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Resumo

Gabriel Caiaffa Floriano Mendonça. Diferenciação de Estilos no Xadrez entre os
jogadores Magnus Carlsen e Garry Kasparov via Variação da Quantidade de
Informação dos Lances. Monografia (Bacharelado). Instituto de Matemática, Estatística

e Ciência da Computação, Universidade de São Paulo, São Paulo, 2026.

Devido à sua alta complexidade combinatória e natureza determinística,o xadrez consolidou-se como

um ambiente fértil para o desenvolvimento da inteligência artificial e o estudo de sistemas complexos.

Contudo, embora os motores de xadrez (engine) modernos forneçam avaliações numéricas precisas, existe

um descompasso entre a "verdade"matemática da máquina e a realidade cognitiva do enxadrista humano. Este

trabalho investiga a diferenciação de estilos de jogo entre dois dos maiores campeões mundiais da história,

Magnus Carlsen e Garry Kasparov, utilizando a quantização da informação de uma variação proposta por

Marc Barthelemy (2025) no artigo Chess variation entropy and engine11 relevance for humans, medida em

bits. Os resultados demonstram que as partidas de Magnus Carlsen apresentam uma informação média

consistentemente superior à de Garry Kasparov, sugerindo que o jogo contemporâneo, auxiliado por engines,

permite navegar por posições de maior complexidade combinatória. Através do teste estatístico Kolmogorov-

Smirnov, detectou-se que as diferenças de estilo são mais acentuadas na fase de Abertura e em posições de

alta incerteza (|𝑆| ≥ 4). Enquanto Carlsen tende a preservar a tensão e a complexidade posicional, Kasparov

demonstrava preferência por simplificações táticas agudas e caminhos de cálculo mais diretos. O estudo

conclui que a variação da informação é uma ferramenta eficaz para traduzir em métricas matemáticas as

sutilezas estilísticas do xadrez de alto nível.

Palavras-chave: Análise de dados. Xadrez. Quantização da Informação.





Abstract

Gabriel Caiaffa Floriano Mendonça. . Capstone Project Report (Bachelor). Institute of

Mathematics and Statistics, University of São Paulo, São Paulo, 2026.

Due to its high combinatorial complexity and deterministic nature, chess has established itself as

a fertile environment for the development of artificial intelligence and the study of complex systems.

However, although modern engines provide precise numerical evaluations, there is a mismatch between the

machine’s mathematical "truth" and the cognitive reality of the human chess player. This work investigates

the differentiation of playing styles between two of the greatest world champions in history, Magnus

Carlsen and Garry Kasparov, utilizing the information entropy metric of a variation proposed by Marc

Barthelemy (2025) in the paper Chess variation entropy and engine relevance for humans, measured in

bits.The results demonstrate that Magnus Carlsen’s games present a consistently higher average information

entropy than those of Garry Kasparov, suggesting that contemporary play, aided by engines, allows for

navigating positions of greater combinatorial complexity. Through the Kolmogorov-Smirnov statistical test,

it was detected that stylistic differences are more pronounced in the Opening phase and in positions of

high uncertainty (|𝑆| ≥ 4). While Carlsen tends to preserve tension and positional complexity, Kasparov

demonstrated a preference for sharp tactical simplifications and more direct calculation paths. The study

concludes that the variation of information is an effective tool for translating the stylistic subtleties of

high-level chess into mathematical metrics.

Keywords: Data Analysis. Chess. Information Entropy.





v

Lista de símbolos

𝐸 Pontuação gerada pelo motor de xadrez em centipawns

Δ0 Parâmetro referente a nível do jogador

Δ Diferença entre a avaliação de dois melhores lances

𝑆 Quantidade de informação em bits



vi

Lista de figuras

2.1 Ilustração da árvore de decisão para o cáculo de 𝑃(𝑛) (Barthelemy, 2025) 5

4.1 Distribuição de Probabilidade da Informação . . . . . . . . . . . . . . . . 15

4.2 Gráfico de Linhas da Média de Informação por Posição - Jogador de Pretas 16

4.3 Gráfico de Linhas da Média de Informação por Posição - Jogador de Brancas 16

4.4 Distribuição de Probabilidade da Variação de Informação na Abertura . . 17

4.5 Funções de Distribuição Acumulada da Variação de Informação na Abertura 18

4.6 Distribuição de Probabilidade da Variação de Informação no Meio-jogo -

|𝐸| ≤ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 Funções de Distribuição Acumulada da Variação de Informação no Meio-

jogo - |𝐸| ≤ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.8 Distribuição de Probabilidade da Variação de Informação no Meio-jogo -

|𝑆| ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.9 Funções de Distribuição Acumulada da Variação de Informação no Meio-

jogo - |𝑆| ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.10 Distribuição de Probabilidade da Variação de Informação no Final - |𝐸| ≤ 100 22

4.11 Funções de Distribuição Acumulada da Variação de Informação no Final -

|𝐸| ≤ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.12 Distribuição de Probabilidade da Variação de Informação no Final - |𝑆| ≥ 4 23

4.13 Funções de Distribuição Acumulada da Variação de Informação no Final -

|𝑆| ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



vii

Lista de tabelas

3.1 Estatísticas gerais do número de lances das partidas . . . . . . . . . . . . 10

4.1 Estatísticas gerais da informação . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Estatísticas da Variação de Informação na Abertura . . . . . . . . . . . . 17

4.3 Estatísticas da Variação de Informação no Meio-jogo quando |𝐸| ≤ 100 . . 19

4.4 Estatísticas da Variação de Informação no Meio-jogo quando |𝑆| ≥ 4 . . . 20

4.5 Estatísticas da Variação de Informação na fase Final quando |𝐸| ≤ 100 . . 22

4.6 Estatísticas da Variação de Informação na fase Final quando |𝑆| ≥ 4 . . . 23

Lista de programas

2.1 Implementação da função de cálculo de informação feita em Python . . . 7





ix

Sumário

1 Introdução 1

2 Informação de uma variante 3
2.1 Modelagem teórica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Definições iniciais . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Probabilidade da jogada ótima . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Definição da informação de uma variante . . . . . . . . . . . . . 5

2.2 Considerações da Literatura e Resultados . . . . . . . . . . . . . . . . . . 6

2.2.1 Parâmetros na implementação . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Resultados da Literatura . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Detalhes de implementação do cálculo da informação das posições . . . . 7

3 Dados e Metodologia de Análise 9
3.1 Sobre os dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Criação de tabelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Divisão dos lances por fase do jogo . . . . . . . . . . . . . . . . . 9

3.2.2 Divisão de lances por situação . . . . . . . . . . . . . . . . . . . . 10

3.3 Interpretação da variação de informação . . . . . . . . . . . . . . . . . . 11

3.4 Métodos Estatísticos de Avaliação . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Histograma da Distribuição de Probabilidade . . . . . . . . . . . 11

3.4.2 Função de Distribuição Acumulada . . . . . . . . . . . . . . . . . 12

3.4.3 Teste Kolmogorov–Smirnov . . . . . . . . . . . . . . . . . . . . . 12

3.5 Ferramentas e Ambiente de Desenvolvimento . . . . . . . . . . . . . . . 13

4 Análises e Resultados 15
4.1 Análise Geral da Informação das Posições . . . . . . . . . . . . . . . . . . 15

4.2 Abertura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Variação da Informação dos Meios-lances . . . . . . . . . . . . . 17

4.3 Meio-jogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



x

4.3.1 Variação da Informação dos Meios-lances - |𝐸| ≤ 100 . . . . . . . 19

4.3.2 Variação da Informação dos Meios-lances - |𝑆| ≥ 4 . . . . . . . . . 20

4.4 Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1 Variação da Informação dos Meios-lances - |𝐸| ≤ 100 . . . . . . . 22

4.4.2 Variação da Informação dos Meios-lances - |𝑆| ≥ 4 . . . . . . . . . 23

5 Conclusão 25

Referências 27



1

Capítulo 1

Introdução

O xadrez estabelece-se fundamentalmente como um jogo de estratégia para dois jo-
gadores, regido por uma lógica determinística onde o resultado final — vitória, derrota
ou empate — é sempre fruto de regras claras e definidas. No entanto, por trás dessa
estrutura finita, reside uma complexidade combinatória de tal magnitude que historica-
mente desafiou a capacidade de cálculo humana, servindo como o ambiente ideal para o
desenvolvimento de sistemas computacionais. Com o avanço da tecnologia, os motores
de xadrez (engines) também avançaram sua qualidade substancialmente, evoluindo de
simples experimentos teóricos para ferramentas de força bruta e, mais recentemente, para
sistemas avançados como o Stockfish (The Stockfish Team, 2026), que foi construído
com otimizações determinísticas combinadas com redes neurais e o AlphaZero (Sadler e
Regan, 2019), baseada em uma rede neural profunda treinada com aprendizado por reforço.
A supremacia das máquinas sobre os humanos tornou-se absoluta, de maneira que mesmos
os melhores jogadores de xadrez da atualidade não conseguem derrotar as principais
engines em suas capacidades máximas. As engines fornecem avaliações numéricas precisas
(𝐸) para qualquer posição, medidas em centipawns. No entanto, existe um descompasso
crescente entre a "verdade"matemática calculada pela máquina e a realidade cognitiva
do enxadrista humano.

Nesse contexto que se insere o trabalho recente de Barthelemy (2025) Barthelemy,
2025, que propõe a quantificação da informação necessária para fazer o lance ótimo, que
Barthelemy chama de information entropy. Essa métrica visa quantificar a quantidade de
informação necessária para um jogador fazer o melhor lance possível. Posições com baixa
informação sugerem caminhos forçados e claros, enquanto posições de alta informação
indicam múltiplas alternativas viáveis ou a necessidade de precisão cirúrgica em meio a
muitas opções. A proposta deste estudo é utilizar essa métrica não apenas para avaliar a
dificuldade das posições, mas como uma ferramenta para identificar e diferenciar estilos
de jogo entre jogadores.

Para investigar essa hipótese, o trabalho foca na análise das partidas de dois dos
maiores expoentes da história do xadrez: Garry Kasparov e Magnus Carlsen. A escolha
desses dois campeões mundiais é estratégica, pois ambos dominaram suas respectivas eras
através de fi losofias de jogo contrastantes. Kasparov, campeão mundial de 1985 a 2000,
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é reverenciado por uma transição estilística que partiu da especulação tática agressiva
em sua juventude para uma abordagem estritamente científica e profunda nas aberturas,
buscando testar a precisão técnica de seus adversários por meio de análises exaustivas.
Em contrapartida, Magnus Carlsen, detentor do título de 2013 a 2023, adota uma postura
pragmática, priorizando o desconforto do oponente sobre a profundidade teórica. Carlsen é
célebre por sua capacidade de induzir erros em posições estrategicamente complexas e por
sua técnica implacável em converter pequenas vantagens em finais de partida exaustivos
(Crouch, 2013).

O objetivo principal desta monografia é, portanto, verificar se é possível detectar
estilos de jogos diferentes entre os jogadores citado através da análise da variação da
informação causada pelos lances dos jogadores, buscando entender como cada um manipula
a quantidade de informação no tabuleiro — seja aumentando o caos para confundir o
oponente ou reduzindo a complexidade para controlar o resultado.
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Capítulo 2

Informação de uma variante

Nesse capítulo, será apresentado a base teória para a quantização da informação das
posições de xadrez, que foi publicada por Marc Barthelemy no artigo Chess variation

entropy and engine relevance for humans (Barthelemy, 2025).

2.1 Modelagem teórica

2.1.1 Definições iniciais
No contexto do xadrez, denomina-se variante qualquer sequência de movimentos

válidos em uma partida. Após uma variante, o tabuleiro encontrará uma posição 𝑇 à qual
se atribui um valor de avaliação 𝐸(𝑇 ), comumente medido em centipawns. Nessa métrica,
100 centipawns equivalem à vantagem de um peão para as peças brancas. Caso a vantagem
da posição atual pertença às peças pretas, o valor de 𝐸(𝑇 ) será negativo (ou seja, -100
centipawns representam a vantagem de um peão para as pretas).Considerando que, para
vencer a partida, o objetivo dos jogadores é maximizar ou minimizar o valor 𝐸(𝑃) da
próxima posição (dependendo da cor com a qual jogam), define-se 𝐸1 como a avaliação
ótima e 𝐸2 como a segunda melhor opção de jogada. A diferença de qualidade entre os
lances pode ser medida por Δ = 𝐸1 − 𝐸2.A partir desse Δ, obtém-se uma dimensão do nível
de dificuldade para o jogador tomar a melhor decisão em seu lance. Nos casos em que
o valor de |Δ| é pequeno (geralmente inferior a 100 centipawns), os jogadores tendem a
ter maior dificuldade em encontrar a jogada ótima. Define-se, então, o Δ0 de um jogador
como o limiar de Δ no qual ele consegue identificar a melhor jogada em detrimento da
segunda opção; isto é, se em uma posição temos Δ0 > |Δ|, o jogador é capaz de identificar
o melhor movimento.

2.1.2 Probabilidade da jogada ótima
Para modelar a probabilidade do jogador escolher a melhor jogada em seu lance, utiliza-

se a função logit, função essa que é frequentemente usada em contextos de aprendizado de
máquina e modelagem estatística para a conversão de valores numéricos arbitrários em
distribuições de probabilidade válidas. Utiliza-se o conceito da Teoria da Escolha Discreta
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(Train, 2009) de Utilidade Latente (𝑈𝑖) que representa o quão atrativo aquele lance é para o
jogador. A Utilidade Latente é definida como 𝑈𝑖 = 𝑉𝑖 + 𝜖𝑖, em que 𝑉𝑖 é a qualidade objetiva
do lance e 𝜖𝑖 representa fatores não observáveis como algum ruído cognitivo. Assumindo
que esses erros aleatórios seguem uma distribuição de probabilidade específica chamada
Distribuição de Gumbel e são independentes e identicamente distribuídos, chegamos na
formulação da função logit, em que a probabilidade de escolher o i-ésimo melhor lance
dada por 𝑝𝑖 é dada por:

𝑝𝑖 =
𝑒𝑉𝑖

∑𝑗 𝑒𝑉𝑗

Modelando o valor de 𝑉𝑖 para o contexto do xadrez, utilizou-se 𝑉𝑖 = 𝐸𝑖/Δ0, de maneira
que 𝐸𝑖 é interpretado como o valor da jogada e 1/Δ0 é o fator que faz a modelagem
considerar a percepação daquele jogador do quão aquela jogada é realmente boa.

A partir disso a probabilidade 𝑝1 do jogador escolher a melhor jogada em seu lance
é modelada como:

𝑝1 =
𝑒𝐸1/Δ0

∑𝑖=1 𝑒𝐸𝑖/Δ0

Considerando apenas os dois primeiros melhores movimentos na modelagem da pro-
babilidade, tem-se que:

𝑝1 =
1

1 + 𝑒−Δ/Δ0

Considerando uma sequência de 𝑛 meios-lances, temos que a probabilidade 𝑃(𝑛) do
jogador que jogou por último estar na posição ótima (considerando também as jogadas
do adversário) será:

𝑃(𝑛) =
𝑛

∏
𝑖=1

𝑝𝑖
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Figura 2.1: Ilustração da árvore de decisão para o cáculo de 𝑃(𝑛) (Barthelemy, 2025)

2.1.3 Definição da informação de uma variante

A medida de informação de um determinado evento 𝑄 é definido por 𝑆 = − log2(𝑝(𝑄))
onde 𝑝(𝑄) é a probabilidade de 𝑄 ocorrer (Shannon, 1948). Defini-se então como a
quantidade de informação de uma variante (denominada no artigo que propôs o método
como information entropy) sendo:

𝑆 = −
𝑛

∏
𝑖=1

log2(
1

1 + 𝑒−
|Δ(𝑖)|
Δ0 )

Em que Δ(𝑖) é a diferença entre as evaluações 𝐸 das duas melhores jogadas na jogada
𝑖-ésima jogada das 𝑛 que estão sendo consideradas, de tal forma que estamos sempre
considerando que o jogador consegue escolher a melhor jogada em cada um dos meios-
lances. Temos que 0 ≤ 𝑆 ≤ 𝑛 e quanto maior a informação, maior a dificuldade para o
jogador chegar na posição 𝑇 ótima.

Com essa modelagem, estamos simulando a quantidade de informação que um ser
humano deve levar em conta para fazer seu lance de maneira ótima, dado uma certa
posição no tabuleiro, sendo uma sequência de decisões binárias que possuem um nível
de dificuldade baseado em sua habilidade, mas que também envolve o fator de assimilar
diferentes variações em sua mente de forma acumulativa.
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2.2 Considerações da Literatura e Resultados
No trabalho feito por Barthelemy, foi realizado uma implementação do método ex-

plicado acima que foi utilizado para a análise da informação das posições de 100 jogos
do World Rapid Chess Tournament 2023, campeonato mundial de xadrez que ocorreu
na cidade de Samarkan. Nessa capítulo, será apresentado as pricipais considerações e
valores de parâmetros utilizados pelo o autor que propôs o método na implementação
e os resultados obtidos.

2.2.1 Parâmetros na implementação
Para a escolha do parâmetro 𝑛 no cálculo de 𝑃(𝑛), visando utilizar um valor realista

quanto à quantidade de informação que um ser humano consegue processar, Barthelemy
utiliza como referência o trabalho de Miller Miller, 1956, que estabelece a zona de conforto
da tomada de decisão humana em níveis de informação entre 2 e 3 bits (4 a 8 escolhas
equiprováveis). A partir disso, o estudo projeta um cenário de análise de 8 meios-lances
(plies) com uma informação estimada de 4 bits, correspondendo a 24 = 16 desfechos
equiprováveis. Essa relação implica que, dentro dessa árvore de decisão de 8 níveis, aproxi-
madamente metade dos lances são "forçados"— ou seja, lances trivialmente ótimos cuja
carga cognitiva para execução pode ser desconsiderada. Dessa maneira, considera-se que
a complexidade combinatória efetiva é reduzida, limitando a análise a uma quantidade
de informação que, embora desafiadora, ainda reside no limite superior da capacidade
cognitiva humana.Para a escolha do parâmetro Δ0, estima-se, a partir do artigo Chacoma
e Billoni, 2024, uma ordem de magnitude de Δ0 ∼ 101 para especialistas e Δ0 ∼ 102 para
iniciantes. Foram utilizados na implementação Δ0 = 100 para iniciantes, Δ0 = 50 para
jogadores intermediários e Δ0 = 10 para especialistas.

2.2.2 Resultados da Literatura
Os resultados obtidos a partir da análise de partidas do World Rapid Chess Tournament

2023 demonstram que a evolução da informação ao longo do jogo varia significativamente
conforme o nível de habilidade do enxadrista. Para jogadores iniciantes, a informação
permanece consistentemente alta (6 < 𝑆 < 7) durante todas as fases da partida, indicando
um alto nível de incerteza perpétua. Em contraste, os especialistas demonstram capacidade
de reduzir drasticamente a complexidade das posições durante o meio-jogo (entre os plies
20 e 100), mantendo a informação frequentemente abaixo do limiar cognitivo de 4 bits.
Contudo, observou-se que a informação volta a subir para os especialistas nos finais de
partida, sugerindo que esta fase exige uma precisão crítica, onde o desvio do caminho
ótimo pode alterar o resultado decisivamente. Um achado fundamental do estudo é a
relação não linear entre a avaliação numérica da engine (𝐸) e a informação (𝑆). Para a
maioria dos jogadores não especialistas, uma vantagem numérica clara (alto valor de
|𝐸|) não se traduz necessariamente em uma decisão fácil; a probabilidade de encontrar
posições com alta informação (𝑆 > 4) permanece elevada mesmo em cenários vantajosos.
Já para os especialistas, a distribuição de dificuldade é distinta: o pico de informação ocorre
predominantemente em posições equilibradas (|𝐸| < 100), onde o número de opções viáveis
é maior, exigindo maior esforço de cálculo. O estudo conclui que a avaliação bruta das
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engines possui utilidade prática limitada para humanos se não for acompanhada de uma
medida de complexidade, visto que posições com informação superior a 4 bits excedem
a capacidade típica da memória de trabalho humana.

2.3 Detalhes de implementação do cálculo da
informação das posições

Para a execução das análises propostas neste trabalho, foi necessária a implementação
da função de cálculo da informação, empregada na geração dos dados que fundamen-
tam a análise. No cálculo da probabilidade 𝑝𝑖, adotou-se Δ0 = 10, visto que as partidas
consideradas são de jogadores profissionais. Para o cálculo de 𝑃(𝑛), utilizou-se 𝑛 = 8,
seguindo o valor adotado pelo autor do artigo principal em suas implementações. Para
determinar os valores de 𝐸 necessários ao cálculo da informação, foi utilizada a biblioteca
de Python chess (Fiekas, 2025), que permite simular partidas de xadrez e integrar o
Stockfish Engine — um dos motores de xadrez de código aberto mais populares do mundo —
a fim de determinar as melhores jogadas em cada situação e seus respectivos valores. Para
as chamadas da engine, definiram-se os parâmetros depth = 20 (profundidade máxima
de busca do motor) e multipv = 2 (que instrui o motor a retornar as duas melhores
variações para a posição específica).

Programa 2.1 Implementação da função de cálculo de informação feita em Python

1 def compute_information_for_position(board, engine, n_plies=8, delta0=10,
depth=20):

2 # Criar uma copia interna para nao modificar o board original
3 temp_board = board.copy()
4 information = 0.0
5 for i in range(n_plies):
6 # verifica se o jogo acabou
7 if temp_board.is_game_over():
8 break
9

10 info = engine.analyse(temp_board, chess.engine.Limit(depth=depth),
multipv=2)

11
12 # Condicional para caso de apenas um movimento legal disponivel
13 if len(info) < 2:
14 break
15
16 # Extraindo as duas melhores posibilidades geradas pela engine
17 E1 = info[0]["score"].relative.score(mate_score=10000)
18 E2 = info[1]["score"].relative.score(mate_score=10000)
19
20 delta = abs(E1 - E2)
21 pi = 1 / (1 + math.exp(-delta / delta0))
22 information += -math.log2(pi)
23
24 temp_board.push(info[0]["pv"][0])
25
26 return information
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Capítulo 3

Dados e Metodologia de Análise

3.1 Sobre os dados
Os lances de Kasparov foram extraídos das 197 partidas jogadas por esse jogador

que estão no dataset World Chess Championship Matches - 1866 to 2021 (Qureshi, 2025),
que reúne as partidas jogadas em campeonatos considerados mundiais de xadrez de
1866 a 2021. Em relação aos dados de Magnus, foram extraídas partidas de campeonatos
considerados campeonatos mundiais do dataset Magnus Carlsen Complete Chess Games

2001-2022 (Qureshi, 2022). Os datasets contam com dados relacionados ao contexto da
partida, como o ano em que foi realizada, o campeonato em que foi jogada, os jogadores
envolvidos e a sequência de lances executados.

3.2 Criação de tabelas
A partir dos dados brutos extraídos, foram construídas tabelas em que cada linha

representa uma posição do tabuleiro na qual o jogador avaliado deve realizar um lance.
Vale ressaltar que os lances dos adversários ao jogadores em destaque nesse trabalho
foram desconsiderados, principalmente devido à natureza da modelagem adotada, na qual
considera-se o xadrez um jogo onde a decisão ótima de um único jogador já é suficiente
para sua vitória. Foi calculada a quantidade de informação de cada posição e salva, em cada
linha, a diferença de entropia causada pelo lance efetuado pelo jogador naquele momento.

3.2.1 Divisão dos lances por fase do jogo
Uma partida de xadrez é comumente dividida em três partes: Abertura, Meio-jogo

e Final. Na Abertura, os jogadores concentram-se em desenvolver as peças menores
(peões, cavalos e bispos), controlar o centro do tabuleiro e proteger o rei através do roque,
estabelecendo as bases para o plano de jogo. O Meio-jogo inicia-se após a conclusão
da abertura, caracterizando-se por intensa atividade e combate; é o momento em que
os jogadores executam planos estratégicos e táticos para obter vantagens materiais ou
posicionais. No Final, quando restam poucas peças no tabuleiro e o rei assume um papel
ativo, o foco desloca-se para a promoção de peões e manobras para forçar o xeque-mate.
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Jogador Contagem Média Desvio Padrão Quantil 25% Quantil 50% Quantil 75%

Magnus 175 99.3438 46.9499 68.0000 85.5000 111.5000
Kasparov 197 75.9645 32.1626 51.0000 74.000 86.0000

Tabela 3.1: Estatísticas gerais do número de lances das partidas

Como cada fase do xadrez possui características e metas próprias, foi feita a separação
dos lances com base no momento em que foram realizados, com o propósito de analisar
cada etapa do jogo de forma que as métricas e comparações possam ser calculadas es-
pecificamente. É importante notar que não existe na literatura enxadrística uma regra
formal sobre a duração de cada fase. Para fins práticos neste trabalho, definimos que
a Abertura compreende os 15 primeiros lances, o Meio-jogo estende-se do 16º ao 50º
lance, e os lances restantes são classificados como Finais. Com isso, a partir da tabela de
lances de cada jogador, foram geradas outras três tabelas relacionadas a cada etapa do
jogo, analisadas de forma independente. Considerando a mediana do número de lances
das partidas, essa divisão concentra aproximadamente metade dos lances no Meio-jogo
e de 20% a 35% na fase Final.

3.2.2 Divisão de lances por situação

A fim de refinar a análise e mitigar o ruído gerado por lances forçados ou triviais,
foram geradas outras duas tabelas para as fases de Meio-jogo e Final, que possuem um
maior leque de desfechos comparadas à Abertura. Nestas, filtraram-se as posições em que
|𝐸| ≤ 100 centipawns e posições em que 𝑆 ≥ 4.

A restrição para o intervalo de avaliação |𝐸| ≤ 100 justifica-se pelo fato de que, embora
cerca de dois terços das posições em partidas de alto nível recaiam nesta faixa, é exatamente
neste cenário de equilíbrio que os jogadores especialistas enfrentam os maiores desafios
de decisão. Conforme demonstrado no artigo Barthelemy, 2025, a curva de informação
para especialistas apresenta um pico distinto próximo a 𝐸 = 0, sugerindo que posições
equilibradas oferecem um número maior de opções viáveis, dificultando a seleção do melhor
lance puramente por cálculo tático. Ao focar neste intervalo, o estudo isola situações onde
a vantagem não é clara, forçando o jogador a recorrer ao seu estilo pessoal e intuição
estratégica.

O filtro de informação 𝑆 ≥ 4 foi aplicado para identificar posições de alta incerteza.
Por mais que jogadores experientes tendam a manter a informação baixa para controlar
o jogo, posições em que 𝑆 ≥ 4 representam momentos em que a jogada ótima não está
evidente. A hipótese central é que o estilo dos jogadores torna-se mais nítido nestes pontos
de divergência crítica, nos quais a engine não aponta um caminho único e a escolha do
lance reflete a preferência do jogador por simplificação (redução de 𝑆) ou complicação
(aumento de 𝑆).
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3.3 Interpretação da variação de informação
Como o objetivo deste trabalho é identificar diferenças entre os estilos de jogo de

Magnus e Kasparov, o foco das análises foi avaliar a disparidade entre as variações de
informação causadas pelos lances de cada jogador nas três fases do jogo.

Quanto maior a variação de informação gerada por um lance, maior será a complexidade
para a tomada de decisão do adversário e maior será o número de rumos possíveis para o
jogo. A diferença de vantagem entre as decisões que o oponente pode tomar após o aumento
de informação é menor, levando o jogo para posições em que o cálculo de movimentos
futuros torna-se extremamente relevante. Uma concentração de jogadas de aumento de
informação indica que o jogador possui um estilo focado em explorar a criatividade, o
que eleva a carga cognitiva do adversário e o desafia a encontrar a sequência correta em
um cenário de explosão combinatória.

No caso de variações negativas de informação, o jogador busca posições em que a
jogada ótima para o adversário é mais visível. Na prática, isso força o oponente a realizar
tal jogada para evitar uma desvantagem acentuada, mesmo que a jogada ótima ainda
resulte em perdas. Uma concentração de jogadas de redução de informação indica um
estilo que diminui a complexidade combinatória real do tabuleiro no jogo, favorecendo
a precisão técnica sobre a ambiguidade tática.

3.4 Métodos Estatísticos de Avaliação
As análises foram realizadas considerando os lances de Magnus e Kasparov como duas

amostras distintas. O objetivo principal foi identificar divergências entre essas amostras
e validar se é possível afirmar, com base na distribuição da variável analisada, que elas
provêm de distribuições de fato diferentes.

Para uma análise qualitativa, os principais instrumentos utilizados foram os histogra-
mas de distribuição de probabilidade e as Funções de Distribuição Acumulada, detalhados a
seguir. Para verificar de forma quantitativa se as diferenças possuem significância estatística
real, utilizou-se o teste Kolmogorov–Smirnov (teste K-S).

3.4.1 Histograma da Distribuição de Probabilidade
O histograma é uma representação gráfica da distribuição de frequências de um con-

junto de dados quantitativos contínuos, servindo como um estimador não paramétrico da
Função de Densidade de Probabilidade (PDF). Diferente de um gráfico de barras comum,
no histograma de densidade, a área de cada retângulo é proporcional à frequência da
classe, e a área total é normalizada para 1. Isso permite a interpretação probabilística e a
comparação entre duas amostras, mesmo que possuam tamanhos diferentes.

Para cada barra do histograma, também foi calculado uma barra de erro que foi gerada
por meio do método boostrap (Efron, 1979). em realizar a reamostragem dos dados originais
com reposição múltiplas vezes, gerando diversos subconjuntos de dados. A partir desses
novos conjuntos, calculou-se o desvio padrão de cada amostra e usou-se essa medida como
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barra de erro, de tal forma que se as barras de erro das distribuições se intersectam não
se pode afirmar que existe uma diferença estatisticamente significativa entre os valores
comparados, indicando que a variação observada pode ser apenas fruto da incerteza amos-
tral. Por outro lado, a ausência de sobreposição entre as barras sugere que as distribuições
são suficientemente distintas para o nível de confiança estabelecido. O desvio padrão foi
calculado via 1000 repetições do boostrap.

3.4.2 Função de Distribuição Acumulada
A Função de Distribuição Acumulada (FDA), ou Cumulative Distribution Function

(CDF), descreve o comportamento de uma variável aleatória. Ao contrário da PDF, que
mostra a concentração de dados em intervalos específicos, a FDA apresenta a probabilidade
acumulada:

𝐹𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥)

Na prática, utiliza-se a Função de Distribuição Acumulada Empírica (ECDF). Para uma
amostra de tamanho 𝑛, a fórmula é:

𝐹𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖=1

𝟏𝑥𝑖≤𝑥

Em que 𝟏𝑥𝑖≤𝑥 é uma função indicadora que vale 1 se o valor 𝑥𝑖 for menor ou igual
a 𝑥 , e 0 caso contrário.

3.4.3 Teste Kolmogorov–Smirnov
O teste Kolmogorov–Smirnov (K-S) é um método não paramétrico utilizado para

determinar se duas distribuições de probabilidade diferem entre si. Diferentemente de testes
paramétricos (como o teste-t), o K-S não assume normalidade (distribuição Gaussiana),
sendo ideal para dados empíricos complexos.

O objetivo é verificar a hipótese nula (𝐻0) de que duas amostras independentes foram
extraídas da mesma distribuição contínua. A hipótese alternativa (𝐻1) é que as amostras
provêm de distribuições distintas. A estatística do teste, 𝐷, é a distância vertical máxima
entre as duas curvas de distribuição acumulada:

𝐷 = sup
𝑥

|𝐹1,𝑛(𝑥) − 𝐹2,𝑚(𝑥)|

A partir de 𝐷, calcula-se a estatística normalizada:

𝐷𝑛1,𝑛2 =
√ 𝑛1𝑛2

𝑛1 + 𝑛2
𝐷

À medida que 𝑛1 e 𝑛2 crescem, sob 𝐻0, a probabilidade de 𝐷𝑛1,𝑛2 ser menor que um parâ-



3.5 | FERRAMENTAS E AMBIENTE DE DESENVOLVIMENTO

13

metro 𝑠 converge assintoticamente para a distribuição de Smirnov (Deshpande et al., 2018):

𝑃 [𝐷𝑛1,𝑛2 ≤ 𝑠] → 1 − 2
∞

∑
𝑟=1

(−1)𝑟+1𝑒−2𝑟
2𝑠2

Na prática, utiliza-se o 𝑝-valor, que indica a probabilidade de encontrar uma diferença
maior do que a observada caso 𝐻0 fosse verdadeira: 𝑝 = 1 − 𝑃 [𝐷𝑛1,𝑛2 ≤ 𝑠]. Define-se um
nível de significância 𝛼 = 0, 05; se 𝑝 ≤ 𝛼, rejeita-se a hipótese nula.

3.5 Ferramentas e Ambiente de Desenvolvimento
As análises estatísticas e o processamento de dados foram realizados em linguagem

Python 3.12.3 (Python Software Foundation, 2026), utilizando o ambiente Jupyter
Notebook. Para a manipulação dos dados brutos, utilizou-se a biblioteca Pandas (The
pandas development team, 2026). Os testes de hipótese foram executados via biblioteca
SciPy, enquanto a visualização dos resultados foi feita com a biblioteca Matplotlib (The
Matplotlib development team, 2026).
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Capítulo 4

Análises e Resultados

4.1 Análise Geral da Informação das Posições

Jogador Contagem Média IC 95 % Quantil 25% Quantil 50% Quantil 75%

Magnus 8447 3.9100 [3.8677, 3.9523] 2.4118 3.7961 5.3388
Kasparov 7395 3.5237 [3.4849, 3.5624 ] 2.3412 3.4823 4.5568

Tabela 4.1: Estatísticas gerais da informação

Figura 4.1: Distribuição de Probabilidade da Informação

Em conformidade com o artigo Chacoma e Billoni, 2024, tem-se que a maioria das
posições dos meios-lances possui informação média com valores próximos ao intervalo
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entre 3 e 4 bits. É notável que Magnus possui maior densidade de posições no tabuleiro
com informação superior a 4. Uma explicação possível para essa diferença é o avanço no
estudo do xadrez com o surgimento das engines, permitindo que jogadores contemporâneos
naveguem por posições de maior complexidade combinatória que, anteriormente, poderiam
ser descartadas devido à dificuldade do cálculo humano, mas que agora se mostram viáveis
após análises dos desfechos dessas posições, o que também é um fator que possa ter
moldado o estilo de jogo de Magnus.

Figura 4.2: Gráfico de Linhas da Média de Informação por Posição - Jogador de Pretas

Figura 4.3: Gráfico de Linhas da Média de Informação por Posição - Jogador de Brancas

Analisando as figuras 4.2 e 4.3, o comportamento da informação dos jogadores mostra-
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se parecido com o apresentado no artigo Chacoma e Billoni, 2024, em que a informação
vai decaindo ao longo da abertura e do meio-jogo, mas volta a subir na fase final.

É possível observar que o comportamento da informação se altera consideravelmente
nas finais que se estendem por mais de 100 meios-lances (que representam uma minoria
nos dados, conforme visto em 3.1). Nessas situações, os valores de informação média sobem
significativamente, principalmente nas posições de Magnus, e apresentam uma oscilação
abrupta com amplitudes maiores que 1 bit de informação. Isso evidencia a criação de
posições de alta informação e sua resolução em poucos meios-lances, o que é demonstrado
pela redução brusca do valor dessa variável.

4.2 Abertura

4.2.1 Variação da Informação dos Meios-lances

Jogador Contagem Média IC (95%) Quantil 25% Quantil 50% Quantil 75%
Magnus 1225 -0.1426 [-0.2070, -0.0782] -0.7553 -0.0144 0.6010
Kasparov 1478 0.0699 [-0.0001, 0.1398] -0.7304 0.0251 1.0232

Tabela 4.2: Estatísticas da Variação de Informação na Abertura

Figura 4.4: Distribuição de Probabilidade da Variação de Informação na Abertura

Analisando o histograma, é possível notar que Magnus possui uma grande concentração
de lances com baixa variação de informação em comparação a Kasparov, apresentando
intervalos com densidade de probabilidade consideravelmente maior no intervalo (-0.73,
1.20]. Em contrapartida, Kasparov possui maior denseidade de lances com alta variação de
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informação, principalmente se comparado aos de Magnus no intervalo [0.95, 2.49). Essa
diferença evidencia que Kasparov busca fazer lances na fase de abertura que maximizam
a complexidade estratégica e a carga cognitiva imposta ao oponente. Enquanto Magnus
Carlsen tende a conduzir o jogo para caminhos de baixa informação, forçando lances
ao adversário.

Realizando o teste Kolmogorov-Smirnov (KS) para os dados, obteve-se o valor de
estatística KS igual a 0,193401 e um p-valor igual a 0. Logo, é possível afirmar que as
amostras são oriundas de distribuições diferentes, o que evidencia estilos de jogo distintos
entre os jogadores nessa fase. No gráfico das FDA’s (4.5), observa-se que a diferença entre
a probabilidade acumulada dos jogadores se acentua no intervalo [0, 1], atingindo seu
pico quando a variação de informação é igual a 0.999, mas volta a diminuir após esse
intervalo. Isso mostra a clara tendência de Magnus em realizar mais jogadas com essa
variação de informação do que Kasparov, indicando uma abertura mais posicional e com
menor complexidade combinatória imediata.

Figura 4.5: Funções de Distribuição Acumulada da Variação de Informação na Abertura
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4.3 Meio-jogo

4.3.1 Variação da Informação dos Meios-lances - |𝐸| ≤ 100

Jogador Contagem Média IC 95 % Quantil 25% Quantil 50% Quantil 75%

Magnus 2762 0.0251 [-0.0253, 0.0754] -0.7459 0.0754 0.8640
Kasparov 3000 0.0421 [-0.0042, 0.0884 ] -0.7483 0.0780 0.8420

Tabela 4.3: Estatísticas da Variação de Informação no Meio-jogo quando |𝐸| ≤ 100

Figura 4.6: Distribuição de Probabilidade da Variação de Informação no Meio-jogo - |𝐸| ≤ 100

Observa-se que as distribuições de probabilidade das amostras de ambos os jogadores
são bem parecidas e as barras de erros das distribuições se intersectam para todos os
intervalos em que a densidade de probabilidade é maior que 0.10, o que enfatiza a dificuldade
de afirmar se as amostras são oriundas de jogadores diferentes. Ao realizar o teste de
Kolmogorov–Smirnov, obteve-se um valor de estatística KS de 0,014352 e um p-valor de
0,922681. Assim, não é possível afirmar que as amostras provêm de distribuições distintas
nem detectar estilos de jogo diferentes por meio desta análise específica.
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Figura 4.7: Funções de Distribuição Acumulada da Variação de Informação no Meio-jogo - |𝐸| ≤
100

4.3.2 Variação da Informação dos Meios-lances - |𝑆| ≥ 4

Jogador Contagem Média IC 95% Quantil 25% Quantil 50% Quantil 75%

Magnus 1112 0.6883 [0.6155, 0.7611] -0.1260 0.6273 1.4113
Kasparov 996 -0.7221 [-0.7969, -0.6472] -1.4235 -0.5890 0.1251

Tabela 4.4: Estatísticas da Variação de Informação no Meio-jogo quando |𝑆| ≥ 4

Figura 4.8: Distribuição de Probabilidade da Variação de Informação no Meio-jogo - |𝑆| ≥ 4
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No Meio-jogo, as distribuições da variação de informação quando |𝑆| ≥ 4 são bem
distintas. Kasparov demonstra uma clara tendência a realizar jogadas de redução de infor-
mação nessa situação, com uma densidade significativamente maior no intervalo [-4,29;
0,28). Já Magnus apresenta maior densidade no intervalo [0.28, 5.61], buscando aumentar
a complexidade combinatória do tabuleiro. No teste Kolmogorov–Smirnov, o valor da
estatística KS foi 0.434111 com p-valor de 0, permitindo afirmar que as amostras provêm
de distribuições diferentes. A diferença entre as FDA’s (4.9) é evidente. Embora o ponto
máximo de divergência seja quando a variação de entropia é igual a -0.001, as curvas se di-
ferenciam constantemente em todo intervalo analisado, sem nenhum ponto de intersecção.
Esse comportamento mostra de forma quantitativa que Magnus maximiza a incerteza do
tabuleiro ao manter uma alta densidade de opções viáveis, utilizando a complexidade como
ferramenta para sobrecarregar a memória de trabalho e os limites cognitivos do oponente
, e Kasparov atua como um redutor de ruído informacional, empregando sua precisão
para simplificar a árvore de decisão e converter situações complexas em trajetórias mais
determinísticas e de menor carga cognitiva.

Figura 4.9: Funções de Distribuição Acumulada da Variação de Informação no Meio-jogo - |𝑆| ≥ 4
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4.4 Final

4.4.1 Variação da Informação dos Meios-lances - |𝐸| ≤ 100

Jogador Contagem Média IC 95% Quantil 25% Quantil 50% Quantil 75%

Magnus 2648 0.0245 [-0.0324, 0.0814] -0.6310 0.0065 0.7539
Kasparov 1862 0.0483 [-0.0152, 0.1118] -0.6700 0.0854 0.8630

Tabela 4.5: Estatísticas da Variação de Informação na fase Final quando |𝐸| ≤ 100

Figura 4.10: Distribuição de Probabilidade da Variação de Informação no Final - |𝐸| ≤ 100

As distribuições de probabilidade da variação de informação assemelham-se visual-
mente; a principal diferença é a maior concentração de meios-lances de Magnus no intervalo
[-0.46, 0,07), ao passo que Kasparov apresenta uma ligeira predominância em intervalos
mais distantes de zero. O teste Kolmogorov–Smirnov resultou em uma estatística KS de
0.042084 e um p-valor de 0.04126, sendo possível afirmar que as amostras são oriundas de
distribuições diferentes, porém ao analisarmos 4.11, é possível ver que as FDA’s (4.11) são
bem parecidas, o que dificulta em falarmos que essa diferença está relacionada ao estilo
dos jogadores, o que é corroborado também pelas intersecções entre as barras de erros
dos jogadores na maioria dos intervalos (4.10).
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Figura 4.11: Funções de Distribuição Acumulada da Variação de Informação no Final - |𝐸| ≤ 100

4.4.2 Variação da Informação dos Meios-lances - |𝑆| ≥ 4

Jogador Contagem Média IC 95% Quantil 25% Quantil 50% Quantil 75%

Magnus 2142 0.3785 [0.3187, 0.4382] -0.7780 0.0000 0.5074
Kasparov 1116 -0.3144 [-0.3932, -0.2355] -0.9981 -0.9981 0.5391

Tabela 4.6: Estatísticas da Variação de Informação na fase Final quando |𝑆| ≥ 4

Figura 4.12: Distribuição de Probabilidade da Variação de Informação no Final - |𝑆| ≥ 4
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Embora ambos os jogadores tenham a maior densidade de jogadas no intervalo [-0.40,
0.53), Magnus tem maior tendência a aumentar informação do tabuleiro, se sobrepondo
na densidade de jogadas no intervalo [1, 5.20) sem que as barras de erros se encontrem.
Kasparov se sobrepõe de forma significativa no intervalo [-4.60, -0.40), focando em reduzir
a informação do tabuleiro. No teste Kolmogorov–Smirnov, obteve-se KS igual a 0.176990 e
p-valor de 0, confirmando que as amostras provêm de distribuições distintas. A diferença
entre as FDA’s para os valores negativos corrobora a ideia de que, no final, Magnus tende
a preservar a tensão e a complexidade combinatória (alta informação), enquanto Kasparov
opta por caminhos mais concretos e de cálculo direto, buscando reduzir drasticamente a
variação de informação por meio de lances forçados ou simplificações táticas agudas.

Figura 4.13: Funções de Distribuição Acumulada da Variação de Informação no Final - |𝑆| ≥ 4
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Capítulo 5

Conclusão

Demonstrou-se que a métrica de variação de informação é uma ferramenta eficaz para
quantificar a complexidade cognitiva e diferenciar estilos de jogo no xadrez de alto nível.
Em uma análise geral inicial, observou-se que as partidas de Magnus Carlsen possuem
uma entropia média consistentemente superior às de Garry Kasparov.

Seguindo a análise por fases, a etapa de Abertura revelou uma distinção clara entre os
jogadores, validada pelo teste Kolmogorov-Smirnov. Enquanto Magnus Carlsen demonstra
uma tendência a buscar posições de caráter posicional e controlado, com baixa variação
de informação, Kasparov buscava ativamente elevar a complexidade do tabuleiro já nos
primeiros lances, aumentando a carga cognitiva do adversário.

Em situações de equilíbrio material (|𝐸| ≤ 100 centipawns), não é possível afirmar
que as amostras provenham de distribuições distintas no Meio-jogo e, na fase Final, por
mais que o teste de Kolmogorov-Smirnov tenha gerado um p-valor menor que 0.05, as
distribuições de probabilidade e FDA’s dois jogadores possuem semelhança considerável, o
que coloca em dúvidas o quão a diferença esta relacionada ao estilo de jogo dos jogadores.
Entretanto, ao filtrar apenas as posições de alta incerteza (|𝑆| ≥ 4), o estilo de jogo torna-se
novamente detectável e estatisticamente significativo.

Nesses momentos críticos, observou-se que Magnus Carlsen tende a preservar ou
aumentar a complexidade combinatória, mantendo a tensão no tabuleiro. Em contrapartida,
Garry Kasparov demonstrava preferência por meios-lances que reduziam drasticamente a
variação de informação, optando por simplificações táticas agudas ou caminhos de cálculo
mais diretos e forçados para resolver as posições. Assim, o trabalho conclui que a variação
da informação permite traduzir em métricas matemáticas o que a literatura enxadrística
descreve intuitivamente como a diferença entre um estilo dinâmico e agressivo versus
um estilo posicional de alta precisão.
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