega e Armazenamento
	Protocolos de Acesso e Leitura (IMAP versus NNTP)

	Introdução sobre o kernel lore archive
	Arquitetura do Public-Inbox
	Armazenamento e versionamento baseado em Git
	Ingestão de mensagens
	Modelo de acesso de e-mail
	Indexação e pesquisa
	Estabilidade e portabilidade de links

	LEI (Local Email Interface)
	O software B4
	O que são trailers
	Metodologia de extração e armazenamento de emails
	Extração de e-mails
	Interpretação dos dados contidos nos e-mails
	Parser dos dados
	Organização dos dados em formato colunar

	Como executar o projeto
	Resultados
	Trabalhos relacionados
	Conclusão
	Referências

