
An exploration of dependent types for
data-centric programming

Eduardo Sandalo Porto (eduardo.sandalo@usp.br)
Supervisor: Prof. Ana Cristina Vieira de Melo
Department of Computer Science — University of São Paulo

Introduction
Type systems define rules that assign types to expressions of a language, and can

be backed by formalizations called type theories. The first (Russell, 1908) was devised
to be a logical foundation of mathematics, though it had issues. Dependently-typed
programming languages restore this goal with the "propositions as types" motto (Wadler,
2015), in which types correspond to mathematical propositions and programs to their
proofs. As such, they are used to both write programs and formally verify them.

Objectives
▶ Study dependent types

from the ground up;
▶ Apply a dependently-

typed language to
develop a verified data
frame implementation.

Untyped 𝜆-calculus
Most type theories have been developed within the 𝜆-

calculus, a formal system for computation. Its untyped
variant has the following syntax and evaluation:
𝜆-term 𝐸 ∶∶= 𝑥 (variable)

| 𝐸 𝐸 (application)
| 𝜆𝑥. 𝐸 (abstraction)

Definition (𝛽-reduction). ((𝜆𝑥.𝑀)𝑁) →
𝛽
𝑀[𝑥 ∶= 𝑁]

The untyped 𝜆-calculus is Turing-complete (Turing, 1936),
and as such, can be used to write any program. This also
means evaluation of terms may never halt, so a term may
not have a normal form. This makes it unfit as a proof
system, since it can lead to inconsistency.

Simply-typed 𝜆-calculus (STLC)
Adding types to 𝜆-terms forces their evaluation to halt.

type 𝑇 ∶∶= 𝛼 (constant)
| 𝑇 → 𝑇 (function)

𝐸 ∶∶= …

| 𝜆𝑥∶𝑇 . 𝐸

For each syntactic variant of a 𝜆-term, we define a type
assignment rule through Gentzen’s sequent calculus:

𝑥∶𝑇 ∈ Γ

Γ ⊢ 𝑥∶𝑇

Γ ⊢ 𝑀∶𝑆 → 𝑇 Γ ⊢ 𝑁∶𝑆

Γ ⊢ 𝑀 𝑁∶𝑇

Γ, 𝑥∶𝑆 ⊢ 𝑀∶𝑇

Γ ⊢ 𝜆𝑥.𝑀∶𝑆 → 𝑇

This calculus is equivalent to the implicational intuition-
istic propositional calculus. Variations of STLC add poly-
morphism through type quantification, allowing types to
depend on other types.

Dependently-typed 𝜆-calculus

Dependent type theories allow types to also depend on
terms. This way, functions can be from terms to terms,
types to terms and vice-versa, and types to types. One is
the Calculus of Constructions (Coquand and Huet, 1988).
Below is code in Lean 4 with a proof for 𝐴 ∨ 𝐵 → 𝐵 ∨ 𝐴:

Data-centric programming
In data-centric programming, the primary objective is

to represent, query and transform data. There are many
systems built with this purpose, such as SQL.
For this project, we decided to explore the Lean 4 pro-

gramming language by implementing a framework for
data frames akin to the pandas library (McKinney, 2010).
We started by adapting a similar library for Idris 2 by
Tejiščák (2020) and building upon it.
▶ Data frame representation

▶ Queries and transformations

Conclusion
Writing verified code is tricky, as the compiler might

not always infer proofs. However, Lean’s extensive macro
system allows creating simpler interfaces as domain-
specific languages, which improves the process. Our
framework could be used to define critically important
transformations, to later be translated to other languages.

References
▶ Coquand, Thierry and Gérard Huet (1988). “The calculus of constructions”.
▶ McKinney, Wes (2010). “Data Structures for Statistical Computing in Python”.
▶ Russell, Bertrand (1908). “Mathematical Logic as Based on the Theory of Types”.
▶ Tejiščák, Matúš (2020). idris-data-frame.
▶ Turing, Alan M. (1936). “On Computable Numbers, with an Application to the

Entscheidungsproblem”.
▶ Wadler, Philip (Nov. 2015). “Propositions as types”.

1


