
Universidade de São Paulo
Instituto de Matemática e Estatística

Bacharelado em Ciência da Computação

LKML5Ws: Linux Mailing List Dataset

Eduardo Mendes Lopes

Monografia Final
mac 499 — Trabalho de

Formatura Supervisionado

Supervisor: Rafael Passos
Cossupervisor: Paulo Meirelles

São Paulo
2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

i

Agradecimentos

No último dia de aula como graduando, acabei pegando o circular até em casa, como de
costume, e, no ônibus, fui relembrando os anos que passei até chegar a esse dia. Lembrei-me
de quando eu era apenas uma criança saindo do Maranhão e me mudando para o Paraná;
lembrei dos meus anos difíceis no curso técnico em Eletrônica na UTFPR; dos meus dias e
noites estudando para o vestibular; e, finalmente, de todos os meus dias na USP.

As coisas até aqui nunca foram fáceis. Batalhei e lutei muito, mas acredito que as coisas
realmente valiosas na vida nunca são. Por isso, agradeço enormemente aos meus pais e
à minha família por sempre me apoiarem e incentivarem nas minhas decisões; à minha
avó e ao meu avô, que faleceram e não puderam ver o neto se formando, mas acredito
que estariam muito felizes; aos meus amigos, por sempre estarem comigo em todos os
momentos, virando noites no IME para estudar para provas e EPs.

Agradeço também aos meus professores, que são pessoas incríveis e que me ensinaram
muito ao longo desses anos, especialmente ao professor Paulo Meirelles, que desde a Rede
Linux me acompanha e incentiva. Agradeço ao meu orientador, Rafael Passos, por toda
a paciência e pelos ensinamentos, e ao David e ao Arthur por também fazerem parte
deste TCC.

Por fim, agradeço à USP e ao seu programa de apoio estudantil, que me possibilitou
estar em São Paulo e custear meus estudos.

Resumo

Eduardo Mendes Lopes. LKML5Ws: Linux Mailing List Dataset. Monografia (Ba-
charelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2025.

O kernel Linux é um dos projetos de Software Livre mais complexos e influentes da atualidade, sendo
desenvolvido de forma colaborativa há mais de três décadas por meio de um modelo baseado em revisões
públicas realizadas em listas de discussão por e-mail. Embora sistemas de controle de versão registrem as
alterações finais incorporadas à base de código, uma parcela significativa do esforço envolvido no processo
de desenvolvimento, incluindo revisões, testes, debates e rejeições de contribuições, permanece documentada
exclusivamente nessas listas de discussão. Diante desse cenário, este trabalho tem como objetivo principal a
construção de um dataset abrangente que possibilite a investigação dos processos sociais e técnicos que
antecedem a aceitação de contribuições no kernel Linux.

Na primeira parte deste trabalho, apresenta-se uma contextualização do desenvolvimento do kernel
Linux, bem como os principais softwares que dão suporte a esse processo. Na segunda parte, descreve-se
a metodologia empregada para a coleta, extração e estruturação dos dados, assim como os fundamentos
conceituais que orientam a obtenção de e-mails a partir do Kernel Lore Archive. Como resultado, é apresentado
o LKML5Ws, um conjunto de dados com mais de 20 milhões de e-mails provenientes de 345 listas de discussão,
totalizando mais de 200 GB de dados brutos, compactados em mais de 55 GB de arquivos no formato Parquet.
Por fim, é apresentada uma análise exploratória com o LKML5Ws que demonstra seu potencial para revelar
diferenças na dinâmica de revisão e teste entre distintos subsistemas do Kernel, evidenciando tendências
divergentes na participação da comunidade ao longo do tempo, bem como propostas de usos futuros
para o dataset.

Esse conjunto de dados oferece uma visão ampla do desenvolvimento do kernel ao explicitar: no que
consiste cada contribuição (what), quando ela foi proposta (when), quem participou (who), para qual lista
foi submetida (where) e por que se tornou, ou não, parte do código (why). Além disso, busca contribuir
para ampliar a base empírica disponível à comunidade de Engenharia de Software, oferecendo uma nova
perspectiva sobre os aspectos sociais e técnicos que moldam a evolução de um dos mais emblemáticos
projetos de Software Livre.

Palavras-chave: Kernel Linux. Mailing Lists. Lore Archive. Software Livre.

Abstract

Eduardo Mendes Lopes. LKML5Ws: Linux Mailing List Dataset. Capstone Project
Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São
Paulo, 2025.

The Linux kernel is one of the most complex and influential Free Software projects today, having been
developed collaboratively for more than three decades through a model based on public reviews conducted
on email mailing lists. Although version control systems record the final changes incorporated into the
codebase, a significant portion of the effort involved in the development process, including reviews, testing,
discussions, and the rejection of contributions, remains documented exclusively in these mailing lists. In this
context, the main objective of this work is to build a comprehensive dataset that enables the investigation of
the social and technical processes that precede the acceptance of contributions into the Linux kernel.

In the first part of this work, we provide background on the development of the Linux kernel, as well
as an overview of the main software tools that support this process. In the second part, we describe the
methodology used for data collection, extraction, and structuring, along with the conceptual foundations
that guide the retrieval of emails from the Kernel Lore Archive. As a result, we present LKML5Ws, a
dataset containing more than 20 million emails from 345 mailing lists, totaling over 200 GB of raw data,
compressed into more than 55 GB of files in Parquet format. Finally, we present an exploratory analysis
using LKML5Ws that demonstrates its potential to reveal differences in review and testing dynamics across
distinct kernel subsystems, highlighting divergent trends in community participation over time, as well
as proposing future uses for the dataset.

This dataset provides a broad view of kernel development by making explicit what each contribution
consists of (what), when it was proposed (when), who participated (who), which mailing list it was submitted
to (where), and why it did or did not become part of the codebase (why). In addition, it aims to expand the
empirical foundation available to the Software Engineering community by offering a new perspective on the
social and technical aspects that shape the evolution of one of the most emblematic Free Software projects.

Keywords: Kernel Linux. Mailing Lists. Lore Archive. Free/Libre Software.

vii

Lista de abreviaturas

SO Sistema Operacional
FLOSS Free/Libre and Open Source Software
LKML Linux Kernel Mailing List
CC/Cc Carbon Copy

rc Release Candidate
LTS Long Term Support

MTA Mail Transfer Agent
DNS Domain Name System

MDA Mail Delivery Agent
POP3 Post Office Protocol version 3
IMAP Internet Message Access Protocol
NNTP Network News Transfer Protocol

Blob Binary Large Object
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
HTML Hypertext Markup Language
SHA-1 Secure Hash Algorithm 1

URL Uniform Resource Locator
UTF-8 Unicode Transformation Format - 8-bit

CSV Comma-separated values

viii

Lista de figuras

4.1 Representação das URLs padronizadas no public-inbox. 18

5.1 Exemplo de query aceita pelo LEI. 19

8.1 Exemplo de instrução no Lore para realizar o mirror dos dados. 26
8.2 Exemplo do campo chaset preenchido. 28
8.3 Exemplo de e-mail que segue um padrão bem definido de body. 29
8.4 Exemplo de um header de e-mail. 30
8.5 Ilustração de uma hierarquia de e-mails exibida pela plataforma Lore. O e-

mail mais acima é uma mensagem de apresentação de mudanças, seguindo
temos na ordem de indentação os patchs em si com as trocas de mensagens
logo abaixo. 30

8.6 Esquema de dados do dataset. 31
8.7 Exemplo de e-mail que não segue o padrão proposto. 32
8.8 Ilustração da organização do Hive partition de acordo com as listas de

discussão. 33

9.1 Exemplo de configuração do arquivo config.yml. 35
9.2 Menu interativo do projeto. 36

10.1 Gráfico ilustrativo da variação do número de testadores e revisores ao
longo do tempo. 38

ix

Lista de tabelas

4.1 Prefixos usados pelo Xapian para otimizar pesquisas. 17

Lista de programas

8.1 Exemplo de query feita em Python carregando o arquivo Parquet. 34

xi

Sumário

Introdução 1

1 O Processo de Desenvolvimento e Contribuição para o Kernel Linux 5

2 Infraestrutura de Comunicação e Arquitetura de E-mail no Linux 9
2.1 Agentes de Transporte e o Protocolo SMTP 10
2.2 Agentes de Entrega e Armazenamento 10
2.3 Protocolos de Acesso e Leitura (IMAP versus NNTP) 10

3 Introdução sobre o kernel lore archive 13

4 Arquitetura do Public-Inbox 15
4.1 Armazenamento e versionamento baseado em Git 15
4.2 Ingestão de mensagens . 16
4.3 Modelo de acesso de e-mail . 16
4.4 Indexação e pesquisa . 16
4.5 Estabilidade e portabilidade de links . 18

5 LEI (Local Email Interface) 19

6 O software B4 21

7 O que são trailers 23

8 Metodologia de extração e armazenamento de emails 25
8.1 Extração de e-mails . 25
8.2 Interpretação dos dados contidos nos e-mails 26
8.3 Parser dos dados . 28
8.4 Organização dos dados em formato colunar 31

9 Como executar o projeto 35

xii

10 Resultados 37

11 Trabalhos relacionados 41

12 Conclusão 43

Referências 45

1

Introdução

Os computadores constituem ferramentas essenciais para o funcionamento do mundo
moderno. Os sistemas computacionais variam desde computadores pessoais, utilizados pelo
público em geral para atividades cotidianas, até sistemas embarcados presentes em uma
parcela significativa de automóveis, aeronaves e indústrias, nos quais desempenham tarefas
críticas. Embora não seja um requisito estrito, os computadores são, em geral, compostos
por duas partes interdependentes: hardware e software. O hardware corresponde aos
componentes eletrônicos físicos do sistema, enquanto o software compreende o conjunto
de programas e dados responsáveis por controlar e coordenar o funcionamento desse
hardware.

O software pode assumir diferentes formas para instruir o hardware. Programas escritos
diretamente em linguagem de máquina, que utilizam sequências de zeros e uns para
codificar instruções específicas de um determinado processador, representam o nível mais
baixo de abstração. Por outro lado, programas podem ser desenvolvidos sobre camadas
adicionais de software, criando abstrações que reduzem a dependência das especificações
do hardware e tornam o desenvolvimento mais legível, estruturado e produtivo. Nesse
contexto, programas que interagem diretamente com o hardware são classificados como
de baixo nível, enquanto aqueles que se apoiam em abstrações fornecidas por outros
programas são considerados de alto nível.

Do ponto de vista dos programas de alto nível, que dependem de software de baixo nível
para acessar recursos computacionais, o sistema operacional (SO) é um software que atua
como intermediário entre esses dois níveis. Além disso, o SO é o componente responsável
por gerenciar os recursos do computador, como processador, memória, dispositivos de
entrada e saída, que são tipicamente limitados e precisam ser coordenados para evitar
conflitos quando múltiplos programas os utilizam simultaneamente. Dessa forma, os
sistemas operacionais são fundamentais para garantir eficiência, segurança e confiabilidade
no uso dos recursos computacionais.

O principal componente de um sistema operacional é o seu kernel, responsável por
encapsular suas funcionalidades centrais e por abstrair os detalhes de hardware por meio
de componentes específicos, conhecidos como drivers. Um importante exemplo de kernel
de sistema operacional é o Kernel Linux. O kernel Linux foi lançado oficialmente por Linus
Torvalds em 5 de outubro de 1991, na versão 0.0.2, inspirado nos sistemas operacionais
UNIX e MINIX. Como um kernel isolado e unicamente não constitui um sistema operacional
completo, o Linux foi combinado com os utilitários desenvolvidos pelo Projeto GNU,1

1 O Projeto GNU foi anunciado por Richard Stallman em 27 de setembro de 1983, para fornecer uma coleção

2

INTRODUÇÃO

resultando no sistema operacional GNU/Linux, classificado como Software Livre e de
Código Aberto (Free/Libre and Open Source Software – FLOSS).2 Esse modelo garante aos
usuários a liberdade de obter, executar, estudar, modificar e redistribuir o software.

A criação do GNU/Linux representou uma grande ruptura no desenvolvimento de
sistemas operacionais. Embora o projeto GNU já disponibilizasse praticamente todos os
componentes necessários para a construção de um SO FLOSS, as tentativas anteriores de
desenvolver um kernel próprio não haviam obtido sucesso. Assim, com o surgimento do
Kernel Linux se preencheu essa lacuna e possibilitou a consolidação de um ecossistema
completo, amplamente adotado nas décadas seguintes.

Atualmente, existem inúmeras variações do GNU/Linux, adaptadas para operar de
forma otimizada em diferentes contextos e plataformas. O ecossistema GNU/Linux de-
sempenha um papel central na infraestrutura computacional global, sendo amplamente
utilizado em servidores, dispositivos de rede que compõem o núcleo da Internet, siste-
mas embarcados e ambientes educacionais. O acesso irrestrito ao código-fonte torna o
GNU/Linux uma referência prática e amplamente utilizada no ensino e na pesquisa em
sistemas operacionais.

No que se refere especificamente ao kernel Linux, o projeto vem sendo desenvolvido
de forma colaborativa há mais de 30 anos. Com o passar do tempo, o projeto torna-
se progressivamente maior e mais complexo. Além disso, o volume de contribuições
ao projeto também cresce rapidamente, de modo que uma única pessoa ou grupo não
consegue compreender e manter toda a base de código. Como solução, o modelo de
contribuição do kernel Linux emprega um modelo de cadeia de comando de forma a
dividir a responsabilidade de manutenção do projeto em porções menores, chamadas
de subsistemas. Cada subsistema possui um ou mais mantenedores responsáveis por
decidir quais mudanças (patches) são aceitas no subsistema correspondente. Assim, essas
mudanças vão subindo na hierarquia de processos até que Linus Torvalds as incorpore
em um lançamento oficial do Linux.

Esse modelo de desenvolvimento distribuído é fortemente sustentado pelo sistema de
controle de versão Git. O Git foi criado por Linus Torvalds em 2005 como resposta direta às
limitações das ferramentas existentes à época para lidar com o volume, a descentralização
e a velocidade do desenvolvimento do kernel Linux. Desde então, o Git tornou-se um
componente essencial do fluxo de trabalho do projeto, permitindo o versionamento eficiente
do código, a manutenção de múltiplas árvores de desenvolvimento e a integração segura
de contribuições oriundas de milhares de desenvolvedores distribuídos globalmente.

Apesar da existência do Git para o versionamento do código-fonte e plataformas
centralizadoras como GitHub e GitLab, o e-mail é o principal meio utilizado para propagar
mudanças entre contribuidores, mantenedores e demais participantes do processo de
revisão. As listas de discussão desempenham um papel fundamental nesse ecossistema,
atuando como o registro público e permanente das interações técnicas e sociais do de-
senvolvimento do kernel Linux.

completa de softwares livres para a sociedade, incluindo um sistema operacional completo.
2 Neste trabalho, a sigla “FLOSS” é usada para representar “Free Software”, “Open Source Software”(OSS), e
“Free/Open Source Software”(FOSS)

INTRODUÇÃO

3

Uma forma de acesso a esse histórico de comunicação é viabilizado por meio dos
arquivos do Lore, que agregam e mantêm atualizados os registros de todas as listas de
discussão relacionadas ao desenvolvimento do kernel Linux. Esses arquivos abrangem
desde listas de alto tráfego e longa duração, como a Linux Kernel Mailing List (LKML), até
listas de menor atividade ou já desativadas, como a linux-hotplug@vger.kernel.org.
No total, esses arquivos públicos compreendem dezenas de milhões de mensagens.

Nesse sentido, apesar de haver commits que descrevem e explicam explicitamente as
mudanças de cada patch nos históricos do Git, uma parcela significativa dos comentários
que viabilizaram a aceitação de contribuições, críticas que resultaram na rejeição de patches
e discussões conceituais que influenciaram decisões arquiteturais raramente são capturados
no histórico de commits do Git. Dessa forma, as listas de discussão constituem uma fonte
inestimável para compreender não apenas o que foi modificado no kernel, mas por que
e como essas decisões foram tomadas.

Neste contexto, este trabalho apresenta o dataset LKML5Ws, uma coleção abrangente
de contribuições extraídas de e-mails enviados às listas de discussão do kernel Linux. Para
cada contribuição, o conjunto de dados disponibiliza: (i) a modificação de código associada
(what); (ii) a data de submissão (when); (iii) os papéis dos colaboradores auxiliares identi-
ficados nos trailers (who); (iv) a lista de discussão de destino (where); e (v) a justificativa
apresentada pelo autor no corpo do e-mail (why).

Por fim, este Trabalho de Conclusão de Curso pode ser estruturado logicamente em
três seções principais. A primeira seção, composta por sete capítulos, apresenta a con-
textualização do processo de contribuição para o kernel Linux, abordando seus conceitos
fundamentais, fluxos de trabalho e softwares utilizados pela comunidade, bem como a
relevância desses softwares para a extração dos dados. A segunda seção descreve deta-
lhadamente a metodologia de coleta, interpretação, estruturação e armazenamento dos
dados, tudo em um formato de arquivo colunar. Por último, a terceira seção, contendo
três capítulos, apresenta os resultados obtidos, discute possíveis análises viabilizadas pelo
conjunto de dados, relaciona o trabalho com pesquisas existentes na literatura e aponta
limitações e direções para trabalhos futuros.

5

Capítulo 1

O Processo de Desenvolvimento e
Contribuição para o Kernel Linux

O modelo de desenvolvimento do kernel Linux difere bastante dos fluxos de trabalho
existentes em projetos modernos que utilizam plataformas centralizadas de colaboração,
como GitHub ou GitLab. Em essência, o kernel Linux caracteriza-se como um projeto
distribuído e descentralizado, estruturado a partir de uma hierarquia bem definida de
mantenedores e de um processo de revisão de código mediado pela troca de mensagens
por e-mail.

O fluxo de contribuição tem início no ambiente de desenvolvimento do próprio progra-
mador. Para que um patch seja considerado para inclusão, é necessário seguir um conjunto
de diretrizes de padronização que abrangem tanto boas práticas de codificação(Linux
Documentation, 2025d) quanto o princípio da atomicidade. Esse princípio estabelece que
cada commit deve representar uma única modificação lógica e atômica. Por exemplo, a
correção de um defeito em um driver de Wi-Fi e a alteração de uma variável no subsistema
Bluetooth devem ser submetidas como dois patches independentes. Além do mais, ao
final da mensagem de commit, o desenvolvedor deve obrigatoriamente incluir a linha
Signed-off-by, contendo seu nome e endereço de e-mail, certificando a autoria e o
direito de licenciamento do código, conforme definido pelo Developer Certificate of Origin
(DCO)(Linux Documentation, 2020).

Em contraste com o modelo tradicional de pull requests, a submissão de patches no kernel
Linux ocorre via e-mail. Para isso, o desenvolvedor utiliza scripts auxiliares disponibilizados
na própria árvore de código-fonte, como o get_maintainer.pl,1 para identificar a lista
de discussão apropriada e os mantenedores responsáveis pelo subsistema que está sendo
modificado. Por exemplo, ao propor uma modificação em um driver USB, o script pode
indicar o envio do patch para a lista linux-usb@vger.kernel.org, com cópia (CC) para
o mantenedor Greg Kroah-Hartman. O envio deve ser realizado estritamente em formato
texto plano, contendo a mensagem de commit e o diff correspondente das alterações
propostas. Quando múltiplos patches são enviados simultaneamente, formando um patchset,

1 código: https://archive.softwareheritage.org/browse/content/sha1_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/
?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl

https://archive.softwareheritage.org/browse/content/sha1_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl
https://archive.softwareheritage.org/browse/content/sha1_git:4414194bedcfd747bd24199b5de9ccf04bf6d227/?origin_url=https://github.com/torvalds/linux&path=scripts/get_maintainer.pl

6

1 | O PROCESSO DE DESENVOLVIMENTO E CONTRIBUIÇÃO PARA O KERNEL LINUX

torna-se necessária a inclusão de uma mensagem introdutória denominada cover letter,
cuja finalidade é contextualizar o objetivo geral das mudanças.

Após a recepção do e-mail pela lista de discussão, inicia-se o processo de revisão
propriamente dito. Inicialmente, ocorre a revisão por pares, na qual desenvolvedores da
comunidade examinam o código, sugerem melhorias e apontam eventuais falhas. Por
fim, os mantenedores do subsistema realizam a avaliação final. Durante esse processo,
são adicionadas ao commit diversas tags que sinalizam o estado da revisão, tais como
Reviewed-by, Acked-by e Tested-by, as quais serão detalhadas em seção posterior. É
importante destacar que raramente um patch é aceito em sua primeira versão (v1); na
maioria dos casos, o autor precisa submeter múltiplas iterações (v2, v3, etc.), incorporando
as sugestões e correções apontadas pela comunidade.

Uma vez aprovado, o patch inicia sua progressão na hierarquia de desenvolvimento. O
mantenedor do subsistema aplica a alteração na branch do subsistema e, periodicamente,
o conjunto de mudanças acumuladas nessas branches é integrado em uma branch inter-
mediária denominada linux-next(Linux Documentation, 2025a). O propósito dessa
etapa é identificar e resolver conflitos de integração entre diferentes subsistemas antes
que as alterações alcancem a branch principal.

O ciclo de desenvolvimento de uma nova versão do kernel é iniciado imediatamente
após o lançamento de uma versão estável anterior, com a abertura da chamada merge
window. Durante este período, que dura aproximadamente duas semanas, acontece o fluxo
de aceitação de código por Linus Torvalds, ele recebe e processa milhares de solicitações
de pull requests dos mantenedores de subsistemas. O critério para essa fase é que o código
submetido deve ser considerado "estável"e já ter passado por testes prévios em árvores de
integração (como a linux-next). Segundo a documentação oficial(Linux Documentation,
2025b), mudanças que não estiverem maduras ou que não foram integradas a tempo para
a janela de merge devem aguardar o próximo ciclo de desenvolvimento.

Ao final dessas duas semanas, Linus Torvalds declara o fechamento da merge window e
publica a primeira versão candidata, denominada -rc1 (Release Candidate 1). A partir deste
momento, o foco do desenvolvimento muda: se deixa de aceitar novas funcionalidades
para priorizar a estabilidade do sistema. O objetivo principal dessa fase passa a ser a
identificação e correção de regressões.2

O processo segue com lançamentos de novas versões candidatas (-rc2, -rc3, etc.). O
ciclo de estabilização dura, em média, entre sete e dez semanas. A decisão de publicar a
versão final e estável cabe a Linus Torvalds, quando o volume de correções críticas diminui
a um nível que indique maturidade do código.

Uma vez publicada a versão estável na árvore Mainline, a responsabilidade por sua
manutenção é mudada. Enquanto Linus inicia o próximo ciclo de desenvolvimento, uma
equipe dedicada à manutenção de versões estáveis (Stable Team) assume o suporte da versão
recém-lançada. O processo de manutenção estável consiste em correções de segurança e
de erros críticos que foram descobertos na árvore principal. Essas versões são numeradas
com um terceiro dígito (ex: 6.1.1, 6.1.2) e são as bases utilizadas por distribuições como

2 defeitos introduzidos por mudanças recentes que fazem com que o sistema pare de funcionar como funcio-
nava anteriormente.

1 | O PROCESSO DE DESENVOLVIMENTO E CONTRIBUIÇÃO PARA O KERNEL LINUX

7

Fedora, Ubuntu e Debian para fornecer um sistema robusto e seguro aos seus usuários
finais. Algumas dessas versões são selecionadas para suporte de longo prazo (LTS - Long
Term Support), garantindo atualizações de segurança por vários anos.

9

Capítulo 2

Infraestrutura de Comunicação e
Arquitetura de E-mail no Linux

Para compreender o ecossistema de desenvolvimento do kernel Linux, é fundamental
analisar não apenas o processo de escrita e submissão de código, mas também o funcio-
namento das listas de discussão (mailing lists) e da infraestrutura de e-mails em sistemas
Unix/Linux. Nesse contexto, uma mailing list atua, essencialmente, como um mecanismo
de redistribuição de mensagens, funcionando como um “refletor” ou multiplexador de
comunicações entre seus participantes.

No contexto do servidor vger.kernel.org, responsável por hospedar as principais
listas associadas ao projeto do Kernel Linux, o gerenciamento dessas listas é realizado,
predominantemente o sistema mlmmj.1 Substituindo o antigo software Majordomo.2 Para
realizar uma inscrição hoje, o usuário deve enviar um e-mail, preferencialmente vazio, para
o endereço da lista desejada seguido da extensão +subscribe(Linux Documentation,
2025f), como no exemplo linux-kernel+subscribe@vger.kernel.org.

Ao receber essa solicitação, o servidor ignora o conteúdo do e-mail e inicia um processo
de confirmação automática, enviando uma mensagem de retorno para validar a identidade
do remetente e evitar cadastros maliciosos ou acidentais. A inscrição só é efetivada após o
usuário responder a esse e-mail de confirmação, momento em que seu endereço é registrado
na base de dados e ele passa a receber as mensagens enviadas à lista. Esse modelo de
interação baseada em endereços também simplifica o cancelamento da participação, que
segue a mesma lógica ao utilizar o sufixo +unsubscribe, garantindo um gerenciamento
mais seguro e eficiente para os colaboradores do projeto.

O tráfego dessas mensagens depende da interação coordenada entre diferentes agentes
e protocolos, cada qual desempenhando funções específicas na arquitetura de e-mails
em sistemas Unix/Linux.

1 https://codeberg.org/mlmmj/mlmmj
2 https://subspace.kernel.org/vger.kernel.org.html\#what-happened-to-majordomo

https://codeberg.org/mlmmj/mlmmj
https://subspace.kernel.org/vger.kernel.org.html\#what-happened-to-majordomo

10

2 | INFRAESTRUTURA DE COMUNICAÇÃO E ARQUITETURA DE E-MAIL NO LINUX

2.1 Agentes de Transporte e o Protocolo SMTP
O envio e o roteamento de mensagens através da Internet são executados pelo protocolo

SMTP (Simple Mail Transfer Protocol).3 O software responsável por implementar esse
protocolo e encaminhar as mensagens até seus destinos é denominado MTA (Mail Transfer
Agent) (Dent, 2003). No ambiente Linux, exemplos conhecidos de MTAs incluem Postfix,
Exim e Sendmail. O MTA atua como um servidor de e-mail: ele recebe a mensagem do
usuário ou de outro servidor, resolve o endereço de destino por meio do DNS e realiza o
transporte da mensagem através da rede até o servidor destinatário.

2.2 Agentes de Entrega e Armazenamento
Uma vez que a mensagem alcança o servidor de destino, o MTA delega a etapa final

do processo ao MDA (Mail Delivery Agent),4 como os softwares Dovecot ou Procmail. A
função do MDA consiste em armazenar a mensagem em um diretório local do usuário. No
ecossistema Linux, o formato de armazenamento mais difundido é o Maildir. Diferente de
formatos mais antigos, como o mbox, que concatenam as mensagens que chegam em um
único arquivo, o Maildir armazena cada e-mail em um arquivo de texto individual. Essa
abordagem garante atomicidade nas operações de escrita e reduz o risco de corrupção de
dados em cenários concorrentes. A estrutura básica do Maildir(Unix Documentation,
2025) é organizada nos seguintes diretórios:

• /Maildir/tmp/: armazena mensagens em processo de escrita ou entrega pelo
MDA;

• /Maildir/new/: contém mensagens entregues com sucesso, mas ainda não aces-
sadas pelo usuário;

• /Maildir/cur/: reúne mensagens que já foram visualizadas ou processadas por
um cliente de e-mail.

2.3 Protocolos de Acesso e Leitura (IMAP versus
NNTP)

Para que o usuário final possa acessar as mensagens armazenadas, são disponibilizados
protocolos de leitura, dentre os quais mais conhecidos são o POP35 e o IMAP.6 Este
último é o mais utilizado em in-boxes pessoais, pois permite a sincronização do estado
das mensagens entre servidor e cliente.

Já o protocolo NNTP (Network News Transfer Protocol)7 é particularmente eficiente na

3 https://datatracker.ietf.org/doc/html/rfc5321
4 https://dl.acm.org/doi/pdf/10.17487/RFC5068
5 https://www.ietf.org/rfc/rfc1939.txt
6 https://datatracker.ietf.org/doc/html/rfc3501
7 https://datatracker.ietf.org/doc/html/rfc3977

https://datatracker.ietf.org/doc/html/rfc5321
https://dl.acm.org/doi/pdf/10.17487/RFC5068
https://www.ietf.org/rfc/rfc1939.txt
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3977

2.3 | PROTOCOLOS DE ACESSO E LEITURA (IMAP VERSUS NNTP)

11

distribuição de grandes volumes de mensagens organizadas em estruturas hierárquicas de
discussão (threads). Ele opera como um fluxo de notícias, possibilitando que os clientes
obtenham rapidamente apenas os cabeçalhos de milhares de mensagens. Dessa forma, a
estrutura completa das discussões pode ser reconstruída localmente, enquanto o conteúdo
integral das mensagens é transferido apenas sob demanda.

13

Capítulo 3

Introdução sobre o kernel lore
archive

O lore.kernel.org é a principal plataforma de arquivamento e interface web das
listas de discussão oficiais do Kernel Linux e de seus subprojetos relacionados. Ele atua como
o ponto centralizado de acesso aos arquivos de e-mails relacionados ao desenvolvimento
do Kernel, desempenhando papel fundamental na organização das comunicações técnicas
do projeto.

Sua principal função é assegurar que toda a comunicação do ecossistema, incluindo
discussões técnicas, submissões de patches e processos de revisão de código, seja armaze-
nada de forma permanente, clonável e facilmente pesquisável. Dessa maneira, o Kernel
Lore Archive contribui diretamente para a transparência e rastreabilidade do processo
de desenvolvimento do Kernel Linux.

Do ponto de vista técnico, o lore.kernel.org baseia-se no software public-inbox,
cuja arquitetura e funcionamento serão abordados de forma mais aprofundada na seção
subsequente. Essa infraestrutura é mantida e operada pela própria comunidade do Kernel
Linux, de acordo com os princípios de desenvolvimento aberto que direcionam o projeto.

O objetivo central do lore.kernel.org é oferecer à comunidade múltiplas formas de
acesso ao histórico das discussões técnicas. Esse acesso pode ocorrer por meio de uma
interface web, pela clonagem direta dos repositórios que armazenam os e-mails ou ainda
através do protocolo NNTP.

Sendo assim, o lore.kernel.org desempenha um papel crucial no ecossistema do
Kernel Linux, ao manter um registro histórico completo das decisões técnicas, debates e
da evolução do código-fonte ao longo do tempo. Trata-se da principal ferramenta utilizada
pelos desenvolvedores para localizar patches recentes, revisar o histórico de modificações
de componentes específicos e sincronizar espelhos (mirrors1) dos arquivos de listas de
discussão.

1 um mirror (espelho) é uma cópia exata ou fiel de um site, servidor ou conjunto de dados, hospedada em um
servidor diferente do original. Essa técnica é usada para replicar dados em tempo real ou periodicamente,
garantindo que a informação esteja disponível em múltiplos locais geográficos ou máquinas.

15

Capítulo 4

Arquitetura do Public-Inbox

O public-inbox1 é o software por baixo do lore.kernel.org. Ele é um software de
código aberto com o propósito é fornecer uma solução descentralizada para arquivamento
de listas de discussão (mailing lists) para a comunidade de software livre e comunidades
técnicas, ele utiliza o git como mecanismo principal para realizar esse armazenamento.
Ele foi projetado para complementar ou substituir os sistemas tradicionais de listas de
discussão, garantindo uma comunicação permanentemente arquivada, facilmente acessível
e de fácil replicação.

O public-inbox é uma caixa de ferramentas que se utiliza de várias tecnologias para
servir determinados propósitos.

4.1 Armazenamento e versionamento baseado em
Git

O uso do git no public-inbox(Public-Inbox Documentation, 2025c) é uma forma de
deixar o armazenamento e o versionamento fácil e imutável, pois ele transforma a lista
de e-mail em repositório git aproveitando todas as ferramentas git padrão para guardar
esse histórico. Cada e-mail é convertido em um objeto Blob (Binary Large Object),2 que é a
estrutura usada pelo git para armazenamento de dados de arquivos. Para que esse blob seja
parte do histórico, ele precisa ser referenciado por um objeto Tree e, subsequentemente, por
um objeto commit. Assim, o objeto blob armazena o conteúdo do e-mail, que se transforma
em um objeto commit, assim esse blob é referenciado dentro do Tree do commit com um
nome específico, que é determinado pelo message-id do e-mail.

O public-inbox, com versão v2(Public-Inbox Documentation, 2025d), também tem
a funcionalidade de dividir os arquivos em múltiplos repositórios chamados de “épocas”
(epochs). Em resumo, as épocas são múltiplos repositórios Git, divididos por tamanho, que
juntos formam o arquivo completo da caixa de entrada. Como os repositórios das listas
de discussão do kernel Linux podem crescer para centenas de gigabytes. O git tem um

1 https://public-inbox.org/public-inbox-overview.html
2 é um objeto usado para armazenar o conteúdo binário de um arquivo

https://public-inbox.org/public-inbox-overview.html

16

4 | ARQUITETURA DO PUBLIC-INBOX

dificuldade de lidar com esses repositórios muito extensos. Assim, o public-inbox faz a
divisão do repositório em uma série de épocas, como git/0.git, git/1.git, git/2.git,
e assim por diante, cuja segmentação é divida em aproximadamente um gigabytes. Essa
funcionalidade permite limitar o crescimento do histórico em qualquer repositório único,
tornando a clonagem e a manutenção mais eficientes.

Ao ser um “repositório Git",3 todo o arquivo pode ser facilmente clonado, espelhado
e transferido para novos servidores sem perda ou divisão do histórico, garantindo a
descentralização.

4.2 Ingestão de mensagens
O software também oferece formas de capturar e injetar esses e-mails no arquivo Git.

Diferente de um gerenciador de listas tradicional, que foca na distribuição para assinantes
da lista, o public-inbox foca na preservação e acessibilidade das mensagens. Isso pode
ser feito de forma passiva, através do public-inbox-watch,4 que monitora diretórios
Maildir ou servidores externos para espelhar mensagens, ou de forma ativa, atuando como
um MDA(Public-Inbox Documentation, 2025b). Neste último caso, ele é integrado a
um MTA (como o Postfix) para receber mensagens e alimentá-las instantaneamente no
repositório Git, garantindo que esteja sempre sincronizado com o tráfego da lista.

4.3 Modelo de acesso de e-mail
O public-inbox oferece três formas de acesso aos e-mails armazenados nele, a primeira

forma é por clonagem do repositório git, como já mencionado antes, a segunda é através
de uma interface web subindo um servidor HTTP, permitindo consultas, visualização e
navegação toda baseada em HTML (o que foi muito importante, pois para conseguir os
e-mails em formato texto simples, esse trabalho utilizou essa funcionalidade, como irá
ser especificado mais a frente) e a terceira forma é NNTP permite que os usuários leiam
o arquivo através do Network News Transfer Protocol, o que significa que o arquivo pode
ser acessado como um grupo de notícias.

4.4 Indexação e pesquisa
Para tornar os arquivos de listas de discussão facilmente acessíveis e pesquisáveis, o

public-inbox utiliza um mecanismo de full-text search,5 capaz de transformar um repo-
sitório Git essencialmente estático, eficiente para fins de armazenamento e distribuição,
porém inadequado para consultas em larga escala, em um sistema de pesquisa rápido
e otimizado. Essa funcionalidade é particularmente relevante para a visualização das

3 diferentemente de repositório comum, quando se clona um repositório de e-mails, os dados dos e-mails
estão contidos apenas nos arquivos .git.

4 https://public-inbox.org/public-inbox-watch.html
5 é um mecanismo que permite pesquisar palavras, termos e frases em grandes volumes de texto de forma

rápida e inteligente.

https://public-inbox.org/public-inbox-watch.html

4.4 | INDEXAÇÃO E PESQUISA

17

mensagens por meio da interface HTTP, na qual a capacidade de busca eficiente é um
requisito fundamental.

Embora o Git oferece, nativamente, mecanismos de pesquisa, como o comando git
grep, tal abordagem é inviável quando aplicada em um repositório contendo milhões de
arquivos, como ocorre nos arquivos das listas de discussão do Kernel Linux. Para contornar
essa limitação, o public-inbox integra-se ao Xapian,6 uma biblioteca de recuperação de
informação baseada em modelos probabilísticos, projetada para lidar de forma eficiente
com grandes volumes de dados textuais.

Durante o processo de indexação(Public-Inbox Documentation, 2025a), o public-
inbox percorre os objetos do tipo blob armazenados no repositório Git e realiza o proces-
samento necessário para popular o banco de dados do Xapian. Importante ressaltar que
o Xapian não armazena o conteúdo integral das mensagens, uma vez que esse texto já
se encontra preservado no repositório Git. Em vez disso, o sistema constrói um índice
invertido, estrutura de dados que associa termos relevantes aos documentos nos quais
eles ocorrem.

Nesse processo, o public-inbox decompõe cada e-mail em seus componentes funda-
mentais, incluindo cabeçalhos, como From, To e Subject, e o corpo da mensagem. Essas
informações são então encaminhadas ao Xapian, que realiza a tokenização dos termos e
aplica técnicas de normalização linguística, como a redução de palavras ao seu radical
(stemming)(Xapian Documentation, 2025). Como resultado, variações morfológicas de
um mesmo termo, como “patching”, “patched” e “patches”, são indexadas sob um único radi-
cal, por exemplo “patch”, permitindo que uma única consulta recupere todas as ocorrências
semanticamente relacionadas.

Além disso, o Xapian possibilita a atribuição de prefixos contextuais aos termos indexa-
dos,7 permitindo diferenciar a ocorrência de uma mesma palavra conforme sua posição na
mensagem. Dessa forma, o public-inbox pode mapear termos encontrados no assunto, nos
cabeçalhos ou no corpo do e-mail para prefixos distintos, assegurando que, por exemplo, a
palavra “Linux” presente no campo Subject seja tratada de maneira diferente daquela lo-
calizada no corpo da mensagem. A tabela 4.1 explicita os prefixos utilizados e os respectivos
componentes do e-mail aos quais estão associados.

Campo do E-mail Prefixo Xapian
(Convenção)

Exemplo de Termo
Indexado

From (Autor) A (Author) Alinus (para "Linus")
Subject (Assunto) S (Subject) Skernel
Thread ID G (Group/Thread) G<msg-id>
Message-ID Q (Unique ID) Q<2023...@example.com>
Date (Armazenado como Value) Unix Timestamp
Body (Corpo) (Sem prefixo) kernel, bug, fix

Tabela 4.1: Prefixos usados pelo Xapian para otimizar pesquisas.

6 https://xapian.org
7 https://public-inbox.org/public-inbox-searchquery.html

https://xapian.org
https://public-inbox.org/public-inbox-searchquery.html

18

4 | ARQUITETURA DO PUBLIC-INBOX

Para cada mensagem indexada, o Xapian cria uma entrada denominada documento,8
que armazena, entre outras informações, o identificador do blob correspondente no repo-
sitório Git, usualmente representado por seu hash SHA-1. Assim, quando uma consulta
é realizada, o Xapian retorna os identificadores dos documentos que correspondem aos
termos pesquisados. Em seguida, o public-inbox utiliza o blob ID associado para recuperar
o conteúdo original diretamente do repositório Git e apresentá-lo ao usuário.

4.5 Estabilidade e portabilidade de links
Uma característica adicional do public-inbox é a garantia de persistência e estabilidade

dos links para mensagens arquivadas. Os permalinks9 são estruturados com base no
cabeçalho Message-ID (definido pela RFC 532210), que funciona como um identificador
globalmente único para cada e-mail (Figura 4.1). Ao adotar o Message-ID na composição
das URLs, o sistema assegura que as referências permaneçam válidas mesmo diante de
migrações de infraestrutura ou mudanças de domínio. Como consequência, preserva-se
a integridade das referências históricas, evitando a quebra de citações e facilitando a
auditabilidade do processo de desenvolvimento ao longo do tempo, independentemente
da evolução tecnológica dos servidores de hospedagem.

Figura 4.1: Representação das URLs padronizadas no public-inbox.

8 https://xapian.org/docs/glossary.html
9 URLs fixos e descritivos que direcionam para um conteúdo específico em um site (como um post, página ou

artigo), projetados para não mudar.
10 https://www.tech-invite.com/y50/tinv-ietf-rfc-5322.html

https://xapian.org/docs/glossary.html
https://www.tech-invite.com/y50/tinv-ietf-rfc-5322.html

19

Capítulo 5

LEI (Local Email Interface)

O LEI (Local Email Interface)1 é uma ferramenta desenvolvida no ecossistema do public-
inbox e do lore.kernel.org com o objetivo de mitigar o problema da sobrecarga de
e-mails enfrentados por desenvolvedores de software livre. Em projetos de grande escala,
como o Kernel Linux, o volume diário de mensagens pode tornar inviável a assinatura
integral de listas de discussão. Nesse contexto, o LEI atua como uma interface que permite
aos desenvolvedores criar assinaturas virtuais baseadas em regras de busca, recebendo
apenas o subconjunto de mensagens relevantes para o seu trabalho, sem a necessidade
de se inscrever em listas completas.

Do ponto de vista de software, o LEI é um utilitário de linha de comando que converte
consultas avançadas realizadas sobre os arquivos do public-inbox em feeds de e-mail
personalizados, os quais são entregues diretamente na caixa de entrada do usuário, seja em
formato Maildir local ou por meio de servidores IMAP remotos(Ryabitsev, 2021). Dessa
forma, o fluxo de trabalho baseado em e-mail é preservado, ao mesmo tempo em que se
reduz drasticamente o ruído de informação.

Entre suas funcionalidades, o LEI é capaz de realizar o download direto de mensa-
gens armazenadas no lore.kernel.org ou em quaisquer outros servidores configurados
na consulta. Para isso, ele utiliza a sintaxe de busca fornecida pelo Xapian (Figura 5.1),
permitindo a formulação de consultas complexas que combinam múltiplos critérios, tais
como caminhos de arquivos, nomes de funções, campos específicos do cabeçalho e termos
presentes no corpo das mensagens.

Figura 5.1: Exemplo de query aceita pelo LEI.

Neste exemplo2 de utilização acima, o LEI pode formular uma consulta que selecione

1 https://public-inbox.org/lei.html
2 referência: https://people.kernel.org/monsieuricon/lore-lei-part-1-getting-started

https://public-inbox.org/lei.html
https://people.kernel.org/monsieuricon/lore-lei-part-1-getting-started

20

5 | LEI (LOCAL EMAIL INTERFACE)

mensagens que:

• referenciem arquivos específicos, por meio do prefixo "dfn";

• mencionem determinadas funções, utilizando o prefixo "dfhh";

• contenham o termo “floppy” no campo Subject, indicado pelo prefixo "s";

• mencionem termos como “bug” ou “regression” em conjunto com “floppy” no corpo
da mensagem;

• estejam restritas a um intervalo temporal específico, como o último mês, por meio
do operador rt;

Ao executar o comando "lei q <consulta>", o LEI realiza a busca da mensagem
correspondente com base na consulta definida e entrega as mensagens correspondentes
em uma pasta local (Maildir) ou em uma caixa postal remota via IMAP.

De forma resumida, o LEI simplifica significativamente o acesso seletivo às listas
de discussão relevantes, ao permitir que desenvolvedores tenham apenas os e-mails de
interesse por meio da sintaxe de consultas do Xapian. Além disso, a ferramenta mantém
o controle das mensagens já processadas, evitando o download de e-mails previamente
entregues em execuções anteriores.

21

Capítulo 6

O software B4

O B41 é um utilitário de linha de comando muito utilizado pelos desenvolvedores
do Kernel Linux para automatizar e simplificar o fluxo de trabalho de desenvolvimento.
Conforme discutido anteriormente, o processo de desenvolvimento do Kernel Linux de-
pende da submissão de código na forma de patches enviados por e-mail. Esse modelo
envolve múltiplas versões de um mesmo patch, ciclos sucessivos de revisão, a inclusão de
assinaturas e trailers de validação, bem como o acompanhamento de threads de discussão
associadas a cada modificação proposta.

Nesse contexto, o B4 foi concebido com o objetivo de abstrair a complexidade desse fluxo
de trabalho. A ferramenta substitui cadeias extensas de comandos manuais, frequentemente
suscetíveis a erros, por operações mais simples, consistentes e padronizadas, reduzindo
o esforço cognitivo do desenvolvedor e aumentando a confiabilidade do processo de
manipulação de patches.

Para desenvolvedores responsáveis por receber, revisar e aplicar patches em suas
branches Git, o B4 se mostra particularmente vantajoso. A ferramenta permite a recuperação
automática de threads completas a partir dos arquivos de listas de discussão, a comparação
entre diferentes versões de um mesmo patch (v1, v2, v3, etc.) e a extração estruturada das
informações relevantes contidas nos e-mails. Entre essas informações destacam-se tanto
os metadados quanto elementos fundamentais do corpo das mensagens, como os trailers
de revisão e o conteúdo propriamente dito dos diffs associados aos patches.

Essa capacidade de coletar e organizar dados de forma consistente foi essencial para o
desenvolvimento deste trabalho, uma vez que exemplifica formas consistentes de extrair
os metadados das listas de discussão.

1 https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/mricon/b4

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/mricon/b4

23

Capítulo 7

O que são trailers

De modo geral, trailers são linhas padronizadas de metadados adicionadas ao final da
mensagem de commit do Git ou ao corpo de um patch submetido por e-mail. Sua finalidade
é registrar, de forma explícita e estruturada, o histórico de participação, responsabilidade e
validação dos diferentes colaboradores envolvidos em um determinado patch.

No contexto do desenvolvimento do Kernel Linux, os trailers desempenham um papel
central, pois fornecem um registro formal de autoria, revisão e aprovação das contribuições.
Esse mecanismo é fundamental para sustentar o modelo de desenvolvimento distribuído
adotado pelo projeto, bem como para garantir conformidade com o Developer Certificate
of Origin (DCO), que estabelece as condições legais para a submissão e redistribuição
do código.

Do ponto de vista sintático, os trailers seguem um padrão de pares Chave: Valor,
normalmente no formato:

Nome-do-Trailer: Nome Completo do autor <email@exemplo.com>

Essa padronização permite que ferramentas automatizadas rastreiem e processem o
fluxo de um patch ao longo das listas de discussão, desde sua submissão inicial até sua
eventual integração ao repositório principal. Por convenção(Git Documentation, 2025),
os trailers são posicionados ao final da mensagem de commit, após a descrição detalhada
da alteração, e geralmente separados do restante do texto por uma linha em branco e pelo
delimitador "---", utilizado em patches enviados por e-mail.

Uma vez que o patch é aplicado, os trailers passam a integrar permanentemente os
metadados do commit, tornando-se visíveis e auditáveis por meio de comandos como git
log. Dessa forma, preserva-se um histórico das decisões técnicas e das responsabilidades
associadas a cada modificação.

No desenvolvimento do Kernel Linux, os trailers mais relevantes(Linux Documen-
tation, 2025e) estão diretamente associados à autoria, à responsabilidade técnica e à
validação formal do código, os principais são:

• Signed-off-by: Trata-se do trailer mais essencial e, em praticamente todos os casos,
obrigatório. Ele indica que o autor concorda explicitamente com os termos do DCO

24

7 | O QUE SÃO TRAILERS

e declara possuir o direito de submeter o código sob a licença do projeto, permitindo
seu uso e redistribuição.

• Acked-by: Utilizado para sinalizar que um mantenedor ou revisor concorda com a
alteração, ou com parte dela, ainda que não tenha realizado uma revisão aprofundada
ou testes extensivos. É comumente usado por mantenedores de subsistemas para
aprovar mudanças que impactam suas áreas de responsabilidade.

• Reviewed-by: Indica que o patch foi efetivamente revisado por um colaborador, que
analisou o código de forma detalhada e considera que ele cumpre seu propósito,
está correto do ponto de vista técnico e segue as diretrizes de codificação do Kernel
Linux.

• Tested-by: Aponta que o patch foi testado com sucesso em um ambiente específico,
fornecendo evidência prática de que a alteração funciona conforme esperado.

• Suggested-by / Reported-by: Esses trailers são utilizados para atribuir crédito a
colaboradores que sugeriram a modificação ou relataram o defeito que motivou a
criação do patch, reforçando a transparência e o reconhecimento das contribuições
indiretas ao desenvolvimento.

Em conjunto, os trailers constituem um mecanismo para a rastreabilidade e a auditabili-
dade do Kernel Linux, permitindo que o histórico de cada contribuição seja compreendido
de forma clara e verificável ao longo do tempo.

25

Capítulo 8

Metodologia de extração e
armazenamento de emails

O objetivo central deste trabalho se resume na extração integral dos e-mails disponíveis
na plataforma lore.kernel.org, com o propósito de disponibilizar essa massa de dados
de forma pública em um formato tabular, adequado à realização de consultas e análises.

Para alcançar esse objetivo, definiu-se uma metodologia composta por quatro etapas
principais. Inicialmente, buscou-se identificar um mecanismo eficiente para extrair e
armazenar localmente os e-mails hospedados na plataforma lore. Em seguida, realizou-se
à interpretação do conteúdo desses arquivos em formato textual bruto. A terceira etapa
envolveu o desenvolvimento de um processo de parsing para transformar os dados extraídos
em uma estrutura mais organizada, bem como a aplicação de tratamentos e normalizações
sobre esses dados estruturados. Por fim, os dados resultantes foram organizados em um
formato tabular, visando otimizar consultas e selecionar um formato de armazenamento
apropriado para essa finalidade.

8.1 Extração de e-mails
Durante a investigação das possíveis abordagens para a extração e o armazenamento

local dos e-mails arquivados no lore, foram identificadas diferentes estratégias. A primeira
delas consistiu na extração direto via HTTPS na instância do lore.kernel.org, utilizando
a ferramenta LEI (Local Email Interface), descrita anteriormente na seção 5. Essa ferramenta
tem como objetivo simplificar a aquisição de e-mails por meio de comandos de terminal
relativamente simples.

Entretanto, esse método mostrou-se pouco adequado para a extração em larga escala.
A plataforma lore impõe limitações de segurança que interrompem downloads superiores
a aproximadamente 100 MB, o que inviabiliza a obtenção completa de grandes volumes
de dados por meio dessa abordagem. Em razão disso, essa estratégia foi descartada como
método principal de extração direta. Ainda assim, a ferramenta LEI não foi abandonada,
sendo reaproveitada em uma etapa posterior do processo.

Diante dessas limitações, optou-se por uma segunda abordagem, o download direto

26

8 | METODOLOGIA DE EXTRAÇÃO E ARMAZENAMENTO DE EMAILS

dos repositórios de e-mails do Kernel Linux disponibilizados pela plataforma lore em
formato Git. A própria documentação1 do lore descreve como qualquer usuário pode clonar
esses repositórios (Figura 8.1) e configurar um servidor local que espelha o conteúdo
disponibilizado publicamente.

Figura 8.1: Exemplo de instrução no Lore para realizar o mirror dos dados.

Internamente, a plataforma lore é baseada no software public-inbox, conforme discutido
na seção 4. O funcionamento desse sistema consiste, essencialmente, na extração dos e-
mails armazenados nos repositórios Git e na criação de referências para cada mensagem
em um banco de dados full-text search, com o objetivo de viabilizar consultas eficientes.
Nesse contexto, comandos como public-inbox-init são responsáveis por configurar o
servidor local com informações como o caminho do repositório Git, a versão do software
utilizada e a URL de serviço dos e-mails, enquanto o comando public-inbox-index
realiza a indexação das mensagens no banco de dados de busca.

Essa abordagem foi a escolhida neste trabalho para viabilizar a extração completa
dos e-mails. Inicialmente, realizou-se o download do repositório de interesse. Em seguida,
configuraram-se as informações essenciais do public-inbox, procedeu-se com a indexação
das mensagens e, por fim, iniciou-se um servidor executando em localhost. A partir desse
ambiente local, a ferramenta LEI foi novamente utilizada, desta vez não para acessar
diretamente o servidor remoto do lore, mas sim o servidor public-inbox localmente confi-
gurado. Essa estratégia permitiu a extração integral dos e-mails desejados, os quais foram
armazenados no diretório Maildir/cur em formato plain text, viabilizando as etapas
subsequentes de processamento e análise.

8.2 Interpretação dos dados contidos nos e-mails
Após a extração e o armazenamento local de todos os e-mails, tornou-se necessário

compreender a estrutura interna dessas mensagens e definir uma estratégia para extrair
informações relevantes a partir de arquivos em formato de texto simples. Para isso, foi
fundamental analisar o padrão de estruturação de e-mails no formato .eml2 extensão
comumente utilizada para representar mensagens individuais contendo, em um único
arquivo, todo o conteúdo do e-mail, bem como lidar com os diferentes esquemas de

1 fonte: https://lore.kernel.org/gfs2/_/text/mirror/
2 é um padrão de arquivo de texto simples usado para salvar e-mails individuais, contendo todo o conteúdo

(cabeçalho, corpo, anexos, formatação) de uma mensagem, seguindo as normas RFC 822/5322.

https://lore.kernel.org/gfs2/_/text/mirror/

8.2 | INTERPRETAÇÃO DOS DADOS CONTIDOS NOS E-MAILS

27

codificação (encoding) presentes nas mensagens, de modo a garantir a conversão adequada
para o padrão UTF-8.

A interpretação dos arquivos no formato .eml parte do entendimento de que esses
arquivos podem ser logicamente divididos em duas seções principais.3 A primeira corres-
ponde ao cabeçalho (header), que contém informações essenciais da mensagem, tais como
remetente (From), destinatário (To), assunto (subject), identificadores únicos (Message-
ID), referências a mensagens anteriores no caso de respostas (In-Reply-To), além de
metadados técnicos, como o esquema de codificação utilizado (charset). A segunda seção
corresponde ao corpo da mensagem (body), que, no contexto de submissão de patches,
foco deste trabalho, foi subdividida em três partes conceituais: (i) a mensagem textual
do contribuidor, na qual o autor descreve a motivação e o contexto da alteração; (ii) a
seção de trailers, cuja relevância é significativa por permitir rastrear revisões, aprovações
e interações entre desenvolvedores; e (iii) o próprio patch, que contém o código-fonte
proposto para integração.

Diferentemente do cabeçalho, que segue uma estrutura relativamente rígida baseada
em pares chave–valor, o corpo do e-mail não possui um formato estritamente padronizado.
Por se tratar de uma mensagem livre, não há delimitadores universais que definam, de
forma explícita, o início e o fim de cada uma de suas seções. Essa ausência de estrutura
formal representou um desafio substancial para a extração automática e consistente das
informações contidas no corpo das mensagens.

Inicialmente, buscou-se desenvolver algoritmos de parsing baseados na estrutura conhe-
cida dos arquivos .eml. Nessa abordagem, o cabeçalho é interpretado como um conjunto
de campos no formato Chave: Valor, enquanto o corpo da mensagem é identificado
a partir da primeira quebra de linha em branco que separa o cabeçalho do conteúdo
textual. A partir desse padrão, tentou-se construir um algoritmo capaz de abranger o maior
número possível de variações de e-mails, com o objetivo de estruturar adequadamente
as informações extraídas.

Entretanto, essa estratégia mostrou-se limitada diante da grande diversidade de for-
matos e estilos presentes nos e-mails arquivados no lore, o que dificultou a construção
de um parser universal e robusto. Diante dessa complexidade, optou-se pela utilização
da biblioteca Email,4 nativa da linguagem Python, que oferece suporte completo para
o parsing e a estruturação dessas mensagens. Essa biblioteca interpreta o conteúdo do
e-mail e o encapsula em uma estrutura de dados do tipo EmailMessage, abstraindo grande
parte das particularidades sintáticas do formato .eml. Para evitar erros decorrentes de
decodificação prematura, os arquivos são inicialmente lidos em formato binário, essa
abordagem é crucial porque as mensagens de e-mail no lore frequentemente utilizam
diferentes esquemas de codificação (encodings)5 em uma mesma estrutura. Um único
e-mail pode apresentar cabeçalhos em US-ASCII, um corpo de mensagem em UTF-8 e
fragmentos de patches ou anexos em ISO-8859-1, permitindo que a biblioteca consiga fazer
a interpretação corretamente do conteúdo.

3 fonte: https://datatracker.ietf.org/doc/html/rfc822
4 https://docs.python.org/3/library/email.html
5 https://en.wikipedia.org/wiki/Character_encoding

https://datatracker.ietf.org/doc/html/rfc822
https://docs.python.org/3/library/email.html
https://en.wikipedia.org/wiki/Character_encoding

28

8 | METODOLOGIA DE EXTRAÇÃO E ARMAZENAMENTO DE EMAILS

Outro desafio relevante enfrentado durante o desenvolvimento do parser foi a iden-
tificação e o tratamento adequado dos diferentes esquemas de codificação presentes nas
mensagens. Como as contribuições ao Kernel Linux provêm de desenvolvedores distribuí-
dos globalmente, é comum que tanto o corpo quanto determinados campos do cabeçalho
utilizem codificações distintas do UTF-8, como o padrão ISO-8859-1. Esse problema foi
igualmente mitigado por meio da biblioteca Email do Python, que identifica automatica-
mente o campo chaset 6 (Figura 8.2) especificado nos metadados da mensagem e realiza a
decodificação apropriada para UTF-8, garantindo a uniformização do texto para as etapas
subsequentes de processamento e análise.

Figura 8.2: Exemplo do campo chaset preenchido.

8.3 Parser dos dados
Conforme discutido na seção anterior, a utilização da biblioteca Email da linguagem

Python foi fundamental para a correta interpretação e estruturação dos cabeçalhos das
mensagens, bem como para a identificação precisa do corpo (body) e o tratamento adequado
da codificação (enconding). No entanto, para os objetivos deste trabalho, tornou-se também
relevante a extração de informações específicas contidas no corpo do e-mail, em especial
os trailers e o código propriamente dito, normalmente apresentados na forma de um
git diff.

De modo geral, os e-mails que contêm submissões de patches seguem um formato
relativamente padronizado(Linux Documentation, 2025c). Inicialmente, a mensagem
apresenta um texto introdutório no qual o desenvolvedor descreve as alterações propostas
e as motivações para sua implementação. Em seguida, encontra-se a seção de trailers,
normalmente iniciada por um campo Signed-off-by, que referencia o autor do commit
e formaliza a concordância com o Developer Certificate of Origin. Por fim, na parte final
do corpo do e-mail contém o patch em si (Figura 8.3), geralmente precedido por um
delimitador padrão, como uma linha iniciada por "---".

Com base nessa estrutura, buscou-se selecionar e extrair os dados que fossem re-
levantes tanto no contexto de mensagens de e-mails quanto no contexto específico do
desenvolvimento do Kernel Linux. Assim, para a definição do esquema de dados do dataset,
foram utilizados campos do cabeçalho presentes em praticamente todos os e-mails, tais

6 RFC que define esse padrão: https://www.ietf.org/rfc/rfc2045.txt

https://www.ietf.org/rfc/rfc2045.txt

8.3 | PARSER DOS DADOS

29

Figura 8.3: Exemplo de e-mail que segue um padrão bem definido de body.

como From, To, Cc, Subject e Date (Figura 8.4). Esses campos foram representados como
strings, com exceção do campo Date, que foi convertido para o tipo Datetime, visando
facilitar consultas temporais.

No que diz respeito à identificação única das mensagens e às relações de encadeamento
entre e-mails, foram definidos três campos adicionais: message-id, que representa o
identificador único da mensagem; in-reply-to, que indica o e-mail ao qual a mensagem
atual responde; e references, que aponta para o e-mail ou conjunto de patches ao qual a
discussão está associada. Conforme explicado na seção 1, é comum que desenvolvedores
submetam conjuntos de patches por meio de um e-mail inicial que fornece uma visão geral
das alterações, seguido por mensagens individuais contendo cada patch (patchset) (Figura
8.5). Nesse contexto, o campo references desempenha um papel central, pois permite
vincular não apenas os e-mails de resposta a um patch específico, mas também ao e-mail
introdutório que contextualiza a modificação como um todo.

Com o objetivo de otimizar consultas e análises posteriores, como já foi dito, o corpo
do e-mail foi subdividido em três campos distintos. O primeiro, denominado raw_body,
armazena o conteúdo completo do corpo da mensagem. O segundo, chamado code, contém
exclusivamente o código do patch, isto é, o git diff associado à modificação proposta.
Por fim, o campo trailers que foi definido como uma lista de estruturas (structs), nas quais
cada elemento armazena, o tipo do trailer (por exemplo, Signed-off-by, Tested-by,
Reviewed-by) e as informações do desenvolvedor associado, incluindo nome e endereço
de e-mail (Figura 8.6).

No que se refere ao processo de extração dessas informações, inicialmente optou-se pela
utilização de expressões regulares (regex7), para identificar padrões específicos ao longo

7 regex é uma sequência de caracteres que define um padrão de busca para encontrar, validar ou manipular

30

8 | METODOLOGIA DE EXTRAÇÃO E ARMAZENAMENTO DE EMAILS

Figura 8.4: Exemplo de um header de e-mail.

Figura 8.5: Ilustração de uma hierarquia de e-mails exibida pela plataforma Lore. O e-mail mais
acima é uma mensagem de apresentação de mudanças, seguindo temos na ordem de indentação os
patchs em si com as trocas de mensagens logo abaixo.

do corpo do e-mail. Contudo, essa abordagem mostrou-se limitada, uma vez que, apesar
da existência de um formato predominante, há uma grande quantidade de mensagens que
apresentam variações sutis, como diferenças na posição dos elementos, uso de caracteres
não padronizados ou pequenas alterações na formatação (Figura 8.7). Considerando que
o objetivo deste trabalho é catalogar e estruturar o maior número possível de e-mails,
tornou-se evidente que um conjunto restrito de expressões regulares não seria suficiente
para lidar com a diversidade presente nos dados do lore.

Diante dessa limitação, optou-se por estudar o funcionamento do software B4, que já

textos.

8.4 | ORGANIZAÇÃO DOS DADOS EM FORMATO COLUNAR

31

Figura 8.6: Esquema de dados do dataset.

disponibiliza mecanismos consolidados para a extração de trailers e de código a partir de
e-mails de patch. A partir da análise de seu código-fonte8 e da replicação parcial de sua
lógica, foi possível aprimorar significativamente as funções de extração desenvolvidas neste
trabalho. Essas melhorias incluíram a aplicação de etapas adicionais de padronização e
normalização do texto, o uso de expressões regulares mais especializadas para tratar corner
cases, bem como a substituição e limpeza de caracteres que dificultavam a identificação
correta dos elementos, seguindo estratégias semelhantes às empregadas pelo B4.

8.4 Organização dos dados em formato colunar
Após o processo de tratamento e padronização dos dados, buscou-se uma forma eficiente

de disponibilizar o dataset de maneira pública. O uso do formato CSV9 foi descartado devido

8 https://archive.softwareheritage.org/browse/content/sha1_git:3d774f70c026a84a380798e7d1133a5686d4b371/
?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py

9 é um formato de arquivo de texto simples usado para armazenar dados tabulares (como planilhas ou
bancos de dados), onde cada linha representa um registro e os campos (colunas) são separados por vírgulas,
facilitando a troca de dados entre diferentes programas.

https://archive.softwareheritage.org/browse/content/sha1_git:3d774f70c026a84a380798e7d1133a5686d4b371/?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py
https://archive.softwareheritage.org/browse/content/sha1_git:3d774f70c026a84a380798e7d1133a5686d4b371/?origin_url=https://github.com/mricon/b4&path=src/b4/__init__.py

32

8 | METODOLOGIA DE EXTRAÇÃO E ARMAZENAMENTO DE EMAILS

Figura 8.7: Exemplo de e-mail que não segue o padrão proposto.

ao elevado volume de dados coletados, o que tornaria tanto o armazenamento quanto
o processamento pouco eficientes. Diante desse cenário, optou-se pela utilização de um
formato de armazenamento colunar, projetado especificamente para análise e manipulação
de grandes volumes de dados.

Diferentemente de formatos orientados a linhas, como CSV ou planilhas eletrônicas,
nos quais os dados são armazenados registro a registro, os formatos colunares organizam
as informações por coluna. Em outras palavras, todos os valores de um mesmo atributo,
como From, To, Cc, entre outros, são armazenados de forma contígua. Essa organização
favorece significativamente a compressão dos dados, uma vez que valores pertencentes
à mesma coluna tendem a apresentar alta similaridade, o que potencializa a eficiência
dos algoritmos de compressão. Além disso, formatos colunares armazenam metadados
estatísticos, como valores mínimos e máximos por bloco, o que permite a leitura seletiva
dos dados e reduz o volume de informações que precisa ser carregado durante a execução
de consultas analíticas.

Entre os formatos colunares mais amplamente utilizados destacam-se Parquet e ORC,
ambos projetos open source mantidos pela Apache Software Foundation. Para este trabalho,

8.4 | ORGANIZAÇÃO DOS DADOS EM FORMATO COLUNAR

33

optou-se pelo uso do formato Parquet por dois motivos principais. Primeiramente, trata-
se de um formato amplamente adotado pela indústria e pela comunidade acadêmica, o
que resulta em maior disponibilidade de documentação e ferramentas de suporte. Em
segundo lugar, o Parquet apresenta excelente desempenho para leitura de dados altamente
comprimidos(Ivanov e Pergolesi, 2020), característica alinhada com o volume e a natureza
do dataset gerado neste projeto.

Além disso, foi adotada a estratégia de Hive Partitioning (ou particionamento Hive),
que consiste em uma convenção de organização dos arquivos em diretórios hierárquicos,
baseada nos valores de uma ou mais colunas do conjunto de dados. Nesse modelo, os
arquivos Parquet são armazenados em uma estrutura de diretórios que reflete diretamente
os valores das colunas de particionamento.

Essa abordagem contribui de forma significativa para a eficiência das consultas, pois
permite que os mecanismos de processamento de dados realizem partition pruning,10 isto
é, acessem apenas os subconjuntos relevantes dos dados, evitando a leitura desnecessária
de arquivos que não atendem aos critérios da consulta (Figura 8.8).

Figura 8.8: Ilustração da organização do Hive partition de acordo com as listas de discussão.

Como consequência, esse tipo de organização viabiliza consultas analíticas mais efi-
cientes, como, por exemplo (Programa 8.1):

Assim, o motor de busca não precisa percorrer todos os dados, ele apenas irá na
partição que interessa.

10 https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\
#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D

https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/partition-pruning.html\#GUID-E677C85E-C5E3-4927-B3DF-684007A7B05D

34

8 | METODOLOGIA DE EXTRAÇÃO E ARMAZENAMENTO DE EMAILS

Programa 8.1 Exemplo de query feita em Python carregando o arquivo Parquet.

1 import polars as pl
2
3 dataset = pl.scan_parquet("parsed/list=*/list_data.parquet")
4 ctx = pl.SQLContext(emails=dataset)
5
6 # Note que 'list' se torna uma coluna disponível por causa das pastas
7 query = """ SELECT * FROM emails WHERE list = 'bpf' AND date >= '2023-01-01'

AND date <= '2023-12-31' """
8
9 resultado = ctx.execute(query).collect() print(resultado)

35

Capítulo 9

Como executar o projeto

Para executar o projeto, é necessário inicialmente realizar o clone do repositório do
código-fonte.1 Além disso, o ambiente no qual o projeto será executado deve possuir os
pacotes Make e Docker previamente instalados e corretamente configurados.

Após a instalação das dependências, o próximo passo consiste na configuração do
arquivo config.yml (Figura 9.1), localizado na raiz do projeto. Esse arquivo é responsável
por definir os parâmetros de execução, incluindo a lista de discussão do Kernel Linux da
qual os e-mails serão extraídos, bem como os filtros aplicados para a recuperação das
mensagens. Esses filtros seguem a mesma lógica e sintaxe das queries utilizadas pela
ferramenta LEI, conforme descrito na seção 5 deste trabalho.

Figura 9.1: Exemplo de configuração do arquivo config.yml.

Com o arquivo de configuração devidamente ajustado, deve-se executar, a partir da
raiz do projeto, o seguinte comando para a construção da imagem Docker :

1 link do repositório: https://gitlab.com/dudiszzz/tcc

https://gitlab.com/dudiszzz/tcc

36

9 | COMO EXECUTAR O PROJETO

make build

Esse comando é responsável por preparar o ambiente de execução, incluindo a ins-
talação das dependências necessárias e a configuração dos serviços utilizados ao longo
do fluxo de extração e processamento dos dados.

Em seguida, o projeto pode ser executado por meio de dois modos distintos. O modo
padrão, sem interação com o usuário, pode ser iniciado com o comando:

make run

Alternadamente, é possível executar o projeto em modo interativo utilizando o co-
mando:

make run-it

Nesse modo, é apresentado um menu interativo (Figura 9.2) que permite a execução
individual das diferentes etapas do fluxo de extração, processamento e armazenamento
dos dados, possibilitando maior controle e flexibilidade durante a execução.

Figura 9.2: Menu interativo do projeto.

Por fim, o projeto disponibiliza um conjunto de testes unitários que podem ser exe-
cutados com o comando:

make test

Para a execução dos testes, é necessário que o interpretador da linguagem Python
esteja instalado localmente na máquina, uma vez que essa etapa não é executada dentro
de um container Docker.

37

Capítulo 10

Resultados

O conjunto de dados resultante deste trabalho possui grande escala. Ao todo, foram
coletados mais de 200 GB de dados brutos de e-mails, correspondentes a mais de 20
milhões de mensagens, que foram posteriormente interpretadas (parsed) e compactadas
em aproximadamente 55 GB de arquivos em formato Parquet. O dataset cobre 345 listas
de discussão, das quais cerca de 50% contêm mais de 13.000 e-mails, enquanto o quartil
superior (25%) reúne mais de 50.000 mensagens por lista, evidenciando a elevada atividade
de determinados subsistemas do kernel.

Esse volume expressivo de dados possibilita a realização de análises comparativas
detalhadas entre subsistemas do Kernel Linux, bem como investigações aprofundadas
sobre características fundamentais do seu processo de desenvolvimento e manutenção. Em
particular, ele permite observar padrões de interação, revisão e suporte da comunidade
que não são capturados por dados tradicionais de controle de versão.

Ao longo da última década, a comunidade do Kernel Linux tem manifestado preo-
cupações recorrentes acerca de possíveis limitações de escalabilidade do modelo atual
(maintainership) do projeto (Corbet, 2013; Dean, 2020; Edge, 2018; Vetter, 2017). Estu-
dos recentes, baseados em revisões de literatura, sugerem que essas preocupações não se
restringem a percepções individuais de colaboradores, mas podem refletir um problema
estrutural mais profundo no modelo de desenvolvimento do Linux (Pinheiro e Meirelles,
2024; Tadokoro et al., 2025; Wen, 2021).

Tanto este trabalho quanto os esforços anteriores de pesquisa buscam investigar empi-
ricamente se há evidências que sustentem tais alegações de insustentabilidade, frequente-
mente associadas ao fenômeno conhecido como maintainer overload. Nesse contexto, foi
recentemente desenvolvido o DUKS (Dashboard for Unified Kernel Statistics) (R. Passos
et al., 2025), com o objetivo de apoiar análises quantitativas e temporais do desenvolvimento
do kernel. O dataset apresentado neste trabalho, denominado LKML5Ws, é particularmente
relevante para esse tipo de investigação, pois permite capturar a quantidade significa-
tiva de esforço humano, interação social e discussão técnica que precede a aceitação de
uma contribuição, aspectos que não são visíveis apenas por meio dos dados de commits
armazenados no Git.

Como exemplo de aplicação do dataset, é possível analisar a atuação dos contribuidores

38

10 | RESULTADOS

Figura 10.1: Gráfico ilustrativo da variação do número de testadores e revisores ao longo do tempo.

de apoio, como revisores e testadores, por meio da leitura da coluna trailers, que registra
explicitamente tags como Reviewed-by e Tested-by. Além disso, a presença de múltiplas
listas de discussão no conjunto de dados permite comparações entre subsistemas distintos
do kernel.

Ao comparar as listas linux-iio, amd-gfx, intel-gfx e rust-for-linux, utilizando
uma sliding window de dois meses ao longo dos últimos cinco anos, observa-se um com-
portamento heterogêneo na evolução da participação comunitária. Apesar das diferenças
no número absoluto de colaboradores em cada lista, a figura 10.1 evidencia tendências
divergentes no crescimento ou declínio do número de revisores e testadores desde 2020.

Os resultados indicam uma tendência de crescimento consistente na participação
de revisores e testadores no subsistema amd-gfx, enquanto o subsistema intel-gfx
apresenta uma tendência oposta. Para o subsistema linux-iio, os dados sugerem relativa
estabilidade, com pouca variação na participação da comunidade ao longo do período
analisado. Em contrapartida, a lista rust-for-linux, mais recente, demonstra uma rápida
atração de colaboradores, refletindo o interesse crescente da comunidade na adoção da
linguagem Rust no Kernel Linux.

Esses resultados ilustram como o dataset pode orientar pesquisadores na identificação
de potenciais gargalos (bottlenecks) no processo de desenvolvimento do kernel. No caso
específico do subsistema linux-iio, por exemplo, pode ser necessário aprofundar a análise

10 | RESULTADOS

39

utilizando métricas complementares, como o número de patches submetidos, rejeitados
e aprovados, a fim de avaliar se a aparente estabilidade na participação de revisores e
testadores representa um risco à sustentabilidade do subsistema a médio ou longo prazo.

41

Capítulo 11

Trabalhos relacionados

Em consequência da incrível adoção e popularidade que o projeto do Kernel Linux foi
conquistando ao longo dos anos, vários pesquisadores de engenharia de software fizeram
estudos relacionados ao Kernel e seu modelo de desenvolvimento. Desde a caracterização
do desenvolvimento de Software Livre (Balaguer et al., 2017; Dias et al., 2021) até servir
como um estudo de caso ideal para ferramentas de análise de software (Occhipinti et al.,
2023; Suvorov et al., 2012), o kernel tem servido amplamente à comunidade de Engenharia
de Software. Além disso, o uso de listas de e-mail (mailing lists) como o principal meio de
comunicação em projetos de Software Livre também tem sido foco de trabalhos anteriores
(Guzzi et al., 2013; Schneider et al., 2016).

E por consequência, a comunidade de mineração de repositórios de software (mining
software repositories) tem contribuído com datasets que apoiam estudos sobre projetos
de Software Livre e o próprio kernel do Linux.

No sentido de caracterizar e compreender os colaboradores de Software Livre, Robles et
al. (Robles et al., 2014) realizaram uma pesquisa com mais de dois mil desenvolvedores para
capturar informações demográficas, formações educacionais e profissionais e preferências
pessoais de desenvolvimento.

Nas pesquisas de Passos, Czarnecki (L. Passos e Czarnecki, 2014) e German et al.
(German et al., 2015) criaram grandes conjuntos de dados que mostram a evolução da
base de código do kernel do Linux. Enquanto Passos e Czarnecki trazem uma perspectiva
única orientada a recursos (feature oriented), German et al. se concentram em agregar
os dados do Git de múltiplas árvores em um repositório unificado, que eles chamam de
super-repositório Git do Linux.

No entanto, nem Passos, Czarnecki ou German et al. exploram as listas de e-mail
do Linux. O trabalho de Xu e Zhou (Xu e Zhou, 2018) é particularmente relevante para
esse projeto, pois os autores criam um conjunto de dados com mais de 660 mil patches
enviados por e-mail e armazenados no site Linux Patchwork(referenciar) e os commits Git
aos quais esses patches se relacionam. Como o trabalho restringiu-se a apenas o arquivo
Patchwork, isso limitou o conjunto de dados dos autores a menos de 120 listas de e-mail
e a coleta de 9 anos de e-mails, enquanto esse trabalho se preocupou em coletar dados
de mais de 15 anos de desenvolvimento.

42

11 | TRABALHOS RELACIONADOS

Por fim, vale a pena ressaltar que o trabalho de Xu e Zhou não analisa informações
relacionadas aos trailers e inclui apenas threads que contêm patches, enquanto nesse
trabalho também incluí-se e-mails de discussão (discussion threads).

43

Capítulo 12

Conclusão

Embora as motivações iniciais deste trabalho fossem especificamente voltadas à criação
de um conjunto de dados capaz de contribuir para investigações sobre gargalos decorrentes
da sobrecarga de mantenedores, o dataset criado demonstra potencial para apoiar uma
ampla gama de estudos futuros. Do ponto de vista de escala, a expressiva quantidade
de e-mails coletados fornece uma boa base para análises aprofundadas dos padrões de
comunicação entre desenvolvedores, bem como entre desenvolvedores, mantenedores
e revisores.

Além disso, trabalhos futuros podem, por exemplo, investigar a prevalência e os impac-
tos de comentários grosseiros e rudes nas listas de discussão do kernel Linux(Ehsani et al.,
2024; Gachechiladze et al., 2017), buscando responder a questões como: existe correlação
entre a ocorrência de interações rudes e a escassez de mantenedores em determinadas
listas? A incivilidade tem aumentado ou diminuído ao longo do tempo? Além do mais, o
conjunto de dados possibilita identificar quais tipos de problemas são mais frequentemente
apontados durante o processo de revisão de código(Gonçalves et al., 2025; Rahman et al.,
2025), como duplicação de código, complexidade excessiva ou questões de legibilidade.

Uma das contribuições mais relevantes do conjunto de dados LKML5Ws decorre da
estrutura adotada para o corpo de cada e-mail, segmentado em três partes: uma seção de
trailers, uma seção de código e o conteúdo inteiro da mensagem. Essa organização permite
que estudos futuros explorem comparações entre métricas extraídas de diferentes branches
e subsistemas do kernel, com o objetivo de analisar os impactos dos diferentes modelos
de manutenção adotados ao longo da evolução do projeto.

De forma mais específica, o dataset viabiliza investigações como: quais subsistemas
apresentam o menor número de revisores por patch submetido? Quais exibem a maior razão
entre linhas de código modificadas e o número de mantenedores ativos? O comprimento
médio da descrição dos patches varia de maneira significativa entre diferentes árvores
do kernel?

Apesar de suas contribuições, o LKML5Ws apresenta algumas limitações. Em particular,
determinados e-mails podem aparecer duplicados quando uma mesma mensagem é enviada
para múltiplas listas de discussão hospedadas no lore.kernel.org. Esse aspecto pode ser
tratado em extensões futuras do conjunto de dados. Conforme descrito na publicação do

44

12 | CONCLUSÃO

DUKS(R. Passos et al., 2025), trabalho que serviu de inspiração para este projeto, pretende-
se integrar as informações extraídas das listas de discussão com dados do histórico de
versões coletadas a partir do Software Heritage(Pietri et al., 2019).

Essa integração poderá explorar o modelo de indexação baseado em hash adotado
pelo Software Heritage, no qual as alterações de código são indexadas por meio de um
ID exclusivo que usa um hash da própria alteração de código. Esse mecanismo impede o
armazenamento de conteúdo duplicado e, quando aplicado ao corpo completo dos e-mails,
permitirá a eliminação de mensagens redundantes no conjunto de dados LKML5Ws.

Além disso, extensões futuras podem explorar a flexibilidade da abordagem de coleta
adotada neste trabalho para incluir mensagens provenientes de outros grandes projetos de
Software Livre. Projetos do ecossistema GNU (como Emacs e GCC) e da Apache (como
HTTPD e Superset) disponibilizam arquivos de listas de discussão no formato MBOX para
seus diversos subprojetos. A incorporação desses dados, especialmente os mais antigos, é
particularmente relevante, considerando que apenas cerca de 25% dos e-mails atualmente
presentes no conjunto de dados foram enviados antes de 2014.

Por fim, espera-se que este trabalho de conclusão de curso, ao apresentar um conjunto
de dados com mais de 20 milhões de e-mails distribuídos em 345 listas de discussão
hospedadas no arquivo Kernel Lore, ofereça uma visão ampla e abrangente do processo de
desenvolvimento do kernel Linux ao longo de sua história. Ao evidenciar no que consiste
cada contribuição (what), quando ela foi inicialmente concebida (when), quem participou
de sua revisão e aprovação (who), para qual lista foi submetida (where) e por que se
tornou, ou não, parte do código do kernel (why), o LKML5Ws tem o potencial de alimentar
pesquisas futuras sobre os aspectos técnicos e sociais que caracterizam um dos projetos
de Software Livre mais representativos da atualidade.

45

Referências

[Balaguer et al. 2017] Federico Balaguer et al. “Assessing code authorship: the case
of the linux kernel”. In: Open Source Systems: Towards Robust Practices. Springer-
Charm, 2017, pp. 151–163 (citado na pg. 41).

[Corbet 2013] Jonathan Corbet. On saying "no". Out. de 2013. url: lwn.net/Articles/
571995/ (acesso em 05/11/2025) (citado na pg. 37).

[Dean 2020] Sam Dean. The maintainer’s paradox: balancing project and community.
Dez. de 2020. url: https://www.linuxfoundation.org/blog/blog/the-maintainers-
paradox-balancing-project-and-community (acesso em 05/11/2025) (citado na
pg. 37).

[Dent 2003] Kyle D. Dent. Postfix: The Definitive Guide: A Secure and Easy-to-Use MTA
for UNIX. Sebastopol, CA: O’Reilly Media, Inc., 2003. isbn: 9781449378790 (citado
na pg. 10).

[Dias et al. 2021] Edson Dias et al. “What makes a great maintainer of open source
projects?” In: International Conference on Software Engineering (ICSE). IEEE, mai. de
2021, pp. 982–994. doi: 10.1109/ICSE43902.2021.00093 (citado na pg. 41).

[Edge 2018] Jake Edge. Too many lords, not enough stewards. Jan. de 2018. url: lwn.net/
Articles/745817/ (acesso em 05/11/2025) (citado na pg. 37).

[Ehsani et al. 2024] Ramtin Ehsani, Mia Mohammad Imran, Robert Zita, Kostadin
Damevski e Preetha Chatterjee. “Incivility in open source projects: a com-
prehensive annotated dataset of locked github issue threads”. In: Mining Software
Repositories Conference (MSR). ACM, 2024, pp. 515–519. isbn: 9798400705878. doi:
10.1145/3643991.3644887 (citado na pg. 43).

[Gachechiladze et al. 2017] Daviti Gachechiladze, Filippo Lanubile, Nicole Novi-
elli e Alexander Serebrenik. “Anger and its direction in collaborative software
development”. In: International Conference on Software Engineering: New Ideas and
Emerging Results Track (ICSE-NIER). IEEE, 2017, pp. 11–14. isbn: 9781538626757.
doi: 10.1109/ICSE-NIER.2017.18 (citado na pg. 43).

http://lwn.net/Articles/571995/
http://lwn.net/Articles/571995/
https://www.linuxfoundation.org/blog/blog/the-maintainers-paradox-balancing-project-and-community
https://www.linuxfoundation.org/blog/blog/the-maintainers-paradox-balancing-project-and-community
https://doi.org/10.1109/ICSE43902.2021.00093
http://lwn.net/Articles/745817/
http://lwn.net/Articles/745817/
https://doi.org/10.1145/3643991.3644887
https://doi.org/10.1109/ICSE-NIER.2017.18

46

REFERÊNCIAS

[German et al. 2015] Daniel M. German, Bram Adams e Ahmed E. Hassan. “A dataset
of the activity of the git super-repository of linux in 2012”. In: Mining Software
Repositories Conference (MSR). IEEE, 2015, pp. 470–473. isbn: 9780769555942 (citado
na pg. 41).

[Git Documentation 2025] Git Documentation. git-interpret-trailers Documentation.
Documentação oficial do Git sobre manipulação de trailers em mensagens de
commit. 2025. url: https://git-scm.com/docs/git-interpret-trailers (acesso em
20/12/2025) (citado na pg. 23).

[Gonçalves et al. 2025] Pavlína Wurzel Gonçalves, Pooja Rani, Margaret-Anne Sto-
rey, Diomidis Spinellis e Alberto Bacchelli. “Code review comprehension:
reviewing strategies seen through code comprehension theories”. In: International
Conference on Program Comprehension (ICPC). 2025, pp. 589–601. doi: 10.1109/
ICPC66645.2025.00068 (citado na pg. 43).

[Guzzi et al. 2013] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger
e Arie van Deursen. “Communication in open source software development
mailing lists”. In: Mining Software Repositories Conference (MSR). IEEE, mai. de
2013, pp. 277–286. isbn: 978-1-4673-2936-1 (citado na pg. 41).

[Ivanov e Pergolesi 2020] Todor Ivanov e Max-Petre Pergolesi. “The impact of co-
lumnar file formats on sql-on-hadoop engine performance: a study on orc and par-
quet”. Concurrency and Computation: Practice and Experience 32.3 (2020), e5523. doi:
10.1002/cpe.5523. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5523
(citado na pg. 33).

[Linux Documentation 2020] Linux Documentation. Submitting patches: Sign your
work - the Developer’s Certificate of Origin. Documentação oficial do Kernel Linux,
versão 5.7. 2020. url: https://www.kernel.org/doc/html/v5.7/process/submitting-
patches.html#sign-your-work-the-developer-s-certificate-of-origin (acesso em
20/12/2025) (citado na pg. 5).

[Linux Documentation 2025a] Linux Documentation. How the development process
works: Next trees. Documentação oficial do processo de desenvolvimento (linux-
next). 2025. url: https://www.kernel.org/doc/html/latest/process/2.Process.html#
next-trees (acesso em 20/12/2025) (citado na pg. 6).

[Linux Documentation 2025b] Linux Documentation. How the development process
works: The Big Picture. Documentação oficial sobre o fluxo de desenvolvimento
do Kernel. 2025. url: https://www.kernel.org/doc/html/latest/process/2.Process.
html#the-big-picture (acesso em 20/12/2025) (citado na pg. 6).

[Linux Documentation 2025c] Linux Documentation. How to Get Your Change Into
the Linux Kernel (Submitting Patches). Guia oficial completo sobre o processo
de submissão e revisão de patches. 2025. url: https : / /www.kernel .org/doc/
Documentation/process/submitting-patches.rst (acesso em 20/12/2025) (citado na
pg. 28).

https://git-scm.com/docs/git-interpret-trailers
https://doi.org/10.1109/ICPC66645.2025.00068
https://doi.org/10.1109/ICPC66645.2025.00068
https://doi.org/10.1002/cpe.5523
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5523
https://www.kernel.org/doc/html/v5.7/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://www.kernel.org/doc/html/v5.7/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://www.kernel.org/doc/html/latest/process/2.Process.html#next-trees
https://www.kernel.org/doc/html/latest/process/2.Process.html#next-trees
https://www.kernel.org/doc/html/latest/process/2.Process.html#the-big-picture
https://www.kernel.org/doc/html/latest/process/2.Process.html#the-big-picture
https://www.kernel.org/doc/Documentation/process/submitting-patches.rst
https://www.kernel.org/doc/Documentation/process/submitting-patches.rst

REFERÊNCIAS

47

[Linux Documentation 2025d] Linux Documentation. Linux kernel coding style. Ver-
são da documentação oficial do processo de desenvolvimento do kernel. 2025. url:
https://www.kernel.org/doc/Documentation/process/coding-style.rst (acesso em
20/12/2025) (citado na pg. 5).

[Linux Documentation 2025e] Linux Documentation. Submitting patches: Using
Reported-by, Tested-by, Reviewed-by, Suggested-by and Fixes. Documentação oficial
sobre atribuição de créditos e metadados em patches do Kernel. 2025. url: https:
//www.kernel.org/doc/html/latest/process/submitting-patches.html#using-
reported - by - tested - by - reviewed - by - suggested - by - and - fixes (acesso em
20/12/2025) (citado na pg. 23).

[Linux Documentation 2025f] Linux Documentation. Subscribing to Linux kernel
mailing lists. Instruções oficiais para participação nas listas de discussão do Kernel.
2025. url: https://subspace.kernel.org/subscribing.html (acesso em 20/12/2025)
(citado na pg. 9).

[Occhipinti et al. 2023] Gianlorenzo Occhipinti, Csaba Nagy, Roberto Minelli e
Michele Lanza. “Syn: ultra-scale software evolution comprehension”. In: Interna-
tional Conference on Program Comprehension (ICPC). IEEE, mai. de 2023, pp. 69–73.
doi: 10.1109/ICPC58990.2023.00020 (citado na pg. 41).

[L. Passos e Czarnecki 2014] Leonardo Passos e Krzysztof Czarnecki. “A dataset of
feature additions and feature removals from the linux kernel”. In: Mining Software
Repositories Conference (MSR). ACM, 2014, pp. 376–379. isbn: 9781450328630. doi:
10.1145/2597073.2597124 (citado na pg. 41).

[R. Passos et al. 2025] Rafael Passos, Arthur Pilone, David Tadokoro e Paulo Meirel-
les. “Streamlining analyses on the linux kernel with duks”. In: Software Visualiza-
tion Conference(VISSOFT). IEEE, 2025, pp. 125–128. doi: 10.1109/VISSOFT67405.
2025.00025 (citado nas pgs. 37, 44).

[Pietri et al. 2019] Antoine Pietri, Diomidis Spinellis e Stefano Zacchiroli. “The
software heritage graph dataset: public software development under one roof”. In:
Mining Software Repositories Conference (MSR). IEEE, mai. de 2019, pp. 138–142.
isbn: 978-1-7281-3412-3 (citado na pg. 44).

[Pinheiro e Meirelles 2024] Eduardo Pinheiro e Paulo Meirelles. “Understanding
group maintainership model in the linux kernel development”. In: Software Visu-
alization, Maintenance and Evolution Conference (VEM). SBC, 2024, pp. 113–124
(citado na pg. 37).

[Public-Inbox Documentation 2025a] Public-Inbox Documentation. public-inbox-
index - create and update search indices for public-inbox. Documentação sobre
a ferramenta de indexação e motor de busca do public-inbox. 2025. url: https:
//public-inbox.org/public-inbox-index.html (acesso em 15/11/2025) (citado na
pg. 17).

https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://subspace.kernel.org/subscribing.html
https://doi.org/10.1109/ICPC58990.2023.00020
https://doi.org/10.1145/2597073.2597124
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://public-inbox.org/public-inbox-index.html
https://public-inbox.org/public-inbox-index.html

48

REFERÊNCIAS

[Public-Inbox Documentation 2025b] Public-Inbox Documentation. public-inbox-
mda - mail delivery agent for public-inbox. Documentação do agente de entrega de
e-mail do sistema public-inbox. 2025. url: https://public-inbox.org/public-inbox-
mda.html (acesso em 15/11/2025) (citado na pg. 16).

[Public-Inbox Documentation 2025c] Public-Inbox Documentation. public-inbox-
v1-format - public-inbox v1 repository format. Documentação técnica sobre o
formato de repositório e indexação de mensagens. 2025. url: https : / /public -
inbox.org/public-inbox-v1-format.html (acesso em 15/11/2025) (citado na pg. 15).

[Public-Inbox Documentation 2025d] Public-Inbox Documentation. public-inbox-
v2-format - public-inbox v2 repository format. Documentação técnica sobre o
formato de armazenamento escalável para arquivos de mensagens. 2025. url:
https://public-inbox.org/public-inbox-v2-format.html (acesso em 15/11/2025)
(citado na pg. 15).

[Rahman et al. 2025] Md Shamimur Rahman, Zadia Codabux e Chanchal K. Roy. “In-
vestigating the understandability of review comments on code change requests”.
In: Mining Software Repositories Conference (MSR). IEEE, 2025, pp. 539–551. doi:
10.1109/MSR66628.2025.00087 (citado na pg. 43).

[Robles et al. 2014] Gregorio Robles, Laura Arjona Reina, Alexander Serebrenik,
Bogdan Vasilescu e Jesús M. González-Barahona. “Floss 2013: a survey dataset
about free software contributors: challenges for curating, sharing, and combining”.
In: Mining Software Repositories Conference (MSR). ACM, mai. de 2014, pp. 396–399.
isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597129 (citado na pg. 41).

[Ryabitsev 2021] Konstantin Ryabitsev. lore + lei, part 2: Now with IMAP. Blog técnico
sobre infraestrutura e ferramentas do Kernel Linux. Jan. de 2021. url: https :
//people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap (acesso em
20/12/2025) (citado na pg. 19).

[Schneider et al. 2016] Daniel Schneider, Scott Spurlock e Megan Squire. “Diffe-
rentiating communication styles of leaders on the linux kernel mailing list”. In:
12th International Symposium on Open Collaboration. ACM, ago. de 2016, pp. 1–10.
isbn: 978-1-4503-4451-7. (Acesso em 20/04/2025) (citado na pg. 41).

[Suvorov et al. 2012] Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan,
Ying Zou e Bram Adams. “An empirical study of build system migrations in
practice: case studies on kde and the linux kernel”. In: Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 160–169. doi:
10.1109/ICSM.2012.6405267 (citado na pg. 41).

[Tadokoro et al. 2025] David Tadokoro, Rodrigo Siqueira e Paulo Meirelles. “Can
the linux kernel sustain 30 more years of growth? toward mitigating bottlenecks in
its development model”. In: Brazilian Symposium on Software Engineering (SBES).
SBC, 2025, pp. 845–851. doi: 10.5753/sbes.2025.11607 (citado na pg. 37).

https://public-inbox.org/public-inbox-mda.html
https://public-inbox.org/public-inbox-mda.html
https://public-inbox.org/public-inbox-v1-format.html
https://public-inbox.org/public-inbox-v1-format.html
https://public-inbox.org/public-inbox-v2-format.html
https://doi.org/10.1109/MSR66628.2025.00087
https://doi.org/10.1145/2597073.2597129
https://people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap
https://people.kernel.org/monsieuricon/lore-lei-part-2-now-with-imap
https://doi.org/10.1109/ICSM.2012.6405267
https://doi.org/10.5753/sbes.2025.11607

REFERÊNCIAS

49

[Unix Documentation 2025] Unix Documentation. maildir(5) - Linux manual page.
Documentação técnica sobre o formato de armazenamento de e-mail Maildir. 2025.
url: https://www.unix.com/man_page/linux/5/maildir/ (acesso em 20/12/2025)
(citado na pg. 10).

[Vetter 2017] Daniel Vetter. Maintainers don’t scale. Jan. de 2017. url: blog.ffwll.ch/
2017/01/maintainers-dont-scale.html (acesso em 05/11/2025) (citado na pg. 37).

[Wen 2021] Melissa Shihfan Ribeiro Wen. “What happens when the bazaar grows: a
comprehensive study on the contemporary Linux kernel development model”.
Tese de dout. São Paulo, Brasil: University of São Paulo, 2021 (citado na pg. 37).

[Xapian Documentation 2025] Xapian Documentation. Xapian Documentation:
Stemming. Documentação sobre algoritmos de radicalização para motores de
busca. 2025. url: https://xapian.org/docs/stemming.html (acesso em 15/11/2025)
(citado na pg. 17).

[Xu e Zhou 2018] Yulin Xu e Minghui Zhou. “A multi-level dataset of linux kernel
patchwork”. In: Mining Software Repositories Conference (MSR). IEEE, mai. de 2018,
pp. 54–57. url: https://ieeexplore.ieee.org/document/8595178/ (citado na pg. 41).

https://www.unix.com/man_page/linux/5/maildir/
http://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
http://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
https://xapian.org/docs/stemming.html
https://ieeexplore.ieee.org/document/8595178/

	Introdução
	O Processo de Desenvolvimento e Contribuição para o Kernel Linux
	Infraestrutura de Comunicação e Arquitetura de E-mail no Linux
	Agentes de Transporte e o Protocolo SMTP
	Agentes de Entrega e Armazenamento
	Protocolos de Acesso e Leitura (IMAP versus NNTP)

	Introdução sobre o kernel lore archive
	Arquitetura do Public-Inbox
	Armazenamento e versionamento baseado em Git
	Ingestão de mensagens
	Modelo de acesso de e-mail
	Indexação e pesquisa
	Estabilidade e portabilidade de links

	LEI (Local Email Interface)
	O software B4
	O que são trailers
	Metodologia de extração e armazenamento de emails
	Extração de e-mails
	Interpretação dos dados contidos nos e-mails
	Parser dos dados
	Organização dos dados em formato colunar

	Como executar o projeto
	Resultados
	Trabalhos relacionados
	Conclusão
	Referências

