
Manipulation of hierarchical segmentation of
images based on saliency maps

Gabriel Miranda de Araújo

Supervisor: Prof. Dr. Paulo A. V. de Miranda

August 2020

1

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Objectives . 6

2 Concepts and definitions 7
2.1 Graph . 7
2.2 Hierarchies . 7
2.3 Quasi-flat zone . 8
2.4 Saliency map . 9
2.5 Khalimsky grid . 11
2.6 Max-tree and extinction values 12
2.7 Superpixel . 12

3 Algorithms implemented 15
3.1 Extinction values . 15
3.2 Max-tree construction . 16
3.3 Hierarchy manipulation . 17
3.4 Khalimsky grid . 22

4 Results 23

5 Conclusion 31

6 Challenges 32
6.1 Covid-19 and the pandemic . 32
6.2 Hierarchies and Max-trees . 32
6.3 C/C++ language . 32

2

Abstract
The segmentation of an image consists of severing a digital image in multi-

ple segments, such as those with similar pixel characteristics, therefore making
it possible to analyse each one separately. Alongside this concept, we have the
hierarchy of an image, which consists of a sequence of its partitions, with consec-
utive partitions having the refinement property. Hierarchies can be represented
either by a dendrogram, graph or a minimum spanning tree. Throughout this
work, we will explore the graph representation of hierarchies; more specifically,
we’ll implement both saliency maps and Khalimskygrids as designated data
structures to aid in the manipulation and visualization of image hierarchies,
respectively.

In 2017, Guimarães et al. proposed an efficient digital image hierarchical seg-
mentation algorithm and demonstrated the correspondence between hierarchies
and saliency maps, in order to identify and construct the partitions that make
up a hierarchy. Since these concepts are being applied in a graph representation,
it opens up the possibility to combine them with the Max-tree data structure,
enabling the efficient calculation of extinction values of image regions, and using
these values to rearrange its hierarchy, possibly leading to performance gains in
automatic segmentation algorithms.

In this work, following the above strategy, we evaluate the rearrangement
of the hierarchy produced by a recent method of unsupervised segmentation by
Oriented Image Foresting Transform (UOIFT). UOIFT, as proposed by Bejar et.
al in 2020, generates a hierarchical image partition by successive optimum cuts
in graphs, that can be tailored to different objects, according to their boundary
polarity. Here, we reorganize its hierarchy in order to incorporate other high-
level information of the objects of interest, in addition to the boundary polarity,
such as their sizes. The results are demonstrated in natural and medical images.

3

Resumo
A segmentação de uma imagem consiste em fatiar uma imagem digital em

diversos segmentos, com estes tendo características em comum entre eles, possi-
bilitando, portanto, uma análise singular de cada um. Paralelo a esse conceito,
temos também a hierarquia de uma imagem, que é composta por um conjunto
de partições, determinadas por critérios arbitrários, e cada uma podendo ser
representada por um dendograma, grafo ou minimum spanning tree. Ao longo
desse trabalho, exploraremos a representação das hierarquias através de grafos;
mais especificamente, serão implementadas grades de Khalimsky e mapas de
saliência como as estruturas de dados padrão para manipulação de hierarquias
de imagens.

Em 2017, Guimarães et al. propuseram um método eficiente de segmentação
hierárquica de imagens digitais, simultâneo à uma correspondência de hierar-
quias e mapas de saliência, como forma de identificar e construir partições que
compõem uma hierarquia. Dado que esses conceitos estão sendo aplicados em
representações de grafos, é aberta a possibilidade para combiná-los com a es-
trutura de dados Max-tree, permitindo então o cálculo eficiente de valores de
extinção de regiões na imagem, para, posteriormente, utilizá-los como critério
para a manipulação da hierarquia da imagem em questão, possivelmente ofer-
tando ganhos de desempenho em algoritmos de segmentação automática.

Neste trabalho, seguindo a estratégia acima, avaliamos o rearranjo da hierar-
quia produzida por um método recente de segmentação não supervisionada por
Oriented Image Foresting Transform (UOIFT). UOIFT, conforme proposto por
Bejar et. al em 2020, gera uma partição hierárquica de imagens por sucessivos
cortes ótimos em grafos direcionados, que podem ser ajustados a diferentes
objetos, de acordo com suas polaridades de borda. Aqui, reorganizamos sua
hierarquia para incorporar outras informações de alto nível dos objetos de in-
teresse, além da polaridade de borda, tal como seus tamanhos. Os resultados
são demonstrados em imagens naturais e médicas.

4

1 Introduction
Hierarchical representation methods of images, video and multimedia analysis
seek to explore visual representation as a region oriented space. These methods
produce a hierarchy of partitions, made by a set of partitions in different levels
of detail, in which the representation of higher, more refined levels, is nested,
in comparison to their coarser counterparts. This type of Data Structure has
been successfully applied in remote sensing, object detection and human action
recognition.

Non-hierarchical methods, like the one proposed by Felzenszwalb and Hut-
tenlocher [6], that use a similarity measure to merge two adjacent regions in
order to form a new segment, can also be transformed, without loss of quality,
into hierarchical methods, through the incorporation of new properties [7].

The present work is related to the CAPES/COFECUB project, entitled Hi-
erarchical Graph-based Analysis of Image, Video and Multimedia Data, of which
the supervisor Paulo Miranda is a collaborator. The main goal of this broader
project is to advance in the state-of-the-art on hierarchy of partitions taking into
account aspects of efficiency, quality, making hierarchical and interactivity, as
well as the use of hierarchical information to help in the information extraction
and the label propagation. Moreover, it intends to investigate hierarchical visu-
alization of all, image, video and multimedia, by using countour saliency maps.
Finally, it intends to explore the criteria for hierarchical comparison and for
hierarchical combination taking into account their contour saliency maps and
learning methods. The results of these studies can be used for solving several
applications like human action recognition, pornography detection, image and
video region labeling, multimedia label propagation, image and video inpainting,
among others.

In this work, we address the particular problem of how to manipulate and
reorganize a hierarchical image segmentation based on saliency maps.

1.1 Motivation
Despite the several ways for computing hierarchies of partitions, developing effi-
cient and effective methods is not an easy task due to the semantic information
which is needed for a segmentation. In [2], a new method UOIFT (Unsupervised
Oriented Image Foresting Transform), based on hierarchical segmentation of di-
rected graphs, which incorporates the boundary polarity data of target objects,
has been proposed, in order to promote regions that resemble such objects to
upper levels of the hierarchy, thus facilitating their isolated analysis. Neverthe-
less, more studies seeking for a better understanding of other relevant high-level
attributes are still needed, in an effort to reduce the overall quantity of false
positives.

In this work, we evaluate the rearrangement of the hierarchy produced by
UOIFT in order to incorporate other high-level information of the objects of
interest, in addition to the boundary polarity, such as their sizes. The results
are demonstrated in natural and medical images.

5

1.2 Objectives
The visual representation of a hierarchy of an image can be constructed via
a Khalismsky grid of its saliency map [5]. In this work, we seek to explore
the reorganization of image partition hierarchies, by means of modifying its
respective saliency map graphs, resulting in entirely new hierarchies, via the
quasi-flat zone mapping of the modified maps. The goal is to highlight objects
of interest, promoting them to higher levels in the hierarchy, without requiring
too much processing power. This work will be developed in majority using the
C language.

Although the graph used by UOIFT is a directed graph, given that the
graphs of saliency maps are undirected graphs, a viable solution would be to
explore the extinction values of their Min-trees [10] in order to rearrange them
to obtain new hierarchies. We adopted this solution in this work. Other options
are discussed in [4], [3] and [8].

6

2 Concepts and definitions
In this section, we outline the major concepts and notions required for a com-
plete understanding of this work. The relevant references for further reading
will also be provided.

2.1 Graph
A Graph is an ordered pair G = (V,E), with V being a set of vertices, and E the
set of edges, disjoint of V . Each element of E is an unordered pair of distinct
elements of V ; in other words, a set with two vertices. The expression V (G)
can be used to make reference to the vertices of a graph G, as E(G) can be used
to represent its edges. Given the vertices a, b and edge e, with {a, b} ⊆ V (G),
e = {a, b} and e ⊆ E(G), it can be said that a and b are adjacent vertices.

Let G be a graph, and w a map from the set of edges to the set of R+

of non-negative real numbers; the pair (G,w) is denominated an edge-weighted
graph. If (G,w) is an edge-weighted graph, for any edge e of G, the weight of e
is written as w(e).

5

6

2

3 5

7 9

9

0 4

4 1

Figure 1: An edge-weighted graph (G,w) with weighted edges.

2.2 Hierarchies
To establish a concrete definition of a hierarchy, we first must build up on the
concept of partitions. A partition of a finite set A is a set α of nonempty disjoint
subsets of A whose union is A (that is, ∀X,Y ∈ α, X ∩ Y = ∅ if X 6= Y and⋃
X∈α = A). The elements that make up a partition α are called regions of α.

If a is part of A, there is a unique region of α that contains a, denoted by [α]a.
Given two partitions α and α′ of a set A, it can be stated that α′ is a

refinement of α if any region of α′ is contained in a region of α. A hierarchy
on set A is a sequence H = (α0,...,α`) of partitions of A such that [α]i−1 is
a refinement of [α]i, for any i ∈ {1, ..., `}. In this described hierarchy H =

7

(α0,...,α`), the integer ` refers to the depth of H. A hierarchy H = (α0,...,α`) is
considered complete if α` = {A} and α0 contains every single element of A (isto
é, α0 = {{x} | x ∈ A}). The hierarchies studied in this project are complete.

(a) α0 (b) α1

(c) α2 (d) α3

(e) H

Figure 2: A Hierarchy H = (α0, α1, α2, α3). At every partition αi, nodes with
the same color belong to the same region.

2.3 Quasi-flat zone
Throughout this work, we’ll consider a weighted graph (G,w), along with the
vertex set V and edge set E of G. We will assume that G is a connected graph,
it is also possible to assume, without loss of generality, that the range of w is
the set E of all integers from 0 to |E| − 1. The set E ∪ {|E|} is, from this point
on, referred to as E•.

Let X be a subgraph of G and let λ be an integer in E•. The λ-level set of
X (for w) is the set wλ(X) of all edges of X whose weight is less than λ:

wλ(X) = {e ∈ E(X)|w(e) < λ}. (1)

The λ-level graph of X (for w) is the subgraph wVλ (X) of X whose edge set is

8

the λ-level set of X and whose vertex set is the one of X:

wVλ (X) = (V (X), wλ(X)). (2)

The connected component partition C(wVλ (X)) induced by the λ-level graph of
X is called the λ-level partition of X (for w). As demonstrated in [5], for any
λ1 and λ2 in E• such that λ2 ≥ λ1, the λ1-level partition of X is a refinement
of the λ2-level partition of X. Hence, the sequence

QFZ(X,w) = (C(wVλ (X))|λ ∈ E•) (3)

of all λ-level partitions of X is a hierarchy. This hierarchy is called the quasi-
flat zone hierarchy QFZ(X,w). Figure 3 illustrates the process of constructing
QFZ(X,w).

(a)

0

5

0

2 2

3 1

0

0 4

0 0

(b) (c)

(d) (e) (f)

Figure 3: A quasi-flat zone hierarchy. A Graph G in (a), followed by its weight
map w in (b). (c, d, e & f) are the λ-level graphs of G, with λ = 0, 1, 2, 3,
respectively.

2.4 Saliency map
We have seen that any weighted graph on the edges induces a connected hi-
erarchy of partitions (called the quasi-flat zone hierarchy). In this section, we
address the inverse problem, that is, given a connected hierarchy H, find a map
w so that the quasi-flat zone hierarchy for w is precisely H. We will see that
saliency maps provide a solution to this problem [5].

Let α be a partition of V , the cut of α (in G), denoted by φG(α), is the set
of edges of G formed by two vertices in different regions of α, that is, φG(α) =
{{x, y} ∈ E | [α]x 6= [α]y}.

9

Let H = (α0, . . . ,α`) be a hierarchy on V . The saliency map of H is the
map ΦG(H) from E to {0, . . . , `} such that the weight of any edge e for ΦG(H)
is the maximum value λ for which e belongs to the cut of αλ:

ΦG(H)(e) = max{λ ∈ {0, . . . , `} | e ∈ φG(αλ)} (4)

An example is shown in Figure 4.

(a) α0 (b) α1 (c) α2 (d) α3

(e) φG(α0) (f) φG(α1) (g) φG(α2) (h) φG(α3)

(i) ΦG(H)

Figure 4: (a-d) Example of a connected hierarchy H = (α0, . . . , α`) with ` = 3
in a 4-neighborhood graph. (e-h) The set of edges belonging to the cuts φG(αi)
for each partition αi of the hierarchy for 0 ≤ i ≤ `. (i) The resulting saliency
map ΦG(H).

10

2.5 Khalimsky grid
When the graph is given by the 4-adjacency relation, a saliency map can be
visualized through Khalimsky grids, as illustrated in Figure 5.

In 2D, a Khalimsky grid is a set of squares, rectangles, and dots (Figure 5e).
Each vertex of the graph is identified to a square with a null value of the Khalim-
sky grid. Then, each edge {x, y} and its weight in the saliency map are identified
to the rectangle corresponding to the common side of the two squares identified
with x and y. Finally, each dot receives the maximal value of its neighboring
rectangles. Since the elements of the Khalimsky grid can be aligned on a square
matrix, in this representation, the saliency map can be visualized as an image
(Figure 5f).

0

2

0

2 2

0 1

0

0 1

0 0

(a) (b)

(c) (d)

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

2 2 2 2 2 2 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(e)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0

2 2 2 2 2 2 2
1
1
1
1

(f)

Figure 5: (a) The saliency map s = ΦG(H) from Figure 4i of the hierarchy H
from Figures 4a-d. (b-d) The 1-, 2-, and 3-level graphs of G for s, where two
vertices belonging to a same connected component are marked with the same
color. (e) The corresponding Khalimsky grid of s and (f) its image representation
when one considers the 4-adjacency graph.

11

2.6 Max-tree and extinction values
Let I : D → Z denote an image, where D is the image domain. An image
I decomposed by threshold forms a set of binary images Bl : D → {0, 1},
l = 0, 1, . . . , Imax, where Bl(p) = 1 if I(p) ≥ l and Bl(p) = 0 otherwise (Imax =
maxp∈D I(p)).

Given an image I with its respective graph representation, a component tree
is a representation of the image that describes topological relationships between
the connected components of its decomposition by thresholding. Analyzing
consecutive levels of this decomposition, we can see that components of the level
l+ 1 are contained in components of the level l. A component tree is, therefore,
a graph that stores this hierarchy between components. Thinking of the image
as a topographic surface, we have that each dome, represented by its respective
regional maxima, can be eliminated by pruning its respective branch of the
tree. Each dome has different attribute values such as for its height, area and
volume that can be used to decide on the selection of the appropriate branches
for pruning. Thus, by pruning branches of this tree through appropriate rules,
it is possible to generate connected filters (e.g., area opening, volume opening).

Max-tree is a compact representation of the component tree, where each
pixel is stored in a single node in the tree, corresponding to the highest level at
which it appears in the component tree. This tree is known as the max-tree,
since its leaves are always the regional maxima of the image.

A Min-tree is the data structure representing the negative image of the
Max-tree, obtained by constructing the latter on the complement of an image
I. Therefore, since the leaves of a Max-tree were a representation of regional
maxima in I, it can be said that the leaves of its related Min-tree store the
regional minima of I.

Along with these structures, comes the concept of extinction values. For a
given attribute (e.g., height, area or volume), the extinction value of a regional
maxima of the max-tree corresponds to the value of the attribute filter (max-
tree pruning) sufficiently large for the vanishing of the hill. For the 1D image
shown on Figure 6, Figure 7 shows one example of max-trees and extinction
values.

2.7 Superpixel
Superpixels are compact clusters of connected pixels, locally representing a same
image structure, that hold similar characteristics, like pixel intensity, color, tex-
ture and position. Since the pixels contained in the same superpixel are con-
sidered equal by definition, superpixels primitives have some advantages over
simple pixel primitives, like computational efficiency, since the number of primi-
tives are greatly reduced at the superpixel level. This brings great opportunities
to alleviate Computer Vision pipelines overhead, by replacing the rigid structure
of the pixel grid. Throughout this work, superpixels are used extensively as a
first step, mainly due to its performance gains. In this work, the superpixels
were computed by the IFT-SLIC method [1].

12

0

1

2

3

4

5

A

B

C

D

E

F

G

H

I

J

K

L

M

Figure 6: 1D example image

13

(a) Max-tree with volume (b) Extinction of volume

(c) Max-tree with area (d) Extinction of area

(e) Max-tree with height (f) Extinction of height

Figure 7: Max-trees of the image in Figure 2e. In the first column, attribute
values are shown in the nodes for volume, area and height. In the second column,
the extinction values are shown in the leaves for different attributes.

14

3 Algorithms implemented
In this section, we’ll discuss both the code and adaptations made around it in
order to develop the necessary software for this research.

3.1 Extinction values
The code below allows us to calculate generic extinction values based on the
Max-tree data structure:

Algorithm 1: Calculation of extinction values
input : MTI , Eµ
output: Eµ
Data: An image I Max-tree (MTI) along with an empty array (Eµ)
Result: Calculated extinction values for all leaves of the tree as an

array (E)
1 foreach NL ∈ leaves of MTI do
2 extinction ←∞
3 continue ← true
4 NP ← NL
5 while continue and ∃NL do
6 NA ← NP
7 NP ← parent of NA
8 if ∃NP and (number of children of NP > 1) then
9 foreach N C ∈ (children of NP) and continue do

10 if ((N C already visited) and N C 6= NA and

µ(N C) 6= µ(NA)) or (N C 6= NA and µ(N C) > µ(NA)
then

11 continue ← false

12 N C is marked as visited

13 if ∃NP then
14 extinction ← µ(NA)

15 NLext ← extinction

16 Eµ(x)←

{
NLext, ∀x ∈ CNL and NL ∈ (leaves of MTI)
0, otherwise

17 return Eµ

18

Starting from the leaves and working its way up to the root of the tree, the
while loop calculates each leaf’s extinction value of the Min/Max-tree. Like
previously mentioned, the criteria Eµ used to calculate the extinction values
consists in either height, length, width, area or volume of a Min/Max-tree of a
given image I, as can be seen on [11] in more detail.

15

3.2 Max-tree construction

Algorithm 2: Tree construction
input : I, NE
output: MTi
Data: An image I along with a node value map NE
Result: Calculated extinction values for all leaves of the tree as a

Max-tree data structure of image I (MTi)
1 level[k]← false, ∀k ∈ [0, nmax]
2 label[k]← 0, ∀k ∈ [0, nmax]
3 queue[k]← ∅, ∀k ∈ [0, nmax]
4 queue[min(I)].insert(Xm) such that I(xm) = min(I)
5 status[x]← 0, ∀x ∈ E ⊂ N2

6 MTI ← ∅
7 FLOOD(min(I))

8 (n)

9 xp ← {∞,∞}
10 xx ← {0, 0}
11 while queue[n] 6= ∅ do
12 p← queue[n].remove()
13 if p < xp then
14 xp ← p

15 if p > xx then
16 xx ← p

17 foreach q ∈ NE(p) do
18 if status[q] = 0 then
19 m← I[q]; queue[m].insert(q); level[m]← true
20 status[q]← −1
21 while m > n do
22 m← FLOOD(m)

23 m← n− 1
24 while m ≥ 0 and (¬level[m]) do
25 m← m− 1

26 if m ≥ 0 then
27 MTI .LINK({m, label[m] + 1}, {n, label[n] + 1}, xp, xx)
28 else
29 MTI .LINK({−1, 1}, {min(I), 1}, xp, xx)

30 level[n]← false
31 label[n]← label[n] + 1
32 return m

As a more traditional approach, this implementation above is based on the
works by Lotufo et. al [10] and [11], where, utilizing the watershed transform

16

method to compute the incremental calculation of the Max-tree attributes, and
applying the hierarchical flood shown in [9], we’re able to create the desired
Tree structure.

3.3 Hierarchy manipulation
Our goal is to reorganize the hierarchy produced by UOIFT [2], in order to
incorporate other high-level information on the desired objects.

Although UOIFT is a divisive top-down approach, its output consists of
a text file containing the merge history of pairs of nodes on the image graph
together with their respective fusion energy values corresponding to the optimal
cuts. The UOIFT file contains for each line a pair of pixels and its respective
fusion energy. Pixel pairs from the merge history can be seen as edges of a
graph, so the merge history forms a tree in the graph. For example, Figure 8a
shows the tree resulting from the merge history of the file shown below for an
image 4× 4, where the nodes are indicated by letters:

a e 8
k o 4
n o 2
h l 2
d h 1
f g 1
b c 0
c d 0
e i 0
j k 0
k g 0
i m 0
m n 0
l p 0
o p 0

By convention, fusions with zero energy correspond to internal connections
of the superpixels (see Figure 8b). Figure 8c shows the corresponding saliency
map of the merge tree provided in Figure 8a. Note that the tree in Figure 8a
corresponds to the minimum spanning tree (MST) of its saliency map. This
tree is created from the merge history file in Lines 1-8 of Algorithm 3.

To reorganize the hierarchy, we first compute its edge-based min-tree, as well
as its volume attribute and volume extinction values in Lines 9-13 of Algorithm
3 (see Figures 8d-f). Next, we calculate the highest extinction value on Lines 14-
17. For a given node of the graph G, Tree.map[node] returns its corresponding
vertex of the min-tree. In Lines 18-22, we obtain the reverse mapping. This code
assumes that the min-tree leaves are the first nodes in the min-tree structure.
Then a priority queue is created (Line 24) and the leaves of the min-tree are
processed in decreasing order of their volume extinction values in the loop of

17

Line 32. The current leaf has a corresponding pixel p in G (Line 34). At
each iteration, the edge with the highest weight is found in G, connecting p
in G to some other already processed vertex using a breadth-first search. Its
corresponding edge in cloneGraph then has its weight replaced by the extinction
value of the current iteration (Line 56). In the end, cloneGraph contains a tree
with modified weights representing a new reorganized hierarchy (Figure 9).

a b c d

e f g h

i j k l

m n o p

0 0

1

2

8

0

0
0 2 0

0

0
0

1

4

(a) input merge history

a b c d

e f g h

i j k l

m n o p

0 0

1

2

8

0

0
0 2 0

0

0
0

1

4

A B

C

D E

F

G

(b) superpixels

a b c d

e f g h

i j k l

m n o p

0 0

1

2

8

0

0
0 2 0

0

0
0

1

4

8

4

4

4
44

4

4

1

(c) saliency map

0

1

2

4

8

1 3 4 1 3 1 3

A B C D E F G

4 4

11

15

16

(d) Min-tree with area

0

1

2

4

8

8 3 8 1 3 1 6

A B C D E F G

16 8

44

120

128

(e) Min-tree with volume

0

1

2

4

8

8 120 8 1 16 1 6

A B C D E F G

(f) Extinction of volume

Figure 8: (a) The input merge history of each node on the image graph. (b)
By convention, the superpixels are the connected components of the 1-level
graph of (a). (c) The saliency map of (a). (d) The min-tree of (a) with area
attribute inside the nodes. (e) The min-tree of (a) with volume attribute. (f)
The extinction values of the volume attribute inside the leaves.

18

a b c d

e f g h

i j k l

m n o p

0 0

1

2

8

0

0
0 2 0

0

0
0

1

4

(a) input hierarchy

a b c d

e f g h

i j k l

m n o p

0 0

1

6

8

0

0
0 8 0

0

0
0

1

16

(b) reorganized hierarchy

Figure 9: (a) The input hierarchy. (b) The volume-based reorganized hierarchy.
Vertices belonging to different superpixels are shown in different colors. Note
that, in the first hierarchy, the most important edge {a, e} only isolates the
single blue vertex, while in the new hierarchy the edge {k, o} becomes the most
relevant, defining the central region composed of four pixels (i.e., pixels f , g, j
and k).

19

Algorithm 3: Hierarchy manipulation - Part 1
input : nCols, nRows, MH
output: MH ′

Data: A text file containing the merge history of each node on the
image graph (MH), along with the correct image dimensions
(nCols, nRows)

Result: The reorganized hierarchy, utilizing the volume Min-Tree
attribute as criteria

1 G← new Graph(nCols× nRows)
2 array[k]← 0,∀k ∈ [0, 2]
3 foreach line ∈MH do
4 k ← 0
5 foreach element ∈ line do
6 array[k]← element
7 k ← k + 1

8 AddEdge(G, array[0], array[1], array[2])

9 Tree← EdgeBasedMinTree(G)
10 ComputeHeight(Tree)
11 ComputeArea(Tree)
12 ComputeVolume(Tree)
13 ext← ComputeExtinctionValue(Tree,volume)
14 extMax← 0
15 foreach leaf ∈ nleaves(Tree) do
16 if ext[leaf] > extMax then
17 extMax← ext[leaf]

18 inverseMap[k]← 0,∀k ∈nleaves(Tree)
19 foreach node ∈ nnodes(G) do
20 temp← Tree.map[node]
21 if temp < nleaves(Tree) then
22 inverseMap[temp]← node

23 cloneGraph← Clone(G)
24 Q← createPriorityQ(extMax+ 1, leaves(Tree), ext)

20

Algorithm 4: Hierarchy manipulation - Part 2
input : nCols, nRows, MH
output: MH ′

Data: A text file containing the merge history of each node on the
image graph (MH), along with the correct image dimensions
(nCols, nRows)

Result: The reorganized hierarchy, utilizing the volume Min-Tree
attribute as criteria

25 foreach leaf ∈ leaves(Tree) do
26 insertElement(Q, leaf)

27 visited← createBitmap(nnodes(G))
28 FIFO ← createQ(nnodes(G))
29 pred[k]← NIL ∀k ∈ nnodes(G)
30 Qindex← getMax(Q)
31 bitMap.Set1(visited, inverseMap[Qindex])
32 while ¬ isEmpty(Q) do
33 Qindex← getMax(Q)
34 p← inverseMap[Qindex]
35 push(FIFO, p)
36 pred[p]← NIL
37 while ¬ isEmpty(FIFO) do
38 p← pop(FIFO)
39 if get(visited, p) then
40 break

41 foreach node ∈ adjacentNodes(G.nodes[p]) do
42 q ← G.nodes[p].adjacent[node]
43 if pred[p] 6= q then
44 pred[q]← p
45 push(FIFO, q)

46 reset(FIFO)
47 wmax← 0
48 q ← p
49 while pred[q] 6= NIL do
50 w ← getArcWeight(G, pred[q], q)
51 if w > wmax then
52 wmax← w
53 qmax← q

54 q ← pred[q]

55 RemoveEdge(G, pred[qmax], qmax)
56 UpdateEdge(cloneGraph, pred[qmax], qmax, ext[Qindex])
57 p← inverseMap[Qindex]
58 bitMap.Set1(visited, p)

59 return cloneGraph

21

3.4 Khalimsky grid
The next algorithm computes the Khalimsky Grid of a given saliency map,
which is received as an input 4-neighborhood graph, as discussed in more detail
in [5].

Algorithm 5: Khalimsky grid
input : Graph
output: grid
Data: Graph of the image we wish to translate into a Khalimsky grid

data structure (grid)
Result: Khalimsky grid generated using the original image graph

(Graph)
1 A← Adjacency(Graph)
2 if nneighbors(A) 6= 4 then
3 return NULL

4 grid← Create(ncols(Graph) ×2 + 1, nrows(Graph) ×2 + 1)
5 foreach row ∈ nrows(Graph) do
6 foreach col ∈ ncols(Graph) do
7 p← col + row× ncols(Graph)
8 array(grid,row × 2 + 1,col × 2 + 1) ← 0
9 foreach adjacent ∈ Adjacency(A) do

10 qCol← col+ dx(A,index)
11 qRow ← row+ dy(A,index)
12 if (qCol ≥ 0 & qCol < ncols(Graph)) ;
13 & (qRow ≥ 0 & qRow < nRows(Graph)) then
14 weight← link(Graph,p,index)
15 else
16 weight← 0

17 if col = qCol then
18 array(grid,row × 2 + 1,min(col, qCol) ×2 + 2) ← weight
19 else if row = qRow then
20 array(grid,min(row, qRow) ×2 + 2,col × 2 + 1) ← weight

21 foreach row ∈ nrows(Graph) do
22 foreach col ∈ ncols(Graph) do
23 weight← 0 foreach adjacent ∈ Adjacent(A) do
24 qCol← col × 2+ dx(A, adjacent)
25 qRow ← row × 2+ dy(A, adjacent)
26 if qCol ≥ 0qCol < ncols(grid) qRow ≥ 0qRow <

nrows(grid) then
27 weight← max(weight,array(grid,qRow,qCol))

28 array(grid,row × 2,col × 2) ← weight

29 return grid

22

4 Results
In this section, we show examples of our proposed manipulation method of

the UOIFT hierarchy on both grayscale and colored images. For every image,
we also show its superpixel segmentation by IFT-SLIC as used by UOIFT, for
better visualization of all the intermediate results. In all examples presented in
this section, the Khalimsky Grid of saliency maps used for display purposes of
hierarchies will be denoted simply as saliency maps for short.

The original hierarchy by UOIFT is compared to the proposed volume-based
rearranged hierarchy in the task of isolating objects of interest with the fewest
possible partitions of the image. As a result, for all examples, the new approach
was able to reduce the number of partitions needed to isolate the objects in
the images compared to UOIFT, which generates many small regions of small
artifacts (see Figures 10, 11, 12, 13, 14, 15 and 16).

23

(a) original image (b) superpixels

(c) saliency map of UOIFT hierarchy (d) volume-based rearranged hierarchy

(e) segmentation by thresholding of "c" (f) segmentation by thresholding of "d"

Figure 10: (a) Example of a synthetic image where the object of interest is the
larger central gray circle. (b) Superpixels by IFT-SLIC. (c) The saliency map of
the hierarchical image segmentation by UOIFT, favoring transitions from bright
to dark pixels. (d) The saliency map of the volume-based rearranged hierarchy.
(e) The best image partition by thresholding the saliency map in "c" requires
five regions to segment the desired object. (f) An improved result, requiring
only two regions, is obtained by thresholding the rearranged hierarchy in "d".

24

(a) original image (b) superpixels

(c) saliency map of UOIFT hierarchy (d) volume-based rearranged hierarchy

(e) segmentation by thresholding of "c" (f) segmentation by thresholding of "d"

Figure 11: (a) Example of an image containing parts of a building toy where
we are interested in segmenting the two largest yellow blocks. (b) Superpixels
by IFT-SLIC. (c) The saliency map of the hierarchical image segmentation by
UOIFT, favoring color transitions from hexadecimal RGB code #a9c53c (yellow
sample) to #26231e (background sample). (d) The saliency map of the volume-
based rearranged hierarchy. (e) The best image partition by thresholding the
saliency map in "c" requires more than ten regions to segment the desired
objects. (f) An improved result, requiring only three regions, is obtained by
thresholding the rearranged hierarchy in "d".

25

(a) original image (b) superpixels

(c) saliency map of UOIFT hierarchy (d) volume-based rearranged hierarchy

(e) segmentation by thresholding of "c" (f) segmentation by thresholding of "d"

Figure 12: (a) Example of a STOP traffic signal where we are interested in
segmenting its internal plate contour. (b) Superpixels by IFT-SLIC. (c) The
saliency map of the hierarchical image segmentation by UOIFT, favoring color
transitions from hexadecimal RGB code #9a1310 (red sample) to #8f8677
(white sample). (d) The saliency map of the volume-based rearranged hierarchy.
(e) The best image partition by thresholding the saliency map in "c" requires
more than seven regions to segment the desired object. (f) An improved result,
requiring only two regions, is obtained by thresholding the rearranged hierarchy
in "d".

26

(a) original image (b) superpixels

(c) saliency map of UOIFT hierarchy (d) volume-based rearranged hierarchy

(e) segmentation by thresholding of "c" (f) segmentation by thresholding of "d"

Figure 13: (a) Example of sunflowers image where we are interested in segment-
ing their seeds (dark part) without the petals (yellow part). (b) Superpixels
by IFT-SLIC. (c) The saliency map of the hierarchical image segmentation by
UOIFT, favoring color transitions from hexadecimal RGB code #1f1509 (sam-
ple color at seeds) to #c9b300 (sample color at petals). (d) The saliency map of
the volume-based rearranged hierarchy. (e) The best image partition by thresh-
olding the saliency map in "c" requires more than sixteen regions to segment
the desired objects. (f) An improved result, requiring only seven regions, is
obtained by thresholding the rearranged hierarchy in "d".

27

(a) original image (b) superpixels

(c) saliency map of UOIFT hi-
erarchy

(d) volume-based rearranged
hierarchy

(e) segmentation by thresh-
olding of "c"

(f) segmentation by threshold-
ing of "d"

Figure 14: (a) Example of an MR image of the foot where the desired object is
the talus bone. (b) Superpixels by IFT-SLIC. (c) The saliency map of the hier-
archical image segmentation by UOIFT, favoring transitions from dark to bright
pixels. (d) The saliency map of the volume-based rearranged hierarchy. (e) The
best image partition by thresholding the saliency map in "c" requires more than
nine regions to segment the desired object. (f) An improved result, requiring
only three regions, is obtained by thresholding the rearranged hierarchy in "d".

28

(a) original image (b) superpixels

(c) saliency map of UOIFT hierarchy (d) volume-based rearranged hierarchy

(e) segmentation by thresholding of "c" (f) segmentation by thresholding of "d"

Figure 15: (a) Example of an MRI slice of the wrist. (b) Superpixels by IFT-
SLIC. (c) The saliency map of the hierarchical image segmentation by UOIFT,
favoring transitions from bright to dark pixels. (d) The saliency map of the
volume-based rearranged hierarchy. (e) The best image partition by thresh-
olding the saliency map in "c" requires more than twenty regions to segment
the wrist. (f) An improved result, requiring only two regions, is obtained by
thresholding the rearranged hierarchy in "d".

29

(a) original image (b) superpixels

(c) saliency map of UOIFT hi-
erarchy

(d) volume-based rearranged hi-
erarchy

(e) segmentation by threshold-
ing of "c"

(f) segmentation by threshold-
ing of "d"

Figure 16: (a) Example of a thoracic CT image of 512× 512 pixels to segment
the liver. (b) Superpixels by IFT-SLIC. (c) The saliency map of the hierarchical
image segmentation by UOIFT, favoring transitions from bright to dark pixels.
(d) The saliency map of the volume-based rearranged hierarchy. (e) The best
image partition by thresholding the saliency map in "c" requires more than
forty regions to segment the liver. (f) An improved result, requiring only eight
regions, is obtained by thresholding the rearranged hierarchy in "d".

30

5 Conclusion
Throughout this work, we’ve shown the potential and results of the new pro-

posed UOIFT [2] and Min-tree combination for image segmentation. Looking
at the differences between our method and the one shown in [2], by means of
side-by-side comparisons on the last section, it is clear how the pure UOIFT hi-
erarchy produces partitions with smaller regions, being consequently harder to
achieve an automatic segmentation of the most prominent regions of the image.
In the proposed method, on the other hand, we were able to successfully com-
bine the size information of the objects with their expected boundary polarity
leading to improved results.

In this work, the code implementation of the methods was done in C++,
due to it’s superior performance and memory management capabilities when
compared to other, higher level programming languages. Consequently, some
of the packages used in the development of required data structures limited its
portability, unfortunately being restricted to GNU/Linux environments.

As future works, other ideas stemming from recent works of this area, such
as [4], [3] and [8], could also be explored.

31

6 Challenges

6.1 Covid-19 and the pandemic
As with many services and projects throughout society, this work was also af-
fected by the global pandemic. During the weeks of development, as both the
state and city governments applied successive restrictions on local citizens (in-
cluding, but not limited to, limitations on personnel and available activities
in our work space at University of São Paulo), communication between the
researchers responsible was severely hindered, due to the new and substantial
demand on the traditional channels adopted by the team. Fortunately, everyone
working on the project was able to adapt to a remote development setup, with
Google Meet as the primary mean of video communication.

6.2 Hierarchies and Max-trees
Understanding the concept of an image hierarchy and its ties to Khalimsky grids
was also a challenge. Not only that, but also having to comprehend quasi-flat
zones at the same time, which were reasonably new concepts for me, certainly
took an unexpected amount of time.

Combining these new paradigms with Max-trees was, by far, the biggest hur-
dle in development. While Khalimsky grids utilize the edge weights to build new
image graphs, Max-trees are designed around node attributes, so the translation
between these two data structures was not trivial.

Also, it is essential to take into account that a node in the Max-tree is
a superpixel, which represents a group of pixels (nodes) in the image graph
that generates it, making the linkage between pixels in the image and Max-tree
not trivial. It is for this problem that the inverseMap array was utilized in
Algorithms 4 & 5.

6.3 C/C++ language
Due to the nature of this work, that is, processing images in a reasonably small
time frame, it quickly became clear that a low-level environment was needed to
suffice our performance requirements. Therefore, C/C++ was a simple choice
for development.

As with any other programming language, both C & C++ were challenging
to work at first. Specifically, their memory allocation aspect, absent in most
high-level languages commonly utilized today, was the most difficult feature to
work within the C/C++ programming environment. The infamous segmenta-
tion fault errors were a familiar sight during development, but, fortunately, we
were able to overcome such obstacles and craft fine, working software.

32

References
[1] E. B. Alexandre, A. S. Chowdhury, A. X. Falcao, and P. A. V. Miranda.

IFT-SLIC: A general framework for superpixel generation based on simple
linear iterative clustering and image foresting transform. In 2015 28th
SIBGRAPI Conference on Graphics, Patterns and Images, pages 337–344,
2015.

[2] Hans H. C. Bejar, Silvio Jamil Ferzoli Guimarães, and Paulo A. V. Mi-
randa. Efficient hierarchical graph partitioning for image segmentation by
optimum oriented cuts. Pattern Recognition Letters, 131:185–192, 2020.

[3] Isabela Borlido, Gabriel B Fonseca, Zenilton Patrocinio Jr, Jean
Cousty, Benjamin Perret, Laurent Najman, Yukiko Kenmochi, and Silvio
Guimarães. Exploring hierarchy simplification for non-significant region
removal. XXXII Conference on Graphics, Patterns and Images., 2020.

[4] Edward Cayllahua-Cahuina, Jean Cousty, Silvio Jamil F Guimarães,
Yukiko Kenmochi, Guillermo Cámara-Chávez, and Arnaldo de Albu-
querque Araújo. Hierarchical segmentation from a non-increasing edge
observation attribute. Pattern Recognition Letters, 131:105–112, 2020.

[5] Jean Cousty, Laurent Najman, Yukiko Kenmochi, and Silvio Guimarães.
Hierarchical segmentations with graphs: Quasi-flat zones, minimum span-
ning trees, and saliency maps. Journal of Mathematical Imaging and Vi-
sion, 60:479–502, 2018.

[6] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based
image segmentation. International Journal of Computer Vision, 59:167–
181, 2004.

[7] Silvio Guimarães, Yukiko Kenmochi, Jean Cousty, Zenilton Patrocinio,
and Laurent Najman. Hierarchizing graph-based image segmentation al-
gorithms relying on region dissimilarity: the case of the felzenszwalb-
huttenlocher method. Mathematical Morphology - Theory and Applications,
2:55–75, 2017.

[8] B Perret, J Cousty, SJF Guimarães, Y Kenmochi, and L Najman. Re-
moving non-significant regions in hierarchical clustering and segmentation.
Pattern Recognition Letters, 128:433–439, 2019.

[9] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive connected op-
erators for image and sequence processing. IEEE Transactions on Image
Processing, 7:555–570, 1998.

[10] Alexandre Gonçalves Silva and Roberto de Alencar Lotufo. Efficient com-
putation of new extinction values from extended component tree. Pattern
Recognition Letters, 32:79–90, 2011.

33

[11] Alexandre Gonçalves Silva and Roberto de Alencar Lotufo. Efficient com-
putation of new extinction values from extended component tree. Pattern
Recognition Letters, 32:79–90, 2011.

34

