
FROM PARTIAL TO FULL RETROACTIVITY WITHOUT
THE USE OF A PERSISTENT DATA STRUCTURE

CRISTINA G. FERNANDES AND FELIPE C. NORONHA

Department of Computer Science, University of São Paulo, Brazil

Abstract. In their original paper on retroactivity, Demaine, Iacono,
and Langerman described a way to transform a partially retroactive data
structure into a fully retroactive one under a condition that assures that
there is an efficient persistent version of the data structure involved. In
this paper we describe a simple way to implement this transformation
that does not depend on any condition and does not use a persistent
version of the involved data structure. The strategy achieves the same
slowdown in updates and queries. We applied this technique implement-
ing a (halfway) retroactive data structure for the incremental minimum
spanning forest (MSF) problem, which we make available. Our imple-
mentation gives support to retroactive edge additions and retroactive
queries on the cost of an MSF, both in O(

√
m lgn) amortized time,

where m is the number of edge additions that occurred, and n is the
number of vertices in the graph.

1. Introduction

Problems in dynamic graphs have many applications, as they can be used
to model a variety of real situations where the graph models a network of
sorts that is changing over time. A subclass of these problems that is already
interesting and challenging are the so called incremental problems, in which
the considered graph is growing with time, through the addition of edges.

The Minimum Spanning Tree (MST) problem consists of, given a con-
nected graph G with costs on its edges, finding a spanning tree of G with
minimum cost. To describe the incremental version of this well-known prob-
lem, we consider a generalization on graphs that are not necessarily con-
nected. The Minimum Spanning Forest (MSF) problem consists of, given a
graph G with costs on its edges, finding a maximal spanning forest of G with
minimum cost.

The incremental MSF is the problem of keeping track of an MSF in a
graph on n vertices that is changing through the addition of new edges with

E-mail address: cris@ime.usp.br, felipe.castro.noronha@usp.br.
Date: August 12, 2022.
Key words and phrases. Retroactive data structures; incremental minimum spanning

forest; link-cut trees.
1

2 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

specified costs. We may assume the initial graph is empty. Frederickson [7]
described how to solve this problem efficiently using the so called link-cut
trees, and addressed the more general dynamic MSF, that also allows deletion
of edges. The cost per update of his method is O(

√
m), where m is the

number of edges in the graph at the moment of the update.
The concept of retroactivity in data structures was introduced by De-

maine, Iacono, and Langerman [3]. Its applications include practical situa-
tions where the involved data might be manipulated in imperfect ways, and
once in a while there is a need to correct some erroneous operation done, or
to perform some operation that was forgotten.

A data structure usually gives support to updates and queries. Generally,
the order in which the updates are performed interferes with the state of
the data structure. Consider a data structure that starts empty, and suffers
a sequence of updates, each with a time stamp that registers the time it
occurred. The goal of retroactivity is to allow one to efficiently manipulate
this update sequence, and to answer queries not only on the current state of
the data structure, but also on the state of the data structure at any time t,
that is, the state in which the data structure would be if we applied only the
updates in the sequence with time stamp at most t.

Specifically, in the context of retroactivity, one wants to be able to insert
into the sequence an update with a time stamp t, possibly indicating a time
in the past, and to remove some update from the sequence, given its time
stamp. We assume the time stamps are all distinct. Moreover, given a
time t, one would like to answer queries on the state of the data structure
at time t. If one can efficiently answer only queries on the current state
of the data structure, but not on its state at an arbitrary time t, the data
structure is said to be partially retroactive. In the literature, retroactivity is
some times used to refer to all variants of retroactivity, and the expression
fully retroactive is then used to refer to an implementation that provides the
complete set of retroactive operations: insertion and removal of updates at
any time, as well as answering queries at any time.

Demaine, Iacono, and Langerman [3] introduced the concept of retroactiv-
ity. They described fully retroactive versions of queues, doubly ended queues,
priority queue, union-find, and also a more efficient partially retroactive pri-
ority queue. A persistent data structure is a data structure that always
preserves the previous version of itself when it is modified [6]. They also
described a way to transform a partially retroactive data structure into a
fully retroactive one under a condition that assures that there is an efficient
persistent version of the data structure involved. This transformation results
in an O(

√
m) slowdown per update operation, where m is the length of the

update sequence. In general, assuming that certain known conjectures in
complexity theory hold, this slowdown is essentially tight [1]. Years later,
Demaine et al. [4] provided a transformation from partially retroactive data

FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE 3

structures that happen to be what they called time-fusible, into fully retroac-
tive ones, with a logarithmic time slowdown per operation, and applied this
transformation to obtain a more efficient fully retroactive priority queue.

It is known that a data structure used to solve a dynamic problem, such
as the dynamic MSF problem, can be used as a partially retroactive solution
for the problem. For instance, an efficient data structure for the dynamic
MSF problem works as an efficient partially retroactive MSF solution: the
insertions and removals of edges of the graph are the updates, and the query
is the cost of an MSF in the current graph. For partial retroactivity, addition
or removal of edges at any time t can be made in the present version, and
as addition and removal are the inverse of each other, one achieves partial
retroactivity. There are efficient implementations for dynamic MSF [10, 11],
that assure O(lg4 n) time amortized per operation, for simple graphs on n
vertices. So the same bound per operation holds for the partially retroactive
MSF problem.

Recently, Henzinger and Wu [9] presented lower bounds for the time per
operation of a fully retroactive data structure for the MSF problem and
for connectivity, under the OMv conjecture [8]. The lower bounds are in
terms of the number n of vertices of the graph: for any ε > 0, there is no
fully retroactive solution that takes O(n1−ε) time per operation for these
problems. The authors also presented a fully retroactive data structure for
connectivity, maximum degree, and MSF in Õ(n) per operation.

The study of de Andrade Junior and Seabra [2] about retroactivity ad-
dresses the incremental MSF problem. In the incremental MSF problem, the
only update supported is the addition of edges. So the update sequence, in
this case, consists of a series of edge additions. To support full retroactivity,
one would have to give support to the insertion of new edge additions at
any time, and also to the removal of an edge addition that occurred at some
given time t. Their implementation gives support to edge addition at any
time t and answers queries at any time t. It does not allow for the removal
of an edge addition from the update sequence, so we decided to refer to this
as a semi-retroactive incremental MSF solution. (Roditty and Zwick [12],
studying strong connectivity, considered yet another version of retroactivity
that was called incremental, where one is allowed to add an edge only at the
present time, not in the past, but can remove from the update sequence any
edge addition, given its time stamp.)

The implementation of de Andrade Junior and Seabra is inspired on the
aforementioned technique of Demaine, Iacono, and Langerman [3, The-
orem 5] for transforming partially retroactive data structures into fully
retroactive ones. This technique uses the idea of square-root decomposi-
tion, that breaks a time line of length m into

√
m checkpoints, keeping the

state of the data structure at these
√
m checkpoints, as well as the whole

sequence of updates. To answer queries at an arbitrary time t, it computes
what is the checkpoint previous to t, as close as possible to t, and then it

4 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

temporarily applies, to the data structure of this checkpoint, the updates be-
tween the checkpoint and t, to be able to answer the query properly. After
answering the query, it rolls back these updates to recover the checkpoint
state of the data structure. For the purpose of their experimental study,
they assumed the length m of the time line was known from the start, and
that the updates had time stamps from 1 to m, so they do not ever rebuild
the data structure. Also, as Frederickson [7], they used link-cut trees as the
data structure for each checkpoint. This leads to an amortized query and
edge addition time of O(

√
m lg n). The space used by their implementation

is Θ(m
√
m) because they used a collection of O(

√
m) independent link-cut

trees.
Our initial goal was to improve on their implementation, allowing the

length of the update sequence for the incremental MSF to grow arbitrarily,
rebuilding the data structure from time to time according to the technique
of Demaine et al. [3]. However, to achieve the same time consumption,
their technique uses persistent link-cut trees, otherwise the rebuilding of the
collection of independent link-cut trees would take Ω(m

√
m) time, incurring

in an Ω(m) slowdown per operation. There is a sophisticated functional
implementation of link-cut trees described in the literature [5], based on the
use of the so called fingers.

Instead of following this approach, we came up with a simple way to use
the previous version of the collection of independent link-cut trees to build its
new version. Our result can be applied in general, to transform any partially
retroactive data structure into a fully retroactive one, without the need of
a persistent version of the involved data structure. The strategy achieves
the same slowdown in updates and queries that the technique of Demaine
et al. [3]. We applied our technique implementing a semi-retroactive version
for the incremental MSF, that supports addition of edges and queries at any
time, in amortized time O(

√
m lg n) per edge insertion and MSF cost query,

and uses space Θ(m
√
m). This implementation is available. The update

sequence length m can be arbitrarily larger than n, so our bounds do not
conflict with the lower bounds of Henzinger and Wu [9].

The remaining of the paper is organized as follows. In Section 2, we review
the strategy of Demaine, Iacono, and Langerman [3] to transform a partially
retroactive data structure into a fully retroactive one. Section 3 contains
the description of new proposed rebuilding step, its correctness proof, and
its time complexity analysis. In Section 4, we formalize the semi-retroactive
incremental MSF and, for completeness, revise how it is implemented using
the proposed rebuilding approach. Final remarks are presented in Section 5.

2. From partial to full retroactivity: a brief review

Demaine, Iacono, and Langerman [3] described a way to transform a par-
tially retroactive data structure into a fully retroactive one under certain
conditions. Their result considers that the data structures use the RAM

FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE 5

model of computation, and work in the pointer-machine model of Tarjan [14].
They also use, in their result, the so called rollback method, in which auxil-
iary information is stored when certain updates are performed on the data
structures, so that one can reverse these updates if needed.

For the sake of completeness, we restate their result and describe their
method. Then, in the next section, we describe our simplified version of
their result.

Theorem 2.1 (Theorem 5 in [3]). Let m denote the number of updates
in the current update sequence. Any partially retroactive data structure
in the pointer-machine model with constant indegree, supporting T (m)-time
retroactive operations and Q(m)-time queries about the present, can be trans-
formed into a fully retroactive data structure with amortized O(

√
mT (m))-

time retroactive operations and O(
√
mT (m) + Q(m))-time fully retroactive

queries using O(mT (m)) space.

They define
√
m checkpoints t1, . . . , t√m and maintain

√
m versions

D1, . . . , D√m of the partially retroactive data structure, where the structure
Di contains all updates that occurred before time ti. Each ti is defined so
that, when Di was constructed, it contained the first i

√
m of the m updates,

for i = 1, . . . ,
√
m. They keep track of the entire sequence of updates.

When a retroactive operation is performed for time t, they perform the
operation on all data structures Di with ti > t, which costs O(

√
mT (m))

time. When a retroactive query is made at time t, they find the largest i such
that ti ≤ t, and perform on Di all updates from the current update sequence
that have time between ti and t, keeping track of auxiliary information for
later rollback. Then they perform the query on the resulting structure, and
rollback these updates to restore the state of the structure Di previous to
the query.

They assure that, at any time, between
√
m/2 and (3/2)

√
m updates have

to be performed on Di to answer any query. This implies that the time to
answer a query is O(

√
mT (m) + Q(m)). The way they assure this is by

rebuilding D1, . . . , D√m from time to time.
Let m denote the number of updates in the update sequence when the

last rebuilding took place. In the beginning, m = 0. By assumption, the
partially retroactive data structure has constant indegree, so they use a per-
sistent version of it, obtained according to Driscoll et al. [6]. After

√
m/2

retroactive operations, they update the value of m and rebuild the persis-
tent data structure from scratch in time O(mT (m)). When rebuilding the
persistent data structure for the current number m of updates, they perform
the sequence of m updates on a fully persistent version of an initially empty
partially retroactive data structure, and keep a pointer Di to the version
obtained after the first i

√
m updates, for i = 1, . . . ,

√
m. The retroactive

updates branch off a new version of the data structure for each modified Di.

6 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

The cost for the rebuilding is therefore O(mT (m)), which adds an amor-
tized cost of O(

√
mT (m)) per retroactive operation. They also argue that

the space used is O(mT (m)).

3. Rebuilding process without a persistent data structure

We call semi-retroactive a data structure that gives support to retroac-
tive queries, and to retroactive insertions into the update sequence, but not
to removals. This kind of data structure is obviously weaker than a fully
retroactive one, and is not comparable with a partially retroactive one, be-
cause the later gives support to queries only at the present, and to retroactive
insertions and removals on the update sequence. For semi-retroactive data
structures, we refer to retroactive updates, instead of retroactive operations,
as only insertion of updates are allowed.

In this section, we describe a rebuilding process that is as efficient, in terms
of time, as the original one by Demaine et al. [3], but is simpler to implement,
as it does not use a persistent version of the involved data structure.

We will describe two variants of the rebuilding process. The first one is
simpler and serves to derive a semi-retroactive data structure from a partially
retroactive one. The second one serves to derive a fully retroactive data
structure from a partially retroactive one.

3.1. Semi-retroactivity. Our strategy follows the same idea of Demaine el
at., but it does not rely on the use of a persistent version of the data structure
involved. Also, for semi-retroactivity, we propose the use of slightly different
checkpoints and rebuilding moments, that make it easier to implement and
analyze the correctness of the strategy.

Let m denote the number of updates in the current update sequence. As
we are considering semi-retroactivity, there are no removals of updates, and
m is also the number of retroactive operations that happened until now, that
is, the total number of retroactive updates.

We will use D0 to refer to an empty data structure, which is the initial
state of the data structure, when m = 0. We will rebuild the data structures
D0, D1, . . . , D√m every time m is a perfect square, that is, m = k2 for a
positive integer k. Because (k+ 1)2− k2 = 2k+ 1, this means that the data
structures built when m = k2 will be rebuilt after exactly 2k + 1 = Θ(

√
m)

retroactive updates.
Let S be the list of updates when m = k2. Let S+ be the list of

subsequent 2k + 1 updates, that arrived after the rebuilding that resulted
in D0, D1, . . . , Dk, and let S′ be the union of S and S+. Consider these lists
sorted by the time of the updates.

Whenm = k2, a rebuilding occurred andDi becomes the partially retroac-
tive data structure with the first ik updates in S for i = 0, 1, . . . , k. The
retroactive queries and subsequent 2k + 1 retroactive updates in S+ are
treated as in Section 2. When m reaches (k + 1)2, it is time to rebuild the
data structures. The idea is quite simple. Let D′0 and D′1 be two new empty

FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE 7

data structures and let D′i+2 refer to the current Di for i = 0, 1, . . . , k − 1.
Disregard Dk. Let t′0 = t′1 = 0 and, for i = 2, . . . , k + 1, let t′i be the
time of the last update in D′i. For i = 1, . . . , k + 1, apply to D′i the up-
dates in S′ after t′i so that D′i stores exactly i(k+ 1) updates. The resulting
D′0, D

′
1, . . . , D

′
k+1 are the new versions of the data structures for S′.

The key fact that assures that this works is the following.

Lemma 3.1. For i = 0, 1, . . . , k − 1, every update in Di is within the first
(i+ 2)(k + 1) updates for the sequence S′ of updates.

Proof. When m = k2, the data structure Di contained the first ik updates
in S. Let ti be the time of the last update in Di at that moment. Since then,
the 2k + 1 updates in S+ occurred, and any of them that had time t ≤ ti
were applied to Di. Because ik+ (2k+ 1) < ik+ i+ 2k+ 2 = (i+ 2)(k+ 1),
even if all the 2k + 1 updates in S+ were applied to Di, all updates in Di

would be among the first (i+ 2)(k + 1) updates in S′. �

Note that the statement does not hold with i + 1 in the place of i + 2.
During the rebuilding, the number of updates applied to Di to get D′i+2 is
at most (i + 2)(k + 1) − ik = 2k + 2 + i < 3(k + 1), for i = 0, 1, . . . , k − 1.
The number of updates applied to D′1 is exactly k + 1. That is, within the
rebuilding, O(k) = O(

√
m) updates are applied to obtain each D′i.

3.2. Full retroactivity. To achieve full retroactivity, we must also give
support to removals of updates from the update sequence. For this, we are
not able to use the perfect squares as the moments of rebuilding, because the
possible length of the update sequence is not anymore related to the number
of retroactive operations done so far. The length of the update sequence
might grow and shrink over time.

So the strategy is more similar to the original one of Demaine et al. [3]. Let
m be the number of updates in the update sequence S at a moment of a re-
building that resulted in the partially retroactive data structures D1, . . . , Dk,
where k = d

√
me. Let k = b

√
mc. Then Di contains the first ik updates

in S, for i = 1, . . . , k − 1, and Dk contains all updates in S. We refer to the
updates in S as old.

Let ` = 1 if m = 0 and ` = 2k−1 if m ≥ 1. After ` retroactive operations,
that now might be insertions or removals of updates, we will rebuild the data
structures. Let m′ be the number of updates in the current sequence S′ after
these ` operations are performed. Let k′ = d

√
m′e and k′ = b

√
mc.

Claim 3.2. |k′ − k| ≤ 1.

Proof. If m = 0, then m′ = m + 1 = 1, and k′ = 1 = k + 1. So suppose
that m ≥ 1, and note that m− ` ≤ m′ ≤ m+ `. Then

√
m− ` ≤

√
m′. But

m− ` = m− (2k− 1) ≥ m− 2
√
m+ 1 = (

√
m− 1)2, because m ≥ 1. Hence√

m− ` ≥
√
m− 1, which implies that k′ ≥ b

√
m− `c ≥ b

√
m− 1c = k − 1.

Similarly,
√
m′ ≤

√
m+ `, and m + ` = m + 2k − 1 < m + 2

√
m + 1 =

8 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

(
√
m + 1)2. Thus

√
m+ ` <

√
m + 1, which implies that k′ ≤ b

√
m+ `c ≤

b
√
m+ 1c = k + 1. �

If k′ ≥ k, then ik+ 2k− 1 ≤ ik′+ 2k′− 1 < (i+ 2)k′. Hence all the ik old
updates that were not removed are within the (i + 2)k′ first updates in S′,
even if all the at most 2k − 1 new updates inserted are before ti.

If k′ = k− 1, then m′ < m, which means that at most k− 1 of the 2k− 1
operations that occurred since the last rebuilding are insertions. Also, as
k′ ≤ k′+1, we only need to use Di to obtain D′i+2 for i+2 ≤ k′, which means
that i ≤ k′− 2 < k′. So, ik+k− 1 = i(k′+ 1) +k′ = (i+ 1)k′+ i < (i+ 2)k′.

Hence, we can proceed essentially as in the previous subsection. Let D′0
andD′1 be two new empty data structures and letD′i+2 refer to the currentDi

for i = 0, 1, . . . , k′ − 1. Disregard Dk. Let t′0 = t′1 = 0 and, for i = 2, . . . , k′,
let t′i be the time of the last update in D′i. For i = 1, . . . , k′− 1, apply to D′i
the updates in S′ after t′i so that D′i stores exactly ik′ updates, and apply
to D′k′ all the updates in S′ after t′k′ . The resulting D′0, D′1, . . . , D′k′ are the
new versions of the data structures for S′.

Note that, within the rebuilding, the number of updates we perform on
D′1 is k′, the number of updates we perform on D′k′ is m′ − m ≤ 2k′ − 1,
and, for 2 ≤ i ≤ k′ − 1, we perform at most ik′ − (i − 2)k + 2k − 1 =
i(k′ − k) + 4k− 1 ≤ i+ 4k− 1 ≤ k′ + 4k− 2 ≤ 5k′ + 2 updates. For every i,
this number is O(k′) = O(

√
m′).

The time to execute a retroactive operation remains the same, despite the
change in the number of operations between rebuildings. Let m and m̄ be
the number of updates in the sequence at the last rebuilding and when an
operation is done, respectively. For a retroactive insertion or removal of an
update, the amortized time is O(

√
mT (m̄)) = O(

√
m̄ T (m̄)). Let k = b

√
mc

and ` = 2k− 1. Because m− ` < m̄ < m+ `, we have that k = O(
√
m̄). For

a retroactive query, the number of updates applied to the appropriate Di

and rolled back is O(k) = O(
√
m̄), so the time is O(

√
mT (m) +Q(m)).

The space used by our strategy might be different from the space of the
persistent data structure used by Demaine et al. [3]. Assuming that the
space used by the partially retroactive data structure is linear, each Di uses
space Θ(ik), and thus the total space used by D1, . . . , Dk is Θ(m

√
m). The

space used by Demaine et al. [3] strategy is O(mT (m)), where T (m) is the
time for a retroactive update in the partially retroactive data structure.

4. Semi-retroactive incremental MSF

The approach of de Andrade Junior and Seabra [2] for the semi-retroactive
incremental MSF solution offers support for the following interface:

• add_edge(u, v, w, t): add to the graph G, at the time t, an edge of
cost w and endpoints u and v;
• get_msf(t): return a list with the edges of an MSF of G at time t.

FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE 9

To implement this, one needs to keep an incremental MSF, which, in this
case, is the partial retroactive data structure. Its interface is pretty similar
to the semi-retroactive version, and the only difference is that we drop the
argument for time t in both the edge addition and query operations. This
can be implemented using link-cut trees [13] as an underlying structure for
maintaining the current MSF. Specifically, every time a new edge uv is added,
we can check in the link-cut trees if this new edge would form a cycle with
the stored forest. If not, then we proceed to add it to the forest. Otherwise,
we find an edge e with maximum cost on the path between u and v in the
stored forest, and if the cost of the new edge uv is smaller than the cost
of e, we remove e and add uv to the forest. Also, when a query for MSF
is performed, we simply return all the edges currently stored in the link-cut
trees.

Following on, to implement the semi-retroactive version of the incremental
MSF, as described in Section 2, the idea of square-root decomposition is used
to divide the time line of length m in blocks of size

√
m. Because of the

restrictions imposed by de Andrade Junior and Seabra — that m is known
beforehand and that each operation time is an integer in the interval [1,m]
— it is possible to avoid rebuilding, and to build these

√
m blocks right up

front, as the first step in the structure initialization. Each of these blocks
is defined by a checkpoint ti such that ti = i

√
m, with i ∈ [1,

√
m]. Then,

each checkpoint ti is followed by a respective incremental MSF Di, where Di

has all the edge insertions that took place before the moment ti. An empty
incremental MSF D0 is also used.

From that, the implementation of de Andrade Junior and Seabra follows
the expected. The add_edge(u, v, w, t) operation is performed by adding the
respective edge to each Di such that t < ti, for i ∈ [1,

√
m]. The get_msf(t)

consists of finding the largest i such that ti < t, and then performing all the
insertions that take place between ti and t on Di. After that, it is possible to
return the current MSF stored in Di and then roll back these last performed
insertions. The empty incremental MSF D0 is used when t is smaller than t1.

Now, let us take a look at the time consumption of this approach. Recall
that n denotes the number of vertices of the graph, and therefore in the
link-cut trees. First of all, the query for the edges in the link-cut trees
costs O(n), and all the other routines used from the link-cut trees have an
amortized cost of O(log n) per operation. For the add_edge routine, in the
worst case, we have to add one new edge to each Di, hence its amortized time
consumption is O(

√
m log n). Finally, the time consumption of the get_msf

is O(n +
√
m log n), because of the updates that need to be applied and

rolled back, and the query for the edges in a versions of the link-cut trees.

The development of the idea presented in this paper was driven by the de-
sire to get rid of the limitations presented in de Andrade Junior and Seabra’s
solution for the semi-retroactive MSF problem. The main difference is that
we implement the rebuilding steps, and hence we do not restrict the amount

10 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

of operations or their time range. The rebuilding steps are implemented
according to the approach presented in Subsection 3.1. Edge insertions and
queries are treated similarly to their implementation, but now the check-
points change during the process, as the rebuildings happen. For details,
please check our implementation, available at the following link:
https://github.com/fcnoronha/mac0499/tree/main/implementations

To emphazise the simplicity of the rebuilding step, we present below the
idea in pseudocode, using the notation from Subsection 3.1. The procedure
receives an integer k, a sequence D with the link-cut trees D0, . . . , Dk, the
sequence t where ti is the last time stamp of an edge in Di for i = 0, . . . , k,
and the current sequence S with (k + 1)2 edge addition pairs (e, s), stored
for instance in a balanced binary search tree with the time stamp s as key.
It returns the new block size k + 1, the sequence D′ with the link-cut trees
D′0, . . . , D

′
k+1 and the sequence t′ where t′i is the last time stamp od an

edge in D′i for i = 0, . . . , k + 1. In this pseudocode, for a pair p = (e, s)
in S, we use p.time to refer to s. The procedure newIncrementalMSF
returns a new data structure representing a spanning forest with no edges.
It takes O(1) time in our implementation. The procedure kth(S, i) returns
the element in S with the ith smallest key, in time O(log k), because S has
O(k2) elements. The procedure addEdges(S, ts, tf , F) updates the MSF
stored in F considering the addition of all edges in S with time stamp more
than ts and at most tf . It takes time O(log k+` log n), where ` is the number
of edges added.

Algorithm 1 Rebuilding procedure
1: function rebuild(k,D, t, S)
2: D′0 ← newIncrementalMSF()
3: D′1 ← newIncrementalMSF()
4: for i← 2 to k + 1 do
5: D′i ← Di−2

6: t−1 ← 0 B sentinel
7: t′0 ← 0
8: for i← 1 to k + 1 do
9: p← kth(S, i(k + 1)) B i(k + 1)th edge in S

10: t′i ← p.time B time stamp of the i(k + 1)th edge in S

11: addEdges(S, ti−2, t
′
i, D

′
i)

12: return k + 1, D′, t′

The running time is dominated by the insertion operations on the incre-
mental MSFs. As argue in Subsection 3.1, this process will excute O(m) such
operations and, because each of these operations has an amortized cost of
O(log n), the total amortized cost of rebuild is O(m log n). This cost, dis-
tributed over the Θ(

√
m) operations that take place between two rebuildings,

adds an O(
√
m log n) amortized consumption time per operation.

FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE 11

5. Final remarks

This work is part of the Bachelor’s dissertation of Felipe C. Noronha, at
the Department of Computer Science of the University of São Paulo, Brazil.

During our study of the work of de Andrade Junior and Seabra, we no-
ticed that they did not really implement full retroactivity, because their
implementation does not allow for removals from the update sequence. Even
though the problem considered is incremental, a fully retroactive version of
the problem should allow for the removal of edge additions. Note that this
does not correspond to an implementation of a retroactive dynamic MSF,
because it does not keep in the update sequence edge additions and edge
removals. The update sequence contains only edge additions.

Our current implementation also does not give support to removals of edge
additions. Our next step is to study the beautiful algorithm of Holm, de
Lichtenberg, and Thorup [10] to maintain dynamic graphs. Their algorithm
is also based on link-cut trees. Our goal is to use this to obtain, using our
approach, an implementation of a fully retroactive incremental MSF.

Acknowledgments

Cristina G. Fernandes was partially supported by the National Council
for Scientific and Technological Development – CNPq (Proc. 310979/2020-0
and 423833/2018-9).

References

[1] Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu,
and Yuancheng Yu. Nearly optimal separation between partially and fully retroac-
tive data structures. In Proc. of the 16th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), volume 101 of Leibniz International Proceedings in
Informatics, pages 33:1–33:12, 2018.

[2] José W. de Andrade Júnior and Rodrigo Duarte Seabra. Fully retroactive minimum
spanning tree problem. The Computer Journal, 65(4):973–982, 2022.

[3] Erik D. Demaine, John Iacono, and Stefan Langerman. Retroactive data structures.
ACM Transactions on Algorithms, 3(2):13, 2007.

[4] Erik D. Demaine, Tim Kaler, Quanquan C. Liu, Aaron Sidford, and Adam Yedidia.
Polylogarithmic fully retroactive priority queues via hierarchical checkpointing. In
Proc. of the Workshop on Algorithms and Data Structures (WADS), volume 9214 of
Lecture Notes in Computer Science, pages 263–275, 2015.

[5] Erik D. Demaine, Stefan Langerman, and Erik Price. Confluently persistent tries for
efficient version control. In Proc. of the Scandinavian Workshop on Algorithm Theory
(SWAT), volume 5124 of Lecture Notes in Computer Science, pages 160–172, 2008.

[6] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making
data structures persistent. Journal of Computer and System Sciences, 38(1):86–124,
1989.

[7] Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees. In Proc. of the 15th Annual ACM Symposium on Theory of Computing (STOC),
pages 252–257, 1983.

[8] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the online

12 FROM PARTIAL TO FULL RETROACTIVITY WITHOUT PERSISTENCE

matrix-vector multiplication conjecture. In Proc. of the 47th Annual ACM Symposium
on Theory of Computing (STOC), pages 21–30, 2015.

[9] Monika Henzinger and Xiaowei Wu. Upper and lower bounds for fully retroactive
graph problems. In Proc. of the 17th International Symposium Algorithms and Data
Structures (WADS), volume 12808 of Lecture Notes in Computer Science, pages 471–
484, 2021.

[10] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fullydynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

[11] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic min-
imum spanning forest. In Proc. of the European Symposium on Algorithms (ESA),
volume 9294 of Lecture Notes in Computer Science, pages 742–753, 2015.

[12] Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm for directed
graphs with an almost linear update time. SIAM Journal on Compututing, 45(3):712–
733, 2016.

[13] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. In Proc.
of the 13th Annual ACM Symposium on Theory of Computing (STOC), pages 114–
122, 1981.

[14] Robert E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. The Journal of Computer and System Sciences, 18:110–127, 1979.

