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Resumo

Eduardo Sandalo Porto. Uma exploração de tipos dependentes em programação
centrada em dados. Monografia (Bacharelado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2024.

Sistemas de tipos definem regras que atribuem tipos a expressões de uma linguagem, e são objeto de

estudo da teoria dos tipos. A primeira teoria dos tipos foi concebida por Bertrand Russell no início do século

XX para ser um fundamento lógico da matemática, embora não tenha conseguido cumprir sua promessa.

Linguagens de programação com tipos dependentes restauram esse objetivo através da correspondência de

Curry-Howard, resumida pelo lema "proposições como tipos": tipos correspondem a proposições lógicas e

programas às suas provas. Como tal, podem ser usadas não apenas para escrever programas, mas também

para verificá-los formalmente.

O objetivo deste projeto é estudar tipos dependentes desde suas fundações e aplicá-los a um cenário real,

especificamente, a programação centrada em dados. O estudo de teoria dos tipos começa em sua concepção,

posteriormente aprofundando em sua conexão com o campo de linguagens de programação através do cálculo

lambda. Para isso, primeiro olhamos sua formulação não tipada, depois o cálculo lambda simplesmente

tipado, suas extensões dentro do cubo lambda, e finalmente estudamos teorias com tipos dependentes.

Os objetivos principais da programação centrada em dados são representar, consultar e transformar dados.

Um exemplo clássico é a linguagem SQL e ambientes relacionados, porém neste projeto nos concentramos

em ferramentas de análise exploratória de dados como a biblioteca pandas. Reimplementamos um sistema

de data frame na linguagem com tipos dependentes Lean 4 baseando-o em uma implementação existente

em Idris 2. O resultado foi uma linguagem de domínio específico com verificação formal para carregar,

consultar e transformar dados tabulares.

Concluímos que escrever programas verificados pode ser complexo, incluindo nossa implementação de

data frames e seu uso, mas pode ser benéfico para alguns casos. Processos exploratórios podem ser melhorados

ao recusarem operações semanticamente inválidas, mas nossa solução se destaca principalmente na escrita de

operações de dados para casos de uso críticos. Um próximo passo para o projeto é implementar um motor de

transpilação capaz de transformar consultas de nossa linguagem em sistemas conhecidos como pandas e R.

Palavras-chave: tipos dependentes. teoria dos tipos. programação centrada em dados.





Abstract

Eduardo Sandalo Porto. An exploration of dependent types for data-centric pro-
gramming. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2024.

Type systems define rules that assign types to expressions of a language, and are the subject of study

of type theory. The first theory of types was devised by Bertrand Russel in the early 20th century to be a

logical foundation of mathematics, although it couldn’t fulfill its promise. Dependently-typed programming

languages restore this goal through the Curry-Howard correspondence, summarized by the "propositions

as types" motto: types correspond to logical propositions and programs to their proofs. As such, they can

be used not only to write programs, but also to formally verify them.

The goal of this project is to study dependent types from the ground up and apply them to a real-world

scenario, namely, data-centric programming. The study of types starts at its conception, later deepening

into how it intertwined with the field of programming languages through the lambda calculus. To do so,

we first look at its untyped formulation, then the simply-typed lambda calculus, its extensions within the

lambda cube, and we finally study dependently-typed theories.

The primary goals of data-centric programming are to represent, query, and transform data. A classic

example is the SQL language and related environments, however for this project we focused on exploratory

data analysis tools like the pandas library. We re-implemented a data frame system in the dependently-typed

language Lean 4 basing it on an existing implementation in Idris 2. The result was a verified domain-specific

language to load, query, and transform tabular data.

We conclude that writing verified programs can be tricky, including our data frame implementation and

its usage, but can be beneficial for a few use cases. Exploratory processes can be improved by disallowing

semantically-invalid operations, but our solution shines most in writing data operations for critical use-cases.

A next step for the project is to implement a transpiling engine able to transform queries from our language

into well-known systems like pandas and R.

Keywords: dependent types. type theory. data-centric programming.
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Introduction

Background
Research within the field of programming languages (PL) is generally divided into three

main categories: theory, design, and implementation. The first deals with the mathematical
backing of programming languages, including formal syntax and semantic descriptions.
The second is more hands-on, dealing with the way humans interact and think about
programming. The third is about getting a language to run on a real computer, either
compiled to another language or interpreted by an existing system.

One of the common themes in all three subfields of PL is types. They are a way to encode
lightweight specification for parts of programs, providing modest formal verification
(Pierce, 2002). Their mathematical foundations can get quite involved, and their study
is called type theory. They are also extremely important to the design of a language,
affecting every line of code written in it. Finally, they can be tricky to implement in more
complex languages, and may require advancements in language implementation.

This means that types involve all main areas of programming language research, and
are a good introduction to it. This project is an attempt to present, explore, and apply
types in programming languages. To do it, we choose a specific topic in type theory to
study and afterwards apply it to another field.

For this project, we chose to deepen into the field of dependent types and apply it to
data-centric programming. Particularly, we wish to study the foundations of type theory,
working up our way to reach dependent types to see how they fit the overarching story, and
then utilize these types in a real-word scenario related to programming focused on data.

Thus, we divide this monograph into two parts: Part I contains the study of types from
their conception to the development of dependent type theories; in Part II we implement
a data frame library in the dependently-typed language Lean 4.

Chapter 1 is about the origin of type theory; Chapter 2 is about the untyped lambda
calculus, a system of computation over which we will build type systems; Chapter 3 is about
the simply-typed lambda calculus; and finally on Chapter 4 we discuss dependent types. For
the second part, Chapter 5 is about data-centric programming and data frames, Chapter 6
presents our data frame implementation, and Chapter 7 concludes our implementation
and the monograph.

For the rest of the introduction, we will briefly review the concepts of dependent types
and data-centric programming.
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INTRODUCTION

Dependent types
In statically-typed programming languages, dependent types are types that can depend

on values. That is, the language of types is able to use the language of (normally run-
time) values for its definitions. This has many implications One example in the Lean
programming language is the definition of a vector (Vect), which is a linked list with a
fixed size. See the following example:

1 inductive Vect (𝛼 : Type u) : Nat → Type u where
2 | nil : Vect 𝛼 0
3 | cons : 𝛼 → Vect 𝛼 n → Vect 𝛼 (n + 1)

Vectors can be created via two constructors: nil, which creates an empty vector (of
size 0), and cons, which creates a vector of size 𝑛 + 1 from another vector of size 𝑛. Vect is
treated as a type-level function (i.e., it returns a type) that receives as parameters another
type, and more interestingly, a natural number, which is a value. In usual programming
languages, both functional and imperative, this kind of computation is not expressible.

This is useful not only for the sake of expressivity, but also for practical formal verifica-
tion. The Curry-Howard correspondence, discussed in Section 3.6 and Section 4.1.3, states
that there is an isomorphism between certain type systems and logic systems. Specifically,
the type system behind the Lean programming language is correspondent to higher-order
logic, which allows the language to state and prove mathematical theorems. Below is a
very simple example of this correspondence, proving modus ponens in Lean.

1 def modus_ponens {P Q : Prop} : P → (P → Q) → Q :=
2 fun (p : P) (f : P → Q) => f p

So, dependent types allow us to both write programs and prove properties about
these programs. This is extremely useful for any application critical enough to warrant
verification, and being able to write programs and proofs in the same language is a great
advantage over similar verification systems. As McKinna (2006) argues, dependently
typed programs are proof carrying codes by their nature, and they provide a flexible means
to provide verification up to the point needed. That is, they can offer both lightweight
assertions and full-blown proven specifications. We discuss more how dependent types
are relevant for programming in Chapter 4.

Data-centric programming
Programs centered on data have as their main purpose representing, querying and

transforming data and data structures. The most commonly studied data-centric systems
are databases, with programming done on data-centric languages like SQL. In our work,
we focus on data frames as defined by McKinney (2010), which are flexible tabular data
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structures centered on data analysis and manipulation. Thus, our objective is to build a
data frame library in Lean leveraging the power of dependent types. We go into deeper
detail on this in Chapter 6, although the main idea will be to require and generate proofs of
certain properties before for specific operations. Although we could go quite far through
this lens, our work mostly uses dependent types for a primary feature, which is column

pointers. They are data structures that can serve both as proof that a data frame contains
a column and as an instruction on how to extract it.
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Part I

Type theory
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Chapter 1

Russell’s Paradox and the theory of
types

In this chapter, we present a brief history and description of Bertrand Russell’s original
theory of types, showing where the need for type theories stems from and the original
principles that guided them. As we will see, it was shown after the conception of this work
that the original theory was quite troublesome to work as a foundation of mathematics,
but it still paved the way for how type theories are used in programming today.

1.1 Developments of set theory

The late 19th and early 20th century comprised many turning points in mathematics.
While it is one of the oldest subjects of study, much of its development throughout human
history was made informally and without much rigor. Although many results that are
still useful today were already proven by then, very little of the current work on the
foundations of mathematics had yet been formalized.

The search for formalized theories of mathematics and logic to serve as foundations was
guided by and led to many developments in both fields. As Heijenoort (1967) compiles, a
significant portion of this production happened between the years of 1879 and 1931, with
the publication of Begriffsschrift by Gottlob Frege, which described a formula language for
describing thought; and the papers which initially defined Kurt Gödel’s incompleteness
theorems. Within that period, lots of developments culminated in the creation of Bertrand
Russell’s theory of types after he found contradictions within one of the most commonly
accepted formalizations of set theory at the time, defined by Georg Cantor in significant
works between 1878 and 1885 (Ferreirós, 2023). Within those works is included what
is now known as Cantor’s Theorem, which has as a consequence that any set 𝐴 has its
cardinality strictly lesser than the cardinality of its power set (𝐴), that is, any set is
smaller than its power set.

Cantor’s proof for this theorem paved the way for Russell’s Paradox, as Russell
discusses in The Principles of Mathematics (B. Russell, 1903, Chapter 10), a seminal work
and the first book written in English with a comprehensive study of the logical foundations
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of mathematics. Using contemporary language and the concept of naive set theory, we
can derive this paradox assuming the unrestricted axiom of comprehension, which allows
the definition of sets from any expressible formula (i.e. with no restrictions). Doing so,
we can define the set of all sets that do not contain themselves

𝑤 = { 𝑥 ∣ 𝑥 ∉ 𝑥 }.

One might ask — does 𝑤 contain itself? If we assume that it does, then it cannot contain
itself, since it is the set of all sets that do not contain themselves. If we assume that it
does not, then it must contain itself. Thus, we get a paradox, and we can be certain that
accepting the aforementioned axiom leads to an inconsistent theory.

Since then, multiple solutions to this problem have been proposed. One such solution
was initially informally described by Russell himself (B. Russell, 1903, Appendix B) in
the section The Doctrine of Types, where he proposes a theory of types. This theory was
later refined in Mathematical logic as based on the theory of types (B. Russell, 1908) and
Principia Mathematica (Whitehead and B. A. Russell, 1927).

1.2 Russell’s theory of types
This section presents aspects of the theory of types as developed by B. Russell (1908)

and is also based on commentaries by Heijenoort (1967) in his discussion of the afore-
mentioned paper. This theory presents itself as an alternative foundation for mathematics,
and as such, does not take many of the traditional mathematical constructs for granted. It
is not our goal to do an in-depth analysis and description of this work within this section,
as other developments of type theory by Alonzo Church and branching results are more
tightly related to the scope of this text, those of which will be presented in later sections.

After writing The Doctrine of Types, Russell initially dismissed his own idea by 1905,
coming up with the zigzag theory, the theory of limitation of size, and the no-classes theory,
focusing on the latter, but eventually acknowledged that it could be inadequate to a lot of
classical mathematics. Coming back to the development of types, the author then published
Mathematical logic as based on the theory of types in 1908.

B. Russell (1908) starts by introducing seven paradoxes, including Russell’s Paradox,
and then argues that each of them stems from what he calls self-reference or reflexiveness.
Recall the 𝑤 set, defined as the set of all sets that do not contain themselves. The set is
defined by referencing all sets, which leads it to reference itself. If we decide that no set
can be a member of itself, then 𝑤 becomes the set of all sets, and we have to determine that
it is not a member of itself. Therefore, 𝑤 is not a set. As Russell states, this is only possible
if the set of all sets cannot exist in the way the paradox requires; if we suppose that it does
exist, then new sets that lie outside the rules we previously established can be formed.

So, we can define a rule that Russell calls the vicious-circle principle stating that anything
(whether a proposition or another indeterminate abstraction) that involves all of a collection
cannot be of that same collection, avoiding this and other paradoxes. That leads us to not
being able to easily make statements referring to all of a given collection. For example,



1.3 | SIMPLE TYPE THEORY

9

“all propositions are either true or false” cannot be a proposition itself. To deal with this,
Russell discusses the difference between all and any — as we’ve determined, a proposition
can’t refer to all propositions, but something like “a proposition is either true or false”
is allowed by our rules. This statement refers to an undetermined variable that could be
any proposition, allowing us to make general remarks on propositions without breaking
previous rules. Although similar, any and all cannot be treated as exactly the same, and we
cannot substitute any usage of one by the other, since all deals with bound (or quantified)
variables and any with free variables.

These concepts are key to the central idea of this theory, which is to divide the universe
into levels called types. Any logical object of a given type can only refer to other bound
variables of its own type, or free variables. So, using all we do universal quantification
over a type and any expresses an unspecified object, unrestricted by a type. This imposes
a hierarchy such that there is a type 0, a type 1 with properties on values of type 0, a type
2 with properties on properties of values of type 0, and so on. Russell’s formulation of
type theory in the aforementioned paper came to be known as ramified, because the type
of functions depends both on the types of their arguments and on the types of bound
variables contained within them. This would later prove to be a big issue for the theory,
leading Russell to propose the axiom of reducibility to solve it, whose scope is beyond
this text. It was also solved in other formulations of type theory, specifically, simple type

theory within the context of the Alonzo Church’s simply-typed lambda calculus, which
we’ll see in a later section.

Despite following a different direction than later developments, Russell’s theory of
types was greatly influential to the foundations of mathematics and inspired many fur-
ther works.

1.3 Simple type theory
Ramsey (1926) and other logicians of the time noticed that the paradoxes Russell

originally intended to solve did not all stem from the same origin — Ramsey classified
some as "logical" paradoxes, while others were considered "semantic". To him, the main
issue with Russell’s theory of types was the way these two different kinds of paradoxes
were unified by the vicious-circle principle. He then showed that by abandoning this
principle, paradoxes of the “logical” kind could be solved, without the need for the axiom
of reducibility since the ramified levels of Russell’s theory could be collapsed. This big
change in how the theory worked led to the simple theory of types Gödel (1944), which
is the idea that things that we think about or their symbolic expressions are put into groups
called types. These groups include individuals, their properties, the relationships between
individuals, the properties of these relationships, and so on. Also, sentences only make
sense if the values they refer to or relate to are of types that fit together.

This paves the way for Alonzo Church’s simply-typed lambda calculus (Church,
1940), devised as a formulation of the simple theory of types built on Church’s lambda

calculus. In the next section, we’ll explore the untyped lambda calculus so we’re prepared
to take on its type-theoretic version, both with modern notation and improvements as
described by Pierce (2002). These two concepts are the basis for understanding type



10

1 | RUSSELL’S PARADOX AND THE THEORY OF TYPES

theory’s role in contemporary programming languages and newer features, such as the
dependent types we wish to study.
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Chapter 2

Untyped lambda calculus

This section is based on Barendregt (1985), Barendregt and Barendsen (2000), and
Pierce (2002). The untyped 𝜆-calculus is a formal system, a theory of functions, and a
computational model that distills functions into two simple concepts — abstraction (or
function definition) and application. It is untyped because it assigns no types to values of
its theory, allowing any function to be applied to any other function. Its original inventors
were seeking to both develop a theory of functions and to extend that same theory enough
so that it could be a foundation for logic and mathematics, although attempts at this
second goal failed, having been proven as an inconsistent theory for this purpose. That
means, when using the untyped 𝜆-calculus as a logical foundation for mathematics, it
is possible to derive false (⊥) from true (⊤) — there are other definitions for which the
𝜆-calculus is consistent.

Nevertheless, the untyped 𝜆-calculus found its purpose in the field of computability,
serving as a mathematical basis for the notion of computation equivalent to the Turing Ma-
chine. In fact, the formalization of “effectively computable” given by Turing computability is
equivalent to 𝜆-definability, the property of a function to be defined in the 𝜆-calculus. This
means that the 𝜆-calculus can be seen as a programming language, albeit simple, having
been used as both a theoretical and a semantic basis for dozens of successful programming
languages since the 1960s. It can especially be used in the specification of programming
languages, language design and implementation, and the study of type systems.

2.1 Syntax

The language of this system is based on three building blocks: variables (<var>), which
are usually sequences of alphabetical characters; abstraction, which defines new functions;
and application, which allows the use of these functions. The language’s syntax can be
concisely described in Backus-Naur Form (BNF) as follows:

𝜆-term <term> ∶∶= <var> (variable)
| <term> <term> (application)
| 𝜆 <var>. <term> (abstraction)
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Expressions generated by this grammar are called 𝜆-terms. See the following examples:

Example 2.1.1 (𝜆-terms).

(a) 𝑥

(b) 𝑥 𝑦

(c) 𝜆𝑥.𝑥

(d) (𝜆𝑎.𝑏)(𝜆𝑐.𝑑)𝑒

(e) (𝜆var. (𝜆bar. zar))(𝜆𝑧.𝑥)

(f) 𝜆𝑒.𝜆𝑥.𝜆𝑝.𝜆𝑟. 𝑒 𝑥 𝑝 𝑟

Note that application is left-associative and abstraction is right-associative, and ap-
plication has higher precedence than abstraction. The next examples show a few slightly
confusing 𝜆-terms with and without the parenthesis defining their precedence:

Example 2.1.2 (𝜆-term precedence).

(a) 𝜆𝑥.𝜆𝑦.𝜆𝑧. 𝑥 𝑦 𝑧 ≡ (𝜆𝑥.(𝜆𝑦.((𝑥 𝑦) 𝑧)))

(b) 𝜆𝑥. 𝑥 𝑦 𝜆𝑤.𝜆𝑧. 𝑧 𝑤 ≡ (𝜆𝑥.((𝑥 𝑦) (𝜆𝑤.(𝜆𝑧.(𝑧 𝑤)))))

(c) 𝜆𝑥. 𝑥 𝜆𝑦. 𝑦 𝑧 ≡ (𝜆𝑥.(𝑥 (𝜆𝑦. (𝑦 𝑧))))

(d) (𝜆𝑥.𝜆𝑦. 𝑥) 𝑦 𝑧 ≡ (((𝜆𝑥. (𝜆𝑦.𝑥) 𝑦) 𝑧)

Expressions of the 𝜆-calculus have a recursive structure, and as such, can be formally
defined inductively. This is useful when writing inductive proofs over 𝜆-terms.

Definition 2.1.3 (inductive definition of 𝜆-terms). Given a set of variables 𝑉 = {𝑣0, 𝑣1, …}
and the set of all 𝜆-terms Λ, we define 𝜆-terms inductively:

(i) 𝑥 ∈ 𝑉 ⟹ 𝑥 ∈ Λ

(ii) 𝑀,𝑁 ∈ Λ ⟹ (𝑀𝑁) ∈ Λ

(iii) 𝑀 ∈ Λ, 𝑥 ∈ 𝑉 ⟹ (𝜆𝑥.𝑀) ∈ Λ

A more succinct inductive definition is by abstract syntax:

Definition 2.1.4 (definition of 𝜆-terms by abstract syntax).

Λ = 𝑉 | ΛΛ | 𝜆𝑉 .Λ

2.2 Reduction rules
The 𝜆-calculus is a rewriting system, which means it is a system of formulas (expres-

sions) and rules that dictate how these formulas or their sub-formulas can be rewritten (or
reduced) by others. 𝜆-terms can be reduced with, in one of the calculus’ simplest forms,
two rules: 𝛽-reduction (→𝛽) and 𝛼-conversion (=𝛼). As we define them, note that there are
certain subtleties regarding the substitutions they perform — they’ll be described shortly
afterwards, with plenty of examples to illustrate their behavior.
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Definition 2.2.1 (𝛽-reduction). Given 𝜆-terms 𝑀 and 𝑁 , where 𝑀[𝑥 ∶= 𝑁] is the term 𝑀
with free occurrences of 𝑥 substituted by 𝑁 , we say a term 𝛽-reduces to another in one step:

(𝜆𝑥.𝑀)𝑁 →𝛽 𝑀[𝑥 ∶= 𝑁]

To allow different reduction orders, 𝛽-reduction follows these rules, where 𝑍 is a 𝜆-term:

(i) 𝑀 →𝛽 𝑁 ⟹ 𝑍𝑀 →𝛽 𝑍𝑁

(ii) 𝑀 →𝛽 𝑁 ⟹ 𝑀𝑍 →𝛽 𝑁𝑍

(iii) 𝑀 →𝛽 𝑁 ⟹ 𝜆𝑥.𝑀 →𝛽 𝜆𝑥.𝑁

Definition 2.2.2 (𝛼-conversion). Given a 𝜆-term 𝑀 and variables 𝑥 and 𝑦 where 𝑦 does

not occur in 𝑀 , we say a term 𝛼-converts to another:

𝜆𝑥.𝑀 =𝛼 (𝜆𝑦.𝑀)[𝑥 ∶= 𝑦]

These definitions are trickily written to avoid trouble with name clashes in expressions.
We say a variable is free in a 𝜆-term when it is not bound by an abstraction, that is, if
it is 𝑥 , then it is not a sub-term of any expression 𝜆𝑥.Λ; and we say an occurrence of a
variable in a term happens when it is the term or occurs in one of its sub-terms. Let’s
see a few examples of 𝜆-terms and their reductions:

Example 2.2.3 (identity function). 𝜆𝑥.𝑥
Example 2.2.4 (constant function). 𝜆𝑥.𝑦
Example 2.2.5.

(𝜆𝑥.𝑥)𝑧 →𝛽 𝑧

(𝜆𝑥.𝑦)𝑧 →𝛽 𝑦

In these three examples, we’ve defined a function that always returns its argument, a
function that always ignores its argument and returns a fixed variable, and showed how
they can be reduced. Notice how, differently from usual set-theoretic functions, application
is not of the form 𝑓 (𝑥) but 𝑓 𝑥 .

Example 2.2.6 (multiple arguments). (𝜆𝑓 .𝜆𝑥.𝑓 𝑥)(𝜆𝑥.𝑥)𝑥 →𝛽 (𝜆𝑥.𝑥)𝑥 →𝛽 𝑥

Although all 𝜆-abstractions contain exactly one argument, it is possible to chain them
together to “simulate” functions of multiple arguments, like in the example above. Before
the reductions, the example contained terms (𝜆𝑓 .𝜆𝑥.𝑓 𝑥), (𝜆𝑥.𝑥), and (𝑥) — note that in
these three terms, 𝑥 refers to different things; in the first, it is a variable bound by 𝜆𝑥.𝑓 𝑥 , in
the second it is bound by the identity function 𝜆𝑥.𝑥 , and in the third it is a free variable.

These rules are enough to define computation, which is simply a 𝛽-reduction to a
𝜆-term. 𝛼-conversions generally do not define a computational step because both sides
of the relation are considered syntactically identical (we can get from one to the other
and back with only 𝛼-conversions) and they’re mostly used to avoid name collision in
reductions. See the following example:
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Example 2.2.7 (necessity of 𝛼-conversion).

(𝜆𝑓 .𝜆𝑥.𝑓 𝑥)𝑥 ̸→𝛽 𝜆𝑥.𝑥𝑥

(𝜆𝑓 .𝜆𝑥.𝑓 𝑥)𝑥 =𝛼 (𝜆𝑓 .𝜆𝑦.𝑓 𝑦)𝑥 →𝛽 𝜆𝑦.𝑥𝑦

As this example shows, the bound variable 𝑥 has to be renamed before the free variable 𝑥
can take its place; that leads us to think of 𝛼-conversion as a syntactical equivalence relation
between 𝜆-terms. Alternative syntaxes to the 𝜆-calculus, such as De Bruijn notation, avoid
the problem (and consequently 𝛼-conversion) by representing bound variables with indices.

2.3 Developments on reduction
To represent subsequent iterations of reduction, we define the reflexive transitive

closure of →𝛽 , which is simply a 𝛽-reduction in 0 or more steps:

Definition 2.3.1 (↠𝛽). We say a 𝜆-term 𝑀 𝛽-reduces to 𝑁 (in 0 or more steps):

𝑀 ↠𝛽 𝑁

It follows these rules:

(i) 𝑀 →𝛽 𝑁 ⟹ 𝑀 ↠𝛽 𝑁

(ii) 𝑀 ↠𝛽 𝑀

(iii) 𝑀 ↠𝛽 𝑁 , 𝑁 ↠𝛽 𝐿 ⟹ 𝑀 ↠𝛽 𝐿

By repeatedly applying 𝛽-reductions, we can start to treat the 𝜆-calculus as an actual
programming language. As an initial example, we’ll define the basic boolean values True

and False within the calculus. Given expressions 𝐸1 and 𝐸2, which should be reduced when
a given condition is true or false respectively, we can define this behavior as such:

Example 2.3.2 (booleans).
True ≡ 𝜆𝑥.𝜆𝑦.𝑥

False ≡ 𝜆𝑥.𝜆𝑦.𝑦

True 𝐸1 𝐸2 →𝛽 (𝜆𝑦.𝐸1) 𝐸2 →𝛽 𝐸1

False 𝐸1 𝐸2 →𝛽 (𝜆𝑦.𝑦) 𝐸2 →𝛽 𝐸2

Using the notation on Definition 2.3.1, we can shorten the application steps and define
a term for an if-then-else construct, which receives a boolean condition and reduces the
corresponding expression.

Example 2.3.3 (if-then-else).
True 𝐸1 𝐸2 ↠𝛽 𝐸1

False 𝐸1 𝐸2 ↠𝛽 𝐸2

If ≡ 𝜆𝑏. 𝜆𝐸1. 𝜆𝐸2. 𝑏 𝐸1 𝐸2
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If True 𝐸1 𝐸2 ↠𝛽 𝐸1

If False 𝐸1 𝐸2 ↠𝛽 𝐸2

Example 2.3.4 (different paths).

(𝜆𝑥.𝑥)(𝜆𝑥.𝑦)𝑧 →𝛽 (𝜆𝑥.𝑦)𝑧 →𝛽 𝑦

(𝜆𝑥.𝑥)(𝜆𝑥.𝑦)𝑧 →𝛽 (𝜆𝑥.𝑥)𝑦 →𝛽 𝑦

This example illustrates one of the key concepts in the 𝜆-calculus and similar rewriting
systems — there are different orders that reduction can be done in. The following theorem
and next few examples show how and why this matters.

Theorem 2.3.5 (Church-Rosser). If 𝑀 , 𝑀1, 𝑀2, are 𝜆-terms such that 𝑀 ↠𝛽 𝑀1 and

𝑀 ↠𝛽 𝑀2, then there exists a 𝜆-term 𝑁 such that both 𝑀1 ↠𝛽 𝑁 and 𝑀2 ↠𝛽 𝑁 .

In other words, if there is a reduction from 𝑀 to 𝑁 , there may be multiple paths
that this reduction can take, and most importantly, any point of a path taken that hasn’t
reduced to 𝑁 still has additional steps that will reduce to it. Therefore, inside the 𝜆-calculus,
different reduction paths cannot produce results that are not equal (as we will define later).
The only reduction paths that will not result in 𝑁 are those that remain continuously
unfinished in their reduction (or computing):

Example 2.3.6 (loop). (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) →𝛽 (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) →𝛽 (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) →𝛽 …

Interestingly, the above example 𝛽-reduces to itself. In this case, there is only one
possible 𝛽-reduction to be done, so any attempt to reduce it will not lead to a non-reducible

𝜆-term. This is not always the case when considering 𝛽-reduction loops:

Example 2.3.7 (path matters).

False ((𝜆𝑥.𝑥𝑥) (𝜆𝑥.𝑥𝑥)) (𝜆𝑥.𝑥) →𝛽 False ((𝜆𝑥.𝑥𝑥) (𝜆𝑥.𝑥𝑥)) (𝜆𝑥.𝑥) →𝛽 …

False ((𝜆𝑥.𝑥𝑥) (𝜆𝑥.𝑥𝑥)) (𝜆𝑥.𝑥) →𝛽 (𝜆𝑦.𝑦) (𝜆𝑥.𝑥) →𝛽 𝜆𝑥.𝑥

In this example, where we apply a function that applies its argument to itself to itself,
if we try to reduce (𝜆𝑥.𝑥𝑥) (𝜆𝑥.𝑥𝑥) before applying it to False, we get the same 𝜆-term
— however, if we apply it to False without reducing it first, it will disappear, and we can
reduce the expression to 𝜆𝑥.𝑥 . This leads us to believe that although different reduction
paths can always lead to the same result, it does not mean that they always will.

Another peculiar feature of the 𝜆-calculus is that reduction does not necessarily cause
the resulting expression to be smaller than the previous expression. See the following
example:

Example 2.3.8 (increasing expression).

(𝜆𝑥.𝑥𝑥𝑥)(𝜆𝑥.𝑥𝑥𝑥) →𝛽 (𝜆𝑥.𝑥𝑥𝑥)(𝜆𝑥.𝑥𝑥𝑥)(𝜆𝑥.𝑥𝑥𝑥) →𝛽 …

Before going further, let us define equality on 𝜆-terms as the congruence relation
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generated by →𝛽:

Definition 2.3.9 (=𝛽). 𝜆-terms 𝑀 and 𝑁 are 𝛽-convertible (or equal):

𝑀 =𝛽 𝑁

if they follow:

(i) 𝑀 ↠𝛽 𝑁 ⟹ 𝑀 =𝛽 𝑁

(ii) 𝑀 =𝛽 𝑁 ⟹ 𝑁 =𝛽 𝑀

(iii) 𝑀 =𝛽 𝑁 ,𝑁 =𝛽 𝐿 ⟹ 𝑀 =𝛽 𝐿

Succinctly, two 𝜆-terms are considered equal if one can be 𝛽-reduced to the other or
vice-versa, or if they are both equal to the same third 𝜆-term. Remember that terms that
are 𝛼-convertible are also considered equal. See the following examples:

Example 2.3.10 (equality).
(𝜆𝑥.𝑥)𝑧 =𝛽 𝑧

(𝜆𝑥.𝑦)𝑧 =𝛽 (𝜆𝑥.𝑥)𝑦

𝜆𝑥.𝑥 =𝛽 𝜆𝑦.𝑦

False ((𝜆𝑥.𝑥𝑥) (𝜆𝑥.𝑥𝑥)) (𝜆𝑥.𝑥) =𝛽 𝜆𝑥.𝑥

Note that two terms that are 𝛼-convertible are also 𝛽-convertible, but not necessarily
the converse.

2.4 Normal forms
Going back to the idea of taking different paths of reduction, we see that some terms

cannot be reduced any further. Therefore, we define the following:

Definition 2.4.1 (𝛽-redex). A 𝜆-term is called a 𝛽-redex if it can be 𝛽-reduced.

Definition 2.4.2 (normal form). A 𝜆-term is in normal form if it has no 𝛽-redexes.

Some terms can be 𝛽-reduced iteratively until they can no longer be reduced, and
that final term is their normal form. Not all terms have a normal form, as we saw with
Example 2.3.6. From the Church-Rosser Theorem (2.3.5), we know that, if a term has a
normal form, then it is unique and there is always a reduction path to reduce to it. Another
important consequence of this theorem is that, if two terms have the same normal form,
they are 𝛽-convertible.

2.5 Reduction strategies
As we saw in the past few examples, the order in which a 𝜆-term is reduced matters

to its result. A set of rules that defines the order of 𝛽-reduction is called a reduction
strategy. The most common reduction strategies are the leftmost strategy (also called lazy

or normal) and the rightmost strategy (also called eager or applicative).
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Definition 2.5.1 (left). Given a 𝜆-term 𝑀 with 𝛽-redex subterms 𝐴 and 𝐵, we say that 𝐴 is

to the left of 𝐵 if 𝐵 is a subterm of 𝐴 or they are the same depth in 𝑀 but 𝐴 is to the left in

the expression.

Example 2.5.2 (same-depth left). 𝐸 ((𝜆𝑥.𝑥) 𝑥) ((𝜆𝑦.𝑦) 𝑦) →𝛽−left 𝐸 𝑥 ((𝜆𝑦.𝑦) 𝑦)
Example 2.5.3 (different-depth left). 𝐸 ((𝜆𝑥.𝑥) ((𝜆𝑦.𝑦) 𝑦)) →𝛽−left 𝐸 ((𝜆𝑦.𝑦) 𝑦)
Definition 2.5.4 (leftmost strategy). Given a 𝜆-term not in normal form, the leftmost

reduction strategy always picks its leftmost 𝛽-redex to be reduced.

Definition 2.5.5 (right). Given a 𝜆-term 𝑀 with 𝛽-redex subterms 𝐴 and 𝐵, we say that 𝐵
is to the right of 𝐴 if 𝐵 is a subterm of 𝐴 or they are the same depth in 𝑀 but 𝐵 is to the right

in the expression.

Example 2.5.6 (same-depth right). 𝐸 ((𝜆𝑥.𝑥) 𝑥) ((𝜆𝑦.𝑦) 𝑦) →𝛽−right 𝐸 ((𝜆𝑥.𝑥) 𝑥) 𝑦
Example 2.5.7 (different-depth right). 𝐸 ((𝜆𝑥.𝑥) ((𝜆𝑦.𝑦) 𝑦)) →𝛽−right 𝐸 ((𝜆𝑥.𝑥) 𝑦)
Definition 2.5.8 (rightmost strategy). Akin to leftmost strategy, but to the right.

The leftmost strategy is also called lazy because it avoids performing computation until
its result is required. For instance, when complex expressions are passed as parameters to
a function, these expressions undergo 𝛽-reduction just when their results are required, or
at the end of the computation if they’re not needed and we keep looking for a normal form.
Although Haskell is a well-known language that uses a variation of it, it is not commonly
used in modern programming languages due to efficiency and optimization issues caused
by the lack of sharing reduction results. Its most important feature to the theory of the
𝜆-calculus is the following theorem, due to logician Haskell Curry:

Theorem 2.5.9. If a 𝜆-term 𝑀 has a normal form 𝑁 , then 𝑀 always reduces to 𝑁 in the

leftmost strategy.

This theorem seems to solve any possible problems regarding normal forms, as we
can use it to find them, although that is not the case since it requires a term to have a
normal form. Unfortunately, determining whether a 𝜆-term has a normal form is one of
the earliest problems to have been proven undecidable (Church, 1936).

The rightmost strategy is much simpler to implement and optimize, and as such is
used in most mainstream programming languages. In fact, all of the top 20 programming
languages in the Stack Overflow Developer Survey (Stack Overflow, 2024) implement
the rightmost strategy, excluding markup languages for which evaluation strategies are
not applicable, and SQL, which, as a declarative language, can choose its evaluation
strategy accordingly. While the leftmost evaluation strategy can be seen as reducing trees
of expressions starting from the root and going down towards the leaves, the rightmost
strategy can be thought of reducing trees of expressions starting from their leaves and going
up to the root, which avoids the need to keep subtrees in terms that have already reduced.
This strategy can calculate the results of expressions that are not needed — for example, if
parameter 𝑎 is passed to another function, but this function never uses the value of 𝑎, it
will still be evaluated; if 𝑎 results in a loop, then the program will also loop indefinitely.
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2.6 Equivalence with Turing Machines

What we’ve seen up until now already provides us enough intuition on how Turing
computability and 𝜆-definability are equivalent notions. While Turing Machines execute
computational steps through their transition functions, 𝜆-terms do so by performing 𝛽-
reductions. While the former loops their instructions until they reach a stopping state, the
latter performs 𝛽-reduction until it reaches a normal form. A Turing machine diverges
when it can’t reach a stopping state, and a 𝜆-term does so when it can’t reach a normal
form. It is possible to prove they are equivalent by simulating the execution of a Turing
Machine as the calculation of a normal form in the 𝜆-calculus, and by simulating the
reduction of a 𝜆-term in a Turing Machine. One such proof was given originally by Turing
(1936), but for the purposes of this text, it is enough to intuit their similarities.

As we’ve seen, the 𝜆-calculus looks like a programming language, and should behave
like one. To think of the 𝜆-calculus as a programming language, we still need to discuss how
to deal with data and control, that is, the fundamental data structures we manipulate in
programs, and how can we control the execution of these programs according to their states.

2.7 Dealing with data: Church encoding

Since the 𝜆-calculus we’ve seen up until now can only really have as “values” functions
and free variables, we can’t simply use concepts external to the language such as numbers
and strings, commonly done in other programming languages. It is possible, however, to
simulate such concepts within the language as 𝜆-encodings. Next, we’ll see how to encode
the natural numbers and some of their operations within the calculus:

Definition 2.7.1 (repeated application). The 𝜆-term 𝑓 can be applied multiple times:

𝑓 0𝑥 ≡ 𝑥

𝑓 𝑛𝑥 ≡ 𝑓 (𝑓 (𝑓 (… 𝑓
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛 times

𝑥)))

Definition 2.7.2 (Church encoding). The Church encoding of a natural number 𝑛 is repre-

sented by ⌈𝑛⌉:
⌈𝑛⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑓 𝑛𝑥

Example 2.7.3 (Church-encoded numerals).

(a) ⌈0⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑥

(b) ⌈1⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑓 𝑥

(c) ⌈3⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 (𝑓 𝑥))

(d) ⌈5⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 (𝑓 (𝑓 (𝑓 𝑥))))

In other words, the Church encoding of a natural number 𝑛 is a function that receives
another function 𝑓 and an initial “zero” value 𝑥 , which is then applied to 𝑓 𝑛 times. Among
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many other possible operations, we now define addition, multiplication, zero check, and
predecessor functions on Church-encoded numbers:

Definition 2.7.4 (addition). add ≡ 𝜆𝑚. 𝜆𝑛. 𝜆𝑓 . 𝜆𝑥. 𝑚 𝑓 (𝑛 𝑓 𝑥)
Definition 2.7.5 (multiplication). mul ≡ 𝜆𝑚. 𝜆𝑛. 𝜆𝑓 . 𝜆𝑥. 𝑚 (𝜆𝑥. 𝑛 𝑓 𝑥) 𝑥
Definition 2.7.6 (zero check). isZero ≡ 𝜆𝑛. 𝑛 (𝜆𝑥. False) True

Definition 2.7.7 (predecessor). pred ≡ 𝜆𝑛.𝜆𝑓 .𝜆𝑥. 𝑛 (𝜆𝑔.𝜆ℎ. ℎ (𝑔𝑓 )) (𝜆𝑢. 𝑥) (𝜆𝑢.𝑢)

Intuitively, the addition function creates a new number that is similar to 𝑚 but has its
initial value incremented 𝑛 times. The multiplication function increments 𝑛 times for every
increment in 𝑚. The zero check function instantiates a number with an initial value of
True that gets replaced by a False in any subsequent increment. The predecessor function
is much harder to intuit, so we’ll just accept it. It is possible to prove by induction on the
structure of a Church-encoded numeral that these operations have the same results as their
counterparts defined on the natural numbers, though that is beyond our current scope.
We will look at control strategies in the 𝜆-calculus as an example of a larger program
before returning to the topic of encoded numerals.

2.8 Dealing with control: Recursion

The mechanism of controlled looping (or just control) in the 𝜆-calculus is recursion.
You might have noticed that there is no recursive primitive in the theory, and the fact
is that we don’t need it to be a primitive.

Theorem 2.8.1 (fixed-point combinator). For every 𝜆-term 𝐹 , there is a fixed-point com-
binator 𝑌 such that

𝑌 𝐹 =𝛽 𝐹(𝑌 𝐹) =𝛽 𝐹(𝐹(𝑌 𝐹)) =𝛽 …

Definition 2.8.2 (Y combinator). A fixed-point combinator for every 𝜆-term is the Y com-
binator:

𝑌 ≡ 𝜆𝑓 .(𝜆𝑥.𝑓 (𝑥𝑥))(𝜆𝑥.𝑓 (𝑥𝑥))

Fixed-point combinators can be thought of as a way to allow self-reference, so terms
can refer to themselves. If 𝐹 ≡ 𝜆𝑓 .𝐸, then the resulting 𝑌 𝐹 is the term 𝐸 with itself bound
to the variable 𝑓 , so when 𝐸 substitutes for 𝑓 , it is actually substituting it with itself. It
might seem like a function generated by the Y combinator will keep reducing forever
and it may happen under specific reduction strategies. However, under the leftmost (lazy)
strategy, the recursive call will stop being reduced when the base case is reached.

There are other fixed-point combinators apart from the Y combinator with different
properties. Note that, regarding the Y combinator, although 𝑌 𝐹 =𝛽 𝐹(𝑌 𝐹), it is not true
that 𝑌 𝐹 ↠𝛽 𝐹(𝑌 𝐹). A fixed-point combinator that has this property is Θ, defined by
Alan Turing:

Definition 2.8.3 (Turing’s fixed-point combinator).

Θ ≡ (𝜆𝑥.𝜆𝑦.(𝑦(𝑥𝑥𝑦)))(𝜆𝑥.𝜆𝑦.(𝑦(𝑥𝑥𝑦)))
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Coming back to Church-encoded numerals, we can define the factorial function using
recursion like the following:

Example 2.8.4 (factorial).

factorial ≡ 𝑌 (𝜆𝑓 .𝜆𝑛. (isZero 𝑛) ⌈1⌉ (mul 𝑛 (𝑓 (pred 𝑛))))

This definition is surprisingly similar to a more usual definition of the factorial as such:

factorial(𝑛) = if 𝑛 ≤ 1 then 1 else 𝑛 ⋅ factorial(𝑛 − 1)

The main difference is that the base of the recursion is not at 1 but at 0, but since
the returned value 1 is the multiplicative identity, the result doesn’t change. In summary,
the 𝜆-encoded factorial receives itself as parameter 𝑓 through the Y combinator, then
receives a number 𝑛 and checks if it is zero — if it is, return the encoding of 1, and if it
is not, multiply 𝑛 by the factorial of 𝑛 − 1.

Figure 2.1: Execution of the 𝜆-encoded factorial of 5 in pLam.

Figure 2.1 shows the result of the 𝜆-encoded factorial function for the number 5 in
the leftmost strategy using version 2.2.1 of the software pLam (Lovnički, 2018), a tool
designed to explore computations in the 𝜆-calculus.
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2.9 Developments on data: Scott encoding
The representation of data structures within the 𝜆-calculus can be further improved

using Scott encondings, developed by Dana Scott. Recall the concept of algebraic data

types in functional programming languages, which includes product types and sum types.
Product types work similarly to structures in imperative programming languages, in the
sense that they “glue” together different types into a single one so they can be accessed
from a single data structure. The simplest product type is Pair, which can be represented
in Haskell as Program 2.1 — this code creates a new data type Pair that is polymorphic
over a and b, and then creates a constructor also called Pair that can be used to create
values of this structure, containing both an a and a b.

Program 2.1 The Pair product type in Haskell.

1 data Pair a b = Pair a b

Slightly more interesting are sum types, which represent a choice between a fixed
amount of types, that is, a tagged value of the sum type between 𝑇1, 𝑇2, …, 𝑇𝑛 is of and can
only be of one of these types. The simplest example is the Either data type in Program 2.2,
which represents a choice between an a constructed by Left or a b constructed by Right.

Program 2.2 The Either sum type in Haskell.

1 data Either a b = Left a | Right b

The untyped 𝜆-calculus, as its name suggests, does not have types, so we cannot
really implement algebraic data types in it, though we can emulate them. Products are
implemented as functions with parameters as each element’s value, which can be accessed
using projection functions. See the implementation of Pair in the 𝜆-calculus:

Definition 2.9.1 (pair). The pair of values 𝑎 and 𝑏 are created with the Pair function:

Pair ≡ 𝜆𝑎.𝜆𝑏.𝜆𝑝. 𝑝 𝑎 𝑏

The value to the left of a Pair can be accessed using the fst function and the right with snd:

(i) fst ≡ 𝜆𝑝. 𝑝 True

(ii) snd ≡ 𝜆𝑝. 𝑝 False

Example 2.9.2 (pair of 1 and 2).
Pair ⌈1⌉ ⌈2⌉

Example 2.9.3 (first of pair of 1 and 2).

fst (Pair ⌈1⌉ ⌈2⌉) =𝛽 ⌈1⌉

Scott-encoded products can be generalized to simply receive their 𝑛 values 𝑥1, … , 𝑥𝑛
as their first parameters, followed by a projection function 𝑝 that selects the 𝑖th desired
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value; in the case of pairs, the projection can simply pick the first element like in fst or
the second element like in snd.

Scott-encoded sums can be seen as generalizations of booleans, possibly to more than 2
values. Similar to what we saw in Haskell, Either can be implemented like the following:

Definition 2.9.4 (either). The left variant of an Either can be constructed using the Left

function, and the right variant with Right:

(i) Left ≡ 𝜆𝑣.𝜆𝑙.𝜆𝑟. 𝑙 𝑣

(ii) Right ≡ 𝜆𝑣.𝜆𝑙.𝜆𝑟. 𝑟 𝑣

Example 2.9.5 (left with 1). Left ⌈1⌉
Example 2.9.6 (right with 2). Right ⌈2⌉
Example 2.9.7 (double if left triple if right).

doubleLeftTripleRight ≡ 𝜆𝑥. 𝑥 (𝜆𝑣.mul 𝑣 ⌈2⌉) (𝜆𝑣.mul 𝑣 ⌈3⌉)

Example 2.9.8 (triple 4). doubleLeftTripleRight (Right ⌈4⌉) =𝛽 ⌈12⌉

As we saw, sums in the 𝜆-calculus are created by choosing the appropriate constructor
for the desired variant, and the extraction of a value in a sum is done by supplying a
function for each possible variant of that sum. Note that this is very similar to pattern
matching in functional programming languages.

We can use these techniques to define Scott-encoded natural numbers similarly to
how it would be done in Haskell, like in Program 2.3.

Program 2.3 A definition for natural numbers based on Peano arithmetic in Haskell.

1 data Nat = Zero | Succ Nat

Definition 2.9.9 (Scott-encoded natural numbers). The Scott encoding ⌊𝑛⌋ of a natural

number 𝑛 is either zero (Zero) or the successor (Succ) of another natural number:

Zero ≡ 𝜆𝑧.𝜆𝑠. 𝑧

Succ ≡ 𝜆𝑛. 𝜆𝑧.𝜆𝑠. 𝑠

Example 2.9.10 (Scott-encoded numerals).

(a) ⌊0⌋ ≡ Zero

(b) ⌊1⌋ ≡ Succ Zero

(c) ⌊3⌋ ≡ Succ (Succ (Succ Zero))

(d) ⌊5⌋ ≡ Succ (Succ (Succ (Succ (Succ Zero))))

This definition also works by repeated applications, but it’s defined on top of sums
and products, allowing us to use the same techniques as we use with them. Namely, we
can define some operations over the natural numbers recursively, similar to how it would
be done for Peano arithmetic:
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Definition 2.9.11 (addition). add ≡ 𝑌 𝜆𝑟.𝜆𝑚.𝜆𝑛. 𝑚 𝑛 (𝜆𝑝. Succ (𝑟 𝑝 𝑛))
Definition 2.9.12 (multiplication). mul ≡ 𝑌 𝜆𝑟.𝜆𝑚.𝜆𝑛. 𝑚Zero (𝜆𝑝. add 𝑛 (𝑟 𝑝 𝑛))
Definition 2.9.13 (zero check). isZero ≡ 𝜆𝑛. 𝑛 True False

Definition 2.9.14 (predecessor). pred ≡ 𝜆𝑛.𝑛Zero (𝜆𝑝.𝑝)

The addition function pattern matches on 𝑚; if it is zero, then it returns 𝑛; if it is the
successor of 𝑝, then it returns the successor of the addition between 𝑝 and 𝑛. Multiplication
pattern matches on 𝑚; if it is zero, return zero; if it is the successor of 𝑝, return the addition
between 𝑛 and the multiplication of 𝑝 and 𝑛. The zero check patterns match on 𝑛; if it is
zero return True and if it is not return False. The predecessor function is intuitive this
time: if 𝑛 is zero, return zero, if it is the successor of 𝑝, return 𝑝.

Using the Nat type we defined earlier in Program 2.3, we can implement these same
functions in Haskell as in Program 2.4. If we continue developing more complicated Scott-
encoded values, we can eventually represent lists as sums with variants “nil” and “cons”
where “cons” stores a value and another list, use them to represent textual strings as lists
of numbers that represent characters, represent matrices as lists of lists, and many other
higher level programming concepts.

Program 2.4 Operations on Scott-encoded natural numbers in Haskell.

1 add m n = case m of
2 Zero -> n
3 Succ p -> Succ (add p n)
4
5 mul m n = case m of
6 Zero -> Zero
7 Succ p -> add n (mul p n)
8
9 isZero n = case n of

10 Zero -> True
11 Succ p -> False
12
13 pred n = case n of
14 Zero -> Zero
15 Succ p -> p

As we discussed, the Scott encoding is very useful to represent intricate data structures.
However, it may not be enough in cases where we desire to encode structures with
properties that are more desirable when implemented outside of the 𝜆-calculus, such as
better performance when calculated by primitives in a Central Processing Unit (CPU). In
the next section, we will discuss possible extensions to the untyped 𝜆-calculus.

2.10 Extensions

The 𝜆-calculus can be extended in its syntax, its reduction rules, and in the domain
of its values; in this section, we’ll see examples of all three.
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2.10.1 Let syntax
Functional programming languages tend to have an additional construct for declaring

variables called the let syntax. It can be added to the syntax of the untyped 𝜆-calculus
without changing any of the system’s semantic properties as such:

Definition 2.10.1 (let syntax). Given 𝜆-terms 𝑀 and 𝐸 and a variable 𝑥 , the let syntax is

defined as:

(let 𝑥 = 𝑀 in𝐸) ≡ (𝜆𝑥.𝐸)𝑀

or, similarly:

(let 𝑥 = 𝑀 in𝐸) ≡ 𝐸[𝑥 ∶= 𝑀]

The second definition of the let syntax, although 𝛽-convertible to the first in the untyped
𝜆-calculus, is very important to typed 𝜆-calculi and can specify different behavior.

2.10.2 𝜂-conversion
The calculus we’ve studied up until now is also called the 𝜆𝛽-calculus, as its theoretical

basis relies on 𝛽-reduction. There are other calculi such as the 𝜆𝛽𝜂-calculus, which contains
an additional rule called 𝜂-conversion:

Definition 2.10.2 (𝜂-conversion). Given a 𝜆-term 𝐹 and a variable 𝑥 that does not occur

free in 𝐹 , then the following 𝜆-terms are 𝜂-convertible:

𝜆𝑥.𝐹𝑥 =𝜂 𝐹

This rule is called an extensionality rule because it allows the proof that, given 𝜆-terms
𝐹 and 𝐺 and a variable 𝑥 that is neither free in 𝐹 nor in 𝐺, then 𝐹𝑥 = 𝐺𝑥 ⟹ 𝐹 = 𝐺. It
is also possible to prove that this rule is consistent with the axioms of the 𝜆𝛽-calculus, so
its addition won’t break any of the interesting results for the theory.

2.10.3 𝛿-rules
The system can also be extended with 𝛿-rules representing functions that are external

to the 𝜆-calculus; for example, integer addition based on computation performed by a CPU,
or boolean values, or strings, etc. Before we define these, we will add an extension to the
syntax and the domain of the 𝜆-calculus to allow constants in the language.

Definition 2.10.3 (𝜆-terms with constants). Given a set of constants 𝐶, the set of 𝜆-terms

with constants in 𝐶 named Λ(𝐶) is described by abstract syntax:

Λ(𝐶) = 𝐶 | 𝑉 | Λ(𝐶) Λ(𝐶) | 𝜆𝑉 .Λ(𝐶)

This extension to the calculus allows us to have constants such as +, or ∗, or true and
false and if, which will be quite useful to represent external functions. See the definition
of the 𝛿-rules so we can examine a couple of examples afterwards:

Definition 2.10.4 (𝛿-rules). Let 𝑋 ⊂ Λ be a set of 𝜆-terms in normal form with no free

variables. Usually, these terms are constants in the syntax of the calculus, so 𝑋 ⊆ 𝐶. Let
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𝑓 ∶ 𝑋𝑘 → Λ be an external function. This function can be represented in the 𝜆𝛿-calculus as

𝛿-rules with the following additions:

(i) A special constant is selected and given a name 𝛿, or 𝛿𝑓 .

(ii) New reduction rules are added to the calculus, where 𝑀1, …, 𝑀𝑘 are 𝜆-terms in 𝑋 :

𝛿𝑓𝑀1 …𝑀𝑘 → 𝑓 (𝑀1, … ,𝑀𝑘)

Note that the above is not a single rule, but a rule schema — for every collection of 𝑀1,
…, 𝑀𝑘 in 𝑋 a new 𝛿-rule is added; also, 𝑓 (𝑀1, … ,𝑀𝑘) is not an expression in the calculus,
but its result is. The notions of reduction →𝛽𝛿 and ↠𝛽𝛿 are defined similarly as before.
The constraints on 𝑋 are necessary to keep the Church-Rosser theorem from completely
breaking — a theorem due to Gerd Mitschke is that the notion of reduction in ↠𝛽𝛿 also
satisfies the Church-Rosser property when defined over a function on a set of 𝜆-terms
in normal form with no free variables. Note, however, that the choice of functions to
define using 𝛿-rules affects certain properties of the calculus, specifically, it might lead
it no longer satisfying Church-Rosser when not following the constraints of Mitschke’s
theorem. Regarding reduction strategies, another theorem is that if 𝑀 ↠𝛽𝛿 𝑁 and 𝑁 is
in normal form, then 𝑀 always reduces to 𝑁 in the leftmost strategy.

To conclude this section, we will define a few operations over the boolean values “true”
and “false” using 𝛿-rules, and subsequently, over the set of integers ℤ.

Example 2.10.5 (booleans as 𝛿-rules). Select the following constants in 𝐶:

true, false, not, and, ite (if-then-else)

We introduce the following 𝛿-rules:

not true → false

not false → true

and true true → true

and true false → false

and false true → false

and false false → false

ite true → True (recall True ≡ 𝜆𝑥.𝜆𝑦.𝑥)

ite false → False (recall False ≡ 𝜆𝑥.𝜆𝑦.𝑦)

Example 2.10.6 (integers as 𝛿-rules). For each integer 𝑛 ∈ ℤ, select a constant in 𝐶 and

name it [𝑛]. Select constants add, sub, mul, divide, error, and equal, and assume there are

external functions +, −, ×, ÷, and =. We introduce the following 𝛿-rules for 𝑚, 𝑛 ∈ ℤ:

add [𝑚] [𝑛] → [𝑚 + 𝑛]

sub [𝑚] [𝑛] → [𝑚 − 𝑛]

mul [𝑚] [𝑛] → [𝑚 × 𝑛]
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div [𝑚] [𝑛] → [𝑚 ÷ 𝑛], if 𝑛 ≠ 0

div [𝑚] [0] → error

equal [𝑚] [𝑚] → true

equal [𝑚] [𝑛] → false, if 𝑚 ≠ 𝑛

We can also add rules akin to add [𝑚] error → error.

Extending the 𝜆-calculus like we did in this section is fundamental to the calculi we
will discuss throughout the next sections; specifically, the addition of constants, external
functions and domains is crucial to the simply-typed 𝜆-calculus.

2.11 Typed lambda calculi

The main idea of including types to the 𝜆-calculus is adding some sort of language
within the calculus to describe the possible values an expression can take. That is, if a given
expression 𝐸 if of a given type 𝜏, then 𝜏 describes all the values that 𝐸 can take. Within the
𝜆-calculus, a type system is a logical system that checks or assigns a type to each 𝜆-term,
and type theory is the field of mathematics concerned with studying type systems.

Adding types to the 𝜆-calculus is useful for many applications, of which we will discuss
two: programming and logic.

2.11.1 Types in programming
Programming languages as tools for writing programs should be human-centered,

meaning they should guide people towards writing the programs they wish. When writing
functions in a given language, it is essential for a programmer to communicate its expected
inputs and outputs in some form. One way to do so is through a specification, which
Morgan (1990) describes as a contract specifying what a computer should do. Partial
specification can be achieved through types, which communicate the expected shape of
data, or values, of a language. The simply-typed 𝜆-calculus adds basic types, treated as
constants; and function types, which recursively contain an input and an output type.
There are many other variations of the 𝜆-calculus based on other type theories, including
the dependently-typed calculi crucial to this monograph. We present here a short and
informal way of thinking about types in programming languages.

An example of specification given by types can be done over the operations on
Church-encoded and Scott-encoded natural numbers. In the untyped 𝜆-calculus, they
are predictable when applied to correctly encoded data, but may have completely dif-
ferent behavior when applied to any other values. Abstractions in this calculus have no
restrictions over their parameters, so any expression can be applied to any expression.
Although the following 𝜆-term can be reduced, it is not clear what is meant by the addition
between the mul and div functions.

add mul div
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If type constants and function types existed in this language, we could specify that
add is of a function type with a numerical input and a numerical output. Assume there is
some Nat type inhabited by all Scott-encoded naturals, and there is a function type 𝐴 → 𝐵
where 𝐴 and 𝐵 are types. Then, the type of add would be

Nat → (Nat → Nat)

That is, add is a function with a Nat parameter that returns a function with another Nat

parameter that finally returns a third Nat. Customarily, → is treated as right-associative,
so we could omit the parenthesis. Also, the 𝜆-term represented by a type is usually written
next to it, separated by a colon (∶).

add ∶Nat → Nat → Nat

Informally, this shows us that typed 𝜆-calculi have two languages embedded within
them: the language of values (terms, expressions) and the language of types. The former is
the code executed by a computer, and the latter is some specification over its behavior.
The example above shows a very minimal specification within a very simple type system,
since it specifies that addition occurs over natural numbers, but not what it means for two
numbers to be added. More complicated type systems are more expressive, in the sense
that they are able to communicate more information as specification, both to programmers
and to the program itself.

This is part of what makes typing so useful for programming languages — they offer
lightweight, programmable specifications to code. More advanced type systems have
recently garnered attention in software engineering because their expressivity allows
specification to be as thorough as a programmer needs it to be. For instance, the specifica-
tion of a program that controls a nuclear reactor requires much more care than a simple
routine script, and advanced type systems are able to deal with both situations.

2.11.2 Types in logic
As mentioned in the start of Chapter 2, the untyped 𝜆-calculus was unfit as a logical

foundation for mathematics. The main reason for this is its Turing-completeness, specifi-
cally, the fact that there exists non-terminating reductions for certain terms. These terms,
when directly interpreted as a logical system, can lead to Russell’s Paradox due to the same
reason discussed in Section 1.1, which is the possibility of self-reference. Assuming a subset
of the calculus where every 𝜆-term has a normal form is not enough, since this subset is
in most cases non-computable, as per the Scott-Curry Theorem (Barendregt, 1985).

A way to deal with this problem is to assign a type to every 𝜆-term proven by some
type system to be normalizing, and reject any term which does not have a type. This is
a trade-off — although non-termination will become impossible, there are normalizing
terms in the calculus that may be reject in a given type system. Considering this and
the discussion on Section 2.11.1, a second measure of expressivity of a type system is
given by the amount of terminating 𝜆-terms that it includes. As we’ll see in later sections,
the simply-typed 𝜆-calculus is as expressive and is logically equivalent to intuitionistic
propositional logic, and dependently-typed calculi are equivalent to stronger systems.
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Chapter 3

Simply-typed lambda calculus

In this section, we will discuss modern formulations of the simply-typed 𝜆-calculus
(Church, 1940) as based on Barendregt, Dekkers, et al. (2013) and Pierce (2002).

The types of this system, called simple types, are syntactic objects. They are built
from type constants (also called type atoms) using the function type, represented by the
operator →. Each valid 𝜆-term in the language is assigned a type, and the main idea behind
the system is that if a 𝜆-term 𝑀 is of type 𝐴 → 𝐵 and 𝑁 is of type 𝐴, then the application
𝑀 𝑁 is allowed and its 𝛽-reduction will be of type 𝐵. This system is denoted by 𝜆→.

3.1 Syntax

The language of simple types can be defined via a BNF, like we did with the 𝜆-calculus:

Simple type <type> ∶∶= <atom> (type atom)
| <type>→ <type> (function type)

Accordingly, the set can be defined inductively and by abstract syntax:

Definition 3.1.1 (set of simple types). Let 𝔸 be a non-empty set of constants, where each

element is called a type atom. The set of simple types over 𝔸, called 𝕋𝔸
(or just 𝕋) is defined

inductively:

(i) 𝛼 ∈ 𝔸 ⟹ 𝛼 ∈ 𝕋𝔸

(ii) 𝐴, 𝐵 ∈ 𝕋𝔸 ⟹ (𝐴 → 𝐵) ∈ 𝕋𝔸

Definition 3.1.2 (set of simple types by abstract syntax).

𝕋𝔸 = 𝔸 | 𝕋𝔸 → 𝕋𝔸

As mentioned earlier, function types are right-associative. See the following type
examples:

Example 3.1.3. Let 𝔸 = {Int, String}. The following types are in 𝕋𝔸
:
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(i) Int

(ii) Int → String

(iii) String → (String → Int) → Int

(iv) Int → Int → Int

Each well-typed 𝜆-term can be assigned a type:

Definition 3.1.4 (type assignment statement). If 𝑀 ∈ Λ and 𝑇 ∈ 𝕋, the statement 𝑀∶𝑇 is

read as "𝑀 in 𝑇 " and means the 𝜆-term 𝑀 is of type 𝑇 . 𝑀 is called the subject of the statement

and 𝑇 is called the predicate.

3.2 Typing rules
This very simple syntax is enough to represent simple types, but we haven’t yet

discussed how to construct new types in 𝕋 for specific 𝜆-terms. We do so by deriving
𝜆-terms step-by-step, in a bottom-up approach using 3 rules over a basis:

Definition 3.2.1 (declarations and basis).

(i) A declaration is a (type assignment) statement with a variable as subject.

(ii) A basis, also called a typing context, is a set of declarations with distinct variables. It

is usually denoted as Γ.

Example 3.2.2 (basis).

(i) {}

(ii) {𝑥∶Int}

(iii) {𝑦∶String, 𝑧∶Int → String}

Given a basis, we can derive type assignment statements:

Definition 3.2.3 (𝜆→ rules). A statement 𝑀∶𝑇 is derivable from a basis Γ, written

Γ ⊢𝜆→ 𝑀∶𝑇

(or just Γ ⊢ 𝑀∶𝑇 ) if it can be constructed from the following rules:

(i) (𝑥∶𝑇 ) ∈ Γ ⟹ Γ ⊢ 𝑥∶𝐴

(ii) Γ ⊢ 𝑀∶ (𝐴 → 𝐵), Γ ⊢ 𝑁∶𝐴 ⟹ Γ ⊢ (𝑀 𝑁)∶𝐵

(iii) Γ, 𝑥∶𝐴 ⊢ 𝑀∶𝐵 ⟹ Γ ⊢ (𝜆𝑥.𝑀) ∶ (𝐴 → 𝐵)

These rules are frequently presented in Gentzen-style trees as the following definition.
In this style, the top of the line contains 𝑛 premises, and when all of them hold, their
conclusion under the line holds as well. Each of these rules is named after the syntactical
variant of the 𝜆-term it constructs.

Definition 3.2.4 (𝜆→ rules in Gentzen-style).
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𝑥∶𝑇 ∈ Γ (var rule)Γ ⊢ 𝑥∶𝑇

The variable rule gives each variable a type from the typing context, and if the variable
is not in the context, it cannot be given a type.

Γ ⊢ 𝑀∶𝐴 → 𝐵 Γ ⊢ 𝑁∶𝐴 (app rule)Γ ⊢ 𝑀 𝑁∶𝐵

Mentioned earlier as the main idea behind the system of the simply typed 𝜆-calculus,
the application rule states that given a function of type 𝐴 → 𝐵 and a value of type 𝐴,
applying it will result in a value of type 𝐵.

Γ, 𝑥∶𝐴 ⊢ 𝑀∶𝐵 (abs rule)Γ ⊢ 𝜆𝑥.𝑀∶𝐴 → 𝐵

The abstraction rule is used to assign types to functions. Note that Γ, 𝑥∶𝐴 means that 𝑥∶𝐴
must be in the typing context, and when its consequence does not have 𝑥∶𝐴 explicitly,
it is removed from the basis. The term 𝑀 may have free occurrences of 𝑥 , so the typing
context has to be extended - if it already has a type for 𝑥 , it should be replaced. This is
similar to the idea of variable shadowing in modern programming languages.

Below are a few example of proof trees showing the derivation of types for a few 𝜆-terms.

Example 3.2.5 (type derivation). In the examples below, 𝛼, 𝛽 ∈ 𝕋. Note that ⊢ 𝐹 is the

same as ∅ ⊢ 𝐹 .

(i) Type derivation of 𝜆𝑥.𝑥 (with Γ = {𝑥∶𝛼})

𝑥∶𝛼 ∈ {𝑥∶𝛼}
(var)

{𝑥∶𝛼} ⊢ 𝑥∶𝛼
(abs)⊢ 𝜆𝑥.𝑥∶𝛼 → 𝛼

(ii) Type derivation of 𝜆𝑥.𝜆𝑦.𝑥 (with Γ = {𝑥∶𝛼, 𝑦∶𝛽})

𝑥∶𝛼 ∈ {𝑥∶𝛼, 𝑦∶𝛽}
(var)

{𝑥∶𝛼, 𝑦∶𝛽} ⊢ 𝑥∶𝛼
(abs)

{𝑥∶𝛼} ⊢ 𝜆𝑦.𝑥∶𝛽 → 𝛼
(abs)⊢ 𝜆𝑥.𝜆𝑦.𝑥 ∶ 𝛼 → 𝛽 → 𝛼

(iii) Type derivation of 𝑓 𝑥 (with Γ = {𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼})

𝑓 ∶𝛼 → 𝛽 ∈ {𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼}
(var)

{𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼} ⊢ 𝑓 ∶𝛼 → 𝛽
𝑥∶𝛼 ∈ {𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼}

(var)

{𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼} ⊢ 𝑥∶𝛼
(app)

{𝑓 ∶𝛼 → 𝛽, 𝑥∶𝛼} ⊢ 𝑓 𝑥∶𝛽

(iv) Type derivation of 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 𝑥) (with Γ = {𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼})

𝑓 ∶𝛼 → 𝛼 ∈ {𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼}
{𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼} ⊢ 𝑓 ∶𝛼 → 𝛼

𝑓 ∶𝛼 → 𝛼 ∈ {𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼}
{𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼} ⊢ 𝑓 ∶𝛼 → 𝛼

𝑥∶𝛼 ∈ {𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼}
{𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼} ⊢ 𝑥∶𝛼

{𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼} ⊢ 𝑓 𝑥∶𝛼
{𝑓 ∶𝛼 → 𝛼, 𝑥∶𝛼} ⊢ 𝑓 (𝑓 𝑥)∶𝛼

{𝑓 ∶𝛼 → 𝛼} ⊢ 𝜆𝑥.𝑓 (𝑓 𝑥)∶𝛼 → 𝛼
⊢ 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 𝑥)∶(𝛼 → 𝛼) → 𝛼 → 𝛼
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As mentioned earlier, these rules are enough to guarantee the termination of repeated
𝛽-reduction to any typeable 𝜆-term. This property is called strong normalization. Of
course, this is not obvious and needs to be proven, although that is outside the scope of
this text. One such proof can be found in Ziliani (2012).

A consequence of strong-normalization is that not all 𝜆-terms are representable in
𝜆→. Non-terminating terms, like the increasing expression in Example 2.3.8, cannot be
assigned types and thus, cannot exist. One very important feature of this system is that
self-application is invalid, that is, a 𝜆-term 𝑥𝑥 cannot be typed. Its type would have to be
a function of some form 𝐴 → 𝐵, but it should also be able to receive itself as parameter, so
𝐴 would have to be 𝐴 = 𝐴 → 𝐵, expanding to an infinite type. Since the Y combinator
(Definition 2.8.2) uses self-application, it cannot exist in this system.

In fact, general recursion cannot be encoded in this formulation of 𝜆→, as it would
lead to losing strong normalization, being reduced to the halting problem. Recursion
can be restored either by abandoning strong normalization or by restricting it to known
terminating strategies. The former can be done extending typing with what Barendregt,
Dekkers, et al. (2013) calls recursive types; and the latter by using structural recursion, a
kind of recursion that iterates through a structure decreasing in size, eventually reaching
a base case and provably terminating.

3.3 Typing styles
What we’ve seen up until now is called the Curry style of typing, or typing à la Curry.

It is characterized by types only appearing in type assignment statements, that is, the
language of types and terms are completely separate. This can make certain algorithms
relating to types harder or impossible to implement. It is denoted by 𝜆Curry

→ .

Another style of typing, called Church style (or typing à la Church) and denoted
𝜆Church
→ , has the argument of every abstraction typed.1 This style changes the language

of the calculus to pseudo 𝜆-terms, which only differ to the original definition by having
explicit types in abstractions. See the following BNF definition:

Pseudo 𝜆-term <term> ∶∶= <var> (variable)
| <term> <term> (application)
| 𝜆 <var> ∶ <type>. <term> (abstraction)

Similarly, it can be defined by abstract syntax:

Definition 3.3.1 (𝜆-terms with typing à la Church by abstract syntax).

Λ = 𝑉 | ΛΛ | 𝜆𝑉∶𝕋. Λ

The abstraction rule is different in this system. Its only change is the explicit type

1 Barendregt, Dekkers, et al. (2013) calls this typing à la de Bruijn. Other sources, like Barendregt (1993),
call it Church style. To avoid confusion with terminology commonly used in the field, we will keep the
second name. The first source defines Church style systems as having every variable (free and bound) with
a type attached, and de Bruijn style only attaches types to bound variables. The authors also state “these

two systems are basically isomorphic”.
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added to the argument:

Γ, 𝑥∶𝐴 ⊢ 𝑀∶𝐵 (abs rule)Γ ⊢ 𝜆𝑥∶𝐴.𝑀∶𝐴 → 𝐵

This small change has an important consequence. In 𝜆Curry
→ , a derivation for a type 𝜏

holds for every type 𝜏 ∈ 𝕋, but in 𝜆Church
→ it is only for a specific 𝜏. For example, if 𝛼, 𝛽 ∈ 𝕋

and we wish to type the identity function, then ⊢Curry 𝜆𝑥.𝑥∶𝛼 → 𝛼 is derivable, but so is
⊢Curry 𝜆𝑥.𝑥∶𝛽 → 𝛽. Yet, in 𝜆Church

→ , we can assign to 𝜆𝑥∶𝛼. 𝑥 the type 𝛼 → 𝛼, but not 𝛽 → 𝛽.

Developments of the simply-typed 𝜆-calculus such as the polymorphic simply typed 𝜆-
calculus and dependently-typed 𝜆-calculi also differ by the Curry and Church styles. As the
Curry style is less restrictive, some algorithmic problems within it are undecidable, while
decidable in the Church variant. Next, we will discuss a few common problems in typing.

3.4 Algorithmic problems in typing
A few natural problems appear when thinking about type systems, and many of them

are extremely useful in programming languages. Three problems commonly discussed in
type systems are type checking, type inference, and type inhabitation. Within type
inference, we can separate the problems of typability and type reconstruction, and
within type inhabitation we can also discuss enumeration.

Type checking is the problem of checking whether a 𝜆-term is well-typed, that is,
given a basis Γ, 𝜆-term 𝑀 and type 𝐴, checking if Γ ⊢ 𝑀∶𝐴 holds. In most statically-typed
programming languages, a “type error” usually means that type checking failed, that is,
Γ ⊢ 𝑀∶𝐴 does not hold. Stylistically (and not formally) it can be summarized as

Γ ⊢ 𝑀∶𝐴 ? (type checking)

Type inference is when we wish to find a type (or the most general type) for a given
𝜆-term 𝑀 from a given basis Γ. Similarly, typability is the problem of determining whether
there is some type that can be assigned to 𝑀 , and reconstruction is finding every possible
type and basis for 𝑀 . Note that nomenclature for this case can vary in the literature.

Γ ⊢ 𝑀∶? (type inference)
∃𝐴, Γ [Γ ⊢ 𝑀∶𝐴] ? (typability)

? ⊢ 𝑀∶? (type reconstruction)

Finally, type inhabitation is finding whether a type 𝐴 is inhabited by some term 𝑀 in
a given basis Γ, that is, if there exists some 𝑀 of type 𝐴 derived by Γ. Type enumeration is
similarly about determining all possible 𝜆-terms of a type 𝐴 derived by Γ.

∃𝑀 [Γ ⊢ 𝑀∶𝐴] ? (type inhabitation)
Γ ⊢ ?∶𝐴 (type enumeration)

Interestingly, all three problems and their variations are decidable in the simply typed
𝜆-calculus both in Curry and Church style. This is not true for all type systems — for
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instance, type checking and typability are undecidable for the polymorphic simply typed
𝜆-calculus à la Curry, known as System F (Wells, 1999).

3.5 Data types
As we did earlier in Section 2.7, we can also represent the types of data. In this section,

we will discuss a few ways to encode the types of the same data as before. All definitions
will be over the system 𝜆0→, which is given by the set of type constants 𝔸 = {𝛼}. This
system only contains one type constant.

3.5.1 Boolean values
Earlier, we gave definitions for 𝜆-terms True and False, which were True ≡ 𝜆𝑥.𝜆𝑦.𝑥

and False ≡ 𝜆𝑥.𝜆𝑦.𝑦. Notice how both terms are functions to a function of a value. Both
can trivially be shown to be of type 𝛼 → 𝛼 → 𝛼.

Definition 3.5.1 (the Bool type). The type of boolean values is

Bool ≡ 𝛼 → 𝛼 → 𝛼

3.5.2 Natural numbers
Recall the Church encoding of a natural number 𝑛 as ⌈𝑛⌉ ≡ 𝜆𝑓 .𝜆𝑥.𝑓 𝑛𝑥 . Terms of this

format obviously receive a function 𝑓 , and a value 𝑥 which can be applied to 𝑓 , and
this result must also be able to be applied again. As such, the type of Church-encoded
numbers is (𝛼 → 𝛼) → 𝛼 → 𝛼.

Definition 3.5.2 (the Nat type). The type of natural numbers is

Nat ≡ (𝛼 → 𝛼) → 𝛼 → 𝛼

The addition function add ≡ 𝜆𝑚.𝜆𝑛.𝜆𝑓 .𝜆𝑥. 𝑚 𝑓 (𝑛 𝑓 𝑥) receives as parameters two
values of type (𝛼 → 𝛼) → 𝛼 → 𝛼, a function of type 𝛼 → 𝛼 and a value of type 𝛼,
finally returning 𝛼. So, its type is:

add ∶ ((𝛼 → 𝛼) → 𝛼 → 𝛼) → ((𝛼 → 𝛼) → 𝛼 → 𝛼) → (𝛼 → 𝛼) → 𝛼 → 𝛼

But, Nat ≡ (𝛼 → 𝛼) → 𝛼 → 𝛼, so add’s type is equivalent to

add ∶Nat → Nat → (𝛼 → 𝛼) → 𝛼 → 𝛼

Since the → operator is right-associative, the return type (𝛼 → 𝛼) → 𝛼 → 𝛼 can also
be rewritten as Nat.

add ∶Nat → Nat → Nat

Similarly, the typing statements for the other operations previously defined can be
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shown to be:

mul ∶Nat → Nat → Nat
isZero ∶Nat → Bool

pred ∶Nat → Nat

3.5.3 Product
Pairs of values (Definition 2.9.1) can be seen as elements of a Cartesian product between

the domain of their first and second values. The Pair function receives a boolean value
which, when True, selected the first value and when False, the second.

In a given type system over the 𝜆-calculus with reduction rules represented by 𝑅, we
can define the triple of terms ⟨Pair, fst, snd⟩ as an 𝑅-pairing, and define the type 𝐴 × 𝐵 as
the result of Pair and arguments of fst and snd.

If 𝜏, 𝜎 ∈ 𝕋, assume Pair is of type 𝜏 → 𝜎 → Bool → ?, with ? unspecified. If the fst

projection is chosen to extract a value from a pair, then the resulting type of Pair has to be
𝜏, but if snd is chosen, it has to be 𝜎. So, for this function to be well-typed, it must return
one of two types, and determining which one it is depends on the value of the argument
of type Bool. The simply typed 𝜆-calculus can neither have types depend on terms nor
on other types, so this cannot be a valid type in the system.

If, however, both values of a pair are of the same type, then a Pair can be well-typed.

Definition 3.5.3 (pair of same types).

𝛼 × 𝛼 ≡ Bool → 𝛼
Pair ∶ 𝛼 → 𝛼 → (𝛼 × 𝛼)

fst ∶ (𝛼 × 𝛼) → 𝛼
snd ∶ (𝛼 × 𝛼) → 𝛼

If 𝜂-conversion (Definition 2.10.2) is added to the system, then there are other less
straight-forward definitions for Pair, fst, snd that form an 𝑅-pairing for products 𝐴 × 𝐵
for any two types 𝐴 and 𝐵 specifically in system 𝜆0→, though they are beyond the scope
of this text.2

Products can also be added to the language as an extension of its semantics and type
system. This can be seen in Pierce (2002).

Below, we extend the set of 𝜆-terms by abstract syntax to add operators for constructing
and deconstructing product types, and the relevant typing rules over them. This is based
on Sørensen and Urzyczyn (2006).

Definition 3.5.4 (𝜆-terms with product types).

Λ = … | ⟨Λ, Λ⟩ | fst (Λ) | snd (Λ)

2 For an in-depth discussion, see Barendregt (1974).
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Given statements 𝑀∶𝐴 and 𝑁∶𝐵, then ⟨𝑀, 𝑁 ⟩ is the pair between 𝑀 and 𝑁 and is of
type 𝐴 × 𝐵. If 𝑀 is of a product type, then fst(𝑀) extracts its first value, and snd(𝑀) its
second. Two reductions must be added for this to be true:

fst (⟨𝑀, 𝑁 ⟩) → 𝑀
snd (⟨𝑀, 𝑁 ⟩) → 𝑁

Below are the formalized typing rules.

Definition 3.5.5 (product typing rules).

Γ ⊢ 𝑀∶𝐴 Γ ⊢ 𝑁∶𝐵
(pair rule)

Γ ⊢ ⟨𝑀, 𝑁⟩∶𝐴 × 𝐵

Γ ⊢ 𝑀∶𝐴 × 𝐵
(fst rule)

Γ ⊢ fst (𝑀)∶𝐴
Γ ⊢ 𝑀∶𝐴 × 𝐵

(snd rule)

Γ ⊢ snd (𝑀)∶𝐵

3.5.4 Sum
A similar discussion of the Either constructors in the untyped 𝜆-calculus (Defini-

tion 2.9.4) can be done, though we will skip it and present the extension of sum types
to the simply typed 𝜆-calculus.

Sum types must have a way to create variants, namely left and right constructors, and
a way to perform case analysis, that is, perform some operation when they are of the left
or right variant. To do so, we introduce syntax for lft and rgt, and for case analysis case.

Definition 3.5.6 (𝜆-terms with sum types).

Λ = … | lft
𝕋+𝕋 (Λ) | rgt

𝕋+𝕋 (Λ) | case (Λ; 𝑉 .Λ; 𝑉 .Λ)

Note that the left and right constructors must also specify which is the sum type they
build. The case syntax creates “pseudo” abstractions, where the variable before the dot
will be the extracted values from the sum and substituted into each branch. Here are
the added reduction rules:

case (lft𝐴+𝐵 (𝑁 ); 𝑥.𝐾; 𝑦.𝐿) → 𝐾[𝑥 ∶= 𝑁]
case (rgt

𝐴+𝐵 (𝑁 ); 𝑥.𝐾; 𝑦.𝐿) → 𝐿[𝑦 ∶= 𝑁]

Briefly explained, if the first argument to case is of the left variant, substitute 𝑥 in
𝐾 by 𝑁 and return it. If it is of the right variant, substitute 𝑦 in 𝐿 by 𝑁 and return it.
Next, are the sum typing rules:

Definition 3.5.7 (sum typing rules).

Γ ⊢ 𝑀∶𝐴
(lft rule)

Γ ⊢ lft
𝐴+𝐵 (𝑀)∶𝐴 + 𝐵

Γ ⊢ 𝑀∶𝐵
(rgt rule)

Γ ⊢ rgt
𝐴+𝐵 (𝑀)∶𝐴 + 𝐵

Γ ⊢ 𝐿∶𝐴 + 𝐵 Γ, 𝑥∶𝐴 ⊢ 𝑀∶𝜌 Γ, 𝑦∶𝐵 ⊢ 𝑁∶𝜌
(case rule)

Γ ⊢ case (𝐿; 𝑥.𝑀; 𝑦.𝑁 )∶𝜌
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3.6 The Curry-Howard correspondence

The Curry-Howard correspondence, also known as Curry-de Bruijn-Howard isomor-
phism and a few other names, is an observation made by many mathematicians and
logicians on the connection of type theory and formal logic. One of its many formulations
is given by Howard (1969).

This isomorphism is nowadays associated with the motto “propositions as types, pro-

grams as proofs” (Wadler, 2015). The central idea is that there is a correspondence between
typed programs and logic: types correspond one-to-one to some logical proposition, and if
there is some 𝜆-term (program) of that type, then it acts as a proof to the corresponding
proposition. For instance, if a programmer writes a program of a type correspondent to
𝑃 ∧ 𝑄 ⊃ 𝑃 ∨ 𝑄, then this statement is proven to hold.

Describing it with more formal syntax, we say that for many logical systems 𝐿, there
is a type theory 𝜆𝐿 and a map that translates formulas 𝐴 of logic 𝐿 into types [𝐴] of 𝜆𝐿
with some typing context Γ𝐴 that “explains” A such that

⊢𝐿 𝐴 ⟺ Γ𝐴 ⊢𝜆𝐿 𝑀∶[𝐴], for some 𝑀

The above reads as “proposition 𝐴 is provable in system 𝐿 if and only if basis Γ𝐴 derives
a type [𝐴] for some 𝜆-term 𝑀 in system 𝜆𝐿”. In other words, the proposition that a type
𝜏 maps to holds if and only if 𝜏 is inhabited.

If the map [⋅] is also extended to translate a proof 𝐷 in system 𝐿 into its corresponding
𝜆-term, then we can also state

⊢𝐿 𝐴, with proof 𝐷 ⟺ Γ𝐴 ⊢𝜆𝐿 [𝐷]∶[𝐴]

The simply-typed 𝜆-calculus is equivalent to implicational intuitionistic propositional

logic, that is, intuitionistic logic with only the implication (⊃) operator. In fact, the inference
rules of this logic are very similar to the typing rules of 𝜆→. See its syntax and rules:

Definition 3.6.1 (syntax of the implicational propositional logic in BNF).

Formula <form> ∶∶= <var>
| <form> ⊃ <form>

Variable <var> ∶∶= 𝑝
| <var>’

Definition 3.6.2 (rules of the implicational propositional logic). Let Γ be a set of formulas

and 𝐴 a formula. We say 𝐴 is derivable from Γ, written Γ ⊢PROP 𝐴, if Γ ⊢ 𝐴 can be produced

from these rules:

(a) 𝐴 ∈ Γ ⟹ Γ ⊢ 𝐴

(b) Γ ⊢ 𝐴 ⊃ 𝐵, Γ ⊢ 𝐴 ⟹ Γ ⊢ 𝐵

(c) Γ, 𝐴 ⊢ 𝐵 ⟹ Γ ⊢ 𝐴 ⊃ 𝐵
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It is easy to see the similarities between these rules and the typing rules of 𝜆→ (Defini-
tion 3.2.4). We can define the mapping [𝐴] to be 𝑝 if 𝐴 = 𝑝 and [𝑃] → [𝑄] if 𝐴 = 𝑃 ⊃ 𝑄;
we also define Γ𝐴 = ∅. The following theorem states the Curry-Howard correspondence
between the implicational intuitionistic propositional logic and the simply typed 𝜆-calculus.
A proof can be found in Barendregt, Dekkers, et al. (2013).

Theorem 3.6.3 (Curry-Howard correspondence for 𝜆→). Let 𝐴 be a proposition and Δ a

set of propositions.

Δ ⊢PROP 𝐴 ⟺ [Δ] ⊢𝜆→ 𝑀∶[𝐴], for some 𝑀 .

Recall the abs and app rules from Definition 3.2.4. The abstraction rules works as an
introduction rule for → and application as an elimination rule. Similarly, 𝜆→ extended by
product types (3.5.5) and sum types (3.5.7) also present this introduction/elimination duality:
a product is introduced by the pair rule and eliminated by the fst and snd rules; a sum is
introduced by the lft and rgt rules and eliminated by the case rule. These introductions and
eliminations behave the same way as the rules of the full intuitionistic propositional logic.
This means that the simply typed 𝜆-calculus with product and sum types corresponds to
this logic, and whatever holds for one holds for the other. Even more important, syntactical
and semantic features of each system have direct correspondence, as shown in Table 3.1.

Intuitionistic logic Type theory
Proposition 𝑃 Type 𝑃
Proposition 𝑃 ⊃ 𝑄 Type 𝑃 → 𝑄
Proposition 𝑃 ∧ 𝑄 Type 𝑃 × 𝑄
Proposition 𝑃 ∨ 𝑄 Type 𝑃 + 𝑄
Proof of proposition 𝑃 𝜆-term of type 𝑃
Proposition 𝑃 is provable Type 𝑃 is inhabited

Table 3.1: Correspondence between intuitionistic logic and type theory (Pierce, 2002).

As we’ll briefly see in Chapter 4, type systems with more features and rules are
equivalent to stronger logic systems.

3.7 Shortcomings
One of the main goals of a strongly normalizing type system is to limit the language

of 𝜆-terms to some strongly normalizing subset. These systems try to maintain as many
terminating (or well-behaving) terms as possible, though computable systems will always
prohibit some terminating terms due to Rice’s Theorem (Rice, 1953). So, a “strong” type
system tries to maximize the subset of terminating terms.

The simply typed 𝜆-calculus cannot type many terminating terms, and specially, many
useful terminating terms. We’ve already seen how it cannot type products and sums in
Section 3.5; now, we’ll see another important example.

Recall the identity function 𝜆𝑥.𝑥 . It must be assigned some type 𝛼 → 𝛼, and 𝛼 cannot
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change from one application to the other. Consider the following 𝜆-term:

(𝜆𝑓 .⟨𝑓 ⌈1⌉, 𝑓 True⟩)(𝜆𝑥.𝑥)

In the untyped 𝜆-calculus with reduction rules for pairs, this term reduces to ⟨⌈1⌉,True⟩.
However, the original term cannot be typed in 𝜆→. Assume we assign to 𝜆𝑥.𝑥 the type
Nat → Nat, then, the first element of the pair is well-typed, but not the second. Analogously,
the same can be done for the second element.

The reason this term cannot be typed is that the identity function must assume different
types depending on what argument it receives. This can be solved through polymorphism,
as done in System F.
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Chapter 4

Dependent types and terms

Having thoroughly discussed some general concepts about type systems and the simply
typed 𝜆-calculus, we will now briefly mention a few other stronger type systems and discuss
dependent types in the context of the calculus of constructions (Coquand and Huet, 1988).
This chapter is based on Barendregt (1991) and Nederpelt and Geuvers (2014).

4.1 The lambda cube
The 𝜆-cube is a system defined by Barendregt (1991) that describes eight different

type systems through the combination of three features. Its formulation can be seen in
Figure 4.1. Starting with the simply typed 𝜆-calculus 𝜆→ on the bottom left, each arrow
in a dimension points to another system that adds a specific feature:

• x-axis (→): types can depend on terms

• y-axis (↑): terms can depend on types

• z-axis (↗): types can depend on types

𝜆→ 𝜆𝑃

𝜆2 𝜆𝑃2

𝜆𝜔 𝜆𝑃𝜔

𝜆𝜔 𝜆𝐶

Figure 4.1: The 𝜆-cube (Barendregt, 1991) describing features added to type systems.

Each of the three features create or extend some new form of abstraction related to its
improvement. Below we briefly see the additions of each feature’s “representative” system.
For a complete formulation of each system, see Nederpelt and Geuvers, 2014.
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4.1.1 System 𝜆2

𝜆2 (known as System F, or polymorphic typed 𝜆-calculus, or second-order typed 𝜆-

calculus) adds a mechanism of quantification over types. This means a type can be passed
to another function as a parameter. It allows what is called function polymorphism in
traditional programming languages. As such, it is also a way of solving the issue on the
type of the identity function discussed in Section 3.7. In Church style, the new identity
function is of the following form:

𝜆𝛼∶∗. 𝜆𝑥∶𝛼. 𝑥

The asterisk (∗) can be treated as “the type of all types”. Since this system is only
second-order, it is not susceptible to Russell’s Paradox (Section 1.1). Applying types to the
identity function, we can have a well-typed version of the earlier example:

(𝜆𝑓 .⟨𝑓 Nat ⌈1⌉, 𝑓 Bool True⟩)(𝜆𝛼∶∗. 𝜆𝑥∶𝛼.𝑥)

The system as of now has no way of expressing the type of this new identity func-
tion. Any instance of 𝛼 in its type will be treated as a free variable. We must then add
quantification to the language of types through Π-types. Finally, the typing rules added
to System F are the following:

Definition 4.1.1 (System F typing rules).

Γ, 𝛼∶∗ ⊢ 𝑀∶𝐴
(abs2 rule)

Γ ⊢ (𝜆𝛼∶∗.𝑀) ∶ (Π𝛼∶∗. 𝐴)
Γ ⊢ 𝑀 ∶ (Π𝛼∶∗. 𝐴) Γ ⊢ 𝐵 ∶ ∗

(app2 rule)

Γ ⊢ 𝑀 𝐵 ∶𝐴[𝛼 ∶= 𝐵]

As mentioned earlier, type checking and inference are non-computable in this sys-
tem. These two algorithms are fundamental to programming languages that wish to add
type polymorphism, so System F cannot be added directly to them. A variation of this
system, called the Hindley-Milner type system, restricts 𝜆2 by differentiating between
“poly-types” and “mono-types”, granting decidability for both type checking and inference.
Programming languages in the ML family usually implement this system.

4.1.2 System 𝜆𝜔

This system, also known as System F𝜔, allows types to depend on other types. This is
done through the addition of type constructors, which are functions (abstractions) of types
to types. It allows type polymorphism in traditional programming languages. Examples of
this include lists: a list of type List 𝛼 can be instantiated to List Nat, List Bool, etc.

The type of types ∗ can now be mapped to others in the form ∗ → ∗. To build over
it, we must specify something akin to the “type of the type of types”, which we will call
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sort and represent with □. Here are a few examples:

List ∶ ∗ → ∗
Product ∶ ∗ → ∗ → ∗

∗ ∶□
∗ → ∗∶□

We won’t discuss this system any further, but below are included its typing rules
for completeness.

Definition 4.1.2 (System F𝜔 typing rules).

(i) (sort) ∅ ⊢ ∗ ∶□

(ii)
Γ ⊢ 𝐴∶ 𝑠

(var) if 𝑥 ∉ ΓΓ, 𝑥∶𝐴 ⊢ 𝑥∶𝐴

(iii)
Γ ⊢ 𝐴∶𝐵 Γ ⊢ 𝐶 ∶ 𝑠

(weak) if 𝑥 ∉ ΓΓ, 𝑥 ∶𝐶 ⊢ 𝐴∶𝐵

(iv)
Γ ⊢ 𝐴∶ 𝑠 Γ ⊢ 𝐵 ∶ 𝑠

(form) Γ ⊢ 𝐴 → 𝐵 ∶ 𝑠

(v)
Γ ⊢ 𝑀 ∶𝐴 → 𝐵 Γ ⊢ 𝑁 ∶𝐴

(app) Γ ⊢ 𝑀 𝑁 ∶𝐵

(vi)
Γ, 𝑥 ∶𝐴 ⊢ 𝑀 ∶𝐵 Γ ⊢ 𝐴 → 𝐵 ∶ 𝑠

(abs) Γ ⊢ 𝜆𝑥∶𝐴.𝑀 ∶𝐴 → 𝐵

(vii)
Γ ⊢ 𝐴∶𝐵 Γ ⊢ 𝐵′ ∶ 𝑠

(conv) if 𝐵 =𝛽 𝐵′
Γ ⊢ 𝐴∶𝐵′

4.1.3 System 𝜆P
This system allows types to depend on terms. In most of the literature (and in the

title of this monograph) the notion of dependent types refer exactly to this concept.
These types have a general form

𝜆𝑥∶𝐴.𝑀

where 𝑀 and 𝐴 are types but 𝑥 is a variable. This abstraction and its result, which is a
type, must then depend on the term 𝑥 .

𝜆P is special over the two previously discussed extensions to 𝜆→ due to its isomorphism
to first-order implicational intuitionistic logic by the Curry-Howard correspondence.
When extended with dependent product and sum types, it is fully equivalent to first-order
intuitionistic logic.

The most important new typing rule is the following, which allows Π-types as terms:

Γ ⊢ 𝐴∶ ∗ Γ, 𝑥∶𝐴 ⊢ 𝐵 ∶ 𝑠 (form)
Γ ⊢ (Π𝑥∶𝐴. 𝐵) ∶ 𝑠

This system completely substitutes the → operator with Π-types. Most other rules are



44

4 | DEPENDENT TYPES AND TERMS

similar to 𝜆𝜔 except for abs and app, as shown in Definition 4.1.3. Table 4.1 shows the corre-
sponding terms and notions between 𝜆P and implicational first-order intuitionistic logic.

Intuitionistic logic Type theory
Proposition 𝑃 Type 𝑃∶∗
Set 𝑆 Type 𝑆∶∗
𝐷 is a proof of 𝑃 𝐷∶𝑃
𝐴 ⊃ 𝐵 Π𝑥∶𝐴. 𝐵
∀𝑥∈𝑆(𝑃(𝑥)) Π𝑥∶𝑆. 𝑃𝑥
⊃-elim and intro app and abs rules
∀-elim and intro app and abs rules

Table 4.1: Curry-Howard correspondence for 𝜆P.

Definition 4.1.3 (𝜆P typing rules).

(i) (sort) ∅ ⊢ ∗ ∶□

(ii)
Γ ⊢ 𝐴∶ 𝑠

(var) if 𝑥 ∉ ΓΓ, 𝑥∶𝐴 ⊢ 𝑥∶𝐴

(iii)
Γ ⊢ 𝐴∶𝐵 Γ ⊢ 𝐶 ∶ 𝑠

(weak) if 𝑥 ∉ ΓΓ, 𝑥 ∶𝐶 ⊢ 𝐴∶𝐵

(iv)
Γ ⊢ 𝐴∶ ∗ Γ, 𝑥∶𝐴 ⊢ 𝐵 ∶ 𝑠

(form)

Γ ⊢ (Π𝑥∶𝐴. 𝐵) ∶ 𝑠

(v)
Γ ⊢ 𝑀 ∶Π𝑥∶𝐴. 𝐵 Γ ⊢ 𝑁∶𝐴

(app)

Γ ⊢ 𝑀 𝑁 ∶𝐵[𝑥 ∶= 𝑁]

(vi)
Γ, 𝑥 ∶𝐴 ⊢ 𝑀 ∶𝐵 Γ ⊢ Π𝑥∶𝐴. 𝐵 ∶ 𝑠

(abs)

Γ ⊢ (𝜆𝑥∶𝐴.𝑀) ∶ (Π𝑥∶𝐴. 𝐵)

(vii)
Γ ⊢ 𝐴∶𝐵 Γ ⊢ 𝐵′ ∶ 𝑠

(conv) if 𝐵 =𝛽 𝐵′
Γ ⊢ 𝐴∶𝐵′

4.2 Calculus of constructions
The calculus of constructions, also known as CoC or 𝜆C, is the resulting system when

mixing together the central ideas of the three previously discussed systems. It allows terms
to depend on terms (𝜆→), terms to depend on types (𝜆2), types to depend on types (𝜆𝜔)
and types to depend on terms (𝜆𝑃 ). It only has one different typing rule to 𝜆𝑃 , which
is the following:

Γ ⊢ 𝐴∶ 𝑠1 Γ, 𝑥 ∶𝐴 ⊢ 𝐵 ∶ 𝑠2 (form𝜆𝐶)Γ ⊢ Π𝑥∶𝐴. 𝐵 ∶ 𝑠2

For an in-depth discussion on this change, see Nederpelt and Geuvers (2014). Having
incorporated all dimensions of the 𝜆-cube, this theory is the strongest of all eight, and is
equivalent to the implicational fragment of higher-order intuitionistic logic. As such, it
(or variations of it) is frequently used in proof-oriented programming languages, that is,
programming languages able to prove mathematical propositions.
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A slight modification of CoC, called the Calculus of Inductive Constructions (CIC),
is the theoretical basis for the Coq Proof Assistant, created around the 1990s, and the
Lean 4 programming language, gaining traction over the last few years. Both languages
are commonly used for formalizing proofs of mathematical theorems, and can also be
used to write programs and verify them via the Curry-Howard correspondence. These
languages have been used in many successful industry applications, of which we will
discuss two examples.

One notable example is CompCert (Leroy, 2009), a formally verified optimizing C
compiler developed using Coq. Created by Xavier Leroy and his team at INRIA, it translates
source code written in a large subset of the C programming language into assembly code
for several processor architectures, including x86, ARM, and PowerPC. What makes Com-
pCert particularly significant is that it comes with a machine-checked proof of semantic
preservation for the entire compilation chain, meaning that the compiler is mathematically
proven to generate machine code that behaves exactly as prescribed by the semantics of
the source C program. This eliminates the possibility of compiler-introduced bugs, which
is unprecedented in traditional compiler development — even widely-used compilers like
GCC or LLVM occasionally introduce subtle bugs during optimization phases.

Over the past year, the AWS development team has been using Lean to verify core
parts of its authorization policy language called Cedar, as reported by Hietala and Torlak
(2024). Cedar allows developers to write authorization policies that define and enforce
permissions for their applications, separating access control logic from application code.
For instance, a Cedar policy can specify that users can only perform actions on documents
they own, or that deleted documents in a “Trash” folder cannot be edited by any user.
Cedar’s development follows a verification-guided approach, where each core component
is first modeled and verified in Lean before being implemented in Rust. The Lean model
serves as a highly readable prototype that can be formally proven to satisfy key properties.
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Part II

Data-centric programming
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Chapter 5

Exploration in data-centric
programming

In the first part of this monograph, we thoroughly discussed the theoretical basis for
untyped and typed 𝜆-calculi and showed how they are relevant to formal verification. In
this second part, our goal is to explore how a dependently-typed language can be used
in data-centric programming. In this chapter, we will focus on a topic in data-centric
programming (data frames) and define it.

5.1 Data-centric programming
What we call data-centric programming in this monograph is simply the set of program-

ming tasks directly related to dealing with data. That is, a data-centric programming system
is not centered around the side effects it produces, but the data it receives, represents,
transforms, and outputs.

A classic example of this is a database management system (DBMS). The main goal of
these systems is to define, create, maintain, and control access to a database (Connolly
and Begg, 2015). These systems are usually used through a data-centric programming
language such as SQL. This language, based on relational algebra, has three main purposes:
defining schemas of data; inserting, deleting, and updating data in a DBMS; and querying
existing data.

Another data-centric programming language is R, used mostly in statistical computing
and data science. One of its central building blocks is the data frame, a mixed-type
tabular data structure. These structures represent data as an indexed set of rows that
each contain a tuple of elements, similarly to relational algebra but in a more flexible
way, not requiring previously-defined schemas. Data frames also include operations to
extend, reduce, and update rows, columns and individual values. Finally, it is possible
to query specific parts of a data frame.

Although different, relations in relational algebra and tables in data frames have three
main corresponding purposes: representing, transforming, and querying data. We
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believe that these are the foundational pillars for a data-centric system, and will divide
the discussion of our implementation in these three parts. We will focus our analysis of
existing systems and our implementation on data frames, which are a lower-hanging fruit
than full DBMSs in terms of complexity and existing literature.

5.2 Data frames
Our focus on the study of data frames will be over the DataFrame class in the Python

library pandas, described by McKinney (2010).

Data frames were originally created to represent instances from statistical data sets,
which usually arrive in a tabular format. They contain a list of observations (rows) and a
name (column) for its fields. Data in this format can easily be encoded as lists of tuples (or
lists of lists), although leaving it at that leads to awkward transformations and queries.
Because of this, several abstractions over this structure are added.

A data frame in pandas looks like the following:

>>> data = DataFrame.fromcsv('data', index_col=None)
date item value volume

0 2009-12-28 GOOG 622.9 1.698e+06
1 2009-12-29 GOOG 619.4 1.425e+06
2 2009-12-30 GOOG 622.7 1.466e+06
3 2009-12-31 GOOG 620 1.22e+06
4 2009-12-28 AAPL 211.6 2.3e+07
5 2009-12-29 AAPL 209.1 1.587e+07
6 2009-12-30 AAPL 211.6 1.47e+07
7 2009-12-31 AAPL 210.7 1.257e+07

Each column is labeled by a name (e.g. date, item, ...) and each row is indexed by a
number. The frame can also be reshaped (transformed) like the following example, which
groups values by date and item:

>>> df = data.pivot('date', 'item', 'value')
>>> df

AAPL GOOG
2009-12-28 211.6 622.9
2009-12-29 209.1 619.4
2009-12-30 211.6 622.7
2009-12-31 210.7 620

This transformation creates a new view of the data where rows are indexed by dates
and columns represent different items (although our implementation in the next chapter
will not be able to change the indices of rows). The original values are preserved, but
organized differently. This exemplifies one of the key features of data frames: the ability
to reshape data.

Data frames in pandas support various operations that can be categorized into our
three pillars:
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Data Representation

Data frames represent tabular data through:

(i) Column labels: Names that identify each field in the data;

(ii) Row indices: Unique identifiers for each observation;

(iii) Mixed-type data: Unlike arrays, columns can have different types;

(iv) Missing values: Special handling of null or missing data points.

Data Transformation

Common transformations include:

(i) Reshaping: Operations like pivot, melt, and transpose;

(ii) Combining: Merging or concatenating multiple data frames;

(iii) Grouping: Aggregating data based on common values;

(iv) Filtering: Removing or selecting specific rows or columns;

(v) Extending: Creating new columns based on existing ones.

Data Querying

Data frames can be queried through:

(i) Label-based access: Selecting data by column names or row labels;

(ii) Position-based access: Selecting data by numerical indices;

(iii) Boolean indexing: Filtering data based on logical conditions;

(iv) Set operations: Finding unique values or checking membership.

For example, we can query the previous data frame to find all stock prices above 500:

>>> data[data['value'] > 500]
date item value volume

0 2009-12-28 GOOG 622.9 1.698e+06
1 2009-12-29 GOOG 619.4 1.425e+06
2 2009-12-30 GOOG 622.7 1.466e+06
3 2009-12-31 GOOG 620 1.22e+06

These operations make data frames a powerful tool for data manipulation and analysis.
However, their implementation in existing systems like pandas lacks formal verification
and type safety. For instance, there’s no compile-time guarantee that column names
exist or that operations between columns are type-compatible. This motivates our ex-
ploration of implementing data frames in a dependently-typed language, where we can
provide these guarantees while maintaining the flexibility and expressiveness of existing
implementations.
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Chapter 6

A dependently-typed data
framework

From Chapters 1 through 4 we discussed the theoretical framework behind dependent
types, a key feature of the Lean programming language. In Chapter 5, we discussed data-
centric programming and specifically data frames in the context of the pandas library.
Now, we join everything we’ve discussed so far to implement the core of a data frame
library in Lean, leveraging the benefits of dependent types.

Our code is a re-implementation of the idris-data-frame library written for Idris
2 by Tejiščák (2020). This library is inspired by and similar to dplyr (Wickham et al.,
2023), a grammar of data manipulation.

6.1 Data representation
As mentioned earlier, data frames can be seen as lists of lists. Underneath a few layers

of abstraction, this is essentially what our code will implement, although we will use
some features of dependent types to provide additional checking to certain invariants.
At its core, a data frame (DF) is a list of columns, and each column is a vector (list with
fixed size) of values of a fixed type.

6.1.1 Named types
First, we must specify the name and type of each column of a data frame. We do this

through the Named structure, defined in Program 6.1.

The structure Named is essentially a pair between a string, which gives a name to
a column, and a type 𝛼 in universe 𝑢 − 1, which itself is of a type in universe 𝑢. This
makes sense once we consider the discussion on Russell’s Paradox from Chapter 1. The
same way set theory had to develop to avoid the “set of all sets”, Lean’s underlying type
system also must avoid the type of all types. It does this similarly to Russell’s ramified
theory of types, creating different levels (called universes) of types indexed by a natural
number. Type 0 is the lowest level, and contains the types of simple values; Type (n + 1)
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Program 6.1 Named type.

1 structure Named (𝛼 : Type u) where
2 name : String
3 type : 𝛼
4
5 infix:30 " :- " => Named.mk
6 -- example: "Name" :- String

contains all types of universe 𝑛. Although universes can frequently be omitted in Lean
using an underscore (_), we will use them throughout our code to be more explicit and
avoid implicit errors. Our Named structure is universe-polymorphic, so the universe of its
type parameter 𝛼 can be any natural number.

Lean has an in-depth meta-programming system, allowing (among other things) easily
defined extra syntax. A value of type Named (Type _) can be created using the implicitly
created function Named.mk (e.g. Named.mk "Number", Int), its angle brackets syntax sugar
(e.g. ⟨"Number", Int⟩), and our extra notation “:-” (e.g. "Number" :- Int).

6.1.2 Signatures
Next, we define the signature of each data frame. A signature is a list containing each

column’s name and type, seen in Program 6.2.

Program 6.2 Data frame signature.

1 universe u
2 abbrev Sig := List (Named (Type u))

Notice how Named is parametrized by Type u. Most data frames store values whose
type are of universe 0, such as strings, integers, date times, etc, so it wouldn’t really be
necessary to have universe polymorphism. However, we will keep this feature as part
of our exploration of dependent types.

6.1.3 Column pointers
Next, we have the central piece of verified data frame access in Program 6.3, which

Christiansen (2023) calls column pointers. These are structures that serve both as
proofs that a signature contains a given column (a specific named type), and as data on how
to find it. This is a concrete example on how Lean code can contain proofs for arbitrary
propositions and how it can be stored as data.

The inductive keyword is how sum types (Section 3.5.4) are defined in Lean. the InSig
type is essentially a linked list with two possible ways to be created: a constructor here,
which creates the “end” (last element) of the list, and there, which “points” to another list.
The difference between this type and actual lists in Lean is that the second constructor
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Program 6.3 Column pointers.

1 inductive InSig
2 : (name : String)
3 → (𝛼 : Type u)
4 → (sig : Sig)
5 → Type (u + 1)
6 where
7 | here : InSig name 𝛼 ((name :- 𝛼) :: sig)
8 | there : InSig name 𝛼 sig → InSig name 𝛼 ((name' :- 𝛼') :: sig)

doesn’t store a concrete value passed as parameter, but stores information as part of its
types. The definition of InSig is quite tricky, so let us review each of its parts.

First, the type InSig receives as parameters a string name and a type 𝛼 that represent
which Named instance it points to in a signature; then it receives a signature sig that will
contain name :- 𝛼; and finally returns a new type, whose universe must be greater than
𝛼’s to avoid Russell’s Paradox.

The here constructor receives as implicit parameters name, 𝛼, and sig, which are only
named the same as its correspondents in the type parameters to facilitate comprehension.
This same constructor could be rewritten to show all implicit parameters as:

1 | here {name : String} {𝛼 : Type u} {sig : List (Named (Type u))}
2 : InSig name 𝛼 ((name :- 𝛼) :: sig)

It then constructs an InSig instance by providing the string name, the type 𝛼, and a
new signature that must contain the value name :- 𝛼 as its first element. This means that
an InSig can only be created if its third type parameter (a signature) contains as its first
element the exact Named instance created by the first and second type parameter.1 This
is the most complicated part of this trick, and takes a while to internalize. Chapter 8 of
Functional Programming in Lean (Christiansen, 2023) goes more in depth.

The base case of the InSig list is generated by the here constructor, so the only way
to create instances of this type other than here is to point to an existing InSig. This also
means that any InSig name 𝛼 sig must contain name :- 𝛼 somewhere inside sig. The
second constructor, there, shows how to find it. It receives as implicit parameters the
same values as before, but also the additional parameters name' and 𝛼'. Their values don’t
really matter, as they’re only used to tell the language that the result of the constructor
will increase the size of the signature it points to. It could also be rewritten as:

1 | there : InSig name 𝛼 sig → InSig name 𝛼 (_ :: sig)

Considering this, the behavior of this constructor is the following: it receives another
existing InSig value and a corresponding signature proven to contain the desired Named
value, and points to it, associated to another larger super set signature.

1 In Lean, lists are constructed by the cons operator, written x :: xs. This code creates a new linked list
that has x as its first value and the other list xs as the rest.
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Values of the type InSig look like the following:

• InSig.here

• InSig.there .here

• InSig.there (.there (.there .here))

• InSig.there (.there (.there (.there (.there .here))))

These values are isomorphic to natural numbers, and the only information they actually
contain is the index of a specific named type in a given signature. The proofs they represent
only exist in the typing information, which can simply be erased in compile time. This is
the duality between proofs and data: in Lean, a type can purely exist as verification of an
invariant, a value can exist just as data, or they can both coexist in the same structure.

One interesting aspect of this encoding is that a signature will be contained in full in
the types of the first constructor of a there chain, then the next value will have in its types
the same signature but with its head removed, then the next will remove another one, and
so on, until a value constructed by here will have in its types a signature with its head
as the desired Named instance. So, while deconstructing an InSig, a programmer is also
deconstructing a Sig. See the following examples of InSig instances alongside their types:

1 example
2 : InSig "name" String ["name" :- String]
3 := InSig.here
4
5 example
6 : InSig "age" Int [ "name" :- String
7 , "height" :- Float
8 , "age" :- Int]
9 := .there (.there .here)

Although defining column pointers directly works, it is certainly undesirable to write
down the full .there chain every time they are needed. Lean has a meta-programming
system called tactics, which allows us to write code that writes other code automatically.
Recall how the existence of an InSig instance is already a proof of a signature containing
a given named type. Then, if we somehow create any instance of this type, it’s already
enough to get a desired column. The constructor tactic tries to construct an inductive
type from the first available constructor. The repeat tactic tries to execute a specific tactic,
and if it fails, tries it again with its next possible state, until it either stops by succeeding
or by reaching a pre-determined limit. If we join these two tactics, we can tell Lean to
try to construct an InSig by just repeating the constructors until we get a valid instance.
See the following example:

1 example : InSig "age" Int ["name" :- String, "age" :- Int]
2 := by repeat constructor
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6.1.4 Columns
Next, we define lists of columns in Program 6.4, which is the main inner structure

of a data frame.

Program 6.4 List of columns, each containing a list of rows.

1 inductive Columns : Nat → Sig → Type (u + 1) where
2 | nil : Columns n []
3 | cons
4 : {𝛼 : Type u}
5 → Vect 𝛼 n
6 → Columns n sig
7 → Columns n ((name :- 𝛼) :: sig)

This structure receives as type parameters a natural number, which represents the
(fixed) amount of observations (rows) in each column; and a signature, which specifies
the names and types of each column. Similarly to how we defined InSig, this type is at
its core a linked list, but each node stores a row.

The nil constructor is the base case — it doesn’t store a row, and its signature is an
empty list (since it doesn’t contain any columns). It, however, still stores the number 𝑛
of rows in each column.

The cons constructor receives an implicit type 𝛼, which will be the type stored by
the node’s rows; a vector of size n containing a value of 𝛼 for each row; and the next
node of the linked list, which will be another value of the Columns type. The resulting
type, Columns n ((name :- 𝛼) :: sig), builds (name :- 𝛼) into the columns’ signature,
so the existence of a Named can be verified when deconstructing Columns. See the following
example of an instance of Columns:

1 def exampleColumns : Columns 2 ["name" :- String, "age" :- Int]
2 := Columns.cons (Vect.cons "Alice" (Vect.cons "Bob" Vect.nil))
3 (Columns.cons (Vect.cons 25 (Vect.cons 24 Vect.nil))
4 Columns.nil)

Circling back to column pointers, we can now show how to use an InSig to extract the
observations of a single column given its pointer. See the extraction function in Program 6.5.
Note that variables whose names start with an underscore are not used.

Program 6.5 Column extracting function.

1 def Columns.extract
2 : Columns rowCount sig
3 → InSig name 𝛼 sig
4 → Vect 𝛼 rowCount
5 | .cons xs _cols, .here => xs
6 | .cons _xs cols, .there pf => extract cols pf
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This function works by pattern matching over a Columns (.cons _ _) and an InSig
(.here | .there). You might notice that the pattern match does not contain a case for the
Columns.nil constructor, and that is a consequence of how we construct column pointers.
Since both InSig constructors have non-empty signatures (that is, Sig is constructed with
the cons operator (::), if a Columns and an InSig use the same signature, then the Columnns
instance cannot be .nil. For a similar reason, matching a .here constructor guarantees
that xs is of the desired type. The feature that allows both instances is called dependent
pattern matching, and is one of the nicest features brought by dependent types.

6.1.5 Data frames
Finally, we can define the data frame (DF) structure in Program 6.6.

Program 6.6 Data frame structure.

1 structure DF (sig : Sig) where
2 {rowCount : Nat}
3 columns : Columns rowCount sig

A DF of a fixed signature sig contains a list of columns (of type Columns); and a natural
number for the amount of rows it contains, which is implicitly created from columns.
For example:

1 example : DF ["name" :- String, "age" :- Int]
2 := ⟨Columns.cons (Vect.cons "Alice" (Vect.cons "Bob" Vect.nil))
3 (Columns.cons (Vect.cons 25 (Vect.cons 24 Vect.nil))
4 Columns.nil)⟩

The above syntax for creating data frames works, although it is not very convenient.
Leveraging Unicode characters, we add an operator to create rows (¦) and another to
create columns (‖):

1 infixr:55 " ¦ " => Vect.cons
2 notation:55 lhs:55 " ¦ " => Vect.cons lhs Vect.nil
3 example := 1 ¦ 2 ¦ 3 ¦
4 notation:50 " ‖ " lhs:51 rhs:50 => Columns.cons lhs rhs
5 notation:50 " ‖ " lhs:51 => Columns.cons lhs Columns.nil
6 example : Columns 2 ["i1" :- Int, "i2" :- Nat]
7 := ‖ 1 ¦ 2 ¦ ‖ 3 ¦ 4 ¦

Finally, we can show a full example for a data frame in Program 6.7.

6.2 Transformations and queries

6.2.1 Expressions
In our library, transformations and queries are part of an embedded domain-specific

language (DSL). The expressions of this DSL compose with each other to form complex
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Program 6.7 Example data frame in our library.

1 def exampleDF : DF
2 ([ "name" :- String
3 , "age" :- Int
4 , "country" :- Option String
5 ]) := ⟨
6 ‖ "Artur" ¦ "Bob" ¦ "Claire" ¦ "Blorg" ¦ "Zorg" ¦
7 ‖ 32 ¦ 54 ¦ 41 ¦ 101 ¦ 99 ¦
8 ‖ some "BR" ¦ some "US" ¦ some "FR" ¦ none ¦ none ¦⟩

operations. Program 6.8 shows the Expr type, which defines the main (but not all) op-
erations that can be done over a data frame. Its code is quite involved, so we will go
through each part step-by-step.

Program 6.8 Domain-specific language (DSL) expression type

1 inductive Quantity where | one | many
2
3 inductive Expr : Quantity → Sig → Type → Type (max v u + 1) where
4 | L : 𝛼 → Expr q sig 𝛼
5 | V : (name : String) → InSig name 𝛼 sig → Expr .many sig 𝛼
6 | Count : [Add 𝛼] → [Mul 𝛼] → [FromInt 𝛼] → Expr q sig 𝛼
7 | Map : (𝛼 → 𝛽) → Expr q sig 𝛼 → Expr q sig 𝛽
8 | BinOp
9 : (𝛼 → 𝛽 → 𝛾) → Expr q sig 𝛼 → Expr q sig 𝛽 → Expr q sig 𝛾

10 | Aggregate : (List 𝛼 → 𝛽) → Expr .many sig 𝛼 → Expr .one sig 𝛽

First, let’s see the type parameters required by Expr. It requires a value of type Quantity,
which as defined in line 1, can only be one or many. This allows expressions to specify
if they will return or operate over a single value or multiple at a time, for instance, an
entire column. Some operations only make sense over a single value, and some only over
multiple; this is specified in each constructor. Expr also receives a signature and a type;
the first is the signature of data frames the expression will deal with, and the second is
the type returned when evaluating the DSL.

Now, let us go over each constructor:

• Constructor L: introduces a value into an expression. For example, Expr.L (some
"x") introduces the optional string “x”.

• Constructor V: references a column in a signature. Note that it requires both the
column name and a column pointer, the latter serving as a proof that the column does
indeed exist in a given signature. Its return type is marked by .many, so evaluating
an expression of V will return multiple values.

• Constructor Count: counts the number of rows in a data frame.

• Constructor Map: maps the value(s) referenced by an expression from type 𝛼 to
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type 𝛽.

• Constructor BinOp: executes a binary operation between the value of two expres-
sions.

• Constructor Aggregate: aggregates many values into one given a function of a list
of values to a single output. Note its argument is marked by .many and result by
.one, so it must receive multiple values and will return only one.

To improve the expressivity of the language we add functions val and col, which are
simply aliases of Expr.L and Expr.V.

1 def val : 𝛼 → Expr q sig 𝛼 := Expr.L
2 def col : (name : String) → InSig name 𝛼 sig → Expr .many sig 𝛼 :=

Expr.V

This DSL will make extensive use of type classes, which will compose over the values
of each expression to build more complex results. Another way to accomplish this task
is what Chapter 8.2 of Christiansen (2023) calls the universe design pattern, which uses
Tarski-style universes to encode types. This is more simple than it seems, and we will
get back to it in Section 6.3.

We add a few generally straight-forward instances for expressions, which are enough
for basic operations add, mul, sub, div, neg:

1 instance [Add 𝛼] : Add (Expr q sig 𝛼) where
2 add := Expr.BinOp Add.add
3 instance [Mul 𝛼] : Mul (Expr q sig 𝛼) where
4 mul := Expr.BinOp Mul.mul
5 instance [Sub 𝛼] : Sub (Expr q sig 𝛼) where
6 sub := Expr.BinOp Sub.sub
7 instance [Div 𝛼] : Div (Expr q sig 𝛼) where
8 div := Expr.BinOp Div.div
9 instance [FromInt 𝛼] : FromInt (Expr q sig 𝛼) where

10 fromInt n := pure (FromInt.fromInt n)
11 instance : Functor (Expr q sig) where
12 map := Expr.Map
13 instance [Neg 𝛼] : Neg (Expr q sig 𝛼) where
14 neg := Functor.map Neg.neg

A more complex binary operation can be formed, like the over function:

1 def over [Ord 𝛼] : Expr q sig 𝛼 → Expr q sig 𝛼 → Expr q sig Bool :=
2 Expr.BinOp (fun x y => Ord.compare x y == .gt)

6.2.2 Expression evaluation
Finally, we can implement evaluation for expressions of the DSL in Program 6.9. This

program uses a few functions we haven’t defined in this chapter; most have equiva-
lent names in functional programming literature, and the full code will be presented in
Appendix A.
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Program 6.9 DSL expression evaluation.

1 abbrev EvalTy : Quantity → Nat → Type → Type
2 | .one, _, 𝛼 => 𝛼
3 | .many, n, 𝛼 => Vect 𝛼 n
4
5 def Expr.eval (df : DF sig) : {q : Quantity} → Expr q sig 𝛼 →

EvalTy q (df.rowCount) 𝛼
6 | .one, L x => x
7 | .many, L x => Vect.replicate x df.rowCount
8 | .many, V name loc => df.get name loc
9 | .one, Count => FromInt.fromInt df.rowCount

10 | .many, Count => Vect.replicate (FromInt.fromInt df.rowCount)
df.rowCount

11 | .one, Map f xs => f (xs.eval df)
12 | .many, Map f xs => Functor.map f (xs.eval df)
13 | .one, BinOp f xs ys => f (xs.eval df) (ys.eval df)
14 | .many, BinOp f xs ys => Vect.zipWith f (xs.eval df) (ys.eval df)
15 | .one, Aggregate f e => f (ToList.toList (e.eval df))

The return type of Eval.eval is the type EvalTy, which contains a single value if its
quantity is .one or 𝑛 if it is .many. Like we did with the definition of Expr, let’s go over
each constructor one by one:

• L: Either returns a single value x or replicates it n times;

• V: Returns every observation from a column;

• Count: Either returns a single value with the row count or replicates it n times;

• Map: Either maps a value resulting from evaluation an expression or multiple values;

• BinOp: Runs a binary operation between the evaluation of two other expressions,
or if they have multiple results, between all values of two expressions;

• Aggregate: Aggregates multiple values resulting from an evaluation into a single
one.

To conclude this section, we present an example of the DSL in action. It uses a few
functions not defined throughout the text, which are available in Appendix A.

1 def alienAges := exampleDF
2 |>.where (Option.isNone <$> col "country" (by repeat constructor))
3 |>.select (
4 ⋅ ("name" :- col "name" (by repeat constructor))
5 ⋅ ("age" :- col "age" (by repeat constructor))
6 ⋅ ("century" :- over (col "age" (by repeat constructor))
7 (FromInt.fromInt 100)))
8 |>.get "century" (by repeat constructor)
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6.3 Further developments
There are a few extensions we could implement to the code presented so far to make it

more usable and interesting as a standalone framework for data frames. We now discuss
two possible features to improve the usability of our library.

Column type inference

The types representable in this system are all the possible instantiations of Named,
and the operations over these types are all those that can be expressed with the Expr
constructors, such as BinOp. One way to restrict these expressions is through the universe

design pattern (Christiansen, 2023), also called Tarski-style universes. They are a way to
encode types in data structures, associated to some function that transforms them back to
the type level. They can be useful to write code that pattern matches over types, as that
cannot be done purely at the type level in Lean. An application of this is generating types
automatically for a given untyped data frame, effectively doing type inference for columns.
This idea is inspired by type providers in F, presented in Syme et al. (2013). These type
providers generate types at compile time for structures given a schema or an example
instantiation, removing the need to explicitly specify the shape of a data structure in code.

Transpilation

A benefit of writing verified queries and transformations for data is having the assur-
ance that they will work for a given specification. However, most pipelines dealing with
data are already implemented in different systems such as pandas and R, and it would not
be desirable to re-implement them in Lean. To do this, teams would have to be trained in a
new and uncommon programming language, taking up time and resources. A way to deal
with this problem is to have a well-defined DSL in Lean that wouldn’t need knowledge
of the language’s inner workings to write code in, and the expressions of this DSL could
be transpiled to more commonly utilized systems. This way, users could benefit from
the confidence and verification brought by our system in Lean, while not sacrificing the
environments they already have in production.
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Chapter 7

Conclusion

In this monograph, we explored the foundations of type theory and its applications to
data-centric programming. The work was divided into two main parts: a theoretical study
of types, from their origins to dependent types; and a practical implementation of a data
frame library in the dependently-typed programming language Lean 4.

The theoretical exploration began with Russell’s Paradox and the development of
type theory as a solution to inconsistencies in set theory. We then thoroughly examined
the untyped lambda calculus, discussing its syntax, reduction rules, and ways to encode
data within it. This led to the simply-typed lambda calculus, where we explored typing
rules, different typing styles, and the Curry-Howard correspondence. Finally, we discussed
dependent types through the lens of the lambda cube and the calculus of constructions,
showing how they enable the expression of more complex properties and proofs within
the type system itself.

In the practical portion, we implemented a data frame library that leverages depen-
dent types to provide stronger guarantees about data manipulation operations. Our re-
implementation of the library by Tejiščák (2020) focused on three main aspects of data-
centric programming: representation, transformation, and querying. The core of our
implementation uses column pointers - an application of dependent types that serves
both as proof of column existence and as data for column access. We developed a domain-
specific language for expressing transformations and queries, which maintains type safety
while allowing flexible operations on data frames.

Although parts of the code can be tricky, specially to those not versed in dependently-
typed programming languages, there are many advantages of this approach. The practical
benefits of this approach include compile-time verification of column existence and type
compatibility for operations, which helps prevent common runtime errors found in tra-
ditional data frame implementations. Our work demonstrates how dependent types can
be effectively used to add formal verification to data manipulation while maintaining the
flexibility and expressiveness expected from data frame libraries.

Future work could extend this implementation in several ways. Two promising di-
rections are:
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(i) Adding column type inference through Tarski-style universes, which would reduce
the need for explicit type annotations while maintaining type safety.

(ii) Implementing transpilation of our DSL to other data frame systems, allowing the
benefits of verification while keeping compatibility with existing data processing
pipelines.

This work contributes to both the theoretical understanding of type systems and their
practical application in data-centric programming. It shows how advanced type system
features like dependent types can be used to build safer and more reliable data processing
tools, while maintaining the expressiveness needed for real-world applications.
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Source code

1 -- All code was written for Lean version 4.13.0
2 -- This library is a reimplementation of

https://github.com/ziman/idris-data-frame
3
4 namespace DF
5
6 structure Named (𝛼 : Type u) where
7 name : String
8 type : 𝛼
9

10 infix:30 " :- " => Named.mk
11 -- example: "Name" :- String
12
13 def Named.mapItemType (f : 𝛼 → 𝛽) : Named 𝛼 → Named 𝛽
14 | (nam :- 𝛼) => nam :- f 𝛼
15
16 universe u
17 abbrev Sig := List (Named (Type u))
18
19 inductive SigF : (Type u → Type v) → Sig → Type ((max u v) + 1)

where
20 | nil : SigF f []
21 | cons : (e : Named (p a)) → SigF p sig → SigF p ((e.name :- a)

:: sig)
22
23 notation:50 " ⋅ " lhs:51 rhs:50 => SigF.cons lhs rhs
24 notation:50 " ⋅ " lhs:51 => SigF.cons lhs SigF.nil
25
26 inductive InSig : (name : String) → (𝛼 : Type u) → (sig : Sig) →

Type (u + 1) where
27 | here : InSig name 𝛼 ((name :- 𝛼) :: sig)
28 | there : InSig name 𝛼 sig → InSig name 𝛼 (_ :: sig)
29
30 example
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31 : InSig "name" String ["name" :- String]
32 := InSig.here
33
34 example
35 : InSig "age" Int [ "name" :- String
36 , "height" :- Float
37 , "age" :- Int]
38 := .there (.there .here)
39
40 abbrev MapTy : (Type u → Type v) → List (Named (Type u)) → List

(Named (Type v)) :=
41 List.map ◦ Named.mapItemType
42
43 def Sig.sigMapId : (sig : Sig) → (MapTy (fun x => x) sig) = sig
44 | [] => rfl
45 | ((name :- value) :: sig) =>
46 congrArg ((name :- value) :: ⋅) (Sig.sigMapId sig)
47
48 def mapId : {xs : List 𝛼} → xs.map (fun x => x) = xs
49 | [] => rfl
50 | x :: _ => congrArg (x :: ⋅) mapId
51
52 def Sig.insert (name : String) (𝛼 : Type u) : Sig → Sig
53 | [] => [name :- 𝛼]
54 | (name' :- 𝛼') :: sig =>
55 if name == name'
56 then (name :- 𝛼) :: sig
57 else (name' :- 𝛼') :: insert name 𝛼 sig
58
59 def Sig.overrideWith : Sig → Sig → Sig
60 | lhs, [] => lhs
61 | lhs, (name :- 𝛼) :: rhs => overrideWith (insert name 𝛼 lhs) rhs
62
63 inductive Row : Sig → Type (u + 1) where
64 | nil : Row []
65 | cons : 𝛼 → Row sig → Row ((name :- 𝛼) :: sig)
66
67 inductive Vect (𝛼 : Type u) : Nat → Type u where
68 | nil : Vect 𝛼 0
69 | cons : 𝛼 → Vect 𝛼 n → Vect 𝛼 (n + 1)
70 deriving Repr, BEq
71
72 def exampleVect := Vect.cons 4 $ .cons 3 $ .cons 1 $ .cons 2 $ .cons

0 $ .nil
73
74 def Vect.snoc : Vect 𝛼 n → 𝛼 → Vect 𝛼 (n + 1)
75 | .nil, v => .cons v .nil
76 | .cons x xs, v => .cons x (snoc xs v)
77
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78 -- Warning: O(2n)
79 def Vect.reverse : Vect 𝛼 n → Vect 𝛼 n
80 | .nil => .nil
81 | .cons x xs => .snoc (reverse xs) x
82
83 def Vect.append' {n m : Nat} : Vect 𝛼 n → Vect 𝛼 m → Vect 𝛼 (m + n)
84 | .nil, ys => ys
85 | .cons x xs, ys => .cons x (xs.append' ys)
86
87 def Vect.append {n m : Nat} : Vect 𝛼 n → Vect 𝛼 m → Vect 𝛼 (n + m)

:=
88 Nat.add_comm n m ⊳ Vect.append'
89
90 instance : HAppend (Vect 𝛼 n) (Vect 𝛼 m) (Vect 𝛼 (n + m)) where
91 hAppend := Vect.append
92
93 def Vect.empty : Vect 𝛼 0 := .nil
94
95 def Vect.singleton (x : 𝛼) : Vect 𝛼 1 := Vect.cons x .nil
96
97 def Vect.splitAt' : (n : Nat) → Vect 𝛼 (m + n) → Vect 𝛼 n × Vect 𝛼 m
98 | 0, rest => (.nil, rest)
99 | n' + 1, .cons x xs =>

100 let (lft, rgt) := xs.splitAt' n'
101 (.cons x lft, rgt)
102
103 def Vect.splitAt (n : Nat) : Vect 𝛼 (n + m) → Vect 𝛼 n × Vect 𝛼 m :=
104 Nat.add_comm n m ⊳ Vect.splitAt' n
105
106 def Vect.toList : Vect 𝛼 n → List 𝛼
107 | .nil => []
108 | .cons x xs => x :: toList xs
109
110 def Vect.fromList : (xs : List 𝛼) → Vect 𝛼 xs.length
111 | [] => .nil
112 | x :: xs => .cons x (fromList xs)
113
114 def Vect.insertSorted [Ord 𝛼] (v : 𝛼) : Vect 𝛼 n → Vect 𝛼 (n + 1)
115 | .nil => .cons v .nil
116 | .cons x xs =>
117 match compare x v with
118 | .lt => .cons x (xs.insertSorted v)
119 | .eq
120 | .gt => .cons v (.cons x xs)
121
122 -- Warning: O(2n)
123 def Vect.sort [Ord 𝛼] : Vect 𝛼 n → Vect 𝛼 n
124 | .nil => .nil
125 | .cons x xs => xs.sort |>.insertSorted x
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126
127 def Vect.zip : Vect 𝛼 n → Vect 𝛽 n → Vect (𝛼 × 𝛽) n
128 | .nil, .nil => .nil
129 | .cons x xs, .cons y ys => .cons (x, y) (xs.zip ys)
130
131 def Vect.map (f : 𝛼 → 𝛽) : Vect 𝛼 n → Vect 𝛽 n
132 | .nil => .nil
133 | .cons x xs => .cons (f x) (xs.map f)
134
135 instance : Functor (fun 𝛼 => Vect 𝛼 n) where
136 map := Vect.map
137
138 def Vect.permute [Ord 𝛼] (perm : Vect 𝛼 n) (xs : Vect 𝛽 n) : Vect 𝛽

n :=
139 let pairs := Vect.zip perm xs
140 let _ordInstance : Ord (𝛼 × 𝛽) := { compare := fun p1 p2 =>

compare p1.fst p2.fst }
141 let sorted := pairs.sort
142
143 sorted.map Prod.snd
144
145 def Vect.replicate (x : 𝛼) : (n : Nat) → Vect 𝛼 n
146 | 0 => .nil
147 | n' + 1 => .cons x (replicate x n')
148
149 def Vect.zipWith (f : 𝛼 → 𝛽 → 𝛾) : Vect 𝛼 n → Vect 𝛽 n → Vect 𝛾 n
150 | .nil, .nil => .nil
151 | .cons x xs, .cons y ys => .cons (f x y) (zipWith f xs ys)
152
153 theorem min_succ : (min n m) + 1 = min (n + 1) (m + 1) := by
154 cases Nat.le_total n m with
155 | inl h => rw [Nat.min_eq_left h, Nat.min_eq_left (Nat.succ_le_succ

h)]
156 | inr h => rw [Nat.min_eq_right h, Nat.min_eq_right

(Nat.succ_le_succ h)]
157
158 def Vect.take' : (m : Nat) → Vect 𝛼 n → Vect 𝛼 (min m n)
159 | 0, _ => by simp!; exact .nil
160 | n' + 1, .nil => .nil
161 | n' + 1, .cons x xs =>
162 min_succ ⊳ .cons x (take' n' xs)
163
164 class ToList (f : Type u → Type v) (𝛼 : Type u) where
165 toList : f 𝛼 → List 𝛼
166
167 instance : ToList (fun 𝛼 => Vect 𝛼 n) 𝛼 where
168 toList := Vect.toList
169
170 inductive Columns : Nat → Sig → Type (u + 1) where
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171 | nil : Columns n []
172 | cons : {𝛼 : Type u} → Vect 𝛼 n → Columns n sig → Columns n

((name :- 𝛼) :: sig)
173
174 def exampleColumns : Columns 2 ["name" :- String, "age" :- Int]
175 := Columns.cons (Vect.cons "Alice" (Vect.cons "Bob" Vect.nil))
176 (Columns.cons (Vect.cons 25 (Vect.cons 24 Vect.nil))
177 Columns.nil)
178
179 def Columns.toList : {sig : Sig} → Columns n sig → List (Σ 𝛼 :

Type, Vect 𝛼 n)
180 | _, .nil => []
181 | (_ :- 𝛼) :: _, .cons col cols => ⟨𝛼, col⟩ :: cols.toList
182
183 def Columns.append {sig : Sig} : Columns m sig → Columns n sig →

Columns (m + n) sig
184 | .nil, .nil => .nil
185 | .cons xs cs, .cons xs' cs' => .cons (xs ++ xs') (Columns.append

cs cs')
186
187 def Columns.bindCols : Columns n sig → Columns n sig' → Columns n

(sig ++ sig')
188 | .nil, ys => ys
189 | .cons x xs, ys => .cons x (bindCols xs ys)
190
191 def Columns.reverse : Columns n sig → Columns n sig
192 | .nil => .nil
193 | .cons xs cs => .cons xs.reverse cs.reverse
194
195 def Columns.empty : {sig : Sig} → Columns 0 sig
196 | [] => .nil
197 | _ :: _ => .cons Vect.empty empty
198
199 def Columns.deepMap
200 {sig : Sig}
201 (p : Type _ → Type _)
202 (f : {𝛼 : Type _} → Vect 𝛼 n → Vect (p 𝛼) m)
203 : Columns n sig
204 → Columns m (MapTy p sig)
205 | .nil => .nil
206 | .cons xs cs => .cons (f xs) (deepMap p f cs)
207
208 def Columns.map
209 {sig : Sig}
210 (f : {𝛼 : Type _} → Vect 𝛼 n → Vect 𝛼 m)
211 (cols : Columns n sig)
212 : Columns m sig :=
213 Sig.sigMapId sig ⊳ Columns.deepMap (fun x => x) f cols
214
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215 def Vect.trueCount : Vect Bool n → Nat
216 | .nil => 0
217 | .cons true xs => trueCount xs + 1
218 | .cons false xs => trueCount xs
219
220 def Vect.where_ : (mask : Vect Bool n) → Vect 𝛼 n → Vect 𝛼

(Vect.trueCount mask)
221 | .nil, .nil => .nil
222 | .cons true mask, .cons x xs => .cons x (where_ mask xs)
223 | .cons false mask, .cons _ xs => (where_ mask xs)
224
225 def Columns.where_
226 {sig : Sig}
227 (mask : Vect Bool n)
228 : Columns n sig
229 → Columns (Vect.trueCount mask) sig
230 | .nil => .nil
231 | .cons xs cs => .cons (Vect.where_ mask xs) (where_ mask cs)
232
233 def Columns.rowCons : Row sig → Columns n sig → Columns (n + 1) sig
234 | .nil, .nil => .nil
235 | .cons x xs, .cons col cols => .cons (.cons x col) (rowCons xs

cols)
236
237 def Columns.rowUncons : Columns (n + 1) sig → Row sig × Columns n sig
238 | .nil => (.nil, .nil)
239 | .cons (.cons x xs) cols =>
240 let (firstRow, rest) := rowUncons cols
241 (.cons x firstRow, .cons xs rest)
242
243 def Columns.takeRows {sig : Sig} (k : Nat) : Columns (k + n) sig →

Columns k sig × Columns n sig
244 | .nil => (.nil, .nil)
245 | .cons col cols =>
246 let (gcol, rcol) := Vect.splitAt k col
247 let (gcols, rcols) := takeRows k cols
248 (.cons gcol gcols, .cons rcol rcols)
249
250 def Columns.toRows : {n : Nat} → Columns n sig → List (Row sig)
251 | 0, _ => []
252 | _n' + 1, cols =>
253 let (row, rest) := cols.rowUncons
254 row :: toRows rest
255
256 def Columns.singleton : Row sig → Columns 1 sig
257 | .nil => .nil
258 | .cons x xs => .cons (Vect.singleton x) (singleton xs)
259
260 def Columns.extract
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261 : Columns rowCount sig
262 → InSig name 𝛼 sig
263 → Vect 𝛼 rowCount
264 | .cons xs _cols, .here => xs
265 | .cons _xs cols, .there pf => extract cols pf
266
267 example : InSig "age" Int ["name" :- String, "age" :- Int]
268 := by repeat constructor
269
270 def Columns.order [Ord 𝛼]
271 (f : {𝛽 : Type _} → Vect 𝛽 n → Vect 𝛽 n)
272 (perm : Vect 𝛼 n)
273 : Columns n sig → Columns n sig
274 | .nil => .nil
275 | .cons col cols => .cons (f (Vect.permute perm col))

(Columns.order f perm cols)
276
277 -- Rewriting magic required to work on Lean 4.13.0
278 def Columns.insert (name : String) (xs : Vect 𝛼 n) : {sig : Sig} →

Columns n sig → Columns n (Sig.insert name 𝛼 sig)
279 | [], .nil => .cons xs .nil
280 | (name' :- 𝛼') :: sig', .cons xs' xss' => by
281 simp!
282 if h : name = name' then
283 rw [h]
284 simp
285 exact (.cons xs xss')
286 else
287 rw [if_neg h]
288 exact .cons xs' (insert name xs xss')
289
290 def Columns.overrideWith : {sig' : Sig} → Columns n sig → Columns n

sig' → Columns n (sig.overrideWith sig')
291 | [], xss, .nil => xss
292 | (name' :- 𝛼') :: sig', xss, (.cons xs' xss') => by
293 simp!
294 exact overrideWith (Columns.insert name' xs' xss) xss'
295
296 structure DF (sig : Sig) where
297 {rowCount : Nat}
298 columns : Columns rowCount sig
299
300 example : DF ["name" :- String, "age" :- Int]
301 := ⟨Columns.cons (Vect.cons "Alice" (Vect.cons "Bob" Vect.nil))
302 (Columns.cons (Vect.cons 25 (Vect.cons 24 Vect.nil))
303 Columns.nil)⟩
304
305 def DF.get (df : DF sig) (name : String) (loc : InSig name 𝛼 sig) :

Vect 𝛼 (df.rowCount) :=
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306 df.columns.extract loc
307
308 def DF.fromRow (row: Row sig) : DF sig :=
309 ⟨Columns.singleton row⟩
310
311 infixr:55 " ¦ " => Vect.cons
312 notation:55 lhs:55 " ¦ " => Vect.cons lhs Vect.nil
313
314 notation:50 " ‖ " lhs:51 rhs:50 => Columns.cons lhs rhs
315 notation:50 " ‖ " lhs:51 => Columns.cons lhs Columns.nil
316
317 example := 1 ¦ 2 ¦ 3 ¦
318 example : Columns 2 ["i1" :- Int, "i2" :- Nat]
319 := ‖ 1 ¦ 2 ¦ ‖ 3 ¦ 4 ¦
320
321 #eval ((1 ¦ 2 ¦ 3 ¦) : Vect Nat 3)
322 #reduce ‖ 1 ¦ 2 ¦ ‖ 3 ¦ 4 ¦
323
324 def exampleDF : DF
325 ([ "name" :- String
326 , "age" :- Int
327 , "country" :- Option String
328 ]) :=
329 ⟨‖ "Artur" ¦ "Bob" ¦ "Claire" ¦ "Blorg" ¦ "Zorg" ¦
330 ‖ 32 ¦ 54 ¦ 41 ¦ 101 ¦ 99 ¦
331 ‖ some "BR" ¦ some "US" ¦ some "FR" ¦ none ¦ none ¦⟩
332
333 class FromInt (𝛼 : Type u) where
334 fromInt : Int → 𝛼
335
336 instance : FromInt Int where fromInt := id
337 instance : FromInt Float where fromInt := Float.ofInt
338
339 inductive Quantity where | one | many
340
341 inductive Expr : Quantity → Sig → Type → Type (max v u + 1) where
342 | L : 𝛼 → Expr q sig 𝛼
343 | V : (name : String) → InSig name 𝛼 sig → Expr .many sig 𝛼
344 | Count : [Add 𝛼] → [Mul 𝛼] → [FromInt 𝛼] → Expr q sig 𝛼
345 | Map : (𝛼 → 𝛽) → Expr q sig 𝛼 → Expr q sig 𝛽
346 | BinOp : (𝛼 → 𝛽 → 𝛾) → Expr q sig 𝛼 → Expr q sig 𝛽 → Expr q

sig 𝛾
347 | Aggregate : (List 𝛼 → 𝛽) → Expr .many sig 𝛼 → Expr .one sig 𝛽
348
349 def val : 𝛼 → Expr q sig 𝛼 := Expr.L
350 def col : (name : String) → InSig name 𝛼 sig → Expr .many sig 𝛼 :=

Expr.V
351
352 instance : Functor (Expr q sig) where
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353 map := Expr.Map
354
355 instance : Applicative (Expr q sig) where
356 pure := Expr.L
357 seq f x := Expr.BinOp id f (x ())
358
359 instance [Add 𝛼] : Add (Expr q sig 𝛼) where
360 add := Expr.BinOp Add.add
361 instance [Mul 𝛼] : Mul (Expr q sig 𝛼) where
362 mul := Expr.BinOp Mul.mul
363 instance [Sub 𝛼] : Sub (Expr q sig 𝛼) where
364 sub := Expr.BinOp Sub.sub
365 instance [Div 𝛼] : Div (Expr q sig 𝛼) where
366 div := Expr.BinOp Div.div
367 instance [FromInt 𝛼] : FromInt (Expr q sig 𝛼) where
368 fromInt n := pure (FromInt.fromInt n)
369
370 instance [Neg 𝛼] : Neg (Expr q sig 𝛼) where
371 neg := Functor.map Neg.neg
372
373 def Expr.eq [BEq 𝛼] : Expr q sig 𝛼 → Expr q sig 𝛼 → Expr q sig Bool
374 := Expr.BinOp BEq.beq
375
376 notation:50 lhs:50 " E== " rhs:50 => Expr.eq lhs rhs
377
378 def Expr.and : Expr q sig Bool → Expr q sig Bool → Expr q sig Bool
379 := Expr.BinOp Bool.and
380
381 notation:50 lhs:50 " E&& " rhs:50 => Expr.and lhs rhs
382
383 def over [Ord 𝛼] : Expr q sig 𝛼 → Expr q sig 𝛼 → Expr q sig Bool :=
384 Expr.BinOp (fun x y => Ord.compare x y == .gt)
385
386 -- …
387
388 abbrev EvalTy : Quantity → Nat → Type → Type
389 | .one, _, 𝛼 => 𝛼
390 | .many, n, 𝛼 => Vect 𝛼 n
391
392 def Expr.eval (df : DF sig) : {q : Quantity} → Expr q sig 𝛼 →

EvalTy q (df.rowCount) 𝛼
393 | .one, L x => x
394 | .many, L x => Vect.replicate x df.rowCount
395 | .many, V name loc => df.get name loc
396 | .one, Count => FromInt.fromInt df.rowCount
397 | .many, Count => Vect.replicate (FromInt.fromInt df.rowCount)

df.rowCount
398 | .one, Map f xs => f (xs.eval df)
399 | .many, Map f xs => Functor.map f (xs.eval df)
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400 | .one, BinOp f xs ys => f (xs.eval df) (ys.eval df)
401 | .many, BinOp f xs ys => Vect.zipWith f (xs.eval df) (ys.eval df)
402 | .one, Aggregate f e => f (ToList.toList (e.eval df))
403
404 def DF.where (expr : Expr .many sig Bool) (df : DF sig) : DF sig :=
405 DF.mk <| df.columns.where_ (expr.eval df)
406
407 def head (n : Nat) (df : DF sig) : DF sig :=
408 DF.mk <| df.columns.map (Vect.take' n)
409
410 set_option linter.unusedVariables false
411 def DF.uncons : (df : DF sig) → Option (Row sig × DF sig)
412 | @DF.mk _ 0 _ => .none
413 | @DF.mk _ (_ + 1) cols =>
414 let (row, rest) := cols.rowUncons
415 some (row, ⟨rest⟩)
416 set_option linter.unusedVariables true
417
418 def DF.selectCols (df : DF sig) : SigF (Expr .many sig) newSig →

Columns df.rowCount newSig
419 | .nil => .nil
420 | .cons e es' => .cons (e.type.eval df) (selectCols df es')
421
422 def DF.select (df : DF sig) (es : SigF (Expr .many sig) newSig) : DF

newSig :=
423 DF.mk (df.selectCols es)
424
425 def DF.modify (df : DF sig) (es : SigF (Expr .many sig) addSig) : DF

(sig.overrideWith addSig) :=
426 DF.mk (df.columns.overrideWith (df.selectCols es))
427
428 inductive OrderBy : Sig → Type _ where
429 | asc : [Ord 𝛼] → Expr .many sig 𝛼 → OrderBy sig
430 | dsc : [Ord 𝛼] → Expr .many sig 𝛼 → OrderBy sig
431
432 def DF.orderStep (df : DF sig) : OrderBy sig → DF sig
433 | OrderBy.asc e => DF.mk (Columns.order id (e.eval df) df.columns)
434 | OrderBy.dsc e => DF.mk (Columns.order Vect.reverse (e.eval df)

df.columns)
435
436 def DF.orderBy (df : DF sig) (xs : List (OrderBy sig)) : DF sig :=
437 List.foldl DF.orderStep df xs
438
439 def DF.toList (df : DF sig) : List (Σ 𝛼 : Type, Vect 𝛼 df.rowCount)

:=
440 df.columns.toList
441
442 def people : DF
443 ([ "name" :- String
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444 , "age" :- Int
445 , "gender" :- Option String
446 , "pet" :- Option String
447 ]) := ⟨
448 ‖ "Joe" ¦ "Anne" ¦ "Lisa" ¦ "Bob" ¦ "Zorg" ¦
449 ‖ 11 ¦ 22 ¦ 22 ¦ 33 ¦ 22 ¦
450 ‖ some "M" ¦ some "F" ¦ some "F" ¦ some "M" ¦ none ¦
451 ‖ some "fish" ¦ none ¦ some "dog" ¦ some "cat" ¦ some "mech" ¦⟩
452
453 -- ["Joe", "Anne", "Lisa", "Bob", "Zorg"]
454 #eval people.get "name" (by repeat constructor) |>.toList
455
456 -- true ¦ false ¦ false ¦ true ¦ false ¦
457 def modified :=
458 people
459 |>.modify (
460 ⋅ ("male_with_pet" :-
461 ((col "gender" (by repeat constructor)) E== val (some

"M"))
462 E&& (Option.isSome <$> col "pet" (by repeat constructor))))
463 |>.get "male_with_pet" (by repeat constructor)
464
465 def alienAges := exampleDF
466 |>.where (Option.isNone <$> col "country" (by repeat constructor))
467 |>.select (
468 ⋅ ("name" :- col "name" (by repeat constructor))
469 ⋅ ("age" :- col "age" (by repeat constructor))
470 ⋅ ("century" :- over (col "age" (by repeat constructor))
471 (FromInt.fromInt 100)))
472 |>.orderBy [.asc (col "age" (by repeat constructor))]
473 |>.get "century" (by repeat constructor)
474
475 #eval
476 people
477 |>.where (Option.isSome <$> col "pet" (by repeat constructor))
478 |>.select (
479 ⋅ ("name" :- col "name" (by repeat constructor))
480 ⋅ ("age" :- col "age" (by repeat constructor))
481 ⋅ ("plus10" :- Add.add (col "age" (by repeat constructor))

(FromInt.fromInt 10))
482 ⋅ ("-1*2" :- Mul.mul
483 (Sub.sub (col "age" (by repeat constructor))

(FromInt.fromInt 1))
484 (FromInt.fromInt 2)))
485 |>.orderBy
486 [.asc (col "age" (by repeat constructor))]
487 |>.get "-1*2" (by repeat constructor)
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