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Resumo

Idian Camargo Capozzoli. Intersecio de caminhos mais longos em grafos. Mono-
grafia (Bacharelado). Instituto de Matemaética e Estatistica, Universidade de Sao Paulo,
Sao Paulo, 2024.

Esta monografia investiga problemas sobre intersecio de caminhos mais longos em grafos. Os estudos
sobre este tema tiveram origem numa pergunta feita por Tibor Gallai em um coléquio na Hungria, em
1966. Gallai perguntou se todos os caminhos mais longos em um grafo conexo possuem um vértice comum.
A resposta negativa a esta pergunta foi dada em 1969, mas desde entdo muita pesquisa tem sido feita a
respeito deste problema e outros correlatos. O objetivo principal deste trabalho é apresentar uma resenha
sobre este topico, abordando tanto o caso de todos os caminhos mais longos quanto o caso de um nimero
fixo k de caminhos. Para isso, investigamos a questdo em grafos arbitrarios e em classes especiais de grafos,
destacando algumas para as quais ja foi provada a existéncia ou ndo de um vértice na intersecdo de tais
caminhos. Apresentamos varios resultados conhecidos e as provas de alguns deles. Além disso, abordamos
alguns aspectos algoritmicos relativos aos caminhos mais longos de um grafo: como encontrar um ou como

encontrar um vértice comum a todos eles.

Palavras-chave: Teoria dos grafos. Caminhos mais longos. Intersecdo de caminhos.



Abstract

Idian Camargo Capozzoli. Intersection of longest paths in graphs. Capstone Project
Report (Bachelor). Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo
Paulo, 2024.

This monograph investigates problems on intersection of longest paths in graphs. The studies on this
topic traces back to a question raised by Tibor Gallai at a colloquium in Hungary, in 1966. He asked whether
it is true that all longest paths in a connected graph have a common vertex. The negative answer to this
question was found in 1969, but since then much research has been carried out on this problem and related
ones. The main objective of this work is to present a review on this topic, addressing both the case of all
longest paths and the case of a fixed number k of paths. For this, we investigate the topic in arbitrary graphs
and in special classes of graphs, highlighting those in which the existence or non-existence of a vertex in
the intersection of such paths has already been proven. We present a number of known results and the
proofs of some of them. Additionally, we discuss some algorithmic aspects related to longest paths in a

graph: how to find one or how to find a vertex common to all of them.

Keywords: Graph theory. Longest paths. Intersection of paths.
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Capitulo 1

Introducao

Esta monografia se insere na area de teoria dos grafos, e tem como foco problemas
sobre caminhos mais longos em grafos. Um fato bem conhecido a respeito de caminhos
mais longos num grafo conexo é o de que quaisquer dois deles tém um vértice em comum.
Em 1966, num coléquio na Hungria, GALLAT (1968) questionou se esse fato continua
verdadeiro quando se considera todos os caminhos mais longos em um grafo conexo. Logo
depois, WALTHER (1969) mostrou que a resposta a essa questio é negativa. Desde entao,
diversas classes de grafos tém sido estudadas a esse respeito e para algumas delas sabe-se
que a resposta é positiva. Num grafo, um vértice comum a todos os seus caminhos mais
longos é chamado vértice de Gallai, e um grafo que possui vértice de Gallai é chamado grafo
de Gallai. Dentre os grafos de Gallai, destacam-se arvores, cactos, grafos split ( KLAVZAR e
PETKOVSEK (1990)), grafos arco-circulares ( BALISTER et al. (2004) e Joos (2015)), grafos
exoplanares e 2-arvores ( REZENDE et al. (2013)), grafos série-paralelos ( G. CHEN et al.
(2017)), grafos dualmente cordais ( Joson et al. (2016)), grafos 2K2-livres ( GOLAN e SHAN
(2018)), além de outros ( CErIOLI e L1MmA (2020)). Contudo, ndo se conhece um resultado
geral que captura muitos tipos de grafos.

Naturalmente, surgem outros problemas relacionados a pergunta de Gallai. Como por
exemplo, o problema sobre a interse¢do de quaisquer k caminhos mais longos, onde k é
um inteiro maior que 2. Embora a prova para o caso k = 2 seja bem simples, o caso k = 3
ainda nao foi resolvido. Conjectura-se que a resposta para o caso k = 3 seja positiva. Os
primeiros resultados sobre este caso surgiram na literatura ha cerca de 15 anos, mas estes
sdo restritos a classes especiais de grafos e ainda nao sao muitos.

O objetivo desse trabalho é apresentar uma resenha sobre o problema da intersegao
de caminhos mais longos em grafos, abordando nao s6 o caso de todos os caminhos mais
longos, mas também o caso em que sdo considerados um numero fixo de tais caminhos.
Essas questdes serdo investigadas em grafos arbitrarios e em classes especiais de grafos, pois
sabemos que a resposta para a primeira questao no caso de grafos arbitrarios é negativa; e a
segunda questdo é um problema em aberto. Apresentaremos alguns resultados conhecidos
e reproduziremos as provas de alguns deles. Além disso, faremos uma breve abordagem
algoritmica sobre a questao de encontrar um caminho mais longo num grafo e o de
encontrar um vértice de Gallai.



INTRODUCAO

No Capitulo 2 apresentamos conceitos basicos da teoria dos grafos que sdo essenciais
para a compreensao desta monografia. Estabelecemos a notagéo que sera usada e definimos
diversas classes de grafos que serdo abordadas na monografia. No Capitulo 3 apresentamos
a pergunta de Gallai que motivou grande parte dos resultados da literatura e exibimos
grafos ou classes de grafos que ndo possuem vértice de Gallai. No Capitulo 4 nosso foco sdo
classes de grafos que possuem um vértice na interse¢do de um nimero fixo de caminhos.
Ja no Capitulo 5 apresentamos diversas classes de grafos que possuem vértice de Gallai,
mencionamos varios resultados conhecidos na literatura e reproduzimos as provas de
alguns deles. Por fim, no Capitulo 6 abordamos questdes algoritmicas sobre caminhos mais
longos, apresentamos alguns algoritmos conhecidos e mencionamos outros resultados.



Capitulo 2

Conceitos basicos da teoria dos grafos

Neste capitulo apresentamos alguns conceitos basicos sobre grafos e estabelecemos
a notacdo a ser usada. A terminologia que adotamos segue de perto a do livro Graph
Theory de BoNDY e MURTY (2008).

Um grafo G é um par ordenado (V, E) onde V e E sdo conjuntos disjuntos. Os elementos
de V sdo chamados vértices, e os elementos de E, chamados arestas, correspondem a um
par ndo-ordenado de elementos distintos de V.

Quando o nome de um grafo esta claro pelo contexto, e este nome é G, por exemplo,
entdo denotamos por V(G) o seu conjunto de vértices, e denotamos por E(G) o seu conjunto
de arestas.

Grafos finitos sao aqueles que possuem um numero finito de vértices e arestas. Neste
trabalho abordaremos somente esse tipo de grafo. A ordem de um grafo G é definida como
a cardinalidade de V(G). Chamamos de tamanho de G a soma |[V(G)| + |E(G)|. Um grafo
sem nenhum vértice (e sem nenhuma aresta) é chamado grafo nulo. Um grafo com apenas
um vértice é chamado trivial.

Por simplicidade, denotamos um par ndo-ordenado de vértices {u, v} por uv. Se e = wv
¢ uma aresta de um grafo, dizemos que e incide em u e em v; que e vai de u para v ou que
e liga os vértices u e v. Além disso, dizemos que u e v sdo extremos de e; que u e v sdo
adjacentes (ou vizinhos) e que u é adjacente a v. O conjunto de vizinhos de um vértice v no
grafo G é denotado por N;(v), ou simplesmente N(v), se ndo houver ambiguidade.

O grau de um vértice v em um grafo G, denotado por ds(v), é o nimero de arestas
de G que incidem em v. Um vértice é dito isolado se tem grau zero. Um vértice é dito
dominante se é vizinho de todos os vértices do grafo. Pares de vértices nao adjacentes
sdo ditos independentes. Um conjunto de vértices dois a dois independentes é chamado
de conjunto independente ou estavel.

Um vértice universal é um vértice de um grafo G que ¢é adjacente a todos os demais
vértices de G.

Um grafo H é um subgrafo de um grafo G se V(H) C V(G) e E(H) C E(G). Neste
caso, dizemos que G ¢é supergrafo de H, que H esta contido em G ou que G contém H, e
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escrevemos H C G. Se H C G, mas H # G, entdo dizemos que H é um subgrafo proprio de
G e escrevemos H C G. Note que qualquer grafo é subgrafo e supergrafo dele mesmo.

Se G é um grafo e @ # Y C V(G), entédo o subgrafo de G induzido ou gerado por Y,
denotado por G[Y], é um subgrafo H de G tal que V(H) = Y e E(H) é precisamente o
conjunto das arestas de G que tem ambos os extremos em Y. Se @ = F C E(G), entdo o
subgrafo de G induzido ou gerado por F, denotado por G[F] é um subgrafo H de G tal que
A(H) = F e V(H) é o conjunto dos vértices de G que sao extremos das arestas em F.

Se G é um grafo e B é um conjunto de vértices (ou arestas) de G, o subgrafo de G obtido
ao remover todos os vértices (ou arestas)de B é denotado por G — B. Por simplicidade,
escrevemos G — b em vez de G — {b}.

Um grafo completo ¢ um grafo em que quaisquer dois vértices distintos sdo adjacentes.
Denotamos por K, um grafo completo com n vértices. Subgrafos completos de um grafo
recebem o nome especial de cliques. Uma clique com k vértices é chamada k-clique.

Um passeio em um grafo G é uma sequéncia W := (v, vy, ..., v;), em que v;_10; € E(G)
paratodo 1 <i< I Sevy=xeuv =y, dizemos que W é um passeio de x para y, e que W
passa pelos vértices vy, vy, ..., vy . Os vértices x e y sdo chamados de extremos do passeio, x é
chamado origem e y é chamado término de W. Os vértices vy, v, ..., v_; sS40 chamados de
vértices internos de W. O comprimento de W, denotado por [W| é o niimero de arestas de W.

Um caminho é um passeio cujos vértices sao dois a dois distintos. Um circuito é um
passeio em que a origem e o término sdo os mesmos e todos os demais vértices sdo dois a
dois distintos. Um caminho hamiltoniano em um grafo G é um caminho que passa por todos
os vértices de G. Um circuito hamiltoniano é um circuito que passa por todos os vértices de
G. Dois circuitos sao independentes se ndo possuem nenhum vértice ou aresta em comum.

Denotamos por C, um circuito com n vértices e P, um caminho com n vértices.

Se P := (vy, vy, ..., ;) € um passeio, entdo definimos P! := (v, v_1,..., 1, V) COMO 0O
passeio inverso de P. Se P é um passeio com término num vértice v e Q é um passeio com
inicio em v, entdo P - Q denota a concatenacdo de P e Q, definida como a concatenagio das
sequéncias que definem P e Q nessa ordem. Por simplicidade, se u é um vértice adjacente
a v, denotamos P - (vu) por Pu, e (uv) - Q por uQ. Se C é um circuito, e u e v sdo vértices
distintos de C, denotamos por C,, o caminho que é uma subsequéncia da sequéncia que
define C, que vai do vértice u ao vértice v. Nas figuras, dada um representagio de C, o
caminho C,, é o que se obtém percorrendoC no sentido horario de u para v.

Se P é um passeio, quando conveniente também nos referimos a P como um grafo (ou
subgrafo) induzido pelas arestas de P, e denotamos por V(P) e E(P) o conjunto de seus
vértices e suas arestas, respectivamente.

A unido de dois grafos G e H é o grafo G U H com conjunto de vértices V(G) UV(H) e
conjunto de arestas E(G) U E(H). A interse¢cao G N H de G e H é definida analogamente.
Dois grafos se intersectam se tém intersecdo ndo vazia. Dois grafos sdo ditos disjuntos se
tém intersecdo vazia. Se G e H sao grafos disjuntos, nos referimos a unido deles como
unido disjunta.

Um grafo G é conexo se, para todo par de vértices distintos u e v, existe em G um
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caminho de u a v. Um grafo é k-conexo, com k > 1, se, para todo par de vértices distintos
u e v existem k caminhos internamente disjuntos de v a v em G.

Um grafo ou subgrafo G é dito maximal em relacido a uma propriedade & se G tem a
propriedade &7, mas nenhum supergrafo proprio de G tem a propriedade &2. Um grafo
ou subgrafo G é dito minimal em relacdo a uma propriedade & se G tem a propriedade
&, mas nenhum subgrafo proprio de G tem a propriedade &.

Os subgrafos conexos maximais de um grafo G sdo chamados componentes. O nimero
de componentes de G é denotado por ¢(G).

Um emparelhamento num grafo G é um subconjunto de arestas de G que sdo duas a
duas néo adjacentes. O niimero de emparelhamento de G é o nimero de arestas de um
emparelhamento maximo em G.

Uma aresta de corte de um grafo G é uma aresta e de G tal que ¢(G — e) > ¢(G). Um
vértice de corte de um grafo G é um vértice v tal que ¢(G — v) > ¢(G).

Se G é um grafo, um bloco de G é um subgrafo conexo maximal de G que nao possui
vértices de corte. Assim, um bloco de G, onde G é néo trivial, ¢ um subgrafo 2-conexo
maximal ou um K. Um bloco trivial é um K, ou um vértice isolado. Quando G é conexo
e ndo tem vértices de corte entdo também dizemos que G é um bloco.

Para um bloco néo trivial f de um grafo G, um caminho P em G com |P| > 1 que
intersecta f em um unico vértice é chamado de caminho pendente de f; tal vértice tnico
¢ denominado sua origem.

O numero ciclomatico de um grafo G é definido como |E(G)| — [V(G)| + 1 e também
é conhecido como nulidade de G.

Se G é um grafo, vamos denotar por &?(G) o conjunto de todos os caminhos mais
longos de G.

Classes especiais de grafos

Chamamos de classes de grafos um conjunto de grafos que satisfazem determinadas
propriedades. Definiremos a seguir algumas classes de grafos que serdo abordadas neste
trabalho.

Um grafo é uma drvore se é conexo e nao contém circuitos.

Um grafo G é bipartido se seu conjunto de vértices pode ser particionado em dois
conjuntos X eY,com X UY =V(G) e X NY = @ tal que cada aresta de G tem um extremo
em X e outro em Y. Essa particdo (X,Y) é chamada de biparticio do grafo. Denotamos
por K,,, um grafo bipartido completo em que um dos conjuntos da biparticao possui m
vértices e o outro n vértices.

Um grafo G é um cacto se é conexo e cada aresta pertence a no maximo um circuito
de G. Num cacto cada bloco é um circuito ou uma aresta.

Um grafo de blocos é um grafo conexo no qual todos os seus blocos sao cliques.
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Um grafo planar é um grafo que pode ser desenhado no plano sem que haja cruzamento
de suas arestas. Um tal desenho é chamado uma imersdo plana.

Um grafo é exoplanar se admite uma imersao plana na qual todos os seus vértices
pertencem a fronteira da face externa. Note que todo cacto é exoplanar.

Um grafo G é k-exoplanar se G é exoplanar quando k = 1 e para k > 1, G possui uma
imersdo no plano em que a remocao de todos os vértices pertencentes a fronteira da face
externa resulta em um grafo (k — 1)-exoplanar.

Um grafo G é hamiltoniano-conexo se para todo par de vértices distintos u e v em G
existe um caminho hamiltoniano de u a v em G.

Um grafo G é dividido (ou split) se existe uma parti¢ao de V(G) em dois conjuntos X e
Y tal que X induz uma clique e Y é um conjunto independente.

Seja k > 1 um inteiro. Um grafo G é uma k-drvore se G é um grafo completo com
k + 1 vértices ou se G contém mais de k + 1 vértices, entdo G contém um vértice cujo
conjunto de vizinhos em G induz uma k-clique e cuja remocao resulta em uma k-arvore.
Em outras palavras, G tem ordem n > k + 1, sendo que quando n = k + 1 entdo G ¢é
um grafo completo com k + 1 vértices, e quando n > k + 1 entdo G pode ser obtido
acrescentando-se um novo vértice a uma k-arvore de ordem n — 1 e conectando-o a uma
k-clique qualquer dessa k-arvore.

Um grafo de Gallai é um grafo que contém um vértice v que pertence a todos os seus
caminhos mais longos. Um tal vértice v é chamado de vértice de Gallai.

Muitas outras classes de grafos sdo mencionadas ao longo deste trabalho, mas nédo séo
definidas aqui. Como néo sdo abordadas em profundidade, mas sdo apenas mencionadas
para exemplificar classes de grafos que satisfazem ou néao certas propriedades relativas a
caminhos mais longos, optamos pela omissao. Porém, indicamos aqui a URL da ISGCI,
uma enciclopédia de classes de grafos que o leitor podera consultar para obter ndo apenas
as definicOes, mas varias outras informacdes sobre tais classes. Veja em

https://www.graphclasses.org/

Nessa URL consta que: “ISGCI (Information System on Graph Classes and their Inclu-
sions) is an encyclopaedia of graphclasses with an accompanying java application that
helps you to research what’s known about particular graph classes”.


https://www.graphclasses.org/

Capitulo 3

Grafos sem vértice de Gallai

Sabemos que um grafo pode ter mais de um caminho mais longo. O que podemos
afirmar sobre a interse¢io de tais caminhos? E bem conhecido o fato (facil de provar) de
que quaisquer dois caminhos mais longos em um grafo conexo tém um vértice comum.
Outro fato conhecido é que quaisquer dois circuitos mais longos em grafos 2-conexos tém
um vértice comum. Gallai perguntou em 1966, durante um coloquio na area de teoria dos
grafos, se a existéncia de um vértice comum continua verdadeira quando se considera todos
os caminhos mais longos em um grafo conexo (GALLAL 1968). Esta pergunta, apresentada
a seguir, motivou muitas pesquisas desde entdo.

Pergunta 1 (Pergunta de Gallai). E verdade que todos os caminhos mais longos de
um grafo conexo possuem um vértice comum?

Lembramos que um vértice que pertence a todos os caminhos mais longos de um grafo
é chamado de vértice de Gallai. E natural pensar na pergunta analoga, em relacéo a todos
os circuitos mais longos de um grafo 2-conexo. Contudo, nessa época ja era conhecido
um exemplo de grafo 2-conexo em que todos os circuitos mais longos ndo tém um vértice
comum. Referimo-nos aqui ao grafo de Petersen (veja a Figura 3.1), que viria a se tornar
muito mais conhecido pelo fato de ser um contraexemplo para diversas conjecturas.

Figura 3.1: Grafo de Petersen
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Sabe-se que o grafo de Petersen é hipo-hamiltoniano, ou seja, ndo é hamiltoniano,
mas o grafo obtido dele pela remocédo de qualquer um de seus vértices é hamiltoniano.
Até entdo nao se conhecia um exemplo similar para o caso de todos os caminhos mais
longos, mas um tal exemplo foi encontrado.

3.1 Primeiro exemplo

Pouco tempo depois da pergunta de Gallai, WALTHER (1969) provou que a resposta
a essa pergunta é negativa, exibindo um grafo planar conexo de ordem 25 sem vértice
de Gallai (veja a Figura 3.2).

Figura 3.2: Grafo de Walther com 25 vértices

Esse resultado deu origem a novos questionamentos. Esse é o grafo de menor ordem
com essa propriedade? E se forem impostas outras restricdes como planaridade e/ou
conectividade mais alta?

3.2 Exemplo de menor ordem

Alguns anos depois do primeiro exemplo, Voss e WALTHER (1974) e ZAMFIRESCU (1976),
independentemente, encontraram um exemplo com 12 vértices, que chamaremos de grafo
WZ (veja a Figura 3.3). Esse é o menor grafo conhecido que nio tem vértice de Gallai.

Figura 3.3: Grafo de Walther e Zamfirescu com 12 vértices
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O grafo WZ pode ser obtido a partir do grafo de Petersen procedendo da seguinte forma.
Tome um vértice v qualquer do grafo de Petersen e faca uma subdivisdo em cada uma das 3
arestas incidentes a v, inserindo os vértices vy, v,, v3. A seguir, remova o vértice v. Note que,
rearranjando os vértices do grafo obtido, obtemos o grafo WZ exibido na Figura 3.3.

Figura 3.4: Processo para encontrar o exemplo de Walther e Zamfirescu

Pela construgio feita, é facil notar que no grafo WF nao existe vértice de Gallai. Observe
que um caminho mais longo no grafo WF necessariamente nio passa por um dos vértices
de grau 1. Se existisse um caminho mais longo que passa por todos os demais vértices, entdo
esse caminho corresponderia a um circuito hamiltoniano no grafo de Petersen, o que é um
absurdo. Portanto, um caminho mais longo no grafo WF tem no maximo 10 vértices. Para
cada um dos 9 vértices de grau maior que 1, construa o caminho correspondente ao circuito
mais longo do grafo de Petersen que nao passa por esse vértice. Os caminhos resultantes
tém 10 vértices e portanto sdo caminhos mais longos. Assim, esses 9 caminhos ndo possuem
um vértice em comum. Os 9 caminhos mais longos cuja interse¢éo € vazia sao:

) v,—f-i—-g—e—h—-b—-—c—d—uy
2) vy—a—i—f—g—d—e—h—c—uy
3) vv-b—e-h—i—f—g—d—a—uvs;
4) vy-b—-e—-h—c—g—f—i—a—uvs;
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5) vs—a—-d—-g—c—h—i—f—-b—-uvy;
6) v—c—g—d—a—-i—h—e—b—uvy;
7Nvy—-b—f—-i—a—-d—e—h—c—uy;
8 vy—a—-i—f-b—e—-d—g—c—uvy
9 v,—c—h—e—-b—-—f—-—g—d—a—uvs.

Os 3 primeiros caminhos sdo simétricos e ndo passam por: a e vs; b e vy; ¢ e vy, nesta
ordem. Os 6 ultimos também sao simétricos e ndo passam por: d; e; f; g; h; i, nesta ordem.

3.3 Exemplos planares

O primeiro exemplo de Walther com 25 vértices é planar, contudo ele ndo é o menor
exemplo planar conhecido. Em 1975, Schmitz encontrou um grafo planar com 17 vértices,
o menor grafo planar conhecido sem vértice de Gallai.

Figura 3.5: Grafo planar de Schmitz com 17 vértices

ZAMFIRESCU (1975) conjecturou que esses grafos anteriores que exibimos sdo contrae-
xemplos de menor ordem possivel para a pergunta de Gallai no caso geral e no caso planar.

3.4 Grafos k-conexos

Outra pergunta natural que surge é em relagio a conectividade dos grafos. E possivel
encontrar contraexemplos quando exigimos conectividade mais alta?

Pergunta 2. Para quais valores de k existem grafos k-conexos sem vértice de Gallai?

3.4.1 Grafos 2-conexos

Em 1972, ZAMFIRESCU (1972) construiu o primeiro exemplo para grafos 2-conexos, que
é planar (com 82 vértices). Quatro anos depois, ZAMFIRESCU (1976) encontrou os exemplos
com menor quantidade de vértices conhecidos até hoje, para grafos 2-conexos (com 26
vértices) e para grafos 2-conexos planares (com 32 vértices).
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(a) Menor grafo 2-conexo conhecido que nao (b) Menor grafo 2-conexo planar conhecido que
possui vértice de Gallai. ndo possui vértice de Gallai.

Figura 3.6: Menores exemplos de grafos 2-conexos sem vértice de Gallai

3.4.2 Grafos 3-conexos

HorToN (1973) construiu um grafo 3-conexo com 40 vértices que ndo possui vértice
de Gallai. Pouco depois, ZAMFIRESCU (1976) encontrou um outro exemplo menor, com
36 vértices (veja a Figura 3.7).

s
V4

Figura 3.7: Menor grafo 3-conexo sem vértice de Gallai

Ja para grafos 3-conexos planares, GRUNBAUM (1974) obteve o primeiro exemplo com
484 vértices. O menor exemplo que é 3-conexo e planar foi obtido por HATzEL (1979)
e tem 224 vértices.

3.4.3 Grafos 4-conexos

Para k = 4, a Pergunta 2 continua em aberto. Nao se conhecem grafos 4-conexos sem
vértices de Gallai. Mas quando se exige planaridade, sabe-se que a resposta é negativa,

11
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pois o conhecido Teorema de Tutte (TUTTE (1956)) afirma que qualquer grafo planar
4-conexo ¢ hamiltoniano.



Capitulo 4

Grafos com vértice na intersecao de
um numero fixo de caminhos

O que sabemos sobre a intersecao de um numero fixo k de caminhos mais longos em um
grafo conexo? Estudos posteriores aos resultados do Capitulo 3 levaram a uma pergunta
analoga a de Gallai, mas quando se considera quaisquer k caminhos mais longos, onde
k > 2. Quando k = 2, como mencionamos anteriormente, a resposta é bem conhecida:
neste caso, a intersecdo é ndo vazia (veremos essa prova na se¢ao 4.1).

Pergunta 3. Ha inteiros positivos k > 2 para os quais ha exemplos de grafos com k
caminhos mais longos que ndo possuem um vértice em comum?

O grafo apresentado na Secédo 3.3 é um exemplo para k = 7. Mas uma resposta mais
abrangente foi obtida por SKUPIEN (1996). Para todo k > 7, Spukien obteve um grafo
conexo no qual existem k caminhos mais longos com intersecio vazia e quaisquer k — 1
caminhos mais longos possuem um vértice em comum. Com isso, a resposta a Pergunta 3
¢ positiva para k > 7, mas continua desconhecida para 3 < k < 6.

4.1 Dois caminhos mais longos

O resultado mais conhecido é sobre a intersecao de quaisquer 2 caminhos. O teorema
a seguir é bem conhecido e facil de provar.

Teorema 1. Quaisquer dois caminhos mais longos em um grafo conexo possuem pelo menos
um vértice comum.

Prova. Seja G um grafo conexo e sejam P e Q dois caminhos mais longos em G. Suponha
por contradicdo que a intersecdo de P e Q é vazia. Como G é conexo, existe um caminho de
algum vértice de P a algum vértice de Q. Seja R um tal caminho de comprimento minimo
e suponha que R tenha inicio em u € P e término em v € Q. Neste caso, u divide P em
dois caminhos P; e P,, e v divide Q em dois caminhos Q; e Q,. Dessa forma, P = P, - P, e

Q=010
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Se |Py| > |Py], seja P = Py; caso contrario, seja P = P;'. Se |Q1] > |Qsl, seja O = Q7%
caso contrario, seja Q = Q,.

Neste caso, o caminho M = P - R - Q, é tal que [M| > |P|, o que é uma contradicio a
escolha de P e Q como caminhos mais longos. [

Também é um fato bem conhecido que em grafos 2-conexos, quaisquer dois circuitos
mais longos tém um vértice comum.

GROTSCHEL (1984) apresentou a seguinte conjectura sobre circuitos mais longos em
grafos k-conexos.

Conjectura 1. Em todo grafo k-conexo, k > 2, quaisquer dois circuitos mais longos tém k
Vvértices em comum.

Essa conjectura ja foi verificada para k < 8. Em sua dissertacdo de mestrado, REZENDE
(2014) apresenta a prova para os casos k < 8. Para k > 8 a conjectura permanece em aberto.

Com relacdo a caminhos mais longos, HippcHEN (2008) conjecturou que a afirmagio
equivalente para caminhos mais longos é verdadeira.

Conjectura 2. Em todo grafo k-conexo, k > 2, quaisquer dois caminhos mais longos tém k
vértices em comum.

A Conjectura 2 continua em aberto para o caso geral. Em 2021, GUTIERREZ (2021)
mostrou que todo par de caminhos mais longos em grafos k-conexos com n vértices se
intersecta em pelo menos min{n, (8k — n + 2)/5} vértices. Além disso, também mostrou
que em grafos 4-conexos, todo par de caminhos mais longos se intersecta em pelo menos 4
vértices. Com isso, Guitiérrez verificou que a conjectura de Hippchen vale para k < 4
ouk > (n-2)/3.

4.2 Trés caminhos mais longos

Conjectura-se que a resposta para o caso k = 3 da Pergunta 3 seja positiva, contudo, os
resultados obtidos a este respeito sdo restritos a poucas classes especiais de grafos.

Conjectura 3. Em todo grafo conexo quaisquer trés caminhos mais longos possuem um
vértice em comum.

4.2.1 Grafos exoplanares

Em 2009, AxENovICH (2009) provou que a Conjectura 3 é verdadeira para a classe dos
grafos exoplanares. Mais especificamente, para triplas de caminhos mais longos cuja unido
forma um grafo exoplanar. Esse foi um dos primeiros resultados sobre a Conjectura 3
obtidos na literatura. O resultado provado por Axenovich, mais formalmente é o seguinte:

Teorema 2. Seja G um grafo conexo e Py, P,, P; caminhos mais longos de G. Se P; U P, U P3
forma um grafo exoplanar, entdo existe um vérticev tal quev € Py N P, N Ps.

A técnica principal desenvolvida e utilizada na prova do Teorema 2 considera um
contraexemplo minimal no qual trés caminhos mais longos nao tém um vértice em comum.



4.2 | TRES CAMINHOS MAIS LONGOS

Define configurac¢des que ndo ocorrem quando se considera a unido de trés caminhos mais
longos, mostrando que se elas ndo ocorrem, entdo é possivel construir um caminho de
comprimento maior que o mais longo. Esse método pode ser utilizado para as classes de
grafos que sao fechadas sob operagdes de remocdo ou contracdo de arestas, que é o caso
dos grafos exoplanares. Axenovich provou que um contraexemplo minimal possui apenas
um bloco nao trivial. Ndo reproduziremos a prova de Axenovich para o Teorema 2 que é
relativamente longa. Além disso, esse teorema segue como corolario de um teorema mais
geral provado por REZENDE et al., 2013, conforme mencionamos na préxima subsecao.

4.2.2 Grafos conexos cujos blocos nao triviais sao
hamiltonianos

REZENDE et al. (2013) mostraram que a Conjectura 3 é verdadeira para grafos conexos
cujos blocos nao triviais sdo hamiltonianos. Como essa classe inclui os grafos exoplanares,
esse resultado generaliza o Teorema 2.

Teorema 3. Se G é um grafo conexo em que todos os blocos ndo triviais sdo hamiltonianos,
entdo quaisquer trés caminhos mais longos em G tém um vértice em comum.

4.2.3 Grafos de Mark

Em sua tese de doutorado, MARK (2022) mostrou que a Conjectura 3 é verdadeira se
G é um grafo com n vértices e no maximo n + 5 arestas, ou seja, quando G é a unido
de uma arvore com no maximo mais 6 arestas (veja a Figura 4.1). Mark enuncia esse
resultado em termos do nimero ciclomatico de um grafo. Ele se baseia no fato (veja BERGE
(2001)) de que o numero maximo de circuitos independentes de um grafo G é exatamente
o numero ciclomatico de G.

/
=
\/

Figura 4.1: Exemplo de um grafo de Mark

Teorema 4. Se G é um grafo conexo com numero ciclomatico no maximo 6, entdo quaisquer
trés caminhos mais longos em G tém um vértice em comum.

Para provar esse teorema, Mark considera um contraexemplo minimal (em relagao
as arestas) H para o Teorema 4 e mostra que esse grafo tem pelo menos 7 circuitos
independentes. O grafo H é a unido de trés caminhos mais longos, digamos P;, P, P; que
nao tém vértice em comum. Mark usa um resultado de AxeENovicH (2009) para mostrar que
H possui um conjunto ¢ de pelo menos 6 circuitos, dois em cada unido P,UP;,1 <i< j<3
de seus trés caminhos mais longos. Apds isso, mostra que existe um sétimo circuito C
que ndo esta contido em nenhuma unido P; U P;, i # j. Além disso, prova que quaisquer
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trés, quatro, cinco ou seis dos circuitos em % sdo independentes, e conclui que o sétimo
circuito C também ¢é independente dos demais circuitos de €. A existéncia de 7 circuitos
independentes em H é uma contradi¢do, pois H tem numero ciclomatico no maximo 6.

Mark também desenvolveu métodos computacionais que verificam o Teorema 4 de
maneira independente da prova que fez.



Capitulo 5

Grafos com vértice de Gallai

No Capitulo 3 vimos algumas classes de grafos que nédo tém vértice de Gallai, respon-
dendo negativamente a Pergunta 1 (de Gallai). Apesar da resposta para a Pergunta 1 ser
negativa no caso geral, sio conhecidas algumas classes de grafos que tém vértice de Gallai.
Neste capitulo apresentamos algumas delas.

5.1 Arvores

Arvores sio grafos bem simples e bem estudados, o que as torna objeto de estudo para
a maioria dos problemas. Assim, é natural perguntar se tém um vértice de Gallai. A seguir
vamos provar um resultado mais geral sobre arvores.

Teorema 5. SejaT uma arvore e seja . um conjunto de subarvores de T. Se quaisquer duas
das subarvores de . tém um vértice em comum, entdo existe um vértice comum a todas elas.

Prova. Seja T uma arvore com n vértices. Vamos provar por inducido em n que existe um
vértice v tal que v € (g S. Se n = 1, o resultado é trivial.

Suponha que o resultado vale para toda arvore com no maximo n — 1 vértices. Suponha
entdo que n > 2. Como toda arvore (no trivial) possui pelo menos duas folhas, entdo tome
uma folha u em T. Considere os dois casos a seguir.

Caso 1: Existe uma arvore em .% que consiste somente do vértice u. Neste caso, u
pertence a intersecdo de todas as subarvores de ./, uma vez que duas a duas todas se
intersectam em pelo menos um vértice.

Caso 2: Se o caso 1 ndo ocorre, entdo seja w o vértice adjacente a u em T. Seja
S :={S—u|S €./} Note que toda subarvore S de T que contém u propriamente é
tal que S — u contém w. Seja T’ :=T — u, entdo .’ é um conjunto de subarvores de T’
tal que quaisquer duas delas se intersectam em algum vértice. Pela hipdtese de indugéo,
Nyesr S’ # @, e portanto gy S = [y S’ # @. O

Corolario 1. SeT é uma arvore, entdo todos os caminhos mais longos de T tém pelo menos
um vértice em comum.

17
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Prova. Tomando % o conjunto de todos os caminhos mais longos de T, o resultado segue
pelo Teorema 1 e pelo Teorema 5. O]

O Teorema 5 é um caso especial de um teorema mais geral que diz respeito a Propri-
edade Helly.

Propriedade 1 (Propriedade Helly). Seja ¢ uma colecdo de subconjuntos. Dizemos que ¢
tem a propriedade Helly quando qualquer subcole¢io de € formada por subconjuntos que se
intersectam dois a dois contém um elemento em comum.

O Teorema 5 prova que um conjunto de subarvores de uma arvore possui a propriedade
Helly.

5.2 Grafos divididos

KravzZAar e PETKOVSEK (1990) provaram que grafos divididos possuem um vértice
comum a todos os seus caminhos mais longos.

Figura 5.1: Exemplo de um grafo dividido.

Teorema 6. Todo grafo dividido conexo tém vértice de Gallai.

Prova. Seja G um grafo dividido conexo, e seja & o conjunto de todos os caminhos mais
longos de G. Seja V(G) = K US, tal que K induz uma clique e S é um conjunto independente
com |S| maior possivel. Se K = @, entdo pela conexidade de G temos que S possui apenas
um vértice. Logo, G = K e o resultado vale.

Suponha entdo que K # @. Seja P € & um caminho mais longo de G. Suponha que
existe um vértice x € K, tal que x néo pertence a P.

Sabemos que ambos os extremos de P pertencem a S, pois caso contrario, existiria um
caminho mais longo que P. Seja entdo P = P/(uv), tal que u € K e v € S. Pela escolha de S,
sabemos que existe y € S tal que y é adjacente a x (se ndo, S U {x} contradiz a escolha de S).

Se y ¢ P, como x,u € K, é possivel construir o caminho P’(uxy) que é mais longo
que P, uma contradi¢do. Se y € P, entdo y possui pelo menos dois vizinhos em K que
pertencem a P. Seja w um desses vizinhos. Assim, é possivel construir um caminho maior
que P trocando a aresta yw em P pelo caminho (y, x, w).

Ambas as contradi¢cdes ocorreram ao supor que x ¢ P. Assim, temos que x € P, para
todo x € K. Logo, @ # K C (| Z.

]
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5.3 Condicao sobre os blocos de um grafo

No mesmo artigo de 1990 sobre grafos divididos, KLavZAR e PETKOVSEK (1990) também
apresentaram uma condicdo necessaria e suficiente restrita aos caminhos mais longos que
passam por um bloco de um grafo que garante a existéncia de um vértice de Gallai.

Teorema 7. Seja G um grafo conexo e seja & o conjunto de todos os seus caminhos mais
longos. G tem vértice de Gallai se e somente se, para todo bloco B de G, todos os caminhos de
& que tém pelo menos uma aresta em B tém um vértice de Gallai.

Seja #5 o subconjunto de & formado pelos caminhos que possuem pelo menos uma
aresta de B. Assim, podemos reescrever o teorema anterior da seguinte maneira:

Se & é o conjunto de todos os caminhos mais longos de um grafo G, entdo
NP +@ < [P+ @ para todo bloco B de G.

A necessidade da condicdo acima segue imediatamente do fato de que &5 C & para
todo bloco B em G.

A prova da suficiéncia dessa condi¢do na realidade prova um teorema mais forte. O
teorema a seguir é mais forte que o anterior pois & nio é necessariamente o conjunto
de todos os caminhos mais longos de G.

Teorema 8. Seja G um grafo conexo e seja &7 um conjunto qualquer de caminhos mais
longos. Se ndo existe um vértice comum a todos os caminhos de &, entao existe um bloco
em G que contém ao menos uma aresta de cada caminho de .

Ou seja, ou todos os caminhos de & se intersectam ou existe um bloco B de G tal que

y = ﬁB-

Prova. A prova sera feita em dois casos.

Caso 1: Para cada par de caminhos em & existe um bloco que contém pelo menos
uma aresta de ambos os caminhos.

Defina % o conjunto de blocos de G e # o conjunto de vértices de corte
de G. Defina T(G) a darvore de blocos associada a G tal que V(T) = B U ¥ e
E(T)={e€E|e=(B,w),Be B,we#,we B} Ou seja, existe uma aresta com ex-
tremidade em B € 8 e em w € # se o vértice de corte w pertence ao bloco B.

Se P é um caminho em G, defina f(P) como o caminho em T(G) tal que um vértice
x € T(G) pertence a f(P) se e somente se x intersecta P. Ou seja, x é um vértice de
corte que pertence a P ou x corresponde a um bloco de G que contém uma aresta de P.
Denotamos por f(P) a imagem de P em T(G).

Defina &’ :={f(P) | P € &}. Sejam entdo f(P,), f(P;) € &’. Por hipotese, existe um
bloco no qual P; e P, tém uma aresta em comum. Entdo f(P;) e f(P,) possuem um vértice
em comum e se intersectam em T(G). Isso vale para qualquer par de caminhos em &,
logo, pelo Teorema 5, existe um vértice v € T(G) tal que v € () &’.

Se v é um vértice de corte, entdo x € [ Z. Se v corresponde a um bloco B de G, entdo

9:@13.
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Os vértices de corte de G correspondem aos vértices vermelhos de T(G), os blocos ndo triviais correspondem aos
vértices verdes e os triviais correspondem aos vértices azuis.

Figura 5.2: Grafo G e sua arvore de bloco T(G).

Caso 2: Existem dois caminhos P,Q € & tais que nao existe um bloco que contém
pelo menos uma aresta de cada um.

Pelo Teorema 1, a intersecdo de P e Q é ndo nula. Nesse caso, P e Q tém exatamente
um vértice em comum, pois caso contrario, ou teriam uma aresta em comum ou existiria
um circuito em G formado por arestas de P e Q. Em ambos os casos existiria um bloco
que contém aresta de P e Q. Assim, seja x o Unico vértice contido em P N Q. Queremos
provar que x € . Suponha por contradi¢do que isso ndo ocorra, e suponha que R € &
nao contém x.

Como quaisquer dois caminhos mais longos se intersectam em pelo menos um vértice,
temos que RN P+ @e RNQ # @. Sejay € Rn P tal que P, é minimo, ou seja, nio existe
nenhum vértice interno de Py, que pertence a R. Seja z € RnQ tal que Q,, é minimo. Como
R néo contém x, e x é o Unico vértice em P N Q, temos que y # x # z.

P Q
\ /
/Gj\
/ \

/ \
S S
/ N
/ N\
Figura 5.4: Circuito Py - Ry - Qyx

Dessa forma, temos que Py, - Ry, - O, € um circuito, |Py,| > 1 e [Q,,| > 1. Assim, temos
um bloco que contém pelo menos uma aresta de P e pelo menos uma aresta de Q, uma
contradi¢io. Portanto, todo caminho de & contém x, ou seja x € [ | Z. O
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5.4 Grafos exoplanares

REZENDE et al. (2013) generalizaram o resultado da Conjectura 3 para grafos exoplanares
e provaram que grafos exoplanares tém vértice de Gallai.

Teorema 9. Todo grafo exoplanar conexo tem vértice de Gallai.

Prova. Seja G um grafo exoplanar conexo e &2 o conjunto de todos os caminhos mais
longos de G. Suponha por contradi¢io que (| & = @.

Pelo Teorema 8, existe um bloco B que contém ao menos uma aresta de cada caminho
em . Considere uma imerséo plana de G tal que todos os vértices pertencem a fronteira
de sua face externa.

Se B é um bloco trivial, entdao todos os caminhos em P tém ao menos um vértice em
comum. Suponhamos entdo que B é um bloco néo trivial. Seja R* um caminho pendente
mais longo de B e seja v a origem de R*. Vamos provar que todos os caminhos em &
contém v, ou seja, que todos os caminhos mais longos de G se intersectam na origem de
um caminho pendente mais longo de B. Suponha que existe um caminho P em & que néo
contém v.

Como G é exoplanar, existe um circuito que passa por todos os vértices de B pela face
externa, seja C esse circuito. Entao C,, é o caminho no sentido horario no circuito C que vai
do vértice u ao vértice v. Seja x o vértice em V(P) nV(B) tal que |Cy,| é minimo e y o vértice
em V(P) n V(B) tal que |C,,| ¢ minimo. Note que x # y, caso contrario P intersectaria B
apenas em X, porém P possui ao menos uma aresta em B.

Figura 5.5: Circuito C e vérticesx,y ev

Seja z o vértice tal que xz € E(P) n E(B) e |C,,| é minimo.

Suponha que y = z, assim, temos que x é adjacente a y em P, ou seja (xy € E(P)).
Considere o caminho P’ obtido de P substituindo a aresta xy pelo caminho Cyy, assim,
P’ = (P - xy) UCy,. Temos que P’ é de fato um caminho, pois Cy,, s6 intersecta P em x e y.

Figura 5.6: Circuito C e caminhos P e P’
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5 | GRAFOS COM VERTICE DE GALLAI

Como v esta no interior de Cy,, entdo [P’| = [P|-1+|C,,| > |[P|-1+2 Assim, |[P’| > |[P|+1 > |P|,

uma contradicdo no fato de P ser um caminho mais longo de G.

Suponha entdo que y # z. Sejam P, e P, dois subcaminhos de P tal que V(P,)nV(P,) =
{z},P = P,-P,,x € V(P,) e y € V(P,). Como estamos considerando uma imerséo plana de G
tal que todos os vértices pertencem a fronteira de sua face externa, entao P, contém somente
vértices de C), (ndo necessariamente todos) e possivelmente um caminho pendente R.

Figura 5.7: Circuito C e caminhos Py, P, e P’

Assim, |Cy,| > |P,| — |R|. Agora considere o caminho P’ = P, -C,}' - R*. Temos que
|P’| = |P1| + |Cy.| + |Cyy| + |R*|. Como |Cy,||P,| — |R], temos que
|P’| = |Pi| + |Cy.| + |Cyy| + |R*| = |Py| + |P2| — |R| + |Cyy| + |R*|. Como R* é 0 maior caminho
pendente de B, temos que |[R*| > |R|. Além disso, |C,| > 0, pois v # y, ja que P ndo contém
.

Portanto, |P’| > |P;| + |P;| + |[R*| — [R| + |Cyy| > |P1| + |P2| = |P|, uma contradicao no fato
de P ser um caminho mais longo de G.

Com isso, concluimos que P contém v. Logo, [ | & + @

5.5 Outras classes

A seguir, mencionamos resultados sobre outras classes de grafos que possuem vértice
de Gallai, e damos as respectivas referéncias. Todos os resultados sdo para grafos conexos.

No mesmo artigo, KLAVZAR e PETKOVSEK (1990) provaram que além dos grafos divididos,
grafos em que todos os blocos sao hamiltonianos-conexos ou quase hamiltonianos-conexo
possuem vértice de Gallai. Esses resultados implicam que cactos e grafos de blocos tém
vértice de Gallai.

BALISTER et al. (2004) provaram para grafos arco-circulares e Joos (2015) fechou uma
lacuna na prova inicial.

REZENDE et al. (2013) provaram para 2-arvores. Este resultado foi posteriormente obtido
como corolario de um teorema mais geral sobre grafos série-paralelos (uma superclasse
dos grafos exoplanares e das 2-arvores), provado por G. CHEN et al. (2017).
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Para grafos com nimero de emparelhamento no maximo trés a prova foi obtida por F.

CHEN (2015).

Resultados para grafos dualmente cordais e cografos foram obtidos em 2016 por JoBson
et al. (2016). Contudo, o resultado para cografos foi posteriormente englobado pelo resultado
sobre grafos P,—esparsos.

GOLAN e SHAN (2018) provaram para grafos livres de 2Kj, que é uma superclasse dos

grafos divididos.

CEeRIOLI e L1MA (2020) provaram para grafos starlike, grafos P,-esparsos, grafos livres
de (2Ps, K, 3), grafos que sdo a juncio de dois grafos, grafos nos quais todos os blocos sdo
grafos divididos, grafos de intervalos e grafos com vértice universal. Um grafo P,—esparso
¢ um grafo G no qual, para todo conjunto S de cinco vértices de G, o subgrafo induzido
G[S] possui no maximo um P,. A juncao de dois grafos G; = (V},E;) e G, = (V,,E,) é
definida como G,VG, = (V; UV,, E; UE, U{(a,b) : a € Vi,b € V,}).

Mais recentemente, GAO e SHAN (2021) provaram para grafos livres de (K 3, R) em que
R €{Cs, Py, Ps, P, 21,75, Z3, B 1, By 2}. O grafo Z, é o grafo formado por K; e um caminho
de comprimento n ao identificar um vértice de K; com uma extremidade do caminho. O
grafo B, é o grafo formado por K3, um caminho P de comprimento n e um caminho Q
de comprimento m ao identificar um vértice de K3 com uma extremidade de P e outro
vértice de K3 com uma extremidade de Q.
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Capitulo 6

Abordagem algoritmica

Do ponto de vista algoritmico, sabemos que enquanto o problema de encontrar um
caminho mais curto em um grafo arbitrario é facil, o problema de encontrar um caminho
mais longo é NP-dificil (GAREY e JoHNsON, 1979). Apesar disso, existem classes especiais
de grafos para as quais o problema de encontrar um caminho mais longo pode ser resolvido
eficientemente.

6.1 Arvores

6.1.1 Caminho mais longo

No Capitulo 5 mostramos que as arvores possuem vértice de Gallai. Com isso, é natural
perguntar se é facil encontrar um caminho mais longo numa arvore ou encontrar um vértice
de Gallai numa arvore. Existem algoritmos lineares que resolvem essas duas questoes.

Por volta de 1960, Dijkstra propos um algoritmo linear que encontra um caminho
mais longo em uma arvore, mas foi s6 em 2002 que BULTERMAN et al. (2002) apresentaram
uma prova formal desse algoritmo, descrito a seguir. Lembramos que, numa arvore um
vértice de grau 1 é chamado folha.

ALGORITMO 1 - CAMINHO MAIS LONGO EM UMA ARVORE (T)
1: x < uma folha qualquer de T.
2: P, < caminho mais longo em T com inicio em x.
3: y < outra extremidade do caminho P,.
4: P, < caminho mais longo em T com inicio em y.
5: devolva P,, um caminho mais longo em T.

Algoritmo de Dijkstra para encontrar um caminho mais longo numa arvore.

Para facilitar a compreenséao do algoritmo acima, BULTERMAN et al. (2002) apresentaram
uma descricdo bastante intuitiva. Imagine que temos um modelo fisico de uma arvore,
onde cada par de vértices adjacentes esta conectado por um pedaco de barbante de mesmo
comprimento. Escolha um vértice folha x como raiz e segure a arvore nesse ponto, deixando
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o restante pendurado. Identifique como y o vértice mais distante de x, ou seja, aquele
que esta mais abaixo no modelo fisico. Em seguida, segure no ponto y e faca a arvore
ficar novamente pendurada por esse ponto. Determine z, o vértice mais distante de y. O
caminho entre y e z representa um caminho mais longo na arvore.

Preliminares

Sabemos que numa arvore, entre quaisquer dois vértices u e v existe um unico caminho
de u a v. Denote por P,, esse caminho. Além disso, para quaisquer vértices a,b,c,d de
uma arvore, temos que

° |Pab| < |Pac| + |Pcb|~
« Sec € Py, entdo |Py| = |P.| + [Pyl

« Existe um vértice m tal que m € P, N P,y oum € P,. N Pyy.

Corretude do Algoritmo 1

Seja T uma arvore, e sejam x,y os vértices e Py, P, os caminhos encontrados pelo
Algoritmo 1. Segue desse algoritmo as seguintes desigualdades:

L4 VZ € V(T), |sz| S |Px|s
e Vz € V(T), |Pyz| < |Py|

Queremos provar que para para todo par u,v € V(T) temos que |P,| < |P,|.

Suponha que exista um vértice m € V(T) tal que m € P,, N P,,. Sabemos que |Py,| < |Pyy.

Assim, |Pey| + [Ppy| < |Pxm| + [Pyl Logo, [Ppy| < |Pyy|. Somando |P,,| em ambos os lados,
temos |Pyy| + [Pyl < |Pun| + |Pmyl. Portanto, |Py| < |Pyyl.

Analogamente, suponha agora que exista um vértice m € V(T) tal que m € Py, N Py,
Temos que |Py,| < |Pyy| Entéo, |Pey| + [Pu| < [Pem| + |Payl- Logo, [Pru| < |Pry|. Somando
|P,| em ambos os lados, temos que |P,,| + |Ppu| < |Pym| + [Pyl Assim, [P, < |P,,|.

Dos dois casos, temos que |P,,| < |P,,| ou|P,| < |P,y|. Assim, existe um vértice w € V(T)
tal que |P,,| < |P,,| < |P,l, e entdo |P,,| < |P,|. Logo, o caminho P, obtido pelo Algoritmo 1
¢ um caminho mais longo em T.

6.1.2 Vértice de Gallai

Em arvores, além de ser facil encontrar um caminho mais longo, é também facil
encontrar um vértice de Gallai. Esse vértice, numa arvore é conhecido como centro (ele
pode ndo ser Unico).

Existe um algoritmo linear para encontrar um centro de uma arvore, digamos T, que
consiste em remover inicialmente todas as folhas de T, e iterativamente repetir esse
processo nas arvores que sio obtidas, até que reste apenas uma aresta ou um vértice.
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ALGORITMO 2 - CENTRO DE UMA ARVORE (T)
1: se T tem um ou dois vértices, devolva os vértices de T.
22T« T—{f : ffolha de T}.
3: CENTRO DE UMA ARVORE (T)

Algoritmo para encontrar centro de uma arvore.

* /—' AN /
: >
Y \k_. e

Comegando com as marcagoes laranjas maiores, podemos ver as arvores que resultam em cada passo do
Algoritmo 2.

Figura 6.1: Exemplo de execugdo do Algoritimo 2

Corretude do Algoritmo 2

Vamos provar que o Algoritmo 2 devolve um ou dois vértices que sdo de fato centro
de uma arvore.

Seja T uma arvore com n vértices e seja T’ a arvore obtida apds remover todos as
folhas de T. Se n = 3, entdo T’ possui apenas um vértice que esta na intersecdo de todos
os caminhos mais longos de T.

Assuma entdo que n > 3. Com isso, temos que toda folha de T possui um unico vizinho
em T que néo é folha. Seja P um caminho mais longo em T. Claramente, os extremos de
P sao folhas. Seja P’ o caminho em T’ que resulta de P apds a remocao das duas folhas
de P. Sabemos que |P’| = |P| — 2.

A arvore T’ possui k < n vértices, e também possui um vértice na intersecdo de todos
os seus caminhos mais longos. Suponha que P’ ndo é um caminho mais longo em T”’. Entdo
existe um caminho Q’ em T’ tal que |Q’| > |P’|. Sabemos que os extremos de Q” sdo folhas
em T’; sejam eles x e y. Sabemos que tanto x como y possuem pelo menos um vizinho de
grau 1 em T, pois em caso contrario teriam sido removidos de T. Podemos construir um
caminho Q em T, que vai de uma folha (de T) que é adjacente a x, percorre o caminho P’
até y e depois vai de y até uma folha (de T) que é adjacente a y. Assim, |Q| = |Q’| + 2. Como
|Q’| > |P’|, temos que |Q] = |Q’| + 2 > |P/| + 2 = |P|, o que contradiz a escolha de P como
caminho mais longo em T. Portanto, o caminho P’ é um caminho mais longo em T".

Pela hipotese de inducao, segue que um vértice que esta na intersecdo de todos os
caminhos mais longos em T continua presente nas subarvores que sio obtidas em cada
iteracdo do algoritmo, até chegar em uma arvore com no maximo 2 vértices.



6.2 | OUTROS RESULTADOS

6.2 Outros resultados

Existem diversas classes de grafos para as quais ja se conhecem algoritmos polinomiais
para encontrar um caminho mais longo. UEHARA e Uno (2005) e UEHARA e UNO (2007)
demonstraram isso para grafos de blocos, cactos, grafos de permutacgéo bipartido, grafos
limiares e outras classes adicionais. UEHARA e VALIENTE (2007) aprimoraram o algoritmo
para grafos de permutacéo bipartido. GHOsH et al. (2011) provaram o mesmo resultado
para grafos biconvexos, uma superclasse dos grafos de permutacao bipartido. Embora
esses autores estivessem trabalhando em subclasses de grafos de intervalos, foi apenas
em 2009 que IoANNIDOU et al. (2009) e [oOANNIDOU et al. (2011) provaram que para os
grafos de intervalos, existe um algoritmo polinomial para encontrar um caminho mais
longo. Além disso, MARKOV et al. (2012) desenvolveram um algoritmo linear que encontra
um caminho mais longo em cactos.
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Capitulo 7

Conclusao

Nesta monografia apresentamos varios topicos que estudamos sobre caminhos mais
longos, tanto do ponto de vista estrutural quanto do ponto de vista algoritmico. Contudo,
nao mencionamos todos os resultados existentes na literatura, e também tratamos com
detalhes apenas alguns, pois é um assunto muito vasto. Nem tudo que estudamos consta
nesta monografia, que é uma resenha mais seletiva sobre o tema aqui tratado.

Buscamos apresentar, de maneira didatica, provas de alguns resultados da literatura,
explicando cada passo e ilustrando com figuras quando necessario.

Nos Capitulos 3, 4 e 5 discutimos problemas sobre interse¢do de caminhos mais longos,
focando na existéncia ou ndo de um vértice comum a todos eles. Apresentamos resultados
sobre todos os caminhos mais longos e também para um nimero fixo de tais caminhos,
analisando quais classes de grafos respondem positivamente ou néo a essas perguntas.

No Capitulo 6 abordamos brevemente alguns resultados algoritmicos sobre a busca de
um caminho mais longo ou um vértice de Gallai em determinadas classes de grafos.

Os estudos realizados ao longo da preparagdo desta monografia ofereceram ideias
valiosas sobre intersecdo de caminhos mais longos, contribuindo para o avanco do conhe-
cimento na area, tanto em termos estruturais quanto algoritmicos. Este trabalho néo s6
aprofundou o entendimento sobre questdes tedricas especificas, mas também possibilitou
o aprendizado de diversas técnicas algoritmicas em diferentes classes de grafos. Esses
avancos ampliaram a compreensao das propriedades de intersecio de caminhos mais
longos em diversas classes de grafos e forneceram uma boa base para a exploracédo de
problemas correlatos abertos.

Esperamos que esta monografia seja atil nao s6 para aqueles que tém interesse nos
problema tratados aqui, mas também para aqueles que tém interesse em outros topicos
da area de combinatdria e teoria dos grafos.
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