
StarFLOSS

An observatory of FLOSS Communities

Camila Naomi Kodaira, Felipe Caetano Silva

Capstone Project presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the reqirements

for the degree of
Bachelor in Computer Science

Program: Computer Science
Advisor: Paulo Meirelles

Coadvisor: Melissa Wen

São Paulo
November 20th, 2019

StarFLOSS

An observatory of FLOSS Communities

Camila Naomi Kodaira, Felipe Caetano Silva

This is the original version of the capstone
project prepared by the candidates Camila

Naomi Kodaira, Felipe Caetano Silva.

Given enough bots, all behaviors

are documented and visualized.

i

Acknowledgements

Camila Naomi Kodaira

This project would not have become what it is without the help of many di�erent
people, and for that I would like to o�er my thanks to all of them.

To the students of the MAC0413 class of 2019. For helping to materialise a proof of con-
cept for this project, from which ideas were created and improvements were made.

To Ricardo Marques, the Valet at iTower. For hearing me rant about issues I was having
with this project and encouraging me to �nish it, for almost four months, even if he had
no coding background.

To my parents, Elisa Tiemi Hasegawa Kodaira and Clóvis Yoshio Kodaira. For believing
in me and providing good advice for balancing my professional, educational and personal
life in a way that no one thing swallowed the other.

To my colleagues in HP. For encouraging and allowing me to prioritise writing the
capstone project above all else, even if that meant doing it on working hours, and for
talking about their past experiences, showing me all my concerns are common and even
with them everything will be okay.

Special thanks to both our advisers, Paulo Meirelles and Melissa Wen. Without their
guidance this project would not have been at all, they gave us hope, encouragement and a
positive view of the future on the most stressful moments.

And to Felipe Caetano Silva. I can not think of going on this journey alone, the problems
we had we dealt with together, having someone else to depend on when things got di�cult
made me continue this journey, no matter how long and winding the road.

Even if its petals scatter,

a peony is still a �ower

Even if the summer ends, the

memories of it are still cherished

— Yorushika, Itte

ii

Felipe Caetano Silva

Under no circumstances would this project culminate in this moment if I had not
received help when in need, for every little help I humbly o�er my thanks to all.

To Lucas Henrique Nascimento. For all the support and being the �rst person to listen
to my crazy idea of coming to this University.

To my �rst inspiring Fundamental Teacher Derli Francelli, my �rst chess teacher. I
would have never learned how to focus if it was not for her teaching and caring.

To my Parents Reginaldo Caetano Silva and Josefa Gomes da Silva and my brother
Je�erson Caetano Silva. For all motivational speeches and all the sacri�ces made in order
to help me graduate.

To all my friends from the Ducks. For every bit of information given by them, for every
piece of talk to forget all the problems.

To all the Professors I have encountered here. They presented a new world to my
narrow little mind, making it expand exponentially.

A special thanks to Paulo Meirelles and Melissa our advisers. Their ideas always clari�ed
the darkest moments, made us believe in ourselves and guided us through this long
path.

To Camila Naomi Kodaira. Thanks for all we passed together. Everything was amusing
even the troubles we faced. I would have reached here if it was not for your realist
positivism.

Water can �ow or creep or drip

or crash. Be water, my friend.

— Bruce Lee

Resumo

Camila Naomi Kodaira, Felipe Caetano Silva. StarFLOSS. Dissertação (Bacharelado). Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019.

Free/Libre/Open Source Software(FLOSS), em português chamado de software livre, é um
termo guarda-chuva para softwares em que seus usuários são livres para usar, mudar, estudar
e redistribuir seu código de forma livre. Por mais de duas décadas, muitos estudos procuram
uma forma atraente de descrever as práticas adotadas em projetos de software livre bem
sucedidos. Comum a esses projetos está a infra-estrutura utilizada para comunicação dos
contribuidores, geralmente são Wikis, Listas de email, Canais de Internet Relay Chat(IRC),
Repositórios, Websites e bug trackers. Nesse contexto, o projeto StarFLOSS tem como objetivo
observar os canais existentes para coletar informação e apresenta-las de forma coesa, divertida
e fácil. O projeto consiste de três camadas principais que permitem as duas funcionalidades. A
primeira camada é o Website, por ser a camada de entrada dos usuários ela foi cuidadosamente
planejada enfatizando uma identidade visual prazeroza de se olhar e fácil de usar. Cada parte
de sua Dashboard é interativa, isto é, a seleção de qualquer parte dos grá�cos e menus
acarreta uma �ltragem dos dados apresentados. Essa camada foi criada utilizando React
como o framework para o Website e a biblioteca D3 para o desenho dos grá�cos. Todas as
componentes foram feitas utilizando HTML e CSS puro. A próxima camada é a de Integração,
que é representada por um Gateway e um Agregador de Dados. Entre suas responsabilidades
estão a de fazer com que todas as requisições dos clientes para outros serviços passem por seu
Gateway, dando assim a impressão de que a plataforma inteira funciona em um único módulo.
A terceira camada são os coletores. Eles representam os microserviços utilizados para reunir
os dados das fontes e fornecer aos clientes. São ferramentas auto-su�cientes e que podem
ser usadas para qualquer outro projeto. A arquitetura da plataforma foi baseada em SOA
(Service Oriented Architecture). Esse estilo de design de software e os seus princípios centrais
são independentes de produtos e tecnologias. Ao �nal deste projeto, conseguimos construir a
fundação de um projeto que possibilita usuários não programadores observar comunidades
de software livre. Utilizando práticas que facilitam a integração de outros contribuidores
possibilitamos que o projeto tenha continuidade e também seja um software livre por si só.

Palavras-chave: StarFLOSS. API Gateway. Visualização de dados. Software Livre.

Abstract

Camila Naomi Kodaira, Felipe Caetano Silva. StarFLOSS: An observatory of FLOSS Com-
munities. Capstone Project (Bachelor). Institute of Mathematics and Statistics, University of
São Paulo, São Paulo, 2019.

Free/Libre/Open Source Software (FLOSS) is an umbrella term for software in which its
users are free to use, change, study, and redistribute freely. For over two decades, many
investigations have looked for an attractive way to describe the practices adopted in successful
open source projects. Common to these projects is the infrastructure used for contributor
communication, usually Wikis, Mailing Lists, Internet Relay Chat (IRC) Channels, Repositories,
Websites, and Bug Trackers. In this context, the StarFLOSS project aims to observe these
channels while collecting information and present it in a cohesive, fun, and easy way. The
project consists of three main layers that allow these functionalities. The �rst layer is the
Website. It is the entrance to new users; it has been carefully designed to emphasise a visual
identity that is pleasant to look at and easy to use. Each part of its Dashboard is interactive,
that is, selecting any part of the graphs and menus entails �ltering the data presented to
illustrate the selection. This layer was created using React as the website framework and the
D3 library for graphics design. All components were made using pure HTML and CSS. A
Gateway and a Data Aggregator represent the Integration Layer. Their responsibilities include
making all customer requests for other services pass through their gateway. Thus, giving the
impression that the entire platform works in a single module, it was built mainly using the
Ruby on Rails framework. The third layer is the collectors. They represent the microservices
used to gather data from sources and provide to clients. They are self-contained tools that
can be used for any other project. The platform architecture was based on Service Oriented
Architecture (SOA). This style of software design and its core principles are independent of
products and technologies. At the end of this project, we were able to build the foundation of
a project that enables non-programmer users to observe open source communities. Moreover,
we developed it using practices that facilitate the integration of other contributors and also
allowed the project to continue and be free software by itself.

Keywords: StarFLOSS. API Gateway. Data Visualisation. Free Software.

vii

Contents

1 Introduction 1
1.1 Motivations and objectives . 2
1.2 Development Methodology . 2
1.3 Organisation of the capstone project . 4

2 Background 5
2.1 Free/Libre/Open Source Software . 5
2.2 Git . 7
2.3 Related Projects . 8
2.4 StarFLOSS features . 9

2.4.1 Front-end features . 10
2.4.2 Back-end features . 10

3 The development of an Observatory of FLOSS Communities 13
3.1 The user Interface . 13

3.1.1 Creating a visual identity . 13
3.1.2 The importance of visual design fundamentals 15
3.1.3 A solid website with React . 18
3.1.4 An interactive dashboard with D3.js 19

3.2 The Integration Layer . 23
3.2.1 Architecture . 24
3.2.2 Good Practices . 26
3.2.3 Restful API . 27
3.2.4 Ruby on Rails . 27
3.2.5 Documentation . 28
3.2.6 The Commit Bot . 29
3.2.7 The IRC Bot . 31
3.2.8 Email Lists . 32

viii

4 The Git Community in StarFLOSS 33
4.1 The home page . 33
4.2 The dashboard . 34

4.2.1 Information menu . 35
4.2.2 Members menu . 35
4.2.3 Time of Day - Heatmap . 36
4.2.4 Commits over time - Bubble chart 37

5 Final Remarks 39
5.1 Where to go from here? . 39

5.1.1 The future of the StarFLOSS website 40
5.1.2 The future of the StarFLOSS API 40

ix

Appendices

A Flux pattern 43

B Endpoints 45
B.1 Commit Information Endpoints . 45
B.2 Email Information Endpoints . 46
B.3 IRC Information Endpoints . 48

Annexes

References 51

1

Chapter 1

Introduction

Free/Libre/Open Source software (FLOSS) is an umbrella term for software in which
users are free to inspect, use, change, and distribute it(Crowston, Wei, et al., 2012). The
singularities of FLOSS project management and the dynamics of their communities are
topics extensively discussed in Software Engineering studies over the last decade, as in
Scacchi, 2010; Kon et al., 2011; Crowston, Wei, et al., 2012; Steinmacher et al., 2015;
Crowston and Sqire, 2017; Barcomb et al., 2019.

For over two decades, investigations have sought to describe better the practices
surrounding a successful FLOSS project. In 1999, Raymond published “The Cathedral and
the Bazaar” (Raymond, 1997), de�ning the development model of free software as a Bazaar.
In this seminal essay, the author coined the following statement: “Given enough eyeballs,
all bugs are shallow”, which became known as the “Linus Law”. This statement covers one
of the aspects of the development of FLOSS: the voluntary nature of its contributors. In
this way, contributors are expert system users, and once they �nd bugs, they make e�orts
to report and even repair the bugs by themselves.

For long, Raymond’s essay has in�uenced the software engineering community as an
ideal way of producing software. However, over the years, technology has enhanced, and
the way to develop software has evolved. As a result, interactions in FLOSS communi-
ties have also changed. More than changes, FLOSS projects today feature a diversity of
approaches to development management and community organisation.

In hindsight, the idea of homogeneity of development, where all FLOSS use the same
development methodology and techniques as the ones used in the prestigious projects, is
inaccurate (Østerlie and Jaccheri, 2007). Another misconception is thinking that every
community would behave like the ones usually used as examples, like the Linux Kernel
and the GCC projects, both successful with many contributors and di�erent channels of
communication (Østerlie and Jaccheri, 2007). Lastly, there is also a misunderstanding
surrounding the voluntary aspect of the contributions. Currently, many companies consid-
ered big players in the commercial world also participate in the development of FLOSS
code, and the question of whether their speci�c contributions would be convenient to the
project still lingers (Fitzgerald, 2006).

Given this context, it becomes essential to observe the dynamics of the current FLOSS

2

1 | INTRODUCTION

projects, so that it is possible to grasp what is happening in the diverse set of their
developments.

1.1 Motivations and objectives

With FLOSS being a complex world with many di�erent projects, it can be hard for
anyone outside and inside their given community to see what is going on in the grand
picture. That means it is complicated to measure how e�cient this development process
really is, and how it can change through time.

The main reason why it is not easy to track down the di�erent communities is the
many di�erent communication methods that they may be using. In Section 2.1 we describe
all these methods with more detail. For example, the Linux kernel has a repository on
GitHub where issues and commits are tracked. However, to be able to make a commit in
Git, the programmer �rst sends an email on a speci�c email group, with the code to review.
Also, any minor conversations are handled in a separated IRC chat. Those communications
setups become more convoluted with the growth of the community, and there is no set
pattern to any of them. Consequently, if tracking a single FLOSS project is troublesome,
monitoring the overall state of FLOSS is not a simple task.

An alternative to overcome the obstacle of not having uni�ed channels for communica-
tion in FLOSS communities is to rely on the support of those who are already familiar with
a given project. If those who know what the communication method of their community
is, create a list of what is most important to track, the work that is left is relatively simple.
Thus, it is possible to create a tracker for those methods and a place that can unify that
data and display it. With so many projects under the FLOSS umbrella, it is unthinkable
reaching a person from every single community, which means that we must seek a way of
making that person push the data on their own. Given those circumstances, this tracker
would need to give them something in return, that is the engagement pull that originated
StarFLOSS.

In this context, we proposed the StarFLOSS, a platform to observe FLOSS communities.
It allows users to register FLOSS projects and set what communication platforms will
be tracked, this way we are able to populate its database with information provided by
the users. The platform will observe the community using the following principle “Given
enough bots, all behaviour are documented and visualised”, thus we are going to focus our
collectors to gather Repository, Email List and IRC channel information.

1.2 Development Methodology

At the very start of 2019, the CCSL Research Group at IME-USP submitted the proposal
of a project called Ms.FLOSS to two di�erent classes: MAC0499 – Supervised Capstone
Project and MAC0413 – Advanced Topics of Object-Oriented Programming. The idea
behind the double application was that the project requires a hefty amount of work,

1.2 | DEVELOPMENT METHODOLOGY

3

from creating robots on the back-end to an integration layer as middle-ware to a useful
dashboard on the front-end. It was a lot to require from only a couple of people. So, using
the concept of divide and conquer, it was proposed to the class of MAC0413 course to help
with creating a prototype as the main project of the course. That would help to ease some
of the workload.

As the months progressed, the prototype developed by the MAC0413 team started
diverging with our vision of what the project should be. Working with a big team lead
to a loss of control on the direction of Ms.FLOSS. When it was �nished we held some
meetings to de�ne the work that would be kept from that prototype and what would be
remade.

The original planned architecture held a front-end layer, composed by the website
and a chart generating module; an integration layer, composed by a reversed proxy and
data aggregator; and a micro-services layer, composed of data collecting robots and a
natural language processor. The following two paragraphs describe the changes made to it
considering the prototype we had. More of the �nished architecture can be seen in Section
3.2.1.

For the back-end, although the robots were in a reasonable form of work, they were
not processing data, therefore we had to modify and add some new features. Still in the
back-end we did not have any work done in the integration layer, thus we started to
develop the data aggregator from scratch, and we changed from a reverse proxy to an
API Gateway. Regarding the Natural Language processing module, it was not functioning
integrated with the system. To accommodate it to our system we decided to integrate it to
our integration layer.

On the front-end side, the original Ms.FLOSS had some neat features, such as user login
and a graph micro-service. However, the vision of the features and uses for the platform
ended up being skewed. Also, the website design was bland, its aqua green motif lacked
identity. Given those reasons, we decided to restart the front-end under a di�erent brand:
StarFLOSS, that took a di�erent visual identity approach, with a more matured idea in
mind.

We speci�ed and developed StarFLOSS in two parts. One is the integration layer, and
the other is the website. As we were working on di�erent projects and also were close,
the methodology of development was more empirical, based on Agile practices. It was
established a two-week sprint schedule where we would �rstly discuss our objectives and
then at the end of the sprint we would make another discussion to assess the progress
made.

For the front-end we decided to separate the sprint in two di�erent sections, the spikes
and the programming. Spike is a term, used in agile practices, to represent an investigation
period. Since we had little knowledge on all the design concepts and the tools used, they
were necessary to write a better code. The programming sections were just like the name
entails, it was the time where we focused on coding features.

As for the back-end, �rstly we tried to write the issues to the GitLab platform, but as
both members of the team had similar schedules we found more reasonable to discuss
the issues and requests for data in a one-to-one meeting in the weekends before the

4

1 | INTRODUCTION

sprint.

1.3 Organisation of the capstone project

This work adheres to the following structure. Chapter 2 explains all previous knowledge
that is necessary for following this work and explains what functionalities we planned
for StarFLOSS. Chapter 3 presents about the development, what was the knowledge
obtained during the process, as well as the struggles and successes that the team had while
programming. Chapter 4 describes what is StarFLOSS right now, how it looks, and what
it does. Finally, Chapter 5 concludes with what was achieved in relation to how it was
planned and what the team suggests for the continuation of the project.

5

Chapter 2

Background

The main point of this chapter is to present the de�nition of FLOSS and the current
state of software tracking. In the beginning, we introduce FLOSS, its ideals, communities,
and development. We present the Git project describing why we chose it to explore the
StarFLOSS features, how it started, and how its community can be tracked. We also discuss
projects that have similar functionality to StarFLOSS but were not used in this project as
well as the reasons they were not incorporated. Lastly, we describe the planned features
and how they can bring a di�erent experience when compared to the projects that will be
mentioned in Section 2.3.

2.1 Free/Libre/Open Source Software

In summary, a FLOSS-licensed software “means that the users have the freedom to run,

copy, distribute, study, change and improve the software” (FSF, 2007). The term Free Open
Source Software or FOSS may also be used to represent what a FLOSS project is. However,
it is preferred to adopt the Spanish Libre term as to better demonstrate that the resulting
software is not free of charge, but free means that the program and its developers do not
control its users. A FLOSS thus must have the four essential freedoms, quoting the original
text:

• The freedom to run the program as you wish, for any purpose (freedom 0).

• The freedom to study how the program works, and change it, so it does your
computing as you wish (freedom 1). Access to the source code is a precondition for
this.

• The freedom to redistribute copies so you can help others (freedom 2).

• The freedom to distribute copies of your modi�ed versions to others (freedom 3).
By doing this, you can give the whole community a chance to bene�t from your
changes. Access to the source code is a precondition for this.

These de�nitions still need some clari�cations to someone better understand the four
pillars:

6

2 | BACKGROUND

The �rst pillar refers to the usability of the program and not its usefulness. If the
software does not have proper responses for any given inputs, it does not mean that it lost
this freedom; likewise, if the program does not function in a given environment, it still
has this freedom. This freedom also states that the purpose of the user should matter, not
the developers. Thus anyone with any intent can use and distribute copies of the software,
and the person who got that software should also share the same freedom.

The second is necessary for the freedoms 1, and 3 to have a meaning, for when one has
access to the source code, they can then study and modify it, consequently redistributing
to those who may concern. It is essential to point out that when a program is changed to
the point that another user cannot run in their environment, a situation called "lock-down",
this freedom is no longer achieved, and the software can not be said free.

Freedoms 3 and 4 say that one has the right to distribute their software in any way
they want, either for free or charging something; in the last case, the resulting software
would not be granted a FLOSS license.

The StarFLOSS project wants to observe how FLOSS communities are structured and
how they work. To have the understanding of how we are going to achieve that we �rstly
describe how the social structure of the project is. FLOSS projects may or may not have a
dictatorship where the “owner” of the project is a benevolent dictator. The fact that any
FLOSS project has “Forkability”, which is the possibility to have a complete copy of the
project in their repository, makes any controversial decision of the dictator of the project
a suicidal venture, thus delicate issues are always discussed in the available channels of
the community.

As the community takes a big part in the decision making process and the developers
that are responsible for the maintenance of the project are distributed around the globe, a
FLOSS must have a couple of channels available for e�cient communication. Usually, the
following are available:

• a Website for developers, users, and other actors to participate in the project

• a Mail List as its main channel of communication and record of the discussions that
led to patches and changes in the project

• a Version Control repository to allow participants of the project to be in touch with
the project quickly

• a Bug tracker which is not only for �nding bugs, but to request new features, one-
time tasks, and generally any change that has an initial state, end state and a period
to transition through the states

• a Real-Time Chat System is also signi�cant in a project, for it allows its users to have
instant responses about critical issues or what would be considered silly questions
in the Mail List; usually, the tool used is IRC(Internet Relay Channel)

• Wikis are a great tool, as they keep all relevant information in one centralised place,
they help new members to understand the scope and function of the project and
function as a way to notify developers when there is a change.

2.2 | GIT

7

From this list, we pinpointed where are the places we ideally sought to observe. Initially
we decided to use information from the Git Repository, since Git is a version control system,
there is no change in a project code that is not committed on it. We would have a reliable
history of the entire project life. However many important decisions are not made in
commits, thus we also choose to track Mail Lists to have the conversations that led to
commits. Lastly we also decided to use the IRC channels, since the data would be informal
conversations from people who started on the project to long-term supporters, it would
provide us with information about the interactions between these two groups.

2.2 Git

We selected the Git project as the example of use to explore the StarFLOSS feature in
this work. Git is a distributed Version Control System (VCS), widely used for its simplicity
and e�ciency, it has impacted all interactions of FLOSS communities.

Anyone can build a VCS platform such as GitHub or Gitlab thanks to the Git project,
using it to track changes in the source code during software development. The creator
of Git is Linus Torvalds, the same as the Linux Kernel. During the development of the
Linux, since 1991, the source code was distributed and tracked by patches and archived
�les. In 2002, the Linux Kernel project started to use a proprietary VCS called BitKeeper1,
which was free-of-charge back then. Using proprietary software to track a �agship FLOSS
project raised many concerns in the community, and in 2005 the status of free-of-charge
was revoked. The change in their status made the community stop using it, and as a result,
Linus and the community decided to create a new project to at last solve the problem of
tracking and sharing code – the Git project. The foundation of the project lies in principles
such as:

• Simplicity

• Speed

• Ability to handle extensive projects e�ciently

• Fully distributed

• Supports non-linear development (branch system)

To become a Git project contributor, a newcomer must write their patches and send it
through an email list, similar to the Linux Kernel project. Beginners should subscribe to
the email lists available in the Git website2. Not only sending the patches via email list,
but the issue tracker can also be found in the lists too. The other option of contact would
be via IRC (Internet Relay Chat) channel “git-devel” hosted in the “irc.freenode.net” server.
IRC is an application layer protocol that eases communication through text and is used
in the community when a more personal discussion is needed. Thus the main focus in
gathering data of this project would be these three channels of communication:

1h�ps://www.bitkeeper.org/index.html
2h�ps://git-scm.com/community

https://www.bitkeeper.org/index.html
https://git-scm.com/community

8

2 | BACKGROUND

• Email lists

• IRC channel “git-devel”

• Git repository of the project

At the University of São Paulo, the FLUSP (FLOSS at USP)3 group helps beginners
learn how to contribute to FLOSS projects. Our proximity to the FLUSP members makes it
more feasible to verify information quickly. Moreover, the size and the age of the project
are other reasons to select it as the example of use. Being a relatively young project, we
can have the majority of the lifespan of the Git project trackable, and having about sixty
thousand commits means we have the right size to start our services.

2.3 Related Projects

We investigated some software analytics projects to have a better knowledge about
this area and to �nd projects closely related to our proposal. Software analytics brings the
developers some useful insight into how software is done, how teams coordinate, what
are the best practices according to metrics, not the subject experience of developers. The
data gathering is around the software artefacts, as well as the related processes of their
producing and evolution. Having in mind the proposal of StarFLOSS, we present two
projects as references to our platform.

The �rst project is called OSS Browser, which guided an ethnography study by Duch-
eneaut, 2006. Its architecture is simple; it has a back-end made in Pearl that retrieves
two categories of data – Emails and CVS (Concurrent Version System) logs. The data is
then processed in the back-end and displayed in a layout made in a Java Applet that can
be viewed in any web browser. Figure 2.1 is a sample of the visualisation of the software.
The OSS Browser project has a very compelling interface with many interactive elements
and, even with only one graph, can show a lot of information. It owns many features that
StarFLOSS strives to achieve.

Another project is named Perceval, which is a system, written in Python, to gather
data from multiple sources consistently (Jesus M. Gonzalez-Barahona and Cosentino,
2018). It works as a service that uses a command-line tool to issue due tasks. Percival
is part of the project called “Grimoire Labs”, which performs as a stack of services to
provide visualisations of software development data with Kibana as the tool to generate
the visualisations. Kibana is a popular data visualisation plugin for the Elastic Search
project. It allows the quick creation of powerful dashboards with log analysis features,
machine learning, and many di�erent kinds of charts.

Regarding the front-end, since the stack of Grimoire Labs uses Percival service, we
would have to use Kibana in our project. However, Kibana was built to be a DevOps tool,
not an overall chart creator. Even if it is easy to create great charts with it, Kibana does
not o�er robust customisation tools. It also does not provide natural ways to extract the

3h�ps://flusp.ime.usp.br/

https://flusp.ime.usp.br/

2.4 | STARFLOSS FEATURES

9

Figure 2.1: Example of visualisation of the software used in Ducheneaut, 2006

graphs provided on its platform. This issue would limit the possibilities of what StarFLOSS
could do both concerning user interaction and artistic direction.

Regarding the back-end, we chose not to use Perceval as it is a service for collecting
data that does not store data or process it. Furthermore, it does not work as a micro-
service, as it would need a database outside of the service. Another point is its many
responsibilities. The service is indeed a complete solution to collect data. Still, as it has
many responsibilities, it is once again out of a micro-service approach, and that would not
be bene�cial to our proposed architecture. Besides that since we have our base services
and our Integration layer planned to be done or partially done in Ruby, having another
language to the project would carry more time spent in adaptation to other language.
Listing all these reasons we decided to implement our collectors as we were planning,
with ruby standalone micro-services

2.4 StarFLOSS features

To be distinguished from the previously mentioned projects, we designed StarFLOSS to
be easy to use. Our aim is that any user who lands on the website can understand the data,
whether they know a community or not. Taking clues from sites such as “Visualising MBTA
Data”4 and “Out of Sight, Out of mind”5, our goal is to be an easy to use, engaging take on
the subject. However, StarFLOSS started as a scienti�c tool that should help demonstrate
the state of a community for any interested researcher. Therefore, we planned the back-end
in a way that someone could use the data with a more focused front-end.

4http://mbtaviz.github.io/
5https://drones.pitchinteractive.com/

10

2 | BACKGROUND

2.4.1 Front-end features

The primary purpose of StarFLOSS is to be a display of FLOSS data, an easy to un-
derstand visualisation. Thus, anyone interested in a speci�c community could better
comprehend its activities status. We designed all StarFLOSS features thinking about what
would better help the user �nd crucial information. There are two di�erent ways in which
we could help: �rst, in how to �nd the project, and then in how to �nd the data.

We need to meet some requirements to create a good user experience. For example,
if a user knows what project they are looking for, they should have no issue �nding
it; otherwise, if they want to see the project that has the highest number of commits,
that should be easy as well. The platform should have a search bar and relevant search
parameters in order to give that power to the user. As a way to also provide visibility to
smaller lesser known projects, it was decided that the home page of the website would
display some random projects, that is a fun surprise to the user and a quick way to present
projects that would be less searched for.

Concerning the dashboard, the best way to generate interest is to allow the user to
interact with the graphs directly. By presenting options for the user to �lter the data they
want, it is possible to create a more personalised experience, this �ltering creates a more
memorable user experience, according to Bill Shander, 2016. We followed the Shander’s
approach to design the StarFLOSS dashboard. It is not to be packed full of di�erent charts
and data, but to have a few well-developed charts, to provide the best experience for the
users.

Create a fun visual identity for the StarFLOSS was not the main focus of this project,
but not following the rules of visual design generates an unappealing website, becoming a
barrier to attracting users. Data visualisation inherently comes with the need for good
design. A dashboard with no cohesion is unpleasing to look at and can be hard to read (as
discussed in Section 3.1.2). StartFLOSS visual design took a lot of planning.

2.4.2 Back-end features

We designed the integration layer with the following guidelines in mind: function as a
“Load Balancer” for the incoming requests, so the system is not easily crashed; making
it seem like the client is requesting the data from a single service, hiding any further
complexity; aggregate incoming data to more speci�c requests; and also be a service that
functions independently, the information should be easily consumed by any eventual
service that requests it. Using these guidelines we would like to present some features by
the end of this project:

• Any user can add projects to the platform given they are FLOSS and have public
repositories

• Provide the history of commits of a given project

• Process statistics of the commits

• History of commits of a speci�c user in a repository

2.4 | STARFLOSS FEATURES

11

• Filter raw information from the bots and provide re�ned information to the platform

• Standard API documentation

• Provide a tracking tool for messages in the IRC community

• Provide statistics of the IRC channel related to a FLOSS

• Analyse sentiment of messages in the IRC channels

• Give the user the possibility to upload a historical of data sources that do not have a
pattern as archived email lists.

• Allow other developers to contribute to the Integration Layer quickly

• Use of Continuous Integration in the build, test, and deploy stages.

With these planned features we understand that we may achieve our goals presented
in the beginning of this section. With that a very �exible platform will be created, pleasing
casual users interested in discovering new information in a beautiful website, to a more
focused pro�le intending to analyse what it is provided. Having described our planned goals,
in the next chapter, we focus on the development process that created our system.

13

Chapter 3

The development of an
Observatory of FLOSS
Communities

This chapter describes how we developed the platform and what became of it. We
present the implemented features of both the Integration Layer and the User Interface,
describing the technologies and the external dependencies used in each of them.

3.1 The user Interface

The StarFLOSS website is the �rst thing the user sees when discovering this project.
With that in mind, we explain in this section the idealisation process, the design funda-
mentals, and how we applied them to the project. Moreover, we also present the coding
process and the choices that had to be made to create a great user experience. We discuss
topics from the many di�erent disciplines that were necessary to study to make StarFLOSS,
from typography to data �ow.

3.1.1 Creating a visual identity

The phrase that guided the visual graphics development of StarFLOSS originated
from the subtitle “an observatory for FLOSS”. We decided to take that metaphor to heart
and base our site around this star concept; this way, we give a visual aid to the user for
better comparing the software projects. A real-life observatory is “a building equipped for
studying the planets and the stars”1. Given that, it is not hard to �gure that to give the
metaphor continuity, the projects should be celestial bodies.

We decided that the projects would be stars, because of the ease of understanding in
comparing stars. Looking at the sky to see di�erent stars is something that the average

1De�nition taken from the Cambridge Dictionary

14

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

user is sure to have done. While comparing planets, asteroids, or galaxies would be a bit
more challenging. Also, stars are a better metaphor since we already use it in our language.
A bright star is good or thriving. A dying star is dim and small. There could be a case for
thriving and dying planets, but the visual representation of a thriving planet di�ers quite
a bit from person to person.

A negative point for stars is that there is little visual distinction to work with. This
could be an argument for using planets on the metaphor. Things such as �ora, atmosphere
and even the composition of the planet, if it is gaseous or a rocky, are very distinct
characteristics that planets hold. A star is just a ball of �aming gas held together by gravity.
From far away though, most things end up looking homogeneous. A distant planet is
visually just a star, none of its main characteristics shine, so this point does not hold well.
To di�erentiate stars, we can change colour, size, and brightness; in real life, of course,
those are all related. However, we are going to have to take some poetic licenses to make
the visualisation work.

After deciding what was going to be the project’s visual identity, a brainstorm to
make the StarFLOSS storyboard (Figure 3.1) was done. We created it using paper and
pencil because a storyboard should be an easy to modify diagram of what the website
will eventually look like so that the team can have the same overall idea in mind while
programming it.

Figure 3.1: StarFLOSS storyboard

3.1 | THE USER INTERFACE

15

3.1.2 The importance of visual design fundamentals

Visual design is not a widely approached topic in the realm of computer science. For
someone learning computer science, the text may appear on a Human-Computer Interac-
tion book, while the content will most likely be a digested version of what encompasses
visual design. Regardless, knowing the subject is essential for front-end developers. Brad
Frost2 says it himself in his blog that HTML and CSS development is also design, and that
the most rewarding projects to work, are the ones that understand that. For this reason,
people who do not understand why front-end development needs to be involved in the
design process from the beginning are often inclined to be frustrated with the �nal results
of a project (Brad Frost, 2013).

For data visualisation, the use of charts and maps to display visual information is
one that precedes computers by a long shot. Michael Friendly studied the origins of data
visualisation, in his text “A Brief History of Data Visualization” (Michael Friendly, 2006),
he explains that data visualisation started appearing in history with geometric diagrams,
in tables with star positions and other celestial bodies, and the navigation and exploration
maps. Later, the Ancient Egyptian surveyors used the idea of coordinates in laying out
tows. And, the location of the earth and the sky were positioned using something similar
to latitude and longitude at least by 200 BC. Being such an antique topic shows how visual
design is such a vital knowledge in data visualisation and its importance in a project such
as StarFLOSS.

So, what exactly are the fundamentals of visual design? This question is hard to answer;
most designers, when asked, will say very di�erent things, as what makes someone perceive
a view as pleasing is very personal. However, there are some common topics that will
appear, such as contrast, balance, emphasis, movement, white space, proportion, hierarchy,
repetition, and many more. There is no de�nitive structure on how to group those guides,
so for this section, we will use the separation Tony Harmer uses in his course “Introduction
to Graphic Design” (Tony Harmer, 2018). To him, three big categories need to be taken into
consideration to make a good design: the Layout, the Typography, and the Colours.

Layout

The basics of layout tend to encompass alignment, padding, proximity, repetition, a
lot of things that are very explicit when using HTML and CSS. So it tends to be the most
common knowledge to a programmer. Some more advanced topics focus on the realm of
composition, balance, and hierarchy.

On StarFLOSS, most of the composition relies on calling attention to contrast points.
The night sky is a very dark colour, so any white point against it creates a contrast point.
Contrast points give a component a higher hierarchy. As you can see in the StarFLOSS
homepage (Figure 3.2), the title calls a lot of attention and, bellow it, we have a black
observatory against a brighter section of the image.

2Brad Frost is the author of the book “Atomic Design”, which introduces a methodology to create and
maintain e�ective design systems.

16

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

Figure 3.2: StarFLOSS home page

Typography

Typography tends to be a less discussed topic compared to the other two. Most likely
because its the only subject that does not accurately translate to visual arts, nevertheless it
is an important one. Ina Saltz starts her course “Graphic Design Foundations: Typography”
(Ina Saltz, 2013) with a chapter titled “Why good typography matters”, and states that
Type can help users to form a critical �rst impression about your message; thus, it is
essential because it causes an impact to the user even before it starts to read it.

For StarFLOSS, none of the team knows a lot about typography, so the font choice was
a very safe one. The website has only one font, to not risk having a clashing combination
of them, and the chosen one is the Darker Grotesque (Figure 3.3). The Darker Grotesque is
a grotesque, geometric font that, like many other geometric typefaces, gives the website
a more modern, futuristic look, especially when compared to the neo-grotesque types3

commonly used on the web. Neo-grotesque typefaces are made to be super readable, which
makes them excellent body text fonts. In contrast, when using a geometric typeface, some
readability is lost. The single-story lower-case “a” in the Darker Grotesque, one of the
critical features of a geometric typeface, makes it less distinguishable from letters like
lower-case “o”, as does the roundness of the lower-case “c”. The StarFLOSS, however, is
not text-heavy, and Darker Grotesque does bring it better suiting aesthetic, and as such, it
is the used font.

3Examples of neo-grotesque typefaces includes Arial, Helvetica, MS Sans Serif and Univers

3.1 | THE USER INTERFACE

17

Figure 3.3: Darker Grotesque, by Gabriel Lam

Colour

Colour is a more widespread notion, most people can say whether colours clash or not,
the basics of colour theory is one of the �rst things one learns in any art class, so it was
not a foreign concept to the team. Colour theory mostly revolves around how colours are
perceived when alone and with others, concepts such as warm and cold colours, how to
generate harmonic colour combinations from the colour wheel and many others.

StarFLOSS colours consist primarily of a blue monochrome palette (Figure 3.5) that
was borrowed from the night sky photo taken by Juan (Figure 3.4). The free to use picture
is the main focus of the site landing page, so, to have some colour coordination, the rest of
the website is coloured following the photo.

The website also presents some charts, which led us to introduce some additional
colours. We chose red and green because of the existing symbolism of these colours.
Red means an adverse or deletion action and green an a�rmative or additive action. By
introducing colours outside of the monochrome, we needed reds and greens that would
not cause trouble to our colour-blind audience. It was, therefore, necessary to �nd a red
and green that were di�erent in saturation and brightness but still harmonised with our
original monochrome blue palette. After some searching, we chose the colours in Figure
3.6.

Figure 3.4: Photography of Night Sky, by Juan

18

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

Figure 3.5: Blue colour palette

(a) Normal vision (b) Red-blind/Protanopia (c) Green-blind/Deuteranopia

Figure 3.6: Red and green colours as seem by colourblind �lters

3.1.3 A solid website with React

Leaving the design work to focus more on the programming, we now start talking
about the project decisions of StarFLOSS.

StarFLOSS is made by using the React framework. React is a trendy javascript library
for building user interfaces. It was developed and is used by Facebook and has been
growing more and more in those past years. One of the main advantages of React is how
easy it allows developers to re-utilise code. It has a component system that makes each
part of the front-end its own compartmentalised feature and allows for easy reuse of code.
It has been securing its place as one of the best front-end frameworks to use4 and, for that
reason, it was chosen as StarFLOSS’s framework.

Learning React is not hard. The documentation is excellent, and tutorials are abundant.
The issue with it arose when looking at the di�erent libraries that were needed to be used
in conjunction to complement the library. React is an excellent library for creating Single

4A quick read, if you want to see research into this, is the “Tech Trends
Showdown: React vs Angular vs Vue” article. h�ps://medium.com/zerotomastery/
tech-trends-showdown-react-vs-angular-vs-vue-61�af1d8706

https://medium.com/zerotomastery/tech-trends-showdown-react-vs-angular-vs-vue-61ffaf1d8706
https://medium.com/zerotomastery/tech-trends-showdown-react-vs-angular-vs-vue-61ffaf1d8706

3.1 | THE USER INTERFACE

19

Page Applications (SPA), but it does not stray from that objective. To have some extra
features, we need to go after other open-source projects, that may not be as well supported
as React itself.

Two libraries gave the team some issues were “‘react-router” and “react-redux”.

“react-router” is a library for allowing React to use URL routes. As it is not a requirement
for SPAs to use di�erent URLs, nor to deal with browser history, the library �lls this
need. The problem we had with the react-router was the documentation. The o�cial
documentation comes in the form of a tutorial, granted it is a very well structured tutorial.
However, sometimes it lacks information on how a component works, then you can only
rely on the community for help.

“react-redux” is a fantastic API that helps implement the Flux pattern on a react project.
Flux is an application architecture created by Facebook to make websites have a single
source of truth. It is a pattern that challenges the conventional Model-View-Controller
(MVC) to have a unidirectional data �ow; the pattern in itself is more discussed in the
appendix A. The concept of Flux is straightforward; however, the Redux API is complex5.
Di�erent components must follow various rules, and it does add a lot of complexity to the
code. Currently, StarFLOSS only uses Redux for managing the list of available projects.
However, if the dashboard could have a system like that in place it would facilitate some
functionalities; a more in-depth discussion of betterment for the website can be found in
Section 5.1.1.

Another decision we made when developing the front-end was that no pre-made
component would be used, even if using React facilitates this reuse of code. In other words,
all of the components were made from scratch, only using HTML tags and CSS. This
decision was a request of the developer as they wanted to try to experience the whole
website creation. Coding a web-page that strictly follows a given design is a vital skill for
a front-end developer, so they decided to hone that skill, even if it meant adding overhead
when developing.

3.1.4 An interactive dashboard with D3.js

We chose D3.js as the library used to create panel charts for the same reason we selected
React as a framework: it is the most used library when talking about data visualisation.
6. D3 is very popular because it o�ers the best customising possibilities. It is not a chart
generator library, but a data manipulator one. This means that D3 does not have any code
that can draw a bar chart, but it has code that aids the programmer on drawing each
rectangle that will eventually compose the chart. It allows the programmer to do any
visualisation, animation, and interaction that comes to mind, without having to sacri�ce
their artistic vision to a pre-made mould – given that they have the coding knowledge to
do that.

5This Hackernoon post accurately displays how one feels when learning Redux: h�ps://hackernoon.
com/how-i-felt-while-learning-redux-de16fb2f5ad2

6Only comparing Github stars, D3.js has 88.5k, while chart.js, a very popular competitor has 46.1k.

https://hackernoon.com/how-i-felt-while-learning-redux-de16fb2f5ad2
https://hackernoon.com/how-i-felt-while-learning-redux-de16fb2f5ad2

20

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

The most prominent problem of D3 comes with its best advantage: because of all the
freedom it o�ers, it is very complex to use the library. D3 is known to have a steep learning
curve, the reason why it is a very discussed topic in the community. However, the fact
that it is hard to learn is a fact accepted by all7.

Now, that we have presented the reasons why to use D3.js and the issues that came
with that choice, we should discuss what exactly is D3.js. In his article “D3 is not a Data
Visualisation Library”, Elijah Meeks gives a great visualisation of the D3 API (Figure
3.7). He describes it as such “A hierarchical diagram of the functions listed in the D3
API page8, grouped into their category (such as d3-scale or d3-array) and subcategory (if
applicable, such as continuous scales) and then further grouped and coloured and labelled
by the part of the API they represent. In this formulation, the geospatial data visualisation
functionality is a subsection of DataViz.” (Elijah Meeks, 2018).

Figure 3.7: D3.js, by Elijah Meeks

By looking at the D3 visualisation (Figure 3.7), one can see how vast the D3 API is
and for what it is geared. Every category holds functions that are necessary for drawing a
chart with D3:

• Analysis holds libraries such as d3-DSV and d3-quadtree. They are used to read data
from a formatted �le, such as CSV.

• Data Utilities holds libraries such as d3-time-format and d3-interpolate. They help
with processing data and extracting information that may be necessary to draw the
chart, such as getting the max value for a chart legend or grouping data by name.

• Dataviz holds libraries such as d3-colour-schemes and d3-shape. Those are responsible
for helping create SVG shapes in the canvas, such as drawing complex paths and
drawing common chart parts, like scales.

7“The trouble with D3 is to build a visualisation you must also have a deep understanding of SVG, DOM,
JavaScript, geometry, colour spaces, data structures, the standard model, and quantum physics” - Martin
Bunch, on twitter

8h�ps://github.com/d3/d3/blob/master/API.md

https://github.com/d3/d3/blob/master/API.md

3.1 | THE USER INTERFACE

21

• DOM Utilities holds libraries such as d3-selection and d3-zoom. They help with in-
tegrating the chart with the rest of the DOM, such as handling events when the
user decides to drag part of the chart or showing a tooltip when they hover over a
rectangle.

• Animation holds libraries such as d3-ease and d3-transition. They create the animations
when the data changes, they are not that necessary if you want a simple static graph,
but they can make a chart pop if used correctly.

Those categories show every step necessary to draw a chart in D3. By using D3noobs
code9 as an example (Figure 3.8), it is possible to have an overall idea of how to create a
D3 chart:

9The original code can be found at h�p://bl.ocks.org/d3noob/4414436

http://bl.ocks.org/d3noob/4414436

22

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

Figure 3.8: Code to generate a simple line chart (Figure 3.9). In this image we colour the D3 code

lines following the scheme in Figure 3.7, the red lines are SVG code and the non coloured are plain

Javascript.

3.2 | THE INTEGRATION LAYER

23

Figure 3.9: Line chart generated by the code in Figure 3.8

StarFLOSS charts have a lot of additional features than the ones in Figure 3.8, such
as added animations and user integration, but the overall basis remains the same. The
main di�erence is that the data that feeds StarFLOSS is not stored in a �le, but retrieved
by consuming the API provided in the Integration Layer.

3.2 The Integration Layer

When the project was idealised, it was clear that, in the future, it would have multiple
micro-services serving the front-end of the platform. Although the idea of having many
standalone services seems quite robust, if we left it at that, the front-end would have the
additional tasks of aggregating and re�ning the data. Thus we built the Integration layer
to be the Aggregator of the system. Besides that some principles were also applied to be in
harmony with the rest of the architecture:

• Separate data storage: Although the Gateway has its database to store selected
information for a project, each micro-service has its own data storage allowing the
system to have Polyglot-Persistence a term used by Martin Fowler10to describe the
usage of di�erent Databases throughout a system.

• Independent deployment: The integration layer does not depend on any micro-service
to be deployed.

• Everything documented: Every bridge presented by the Gateway must be documented
on the homepage of the Gateway. It facilitates the use by the front-end and anyone
interested in the collected data.

• Free and open source Software: We must develop the Gateway in a way that eases
contribution. It must be comfortable and smooth for project maintainability in the
future.

10h�ps://martinfowler.com/bliki/PolyglotPersistence.html

https://martinfowler.com/bliki/PolyglotPersistence.html

24

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

3.2.1 Architecture

In this subsection, we describe the decision-making process of the architecture. Our
�rst option was to build the entire system in a monolithic architecture. It could make the
development of the platform simpler because all the systems shared the same database.
There would also be a single pipeline of deployment, and everything would be in a single
code base. However, this option entails some limitations that would not be bene�cial for a
long term project. As an example, a single database throughout the system also means a
single point of failure to the entire platform.

The Integration Layer aims to provide a middleware infrastructure that can scale and
evolve to adapt to possible variations of requirements. To achieve this, we decided to follow
a Service Oriented Architecture with principles of micro-service Architecture.

A Service-Oriented Architecture (SOA) is an umbrella term for principles that facilitates
integration among systems. SOA was �rstly used by the Gartner Group (Yefim Natis,
1996). It is de�ned as a design paradigm that helps systems meet business demands, reduce
costs, increment the consistency and agility of the application, and produces inter-operable,
modular systems, called services, that are easier to use and maintain (Dragoni, 2016). To
see the real bene�ts we have using this paradigm, we present a comparative description of
these two styles:

• Scalability: the monolithic approach may limit the system from scaling when there
is an increase in load for a speci�c module; in that case, the entire platform may
be compromised. In contrast, the SOA approach dilutes this load into the services.
It results in a more reliable system, as it does not depend on any service, and the
platform then scales healthily.

• Maintainability: due to its vast code base and the equally massive complexity of
the system, the monolithic style does not age well. SOA, on the other hand, has
services that can evolve separately. Therefore, if any service starts being a problem
for the developers, it can be quickly rebuilt without noise to the system.

• Deployment: a single change to the code in the monolithic approach may cause
the need for an entire platform to be deployed again, causing possible losses to the
owner while it has been out. The SOA approach has each service having its pipeline;
therefore, there is no need for a full reboot.

Following those ideas, we developed the architecture depicted in Figure 3.10. As we
described before in Section 1.2, some changes were made to it, compared to the �rst
iteration. The Integration Layer is represented by the API Gateway and Data Aggregator,
which has the responsibility to handle the requests made to the services and �lter the
information according to the client. The Collectors in the picture represent the layer of
micro-services used to collect and provide information from the Data sources. Their basic
principles are independent of vendors, products, and technologies. They are self-contained
units, the client knows nothing about its complexity and they can exchange messages
with other services at will.

3.2 | THE INTEGRATION LAYER

25

Figure 3.10: New Proposed architecture

With this approach, we may achieve the values needed for the continuity of the
platform, stated in the SOA manifesto11:

• Business value over technical strategy

• Strategic goals over project-speci�c bene�ts

• Intrinsic interoperability over custom integration

• Shared services over speci�c-purpose implementations

• Flexibility over optimisation

• Evolutionary re�nement over pursuit of initial perfection

11h�p://www.soa-manifesto.org/

http://www.soa-manifesto.org/

26

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

3.2.2 Good Practices

Usually, in traditional software development environments, when a member or a
delivery team is due to launch its code to the production environment, rarely this process
is done with ease. Hours or even days are spent in the pursuit of integrating the system,
hence why this moment received the popular name of “Integration Hell”. A good practice
to avoid those issues is implementing Continuous Integration (CI) in the project. With
CI, delivery teams, and active members of the project, when submitting their codes,
have automated builds to test its integration with the current head of the project. In this
StarFLOSS back-end, this is done using the Git-repository manager GitLab.

In this project we are using the features of GitLab for Continuous Integration and
Deployment (CI and CD respectively). When a member makes a “Merge Request”, and
it is accepted, their code is going to pass through three stages before being added to the
master:

• Build: The script tests whether or not the project is building without fail.

• Test: All the test scenarios are running to catch any possible bugs. This process is
also portrayed as Sanity tests using Unity and integrated tests.

• Deployment: The project is deployed in a virtual machine in the cloud using the
platform Heroku12 if the integration is successful, the Gateway is ready for usage.

Heroku is a famous tool used for deploying applications. In our case, the tool was
great for continuous deployment and to test the platforms. However, this environment
proved problematic when used with the micro-services. For example, the Commit bot has
a version deployed to a Heroku app instance. This application runs in a lightweight Linux
container called Dynos. Dynos have what is termed Ephemeral Filesystems. It means that,
on average, once a day, the Dyno is replaced by another one, replacing its �lesystem for
a new one. As the commit bot uses an SQLite database, whenever Dyno is rebooted, the
service loses all its data. For this reason, we decided to use a virtual machine hosted in the
University to deploy the micro-services.

Besides the CI and CD practice in this project, we also used the readme.md �le in the
repository to give all the guidelines from installation to contributions. This way, not only
students can contribute, but any programmer willing to help out.

After its start, we also added to the project another good practice to ease contribution.
Initially, the commits were sparse, and many changes were made in just one commit. It
caused di�culty in locating bugs introduced to the project and regression of the software
in case of need was practically impossible. During the contact with free software projects,
we noticed a pattern in the commit messages and in further studying of this pattern the
Seven Rules to write a good commit was found13. The quality of the commits has increased
using those rules, and debugging or �nding the new features introduced became an easy
task.

12h�ps://www.heroku.com/
13h�ps://chris.beams.io/posts/git-commit/

https://www.heroku.com/
https://chris.beams.io/posts/git-commit/

3.2 | THE INTEGRATION LAYER

27

3.2.3 Restful API

To comply with all requests done to the service, we decided to use a software architec-
tural style called REST(Representational state transfer). This style is used in most web
services and allows the integration layer to achieve:

• a Client-Server Architecture, allowing both front-end and back-end to evolve inde-
pendently;

• statelessness, so that all requests must be free from client context;

• cacheability, allowing clients and intermediates to cache responses for further scala-
bility;

• a Layered system, which means that a client does not need to know if they are
communicating with the actual server or an intermediate;

• a Uniform interface to simplify and decouple the system for even more independence.

3.2.4 Ruby on Rails

The framework chosen to build the Gateway was Ruby on Rails. Quoting its de�nition,
it is “a FLOSS web-application framework that includes everything needed to create
database-backed web applications according to the Model-View-Controller (MVC) pattern.”
14. Describing the MVC pattern is essential to understand what we utilise and do not from
this pattern.

The MVC pattern is a guideline; it separates the project into three sections:

• The Model Layer represents our domain of the database. For instance, the Email
model represents the business logic we have for this kind of data and encapsulates
it so we can use it as an object for further re�nement.

• The Controller Layer is responsible for handling the incoming requests. The action
dispatcher routes to the appropriate controller and then render a response, in a view
or a custom format. In our project this is very often represented in a json format.

• The View Layer is composed of many templates used to visually represent the API
resources.

In this project’s Integration Layer, we decided not to use the View Layer as it would
not be responsible for the representation of data. We used, therefore, the Rails 5 API only
application, removing unused middle-ware like Action View, and generating a faster and
lightweight application. We used the controller layer for aggregating all methods related
to each of the data sources; for example, we have a controller for the commits data source,
one for the Email data source, and so on. The Model Layer was used primarily for storage
of Projects data; that is, each project should have an entry in our database telling us the
necessary information.

14h�ps://rubyonrails.org/

https://rubyonrails.org/

28

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

The Project Model is the primary data object of the Gateway. It is used to store
information about the other services and how to reach out to them. As it is shown in the
picture below, it has (1) one “id” to identify the object in the Gateway, a "project_name" to
be presented in the front-end, a "git_url" and a “git_id” for a representation of the object
in the commit bot micro-service. It also has “email list” and “email id” for a description of
the email list micro-service and “IRC channel”, "IRC server" for the representation of the
IRC micro-service. Lastly, two timestamps hold the date of project creation and its last
update.
1 {
2 "id": 980190962,
3 "project_name": "Testing",
4 "git_url": "url.test",
5 "git_id": 3,
6 "email_list": "git",
7 "email_id": 1,
8 "irc_channel": "irc.freenode.net",
9 "irc_server": "my-channel",
10 "created_at": "2019-10-19T23:12:02.008Z",
11 "updated_at": "2019-10-19T23:12:02.446Z"
12 }

3.2.5 Documentation

A good API must have proper documentation to make it easy for any user, even if it
is not a contributor to the project, to consume its endpoints. There are several suitable
solutions for this problem, and the choice for this project was the library "apipie-rails"15.
Apipie-rails is described as a Rails engine for documentation of Restful API without
the usage of traditional comments in the code; an example is found in �gure 3.11. This
library allows documentation with ruby code bringing the following advantages to the
project:

• No other syntax is needed to learn, as it is made with ruby code.

• The code can be used for validation

• Documentation is available using the router of the application

• Documentation is made automatically if tests are written

• The pages are user-friendly and intuitive.

15h�ps://github.com/Apipie/apipie-rails

https://github.com/Apipie/apipie-rails

3.2 | THE INTEGRATION LAYER

29

Figure 3.11: Example of documentation page in the application

3.2.6 The Commit Bot

The platform will be composed of micro-services to provide the information needed.
The �rst one we are going to describe is the Commit bot. Its main task is to keep track
of the repositories of FLOSS projects. It completes this task by cloning the repository
and maintaining a register of the cloned repository in the database. It does everything
asynchronously and, when data is requested, it iterates over every commit of the Master
branch of the repository.

Figure 3.12 depicts the architecture made with Sinatra, a library for quickly creating
web applications in Ruby. It is responsible for creating the routes to the endpoints and for
handling the requests to the application. For Storage, the gem uses an SQLite Database,
which is a small, fast, self-contained, free and open-source and easy to use database engine.
As it writes its data in a �lesystem archive, it is the most used database in the world and
has many features that allow the project to be easily maintained.

This micro-service uses the “Rugged”16 library to make the connection to the Git
repositories. It gives access to the libgit217 in Ruby. Libgit2 is a pure C implementation of
the core methods of Git available through an easy to use and portable API. The current
implementation of this application can be found in Appendix B, where it lists all the
available endpoints used in this project.

16h�ps://github.com/libgit2/rugged
17h�ps://github.com/libgit2/libgit2

https://github.com/libgit2/rugged
https://github.com/libgit2/libgit2

30

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

Figure 3.12: Git bot architecture

Initially, there was only one endpoint to gather information about a commit, and it
returned all of it in a single request. This design was the origin of some problems regarding
the performance of the service. When traversing the entire collection of commits, all the
data in the commit di�s were being sent – commit di�s are the changes made in a patch.
This step wasted a lot of time when the requested information was not a di�. To solve the
problem, we divided the big endpoint into smaller ones. Now, we have multiple endpoints
for the various kinds of atomic information available and some when the information
makes sense to be sent with others. For any further aggregation, the responsibility lies with
the integration layer. The next listing shows the big endpoint mentioned earlier:
1 {
2 "author": {
3 "email": "andre.tgmello@gmail.com",
4 "name": "Andr\u00e9 Mello"
5 },
6 "commiter": {
7 "email": "renatogeh@gmail.com",
8 "name": "Renato Lui Geh"
9 },
10 "date": "2019-07-01T17:48:10-03:00",
11 "diff": "diff --git a/lib/observe_bot.rb b/lib/observe_bot.rb\nindex 7

c08d8b..9abbbb2 100644\n--- a/lib/observe_bot.rb\n+++ b/lib/
observe_bot.rb\n@@ -17,9 +17,9 @@ module ObserveChat\n @config.user =
bot_name\n @config.realname = bot_name\n \n- msg_logger = @db\n+

3.2 | THE INTEGRATION LAYER

31

db_instance = @db\n on :channel do |msg|\n- msg_logger.log(msg, server)
\n+ db_instance.save_message(msg, server)\n end\n end\n \n",

12 "id": "cf1ea74605fc4faecfca4f850d368d45f94dcae6",
13 "message": "Fix message saving function call\n\nThere is no ‘log‘ function

at the DatabaseWrapper class.\nI believe ‘save_message‘ is what it
was meant to be here.\n\nSigned-off-by: Andre Mello <andre.
tgmello@gmail.com>\nSigned-off-by: Renato Lui Geh <renatogeh@gmail.com
>\n",

14 "subject": "Fix message saving function call"
15 }

The fragment above is an example of the original information about a commit.

3.2.7 The IRC Bot

The second micro-service used in the platform was the IRC Bot. Its main responsibility
is to register IRC channels and persist their messages in a Database to be available when
requested. Like the other services, their principle is the same: it is a ruby application.
However, it is not a standalone application as it needs a Data-base to run.

The architecture of the service is simple. First, we have the API Layer taking care of
the requests made to the application. Second, the framework used in this bot is the same
used to create the Integration layer of the platform, Ruby on Rails. Finally, this layer is
responsible for all bots registration and also the orchestration of the tracking bots.

After registering a channel, the service has to maintain a bot always connected to the
channel. This happens because of a characteristic of the IRC: when a user becomes inactive
for enough time, it is automatically logged out of the channel in most of the clients. To
approach this issue, we used the “cinch” framework. Cinch, according to the de�nition
found in the repository, is an “IRC Bot Building Framework for creating IRC bots in Ruby.
It provides a simple interface based on plugins and rules. It’s as easy as creating a plugin,
de�ning a rule, and watching your pro�ts �ourish”18. Although the project is a FLOSS, it
is no longer maintained by its original authors, meaning that any bugs or defects should
be solved by our hands.

For the persistence, we chose Mongo19, a non-relational, document-oriented, distributed
database used for general purposes. Di�erently from the commit bot, the messages of the
IRC channels do not persist for their own; that is, if you, as a user, are logged o� from the
channel, you lost the messages sent while you were o�ine. For this reason, we needed
a more robust database to use as a historical archive of the IRC channel. The following
listing shows the main document of the IRC bot.

For the IRC, we decided to add a Sentiment Analyser feature in each message. We used
the gem called ‘’Sentimental”20, which uses a Lexicon Based technique to evaluate. In this
gem, the classi�cation is done by unsupervised comparison of a text against Sentiment
lexicon that de�nes the sentiment of each word before their use, for example, lovely words

18h�ps://github.com/cinchrb/cinch
19h�ps://www.mongodb.com/
20h�ps://rubygems.org/gems/sentimental/versions/1.0.3

https://github.com/cinchrb/cinch
https://www.mongodb.com/
https://rubygems.org/gems/sentimental/versions/1.0.3

32

3 | THE DEVELOPMENT OF AN OBSERVATORY OF FLOSS COMMUNITIES

such as “love” and “like” have positive values and their opposites have a negative value.
This method is known as Dictionary-based analysis as it needs a collection of words and
their synonyms, and the more words collected, the more re�ned the classi�cation. Even if
this method has relatively worse performance than of supervised method (VOHRA and
TERAIYA, 2013), the supervised method demands a large amount of labelled training,
which would escape from our initial scope of creating the foundation for the project
platform. As an example, we have in the following listing classi�cation of ’1.0’ in the
sentiment of the phrase, for our default threshold which is 0, any value above that is
positive and below is negative.
1 {
2 "_id": {
3 "$oid": "5dafc3eb1471fd268ac631aa"
4 },
5 "nick": "felipec",
6 "message": "I like you",
7 "time": "2019-10-23 03:07:23 UTC",
8 "channel": "#felipecaetanochannel",
9 "server": "irc.freenode.net",
10 "sentiment" 1.0
11 }

3.2.8 Email Lists

To gather data about the email lists, we initially used the service in its original form,
but some problems were found. For example, to use the service, the user had to use a
valid email account to register in a list. This restriction was problematic since it creates
overhead to the user of the platform, and it is not in our objective. Another issue in
creating this service is the di�erent available archives for mail lists. Nevertheless, making
a micro-service to gather all these formats of historical records is another big project
with a di�erent scope. Finally, to overcome this problem, the API provides an endpoint in
which the user can upload a CSV (comma-separated-values) �le to the platform with the
following pattern:
1 projectId,emailId,senderName,senderEmail,timestampReceived,subject,url,replyto

When uploading a �le to the Integration Layer, the user can bene�t from the endpoints
available in the platform for emails.

After all the development process, we ended up with a working interactive website
that is backed by a robust back-end. On the next chapter we are going to demonstrate how
the website works, by showing it using our chosen example project: Git.

33

Chapter 4

The Git Community in
StarFLOSS

In this chapter, we explain in details how the current StarFLOSS website works, showing
how each page works and what they do. The site consists of two di�erent pages, the Home
page and the Dashboard page, the following sections are a guide on how to interact with
the website.

4.1 The home page

The homepage is a vertical page divided into three sections:

The �rst section acts as a landing page to the website. This part of the home was
already displayed in Section 3.1.2, in Figure 3.2. It is an image banner that is always the
size of the users monitor. The only feature it has is the six stars scattered on the picture of
the night sky. They are the stars that represent six random projects, they change whenever
the user visit the website. If you chose to click the star you are taken to the dashboard of
that project, this way you can discover new projects if you feel like adventuring.

The second section is the site explanation section. It explains the reason for the website
to exist, the context of FLOSS, and how to read the stars. It explains that the size of a star
is the number of members that committed to that project and the size of the pulse, we call
it brightness, is the number of commits made.

The third section is a list of all the projects registered to the website (Figure 4.1). It
shows a few information on each project and its star. As it is possible to see, we hit a small
issue when creating the stars. Because Git has so many members when compared to the
other projects, its star becomes the biggest one, and that makes the other smaller projects
very small in comparison.

34

4 | THE GIT COMMUNITY IN STARFLOSS

Figure 4.1: List of all projects on the website. In this image it is possible to see the disparity caused

by Git.

4.2 The dashboard

The dashboard is self-contained (Figure 4.2). It is divided into two main parts — the
side menu, where general information, such as committer name, and the project name, is
shared; and the side of the charts, where all the charts are displayed. The chart side is not
yet fully responsive as the chart tooltips (extra information that appears on hover) were
written in HTML and it does not scale with the SVG drawings of the charts.

Figure 4.2: StarFLOSS dashboard page for Git.

4.2 | THE DASHBOARD

35

4.2.1 Information menu

The information menu contains all static info of the selected project (Figure 4.3). The
name, number of commits, number of committers and the last time the data has been
updated. It is just an overall display for the user to know the project whose information is
re�ected in the rest of the dashboard.

Figure 4.3: Detail of the Information menu on the dashboard.

4.2.2 Members menu

The members menu is the second tab of the Information menu. On it is shown a list of
all committers to the project in a decrescent order of commits made. Every member listed
is clickable if you interact with it both other graphs in the dashboard change to re�ect the
commits made by only that member (Figure 4.4).

36

4 | THE GIT COMMUNITY IN STARFLOSS

Figure 4.4: StarFLOSS dashboard. Pe�’s was selected so the commits shown on the graphs are only

his.

4.2.3 Time of Day - Heatmap

The heatmap graph shows commits made on a speci�c weekday and hour (Figure 4.5).
This graph was made to see when the community is more active as it shows the period
where there were more commits. The hour with most commits is highlighted by having
the actual number of commits on display, from there, the colour fades to white, the whiter
the colour, the less commits made on that hour.

Figure 4.5: Detail of the Heatmap chart on the dashboard.

The interaction in this chart comes from clicking the squares. If you hover over them,
a tooltip appears showing the top �ve committers on that hour of that weekday. If you
click the chart, the other members menu and bubble chart show only the commits of that
hour. If you click more then one square, data from both days will be re�ected on the other
dashboard parts.

One issue that the heatmap has is the fact that all commits are dated with a 3 GTM.
This issue means that they are all transformed into Brasilia’s time-zone. So, they accurately

4.2 | THE DASHBOARD

37

display the time for Brazil, but not the time it was in the place the committer committed,
nor the actual time for other time-zones.

4.2.4 Commits over time - Bubble chart

The bubble chart shows commits per time (Figure 4.6). In the bubble chart, the circles
represent commits. The X-axis is a single time axis, and the farther left, the newer they
are. The Y-axis represents the total number of commits made by the committer. The lower
circles were the �rst commits made by that committer. The higher one is the latest. The
radius of the circle shows how many lines were changed in that commit, the biggest the
circle, more lines changed. The colour varies from red to green depending on if there were
more additions or deletions on that commit. A commit that only added lines is green, and
one that only deleted is red.

Figure 4.6: Detail of the Bubble chart on the dashboard.

The interaction on this graph, currently, is the same as clicking on a member in the
members menu, because it is almost like many line charts, one for each committer. This
chart shines when you can see the line of each member. By �ltering you can see for example
that “gitster” has consistently contributed to Git. While “jrnieder” started committing a lot
circa 2010 to 2012 but has been slowing down. On the other hand, “johannes.schindelin”
started with a few sparse commits in 2008, but from 2016 up until now has been very
consistently committing to Git (see Figure 4.7).

38

4 | THE GIT COMMUNITY IN STARFLOSS

(a) Gitster (b) Jrnieder (c) Johannes

Figure 4.7: Chart for di�erent committers of Git. Notice how the commit pattern changes for each

member.

The biggest issue with this chart currently is performance. Every single commit bubble
is being rendered on the screen and animated. So, for example, when looking at the Git
chart, there are 57,192 di�erent elements drawn and animated. This behaviour causes the
site to be hefty for lower performing computers and for the animation to lag whenever it
is triggered.

As said in Section 2.2, the Git project was chosen because it was very familiar to us.
However, another thing that makes Git a great example project is the long history it has.
By using StarFLOSS it is possible to see how years of work transformed Git into what it is
today, and to appreciate the thousands of people that participated on this journey.

39

Chapter 5

Final Remarks

StarFLOSS started looking at a place very di�erent from where it ended. It had to be
rebooted after a failed attempt and had a time limit where it needed to stop. Throughout
the year, we grew a lot as developers, learning new concepts and tools, and becoming
better. Now, we can easily see the mistakes we made in the course of this project. As the
famous saying goes “Hindsight is 20/20”, and if we could, there is a lot we would want to
do di�erently.

Regarding the front-end, doing every single component by hand and having a great
robust site, in the end, are not complementary ideas, especially in a time crunch. It was a
great learning opportunity, and we do not regret taking our time to learn D3. However,
StarFLOSS would have more value if the components were taken from Bootstrap or if the
charts were made by using eCharts. In the end, function is more than style. Even if having
those libraries took some of the charm of the website, it would be more useful if we had
done it that way.

Concerning the Integration Layer, the choice for the presented architecture was deemed
to be right, since relying only on micro-services for the requisitions would be too much
for a starting project. In the context of this work, maintaining the bots was heavy. We
worked with di�erent technologies, each one with its learning curves. We felt that the
time spent on learning all these technologies was considerable.

Even with those considerations, we view this project as a success. It not only started a
development of a tool that can be of much help for further analysis of FLOSS projects but
also uses several good practices concerning FLOSS to make contributing easier.

5.1 Where to go from here?

There is no development project that is 100% complete, and the StarFLOSS has a long
path to walk before becoming a full-�edged website. The considerations in this last section
range from small ideas to huge updates for the whole platform. They are what we would
like to do if we had more time to dedicate to this project. We hope the future team that
works on continuing this project considers these ideas. However, if new contributors come

40

5 | FINAL REMARKS

with a di�erent mindset of where StarFLOSS could go, we recommend that they follow
their vision the same way we followed ours.

5.1.1 The future of the StarFLOSS website

There are two di�erent ways the StarFLOSS website visualisation can go from here.
One is to go to a more standard approach for the visualisation, and the other is to go
completely crazy on the artistic side.

For a more standardised approach, it is possible to just keep drawing the charts with D3
or change to something easier to draw, such as ChartJs or eCharts. Then create a standard,
but useful, dashboard. Aim for something like Kibana or Google Charts. Create good �lters
and selectors to allow the user to �nd information quickly, maybe using Flux to facilitate
the �ltering. Finally, enable the user to download and print essential �ndings they make.
There could also be a dashboard for the whole FLOSS universe, but this is not the main
focus of the website. This idea is a common one, but it will be the best design to be used
by people who want to get answers. It is aimed to be used by academics who want to �nd
data for studies and FLOSS community members that need to see how their project is
advancing.

Otherwise, go completely crazy on the universe’s inspiration. It would be fantastic if
we could make a galaxy with the FLOSS stars and display it in a 3D environment using
the di�erent 3D javascript libraries or follow a more minimalist visual and make it a 2D
graph. Have the proximity of each star be a data visualisation in itself, for example, the
closer they are, the more members they have in common, and notice whether closer stars
are similar projects. Allow the user to click on a star to open the charts on a side menu.
And if you want to stretch this idea, have the members be asteroids that navigate between
projects, and look for the odd member that travels through super distant stars.

This second idea is more focused on making StarFLOSS a fun website and a display
of javascript capabilities. It may not be the best tool to �nd data, but it will attract users
who want to see the vastness of the FLOSS universe, and they would add a new project by
a sheer curiosity of where it would land. While the other focuses on the dashboard of a
single community, this idea is also good to show how the communities interact with each
other.

5.1.2 The future of the StarFLOSS API

Concerning the back-end supporting the platform, we �nd the architecture of the
Integration layer is good the way it is. It uses many micro-services and has the prospect
to use many more. It also would be wise to keep this layer with a Gateway to make the
impression of having a monolith system.

As in the visualisation, we could have two di�erent strategies to change the usage of
the database. First, since many micro-services are to be incorporated into the platform,
a conservative approach could be used to facilitate the development of the platform as

5.1 | WHERE TO GO FROM HERE?

41

a whole. Using a uni�ed database would reduce the number of teams needed to work
in the project. It could lead to faster results and ease the trouble of giving maintenance
to the project. However, this approach would also lead to some problems as the project
would lose the capacity to deploy its services independently, turning the agile practices
for continuous integration and deployment considerably tricky.

A second alternative is a more Event-Driven Architecture. It could be implemented
o�oading the messages to a queue and decoupling the Gateway from the service as it
would work as in a Pub-Sub (Publisher, Subscriber) model. The micro-service would be a
publisher that would be unaware of the consumer, just keeping on publishing its messages,
and the Gateway would be a subscriber to the event stream. This strategy o�ers us the
bene�ts of still maintaining a micro-services architecture but treating the collection and
awareness of new data di�erently.

43

Appendix A

Flux pattern

Flux is an application architectural pattern created by Facebook to handle issues with
synchronising data through the multiple Models of the Model-View-Controller (MVC)
pattern.

The pattern was conceived when the engineer team at Facebook needed to deal with a
bug that would make a new message noti�cation be active even if the user had already
seen that message. The issue at hand was that the source of truth for the reading event
and for the noti�cation did not match, since they were from two di�erent models, so they
designed a way to have all data of the website come from a single source, creating the Flux
pattern.

The main interest point with Flux is the fact that there is only on source of truth. In
Flux, all data pass through an unidirectional �ow, when a data change should happen
an action is created on the View, this triggers the Dispatcher to change the info on the
speci�c Store, as soon as the Store is changed the View updates. This �ow can be seen in
Figure A.1.

Figure A.1: Flux structure. Source: h�ps:// facebook.github.io/ flux/docs/ in-depth-overview/

https://facebook.github.io/flux/docs/in-depth-overview/

44

APPENDIX A

There are 4 essential parts in the Flux. In the following points we will explain what
each one does and show where you can �nd them being applied on the StarFLOSS front-
end1:

• Dispatcher: The dispatcher is one single component that acts as a central hub to all
the data changes. It exposes actions and make changes to the Stores. In a program
there is one dispatcher, and only they are allowed to change the data on the store.

StarFLOSS dispatcher is located in the Reducers folder (./src/Store/Reducers). As we
used Redux to implement the pattern they are called Reducers and have a few extra
limitations.

• Actions: Actions are methods exposed by the dispatcher, by calling an action the
dispatcher runs. Through them you may pass the data that needs changing.

StarFLOSS has three implemented actions: ADD_PROJECT, ADD_STATISTIC and
REMOVE_PROJECT. The can be found in the ProjectsReducer �le (./src/Store/Re-
ducers/ProjectsReducer.js)

• Stores: A program can have multiple Stores, they act almost as the Model in the
MVC pattern. The di�erence is that a store may hold more than one object, if it
makes sense on the page to do so.

StarFLOSS has one Store, it handles the projects data, because of Redux, the store is
generated based on the Reducers, so it is not clearly displayed on the code, in the
Store �le you can �nd the line that creates it (./src/Store/Store.js).

• Views: The View is the code that generate the screen that the user interacts with.
Using React the View does the paper of Controller as well in an MVC. The view calls
actions depending on the user input.

As a React project StarFLOSS is made of Views. However to better exemplify the
use of Flux and Redux, we suggest taking a look the Home code �le (./src/Compo-
nents/Home/Home.js), where in line 34 we add new projects to the store and the
Ranking code �le (./src/Components/Home/Ranking/Ranking.js) where in line 36
we read from the store. You can see that in the end of both of the �les there are
some bindings that had to be added, that is to link the View to the Store and to the
Dispatcher/Reducer.

1All code for StarFLOSS front-end can be found on the following Gitlab repository: h�ps://gitlab.com/
flusp/msfloss/msfloss-interface

https://gitlab.com/flusp/msfloss/msfloss-interface
https://gitlab.com/flusp/msfloss/msfloss-interface

45

Appendix B

Endpoints

B.1 Commit Information Endpoints

• GET /api/v1/projects/:project_id/commits

Get an array with all the commits of the project

Response body example:
1 {
2 "id": "cf1ea74605fc4faecfca4f850d368d45f94dcae6",
3 "date": "2019-07-01T20:48:10+00:00",
4 "author_email": "felipe.caetano@gmail.com",
5 "commiter_name": "Felipe Caetano",
6 "subject": "Fix message saving function call"
7 }

• POST /api/v1/projects/:project_id/mycommits

Get an array with all the commits of the author email

Request body example:
1 {
2 "email": {
3 "author_email": "felipe.caetano@gmail.com"
4 }
5 }

Response body example:
1 {
2 "id": "cf1ea74605fc4faecfca4f850d368d45f94dcae6",
3 "date": "2019-07-01T20:48:10+00:00",
4 "author_email": "felipe.caetano@gmail.com",
5 "commiter_name": "Felipe Caetano",
6 "subject": "Fix message saving function call"
7 }

46

APPENDIX B

• GET /api/v1/projects/:project_id/commits/statistics

Get total number of commits, distinct committers and number of commits per
user

Response body example:
1 {
2 "total_commits": 134,
3 "distinct_members": 11,
4 "total_by_member": {
5 "andre.bulha@gmail.com": 3,
6 "bianca@gmail.com": 38,
7 "caraf@gmail.com": 2,
8 "camel.a.anjos@gmail.com": 24,
9 "junit.scaroni@gmail.com": 72,
10 "carossela.dm3@gmail.com": 13,
11 "brusque@MacBook-Sergio.local": 1,
12 "cartao@gmail.com": 1,
13 "ostra@gmail.com": 4
14 }

• GET /api/v1/projects/:project_id/commits/diffs

Get an array representing users and its own commits, with information about
the dates and number of altered lines

Response body example:
1 {
2 "name": "felipe.caetano@gmail.com",
3 "commits": [
4 {
5 "date": "2019-07-01T20:48:10+00:00",
6 "author_name": "felipe.caetano@gmail.com",
7 "added_lines": 2,
8 "deleted_lines": 2
9 }
10]
11 },
12 {
13 "name": "camila.naomi@gmail.com",
14 "commits": [
15 {
16 "date": "2019-07-01T20:48:10+00:00",
17 "author_name": "camila.naomi@gmail.com",
18 "added_lines": 2,
19 "deleted_lines": 2
20 }
21]

B.2 Email Information Endpoints

• GET /api/v1/projects/:project_id/emails

B.2 | EMAIL INFORMATION ENDPOINTS

47

Get an array with all the emails of the uploaded emailList

Response body example:
1 [
2 {
3 "projectId": 1,
4 "emailId": "12341",
5 "senderEmail": "felipe.caetano@usp.br",
6 "senderName": "Felipe Caetano",
7 "timestampReceived": "2019-07-01T20:48:10+00:00",
8 "subject": "Questions about a patch",
9 "url": "http://marc.info/?l=git&m=156995454523991&w=2",

10 "replyto": "http://marc.info/?l=git&m=156995454523991&w=2"
11 }
12]

• POST /api/v1/projects/:project_id/myemails

Get an array with all the emails from speci�c sender

Request body example:
1 {
2 "email": {
3 "author_email": "naomi.camila@usp.br"
4 }
5 }

Response body example:
1 {
2 "projectId": 1,
3 "emailId": "12341",
4 "senderEmail": "felipe.caetano@usp.br",
5 "senderName": "Felipe Caetano",
6 "timestampReceived": "2019-07-01T20:48:10+00:00",
7 "subject": "Questions about a patch",
8 "url": "http://marc.info/?l=git&m=156995454523991&w=2",
9 "replyto": "http://marc.info/?l=git&m=156995454523991&w=2"

10 }

• GET /api/v1/projects/:project_id/emails/statistics

Get total number of emails, distinct senders and number of emails sent per user

Response body example:
1 {
2 "total_emails": 134,
3 "distinct_senders": 11,
4 "total_by_sender": {
5 "andre.bulha@gmail.com": 3,
6 "bianca@gmail.com": 38,
7 "caraf@gmail.com": 2,
8 "camel.a.anjos@gmail.com": 24,
9 "junit.scaroni@gmail.com": 72,

10 "carossela.dm3@gmail.com": 13,

48

APPENDIX B

11 "brusque@MacBook-Sergio.local": 1,
12 "cartao@gmail.com": 1,
13 "ostra@gmail.com": 4
14 }
15 }

B.3 IRC Information Endpoints

• GET /api/v1/projects/:project_id/ircs

Get an array with all the irc messages from the irc channel of a project

Response body example:
1
2 {
3 "_id": {
4 "$oid": "5dafc3eb1471fd268ac631aa"
5 },
6 "nick": "júlio Alves",
7 "message": "I wanna try something new",
8 "Time": "2019-07-01T20:48:10+00:00",
9 "Server": "irc.freenode.net",
10 "Channel": "new-channel"
11 }

• POST /api/v1/projects/:project_id/ircs/mymessages

Get an array with all the messages from speci�c nick

Request body example:
1 {
2 "nick": {
3 "name": "felipec"
4 }
5 }

Response body example:
1 {
2 "_id": {
3 "$oid": "5dafc3eb1471fd268ac631aa"
4 },
5 "nick": "felipec",
6 "message": "I wanna try something new",
7 "Time": "2019-07-01T20:48:10+00:00",
8 "Server": "irc.freenode.net",
9 "Channel": "new-channel"
10 }

• GET /api/v1/projects/:project_id/ircs/statistics

B.3 | IRC INFORMATION ENDPOINTS

49

Get total number of messages sent, distinct senders and number of messages
sent per user

Response body example:
1 {
2 "total_messages": 43,
3 "distinct_nicks": 3,
4 "total_by_nick": {
5 "felipec": 3,
6 "juliaj": 38,
7 "caramelo": 2
8 }

51

References

[Barcomb et al. 2019] Ann Barcomb, Klaas-Jan Stol, Dirk Riehle, and Brian Fitzger-
ald. “Why Do Episodic Volunteers Stay in FLOSS Communities?” In: ICSE ’19.
Montreal, Quebec, Canada, 2019, pp. 948–954 (cit. on p. 1).

[Bill Shander 2016] Bill Shander. Data Visualization: Storytelling. chapter 3: Story
Mechanisms, section 6: Personalization. Aug. 2016. url: h�ps://www.linkedin.
com / learning / data - visualization - storytelling / personalization - 2 (visited on
10/30/2019) (cit. on p. 10).

[Brad Frost 2013] Brad Frost.Development is Design. Oct. 2013. url: h�ps://bradfrost.
com/blog/post/development-is-design/ (visited on 11/22/2019) (cit. on p. 15).

[Crowston, Wei, et al. 2012] Kevin Crowston, Kangning Wei, James Howison, and
Andrea Wiggins. “Free/Libre open-source software development”. In: ACM Com-

puting Surveys 44.2 (Feb. 2012), pp. 1–35 (cit. on p. 1).

[Crowston and Sqire 2017] Kevin Crowston and Megan Sqire. “Lessons Learned
from a Decade of FLOSS Data Collection”. In: Big Data Factories: Collaborative

Approaches. Ed. by Sorin Adam Matei, Nicolas Jullien, and Sean P Goggins.
Cham: Springer International Publishing, 2017, pp. 79–100 (cit. on p. 1).

[Dragoni 2016] Nicola Dragoni. “Microservices: yesterday today and tomorrow”. In:
(2016) (cit. on p. 24).

[Ducheneaut 2006] Nicolas Ducheneaut. “Socialization in an Open Source Software
Community: A Socio-Technical Analysis”. In: (2006) (cit. on pp. 8, 9).

[Elijah Meeks 2018] Elijah Meeks. D3 is not a Data Visualization Library. June 2018.
url: h�ps://medium.com/@Elijah_Meeks/d3-is-not-a-data-visualization-library-
67ba549e8520 (visited on 11/25/2019) (cit. on p. 20).

[Fitzgerald 2006] Brian Fitzgerald. “The Transformation of Open Source Software”.
In: (2006) (cit. on p. 1).

[FSF 2007] Free Software Foundation. What is free software? 2007. url: www.gnu.
org/philosophy/free-sw.en.html (visited on 10/30/2019) (cit. on p. 5).

https://www.linkedin.com/learning/data-visualization-storytelling/personalization-2
https://www.linkedin.com/learning/data-visualization-storytelling/personalization-2
https://bradfrost.com/blog/post/development-is-design/
https://bradfrost.com/blog/post/development-is-design/
https://medium.com/@Elijah_Meeks/d3-is-not-a-data-visualization-library-67ba549e8520
https://medium.com/@Elijah_Meeks/d3-is-not-a-data-visualization-library-67ba549e8520
www.gnu.org/philosophy/free-sw.en.html
www.gnu.org/philosophy/free-sw.en.html

52

REFERENCES

[Ina Saltz 2013] Ina Saltz. Graphic Design Foundations: Typography. chapter 1: Intro-
duction, section 2: Why good typography matters. Feb. 2013. url: h�ps://www.
linkedin.com/learning/graphic-design- foundations- typography/why-good-
typography-ma�ers (visited on 11/20/2019) (cit. on p. 16).

[Jesus M. Gonzalez-Barahona and Cosentino 2018] Gregorio Robles Jesus
M. Gonzalez-Barahona Santiago Dueñas and Valerio Cosentino. “Perceval:
Software Project Data at Your Will”. In: (2018) (cit. on p. 8).

[Kon et al. 2011] Fabio Kon et al. “Free and Open Source Software Development and
Research: Opportunities for Software Engineering.” In: SBES. IEEE Computer
Society, 2011, pp. 82–91. isbn: 978-1-4577-2187-8 (cit. on p. 1).

[Michael Friendly 2006] Michael Friendly. “A Brief History of Data Visualization”.
In: Handbook of Computational Statistics: Data Visualization. Ed. by C. Chen, W.
Härdle, and A Unwin. Vol. III. Heidelberg: Springer-Verlag, 2006 (cit. on p. 15).

[Østerlie and Jaccheri 2007] Thomas Østerlie and Letizia Jaccheri. “A Critical Re-
view of Software Engineering Research on Open Source Software Development”.
In: (2007) (cit. on p. 1).

[Raymond 1997] Eric Steven Raymond. “The Cathedral and the Bazaar”. In: (1997)
(cit. on p. 1).

[Scacchi 2010] Walt Scacchi. “The Future of Research in Free/Open Source Software
Development”. In: Proceedings of the FSE/SDP Workshop on Future of Software

Engineering Research. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 315–320
(cit. on p. 1).

[Steinmacher et al. 2015] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco
Aurelio Gerosa, and David F. Redmiles. “A systematic literature review on the
barriers faced by newcomers to open source software projects”. In: Information

and Software Technology 59 (Mar. 2015), pp. 67–85 (cit. on p. 1).

[Tony Harmer 2018] Tony Harmer. Introduction to Graphic Design. Feb. 2018. url:
h�ps://www.linkedin.com/learning/introduction-to-graphic-design-3/ (visited on
11/20/2019) (cit. on p. 15).

[VOHRA and TERAIYA 2013] S. M. VOHRA and J. B. TERAIYA. “A COMPARATIVE
STUDY OF SENTIMENT ANALYSIS TECHNIQUES”. In: (2013) (cit. on p. 32).

[Yefim Natis 1996] Roy Schulte e Yefim Natis. “Service Oriented Architectures”. In:
(1996) (cit. on p. 24).

https://www.linkedin.com/learning/graphic-design-foundations-typography/why-good-typography-matters
https://www.linkedin.com/learning/graphic-design-foundations-typography/why-good-typography-matters
https://www.linkedin.com/learning/graphic-design-foundations-typography/why-good-typography-matters
https://www.linkedin.com/learning/introduction-to-graphic-design-3/

	Introduction
	Motivations and objectives
	Development Methodology
	Organisation of the capstone project

	Background
	Free/Libre/Open Source Software
	Git
	Related Projects
	StarFLOSS features
	Front-end features
	Back-end features

	The development of an Observatory of FLOSS Communities
	The user Interface
	Creating a visual identity
	The importance of visual design fundamentals
	A solid website with React
	An interactive dashboard with D3.js

	The Integration Layer
	Architecture
	Good Practices
	Restful API
	Ruby on Rails
	Documentation
	The Commit Bot
	The IRC Bot
	Email Lists

	The Git Community in StarFLOSS
	The home page
	The dashboard
	Information menu
	Members menu
	Time of Day - Heatmap
	Commits over time - Bubble chart

	Final Remarks
	Where to go from here?
	The future of the StarFLOSS website
	The future of the StarFLOSS API

	Flux pattern
	Endpoints
	Commit Information Endpoints
	Email Information Endpoints
	IRC Information Endpoints

	References

