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Resumo

Idian Camargo Capozzoli. Interseção de caminhos mais longos em grafos. Mono-

grafia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo,

São Paulo, 2024.

Esta monografia investiga problemas sobre interseção de caminhos mais longos em grafos. Os estudos

sobre este tema tiveram origem numa pergunta feita por Tibor Gallai em um colóquio na Hungria, em

1966. Gallai perguntou se todos os caminhos mais longos em um grafo conexo possuem um vértice comum.

A resposta negativa a esta pergunta foi dada em 1969, mas desde então muita pesquisa tem sido feita a

respeito deste problema e outros correlatos. O objetivo principal deste trabalho é apresentar uma resenha

sobre este tópico, abordando tanto o caso de todos os caminhos mais longos quanto o caso de um número

fixo 𝑘 de caminhos. Para isso, investigamos a questão em grafos arbitrários e em classes especiais de grafos,

destacando algumas para as quais já foi provada a existência ou não de um vértice na interseção de tais

caminhos. Apresentamos vários resultados conhecidos e as provas de alguns deles. Além disso, abordamos

alguns aspectos algorítmicos relativos aos caminhos mais longos de um grafo: como encontrar um ou como

encontrar um vértice comum a todos eles.

Palavras-chave: Teoria dos grafos. Caminhos mais longos. Interseção de caminhos.



Abstract

Idian Camargo Capozzoli. Intersection of longest paths in graphs. Capstone Project

Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São

Paulo, 2024.

This monograph investigates problems on intersection of longest paths in graphs. The studies on this

topic traces back to a question raised by Tibor Gallai at a colloquium in Hungary, in 1966. He asked whether

it is true that all longest paths in a connected graph have a common vertex. The negative answer to this

question was found in 1969, but since then much research has been carried out on this problem and related

ones. The main objective of this work is to present a review on this topic, addressing both the case of all

longest paths and the case of a fixed number 𝑘 of paths. For this, we investigate the topic in arbitrary graphs

and in special classes of graphs, highlighting those in which the existence or non-existence of a vertex in

the intersection of such paths has already been proven. We present a number of known results and the

proofs of some of them. Additionally, we discuss some algorithmic aspects related to longest paths in a

graph: how to find one or how to find a vertex common to all of them.

Keywords: Graph theory. Longest paths. Intersection of paths.
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Capítulo 1

Introdução

Esta monografia se insere na área de teoria dos grafos, e tem como foco problemas
sobre caminhos mais longos em grafos. Um fato bem conhecido a respeito de caminhos
mais longos num grafo conexo é o de que quaisquer dois deles têm um vértice em comum.
Em 1966, num colóquio na Hungria, Gallai (1968) questionou se esse fato continua
verdadeiro quando se considera todos os caminhos mais longos em um grafo conexo. Logo
depois, Walther (1969) mostrou que a resposta a essa questão é negativa. Desde então,
diversas classes de grafos têm sido estudadas a esse respeito e para algumas delas sabe-se
que a resposta é positiva. Num grafo, um vértice comum a todos os seus caminhos mais
longos é chamado vértice de Gallai, e um grafo que possui vértice de Gallai é chamado grafo
de Gallai. Dentre os grafos de Gallai, destacam-se árvores, cactos, grafos split ( Klavžar e
Petkovšek (1990)), grafos arco-circulares ( Balister et al. (2004) e Joos (2015)), grafos
exoplanares e 2-árvores ( Rezende et al. (2013)), grafos série-paralelos ( G. Chen et al.
(2017)), grafos dualmente cordais ( Jobson et al. (2016)), grafos 2K2-livres ( Golan e Shan
(2018)), além de outros ( Cerioli e Lima (2020)). Contudo, não se conhece um resultado
geral que captura muitos tipos de grafos.

Naturalmente, surgem outros problemas relacionados à pergunta de Gallai. Como por
exemplo, o problema sobre a interseção de quaisquer 𝑘 caminhos mais longos, onde 𝑘 é
um inteiro maior que 2. Embora a prova para o caso 𝑘 = 2 seja bem simples, o caso 𝑘 = 3

ainda não foi resolvido. Conjectura-se que a resposta para o caso 𝑘 = 3 seja positiva. Os
primeiros resultados sobre este caso surgiram na literatura há cerca de 15 anos, mas estes
são restritos a classes especiais de grafos e ainda não são muitos.

O objetivo desse trabalho é apresentar uma resenha sobre o problema da interseção
de caminhos mais longos em grafos, abordando não só o caso de todos os caminhos mais
longos, mas também o caso em que são considerados um número fixo de tais caminhos.
Essas questões serão investigadas em grafos arbitrários e em classes especiais de grafos, pois
sabemos que a resposta para a primeira questão no caso de grafos arbitrários é negativa; e a
segunda questão é um problema em aberto. Apresentaremos alguns resultados conhecidos
e reproduziremos as provas de alguns deles. Além disso, faremos uma breve abordagem
algorítmica sobre a questão de encontrar um caminho mais longo num grafo e o de
encontrar um vértice de Gallai.
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INTRODUÇÃO

No Capítulo 2 apresentamos conceitos básicos da teoria dos grafos que são essenciais
para a compreensão desta monografia. Estabelecemos a notação que será usada e definimos
diversas classes de grafos que serão abordadas na monografia. No Capítulo 3 apresentamos
a pergunta de Gallai que motivou grande parte dos resultados da literatura e exibimos
grafos ou classes de grafos que não possuem vértice de Gallai. No Capítulo 4 nosso foco são
classes de grafos que possuem um vértice na interseção de um número fixo de caminhos.
Já no Capítulo 5 apresentamos diversas classes de grafos que possuem vértice de Gallai,
mencionamos vários resultados conhecidos na literatura e reproduzimos as provas de
alguns deles. Por fim, no Capítulo 6 abordamos questões algorítmicas sobre caminhos mais
longos, apresentamos alguns algoritmos conhecidos e mencionamos outros resultados.



3

Capítulo 2

Conceitos básicos da teoria dos grafos

Neste capítulo apresentamos alguns conceitos básicos sobre grafos e estabelecemos
a notação a ser usada. A terminologia que adotamos segue de perto a do livro Graph
Theory de Bondy e Murty (2008).

Um grafo 𝐺 é um par ordenado (𝑉 , 𝐸) onde 𝑉 e 𝐸 são conjuntos disjuntos. Os elementos
de 𝑉 são chamados vértices, e os elementos de 𝐸, chamados arestas, correspondem a um
par não-ordenado de elementos distintos de 𝑉 .

Quando o nome de um grafo está claro pelo contexto, e este nome é 𝐺, por exemplo,
então denotamos por 𝑉 (𝐺) o seu conjunto de vértices, e denotamos por 𝐸(𝐺) o seu conjunto
de arestas.

Grafos finitos são aqueles que possuem um número finito de vértices e arestas. Neste
trabalho abordaremos somente esse tipo de grafo. A ordem de um grafo 𝐺 é definida como
a cardinalidade de 𝑉 (𝐺). Chamamos de tamanho de 𝐺 a soma |𝑉 (𝐺)| + |𝐸(𝐺)|. Um grafo
sem nenhum vértice (e sem nenhuma aresta) é chamado grafo nulo. Um grafo com apenas
um vértice é chamado trivial.

Por simplicidade, denotamos um par não-ordenado de vértices {𝑢, 𝑣} por 𝑢𝑣. Se 𝑒 = 𝑢𝑣

é uma aresta de um grafo, dizemos que 𝑒 incide em 𝑢 e em 𝑣; que 𝑒 vai de 𝑢 para 𝑣 ou que
e liga os vértices 𝑢 e 𝑣. Além disso, dizemos que 𝑢 e 𝑣 são extremos de 𝑒; que 𝑢 e 𝑣 são
adjacentes (ou vizinhos) e que 𝑢 é adjacente a 𝑣. O conjunto de vizinhos de um vértice 𝑣 no
grafo 𝐺 é denotado por 𝑁𝐺(𝑣), ou simplesmente 𝑁(𝑣), se não houver ambiguidade.

O grau de um vértice 𝑣 em um grafo 𝐺, denotado por 𝑑𝐺(𝑣), é o número de arestas
de 𝐺 que incidem em 𝑣. Um vértice é dito isolado se tem grau zero. Um vértice é dito
dominante se é vizinho de todos os vértices do grafo. Pares de vértices não adjacentes
são ditos independentes. Um conjunto de vértices dois a dois independentes é chamado
de conjunto independente ou estável.

Um vértice universal é um vértice de um grafo 𝐺 que é adjacente a todos os demais
vértices de 𝐺.

Um grafo 𝐻 é um subgrafo de um grafo 𝐺 se 𝑉 (𝐻) ⊆ 𝑉 (𝐺) e 𝐸(𝐻) ⊆ 𝐸(𝐺). Neste
caso, dizemos que 𝐺 é supergrafo de 𝐻 , que 𝐻 está contido em 𝐺 ou que 𝐺 contém 𝐻 , e
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escrevemos 𝐻 ⊆ 𝐺. Se 𝐻 ⊆ 𝐺, mas 𝐻 ≠ 𝐺, então dizemos que 𝐻 é um subgrafo próprio de
𝐺 e escrevemos 𝐻 ⊂ 𝐺. Note que qualquer grafo é subgrafo e supergrafo dele mesmo.

Se 𝐺 é um grafo e ∅ ≠ 𝑌 ⊆ 𝑉 (𝐺), então o subgrafo de 𝐺 induzido ou gerado por 𝑌 ,
denotado por 𝐺[𝑌 ], é um subgrafo 𝐻 de 𝐺 tal que 𝑉 (𝐻) = 𝑌 e 𝐸(𝐻) é precisamente o
conjunto das arestas de 𝐺 que tem ambos os extremos em 𝑌 . Se ∅ ≠ 𝐹 ⊆ 𝐸(𝐺), então o
subgrafo de 𝐺 induzido ou gerado por 𝐹 , denotado por 𝐺[𝐹] é um subgrafo 𝐻 de 𝐺 tal que
𝐴(𝐻) = 𝐹 e 𝑉 (𝐻) é o conjunto dos vértices de 𝐺 que são extremos das arestas em 𝐹 .

Se 𝐺 é um grafo e 𝐵 é um conjunto de vértices (ou arestas) de 𝐺, o subgrafo de 𝐺 obtido
ao remover todos os vértices (ou arestas)de 𝐵 é denotado por 𝐺 − 𝐵. Por simplicidade,
escrevemos 𝐺 − 𝑏 em vez de 𝐺 − {𝑏}.

Um grafo completo é um grafo em que quaisquer dois vértices distintos são adjacentes.
Denotamos por 𝐾𝑛 um grafo completo com 𝑛 vértices. Subgrafos completos de um grafo
recebem o nome especial de cliques. Uma clique com 𝑘 vértices é chamada 𝑘-clique.

Um passeio em um grafo 𝐺 é uma sequência 𝑊 ∶= (𝑣0, 𝑣1, ..., 𝑣𝑙), em que 𝑣𝑖−1𝑣𝑖 ∈ 𝐸(𝐺)

para todo 1 ≤ 𝑖 ≤ 𝑙. Se 𝑣0 = 𝑥 e 𝑣𝑙 = 𝑦, dizemos que 𝑊 é um passeio de 𝑥 para 𝑦, e que 𝑊

passa pelos vértices 𝑣0, 𝑣1, ..., 𝑣𝑙 . Os vértices 𝑥 e 𝑦 são chamados de extremos do passeio, 𝑥 é
chamado origem e 𝑦 é chamado término de 𝑊 . Os vértices 𝑣1, 𝑣2, ..., 𝑣𝑙−1 são chamados de
vértices internos de 𝑊 . O comprimento de 𝑊 , denotado por |𝑊 | é o número de arestas de 𝑊 .

Um caminho é um passeio cujos vértices são dois a dois distintos. Um circuito é um
passeio em que a origem e o término são os mesmos e todos os demais vértices são dois a
dois distintos. Um caminho hamiltoniano em um grafo 𝐺 é um caminho que passa por todos
os vértices de 𝐺. Um circuito hamiltoniano é um circuito que passa por todos os vértices de
𝐺. Dois circuitos são independentes se não possuem nenhum vértice ou aresta em comum.

Denotamos por 𝐶𝑛 um circuito com 𝑛 vértices e 𝑃𝑛 um caminho com 𝑛 vértices.

Se 𝑃 ∶= (𝑣0, 𝑣1, ..., 𝑣𝑙) é um passeio, então definimos 𝑃−1
∶= (𝑣𝑙, 𝑣𝑙−1, ..., 𝑣1, 𝑣0) como o

passeio inverso de 𝑃 . Se 𝑃 é um passeio com término num vértice 𝑣 e 𝑄 é um passeio com
início em 𝑣, então 𝑃 ⋅ 𝑄 denota a concatenação de 𝑃 e 𝑄, definida como a concatenação das
sequências que definem 𝑃 e 𝑄 nessa ordem. Por simplicidade, se 𝑢 é um vértice adjacente
a 𝑣, denotamos 𝑃 ⋅ (𝑣𝑢) por 𝑃𝑢, e (𝑢𝑣) ⋅ 𝑄 por 𝑢𝑄. Se 𝐶 é um circuito, e 𝑢 e 𝑣 são vértices
distintos de 𝐶, denotamos por 𝐶𝑢𝑣 o caminho que é uma subsequência da sequência que
define 𝐶, que vai do vértice 𝑢 ao vértice 𝑣. Nas figuras, dada um representação de 𝐶, o
caminho 𝐶𝑢𝑣 é o que se obtém percorrendo𝐶 no sentido horário de 𝑢 para 𝑣.

Se 𝑃 é um passeio, quando conveniente também nos referimos a 𝑃 como um grafo (ou
subgrafo) induzido pelas arestas de 𝑃 , e denotamos por 𝑉 (𝑃) e 𝐸(𝑃) o conjunto de seus
vértices e suas arestas, respectivamente.

A união de dois grafos 𝐺 e 𝐻 é o grafo 𝐺 ∪ 𝐻 com conjunto de vértices 𝑉 (𝐺) ∪ 𝑉 (𝐻) e
conjunto de arestas 𝐸(𝐺) ∪ 𝐸(𝐻). A interseção 𝐺 ∩ 𝐻 de 𝐺 e 𝐻 é definida analogamente.
Dois grafos se intersectam se têm interseção não vazia. Dois grafos são ditos disjuntos se
têm interseção vazia. Se 𝐺 e 𝐻 são grafos disjuntos, nos referimos à união deles como
união disjunta.

Um grafo 𝐺 é conexo se, para todo par de vértices distintos 𝑢 e 𝑣, existe em 𝐺 um
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caminho de 𝑢 a 𝑣. Um grafo é 𝑘-conexo, com 𝑘 > 1, se, para todo par de vértices distintos
𝑢 e 𝑣 existem 𝑘 caminhos internamente disjuntos de 𝑢 a 𝑣 em 𝐺.

Um grafo ou subgrafo 𝐺 é dito maximal em relação à uma propriedade P se 𝐺 tem a
propriedade P , mas nenhum supergrafo próprio de 𝐺 tem a propriedade P . Um grafo
ou subgrafo 𝐺 é dito minimal em relação à uma propriedade P se 𝐺 tem a propriedade
P , mas nenhum subgrafo próprio de 𝐺 tem a propriedade P .

Os subgrafos conexos maximais de um grafo 𝐺 são chamados componentes. O número
de componentes de 𝐺 é denotado por 𝑐(𝐺).

Um emparelhamento num grafo 𝐺 é um subconjunto de arestas de 𝐺 que são duas a
duas não adjacentes. O número de emparelhamento de 𝐺 é o número de arestas de um
emparelhamento máximo em 𝐺.

Uma aresta de corte de um grafo 𝐺 é uma aresta 𝑒 de 𝐺 tal que 𝑐(𝐺 − 𝑒) > 𝑐(𝐺). Um
vértice de corte de um grafo 𝐺 é um vértice 𝑣 tal que 𝑐(𝐺 − 𝑣) > 𝑐(𝐺).

Se 𝐺 é um grafo, um bloco de 𝐺 é um subgrafo conexo maximal de 𝐺 que não possui
vértices de corte. Assim, um bloco de 𝐺, onde 𝐺 é não trivial, é um subgrafo 2-conexo
maximal ou um 𝐾2. Um bloco trivial é um 𝐾2 ou um vértice isolado. Quando 𝐺 é conexo
e não tem vértices de corte então também dizemos que 𝐺 é um bloco.

Para um bloco não trivial 𝛽 de um grafo 𝐺, um caminho 𝑃 em 𝐺 com |𝑃 | ≥ 1 que
intersecta 𝛽 em um único vértice é chamado de caminho pendente de 𝛽; tal vértice único
é denominado sua origem.

O número ciclomático de um grafo 𝐺 é definido como |𝐸(𝐺)| − |𝑉 (𝐺)| + 1 e também
é conhecido como nulidade de 𝐺.

Se 𝐺 é um grafo, vamos denotar por P(𝐺) o conjunto de todos os caminhos mais
longos de 𝐺.

Classes especiais de grafos
Chamamos de classes de grafos um conjunto de grafos que satisfazem determinadas

propriedades. Definiremos a seguir algumas classes de grafos que serão abordadas neste
trabalho.

Um grafo é uma árvore se é conexo e não contém circuitos.

Um grafo 𝐺 é bipartido se seu conjunto de vértices pode ser particionado em dois
conjuntos 𝑋 e 𝑌 , com 𝑋 ∪ 𝑌 = 𝑉 (𝐺) e 𝑋 ∩ 𝑌 = ∅ tal que cada aresta de 𝐺 tem um extremo
em 𝑋 e outro em 𝑌 . Essa partição (𝑋, 𝑌 ) é chamada de bipartição do grafo. Denotamos
por 𝐾𝑚,𝑛 um grafo bipartido completo em que um dos conjuntos da bipartição possui 𝑚
vértices e o outro 𝑛 vértices.

Um grafo 𝐺 é um cacto se é conexo e cada aresta pertence a no máximo um circuito
de 𝐺. Num cacto cada bloco é um circuito ou uma aresta.

Um grafo de blocos é um grafo conexo no qual todos os seus blocos são cliques.
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Um grafo planar é um grafo que pode ser desenhado no plano sem que haja cruzamento
de suas arestas. Um tal desenho é chamado uma imersão plana.

Um grafo é exoplanar se admite uma imersão plana na qual todos os seus vértices
pertencem à fronteira da face externa. Note que todo cacto é exoplanar.

Um grafo 𝐺 é 𝑘-exoplanar se 𝐺 é exoplanar quando 𝑘 = 1 e para 𝑘 > 1, 𝐺 possui uma
imersão no plano em que a remoção de todos os vértices pertencentes à fronteira da face
externa resulta em um grafo (𝑘 − 1)-exoplanar.

Um grafo 𝐺 é hamiltoniano-conexo se para todo par de vértices distintos 𝑢 e 𝑣 em 𝐺

existe um caminho hamiltoniano de 𝑢 a 𝑣 em 𝐺.

Um grafo 𝐺 é dividido (ou split) se existe uma partição de 𝑉 (𝐺) em dois conjuntos 𝑋 e
𝑌 tal que 𝑋 induz uma clique e 𝑌 é um conjunto independente.

Seja 𝑘 ≥ 1 um inteiro. Um grafo 𝐺 é uma 𝑘-árvore se 𝐺 é um grafo completo com
𝑘 + 1 vértices ou se 𝐺 contém mais de 𝑘 + 1 vértices, então 𝐺 contém um vértice cujo
conjunto de vizinhos em 𝐺 induz uma 𝑘-clique e cuja remoção resulta em uma 𝑘-árvore.
Em outras palavras, 𝐺 tem ordem 𝑛 ≥ 𝑘 + 1, sendo que quando 𝑛 = 𝑘 + 1 então 𝐺 é
um grafo completo com 𝑘 + 1 vértices, e quando 𝑛 > 𝑘 + 1 então 𝐺 pode ser obtido
acrescentando-se um novo vértice a uma 𝑘-árvore de ordem 𝑛 − 1 e conectando-o a uma
𝑘-clique qualquer dessa 𝑘-árvore.

Um grafo de Gallai é um grafo que contém um vértice 𝑣 que pertence a todos os seus
caminhos mais longos. Um tal vértice 𝑣 é chamado de vértice de Gallai.

Muitas outras classes de grafos são mencionadas ao longo deste trabalho, mas não são
definidas aqui. Como não são abordadas em profundidade, mas são apenas mencionadas
para exemplificar classes de grafos que satisfazem ou não certas propriedades relativas a
caminhos mais longos, optamos pela omissão. Porém, indicamos aqui a URL da ISGCI,
uma enciclopédia de classes de grafos que o leitor poderá consultar para obter não apenas
as definições, mas várias outras informações sobre tais classes. Veja em

https://www.graphclasses.org/

Nessa URL consta que: “ISGCI (Information System on Graph Classes and their Inclu-
sions) is an encyclopaedia of graphclasses with an accompanying java application that
helps you to research what’s known about particular graph classes”.

https://www.graphclasses.org/
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Grafos sem vértice de Gallai

Sabemos que um grafo pode ter mais de um caminho mais longo. O que podemos
afirmar sobre a interseção de tais caminhos? É bem conhecido o fato (fácil de provar) de
que quaisquer dois caminhos mais longos em um grafo conexo têm um vértice comum.
Outro fato conhecido é que quaisquer dois circuitos mais longos em grafos 2-conexos têm
um vértice comum. Gallai perguntou em 1966, durante um colóquio na área de teoria dos
grafos, se a existência de um vértice comum continua verdadeira quando se considera todos
os caminhos mais longos em um grafo conexo (Gallai, 1968). Esta pergunta, apresentada
a seguir, motivou muitas pesquisas desde então.

Pergunta 1 (Pergunta de Gallai). É verdade que todos os caminhos mais longos de
um grafo conexo possuem um vértice comum?

Lembramos que um vértice que pertence a todos os caminhos mais longos de um grafo
é chamado de vértice de Gallai. É natural pensar na pergunta análoga, em relação a todos
os circuitos mais longos de um grafo 2-conexo. Contudo, nessa época já era conhecido
um exemplo de grafo 2-conexo em que todos os circuitos mais longos não têm um vértice
comum. Referimo-nos aqui ao grafo de Petersen (veja a Figura 3.1), que viria a se tornar
muito mais conhecido pelo fato de ser um contraexemplo para diversas conjecturas.

f

ge

i h

v

ad

c b

Figura 3.1: Grafo de Petersen
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Sabe-se que o grafo de Petersen é hipo-hamiltoniano, ou seja, não é hamiltoniano,
mas o grafo obtido dele pela remoção de qualquer um de seus vértices é hamiltoniano.
Até então não se conhecia um exemplo similar para o caso de todos os caminhos mais
longos, mas um tal exemplo foi encontrado.

3.1 Primeiro exemplo
Pouco tempo depois da pergunta de Gallai, Walther (1969) provou que a resposta

a essa pergunta é negativa, exibindo um grafo planar conexo de ordem 25 sem vértice
de Gallai (veja a Figura 3.2).

Figura 3.2: Grafo de Walther com 25 vértices

Esse resultado deu origem a novos questionamentos. Esse é o grafo de menor ordem
com essa propriedade? E se forem impostas outras restrições como planaridade e/ou
conectividade mais alta?

3.2 Exemplo de menor ordem
Alguns anos depois do primeiro exemplo, Voss e Walther (1974) e Zamfirescu (1976),

independentemente, encontraram um exemplo com 12 vértices, que chamaremos de grafo
WZ (veja a Figura 3.3). Esse é o menor grafo conhecido que não tem vértice de Gallai.

Figura 3.3: Grafo de Walther e Zamfirescu com 12 vértices
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O grafo WZ pode ser obtido a partir do grafo de Petersen procedendo da seguinte forma.
Tome um vértice 𝑣 qualquer do grafo de Petersen e faça uma subdivisão em cada uma das 3
arestas incidentes a 𝑣, inserindo os vértices 𝑣1, 𝑣2, 𝑣3. A seguir, remova o vértice 𝑣. Note que,
rearranjando os vértices do grafo obtido, obtemos o grafo WZ exibido na Figura 3.3.

f

ge

i h

ad

c b

𝑣3

𝑣2

𝑣1

f

ge

i h

v

ad

c b

𝑣3𝑣2𝑣1

f
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i h

v
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c b

f
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i h
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c b

𝑣3𝑣2𝑣1

Figura 3.4: Processo para encontrar o exemplo de Walther e Zamfirescu

Pela construção feita, é fácil notar que no grafo WF não existe vértice de Gallai. Observe
que um caminho mais longo no grafo WF necessariamente não passa por um dos vértices
de grau 1. Se existisse um caminho mais longo que passa por todos os demais vértices, então
esse caminho corresponderia a um circuito hamiltoniano no grafo de Petersen, o que é um
absurdo. Portanto, um caminho mais longo no grafo WF tem no máximo 10 vértices. Para
cada um dos 9 vértices de grau maior que 1, construa o caminho correspondente ao circuito
mais longo do grafo de Petersen que não passa por esse vértice. Os caminhos resultantes
têm 10 vértices e portanto são caminhos mais longos. Assim, esses 9 caminhos não possuem
um vértice em comum. Os 9 caminhos mais longos cuja interseção é vazia são:

1) 𝑣2 − 𝑓 − 𝑖 − 𝑔 − 𝑒 − ℎ − 𝑏 − 𝑐 − 𝑑 − 𝑣1;

2) 𝑣3 − 𝑎 − 𝑖 − 𝑓 − 𝑔 − 𝑑 − 𝑒 − ℎ − 𝑐 − 𝑣2;

3) 𝑣1 − 𝑏 − 𝑒 − ℎ − 𝑖 − 𝑓 − 𝑔 − 𝑑 − 𝑎 − 𝑣3;

4) 𝑣1 − 𝑏 − 𝑒 − ℎ − 𝑐 − 𝑔 − 𝑓 − 𝑖 − 𝑎 − 𝑣3;
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5) 𝑣3 − 𝑎 − 𝑑 − 𝑔 − 𝑐 − ℎ − 𝑖 − 𝑓 − 𝑏 − 𝑣1;

6) 𝑣2 − 𝑐 − 𝑔 − 𝑑 − 𝑎 − 𝑖 − ℎ − 𝑒 − 𝑏 − 𝑣1;

7) 𝑣1 − 𝑏 − 𝑓 − 𝑖 − 𝑎 − 𝑑 − 𝑒 − ℎ − 𝑐 − 𝑣2;

8) 𝑣3 − 𝑎 − 𝑖 − 𝑓 − 𝑏 − 𝑒 − 𝑑 − 𝑔 − 𝑐 − 𝑣2;

9) 𝑣2 − 𝑐 − ℎ − 𝑒 − 𝑏 − 𝑓 − 𝑔 − 𝑑 − 𝑎 − 𝑣3.

Os 3 primeiros caminhos são simétricos e não passam por: 𝑎 e 𝑣3; 𝑏 e 𝑣1; 𝑐 e 𝑣2, nesta
ordem. Os 6 últimos também são simétricos e não passam por: 𝑑; 𝑒; 𝑓 ; 𝑔 ; ℎ; 𝑖, nesta ordem.

3.3 Exemplos planares
O primeiro exemplo de Walther com 25 vértices é planar, contudo ele não é o menor

exemplo planar conhecido. Em 1975, Schmitz encontrou um grafo planar com 17 vértices,
o menor grafo planar conhecido sem vértice de Gallai.

Figura 3.5: Grafo planar de Schmitz com 17 vértices

Zamfirescu (1975) conjecturou que esses grafos anteriores que exibimos são contrae-
xemplos de menor ordem possível para a pergunta de Gallai no caso geral e no caso planar.

3.4 Grafos 𝑘-conexos

Outra pergunta natural que surge é em relação à conectividade dos grafos. É possível
encontrar contraexemplos quando exigimos conectividade mais alta?

Pergunta 2. Para quais valores de 𝑘 existem grafos 𝑘-conexos sem vértice de Gallai?

3.4.1 Grafos 2-conexos
Em 1972, Zamfirescu (1972) construiu o primeiro exemplo para grafos 2-conexos, que

é planar (com 82 vértices). Quatro anos depois, Zamfirescu (1976) encontrou os exemplos
com menor quantidade de vértices conhecidos até hoje, para grafos 2-conexos (com 26
vértices) e para grafos 2-conexos planares (com 32 vértices).
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(a) Menor grafo 2-conexo conhecido que não
possui vértice de Gallai.

(b) Menor grafo 2-conexo planar conhecido que
não possui vértice de Gallai.

Figura 3.6: Menores exemplos de grafos 2-conexos sem vértice de Gallai

3.4.2 Grafos 3-conexos
Horton (1973) construiu um grafo 3-conexo com 40 vértices que não possui vértice

de Gallai. Pouco depois, Zamfirescu (1976) encontrou um outro exemplo menor, com
36 vértices (veja a Figura 3.7).

Figura 3.7: Menor grafo 3-conexo sem vértice de Gallai

Já para grafos 3-conexos planares, Grünbaum (1974) obteve o primeiro exemplo com
484 vértices. O menor exemplo que é 3-conexo e planar foi obtido por Hatzel (1979)
e tem 224 vértices.

3.4.3 Grafos 4-conexos
Para 𝑘 = 4, a Pergunta 2 continua em aberto. Não se conhecem grafos 4-conexos sem

vértices de Gallai. Mas quando se exige planaridade, sabe-se que a resposta é negativa,
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pois o conhecido Teorema de Tutte (Tutte (1956)) afirma que qualquer grafo planar
4-conexo é hamiltoniano.
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Capítulo 4

Grafos com vértice na interseção de
um número fixo de caminhos

O que sabemos sobre a interseção de um número fixo 𝑘 de caminhos mais longos em um
grafo conexo? Estudos posteriores aos resultados do Capítulo 3 levaram à uma pergunta
análoga a de Gallai, mas quando se considera quaisquer 𝑘 caminhos mais longos, onde
𝑘 > 2 . Quando 𝑘 = 2, como mencionamos anteriormente, a resposta é bem conhecida:
neste caso, a interseção é não vazia (veremos essa prova na seção 4.1).

Pergunta 3. Há inteiros positivos 𝑘 > 2 para os quais há exemplos de grafos com 𝑘

caminhos mais longos que não possuem um vértice em comum?

O grafo apresentado na Seção 3.3 é um exemplo para 𝑘 = 7. Mas uma resposta mais
abrangente foi obtida por Skupień (1996). Para todo 𝑘 ≥ 7, Spukien obteve um grafo
conexo no qual existem 𝑘 caminhos mais longos com interseção vazia e quaisquer 𝑘 − 1

caminhos mais longos possuem um vértice em comum. Com isso, a resposta à Pergunta 3
é positiva para 𝑘 ≥ 7, mas continua desconhecida para 3 ≤ 𝑘 ≤ 6.

4.1 Dois caminhos mais longos
O resultado mais conhecido é sobre a interseção de quaisquer 2 caminhos. O teorema

a seguir é bem conhecido e fácil de provar.

Teorema 1. Quaisquer dois caminhos mais longos em um grafo conexo possuem pelo menos
um vértice comum.

Prova. Seja 𝐺 um grafo conexo e sejam 𝑃 e 𝑄 dois caminhos mais longos em 𝐺. Suponha
por contradição que a interseção de 𝑃 e 𝑄 é vazia. Como 𝐺 é conexo, existe um caminho de
algum vértice de 𝑃 a algum vértice de 𝑄. Seja 𝑅 um tal caminho de comprimento mínimo
e suponha que 𝑅 tenha início em 𝑢 ∈ 𝑃 e término em 𝑣 ∈ 𝑄. Neste caso, 𝑢 divide 𝑃 em
dois caminhos 𝑃1 e 𝑃2, e 𝑣 divide 𝑄 em dois caminhos 𝑄1 e 𝑄2. Dessa forma, 𝑃 = 𝑃1 ⋅ 𝑃2, e
𝑄 = 𝑄1 ⋅ 𝑄2.
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Se |𝑃1| ≥ |𝑃2|, seja 𝑃 = 𝑃1; caso contrário, seja 𝑃 = 𝑃
−1

2
. Se |𝑄1| ≥ |𝑄2|, seja 𝑄̃ = 𝑄

−1

1
;

caso contrário, seja 𝑄̃ = 𝑄2.

Neste caso, o caminho 𝑀 = 𝑃 ⋅ 𝑅 ⋅ 𝑄̃, é tal que |𝑀| > |𝑃 |, o que é uma contradição à
escolha de 𝑃 e 𝑄 como caminhos mais longos.

Também é um fato bem conhecido que em grafos 2-conexos, quaisquer dois circuitos
mais longos têm um vértice comum.

Grötschel (1984) apresentou a seguinte conjectura sobre circuitos mais longos em
grafos 𝑘-conexos.

Conjectura 1. Em todo grafo 𝑘-conexo, 𝑘 ≥ 2, quaisquer dois circuitos mais longos têm 𝑘

vértices em comum.

Essa conjectura já foi verificada para 𝑘 ≤ 8. Em sua dissertação de mestrado, Rezende
(2014) apresenta a prova para os casos 𝑘 ≤ 8. Para 𝑘 > 8 a conjectura permanece em aberto.

Com relação a caminhos mais longos, Hippchen (2008) conjecturou que a afirmação
equivalente para caminhos mais longos é verdadeira.

Conjectura 2. Em todo grafo 𝑘-conexo, 𝑘 ≥ 2, quaisquer dois caminhos mais longos têm 𝑘

vértices em comum.

A Conjectura 2 continua em aberto para o caso geral. Em 2021, Gutiérrez (2021)
mostrou que todo par de caminhos mais longos em grafos 𝑘-conexos com 𝑛 vértices se
intersecta em pelo menos 𝑚𝑖𝑛{𝑛, (8𝑘 − 𝑛 + 2)/5} vértices. Além disso, também mostrou
que em grafos 4-conexos, todo par de caminhos mais longos se intersecta em pelo menos 4
vértices. Com isso, Guitiérrez verificou que a conjectura de Hippchen vale para 𝑘 ≤ 4

ou 𝑘 ≥ (𝑛 − 2)/3.

4.2 Três caminhos mais longos
Conjectura-se que a resposta para o caso 𝑘 = 3 da Pergunta 3 seja positiva, contudo, os

resultados obtidos a este respeito são restritos a poucas classes especiais de grafos.

Conjectura 3. Em todo grafo conexo quaisquer três caminhos mais longos possuem um
vértice em comum.

4.2.1 Grafos exoplanares
Em 2009, Axenovich (2009) provou que a Conjectura 3 é verdadeira para a classe dos

grafos exoplanares. Mais especificamente, para triplas de caminhos mais longos cuja união
forma um grafo exoplanar. Esse foi um dos primeiros resultados sobre a Conjectura 3
obtidos na literatura. O resultado provado por Axenovich, mais formalmente é o seguinte:

Teorema 2. Seja 𝐺 um grafo conexo e 𝑃1, 𝑃2, 𝑃3 caminhos mais longos de 𝐺. Se 𝑃1 ∪ 𝑃2 ∪ 𝑃3

forma um grafo exoplanar, então existe um vértice 𝑣 tal que 𝑣 ∈ 𝑃1 ∩ 𝑃2 ∩ 𝑃3.

A técnica principal desenvolvida e utilizada na prova do Teorema 2 considera um
contraexemplo minimal no qual três caminhos mais longos não têm um vértice em comum.
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Define configurações que não ocorrem quando se considera a união de três caminhos mais
longos, mostrando que se elas não ocorrem, então é possível construir um caminho de
comprimento maior que o mais longo. Esse método pode ser utilizado para as classes de
grafos que são fechadas sob operações de remoção ou contração de arestas, que é o caso
dos grafos exoplanares. Axenovich provou que um contraexemplo minimal possui apenas
um bloco não trivial. Não reproduziremos a prova de Axenovich para o Teorema 2 que é
relativamente longa. Além disso, esse teorema segue como corolário de um teorema mais
geral provado por Rezende et al., 2013, conforme mencionamos na próxima subseção.

4.2.2 Grafos conexos cujos blocos não triviais são
hamiltonianos

Rezende et al. (2013) mostraram que a Conjectura 3 é verdadeira para grafos conexos
cujos blocos não triviais são hamiltonianos. Como essa classe inclui os grafos exoplanares,
esse resultado generaliza o Teorema 2.

Teorema 3. Se 𝐺 é um grafo conexo em que todos os blocos não triviais são hamiltonianos,
então quaisquer três caminhos mais longos em 𝐺 têm um vértice em comum.

4.2.3 Grafos de Mark
Em sua tese de doutorado, Mark (2022) mostrou que a Conjectura 3 é verdadeira se

𝐺 é um grafo com 𝑛 vértices e no máximo 𝑛 + 5 arestas, ou seja, quando 𝐺 é a união
de uma árvore com no máximo mais 6 arestas (veja a Figura 4.1). Mark enuncia esse
resultado em termos do número ciclomático de um grafo. Ele se baseia no fato (veja Berge
(2001)) de que o número máximo de circuitos independentes de um grafo 𝐺 é exatamente
o número ciclomático de 𝐺.

Figura 4.1: Exemplo de um grafo de Mark

Teorema 4. Se 𝐺 é um grafo conexo com número ciclomático no máximo 6, então quaisquer
três caminhos mais longos em 𝐺 têm um vértice em comum.

Para provar esse teorema, Mark considera um contraexemplo minimal (em relação
às arestas) 𝐻 para o Teorema 4 e mostra que esse grafo tem pelo menos 7 circuitos
independentes. O grafo 𝐻 é a união de três caminhos mais longos, digamos 𝑃1, 𝑃2, 𝑃3 que
não têm vértice em comum. Mark usa um resultado de Axenovich (2009) para mostrar que
𝐻 possui um conjunto C de pelo menos 6 circuitos, dois em cada união 𝑃𝑖∪𝑃𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 3

de seus três caminhos mais longos. Após isso, mostra que existe um sétimo circuito 𝐶

que não está contido em nenhuma união 𝑃𝑖 ∪ 𝑃𝑗 , 𝑖 ≠ 𝑗 . Além disso, prova que quaisquer
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três, quatro, cinco ou seis dos circuitos em C são independentes, e conclui que o sétimo
circuito 𝐶 também é independente dos demais circuitos de C . A existência de 7 circuitos
independentes em 𝐻 é uma contradição, pois 𝐻 tem número ciclomático no máximo 6.

Mark também desenvolveu métodos computacionais que verificam o Teorema 4 de
maneira independente da prova que fez.
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Capítulo 5

Grafos com vértice de Gallai

No Capítulo 3 vimos algumas classes de grafos que não têm vértice de Gallai, respon-
dendo negativamente à Pergunta 1 (de Gallai). Apesar da resposta para a Pergunta 1 ser
negativa no caso geral, são conhecidas algumas classes de grafos que têm vértice de Gallai.
Neste capítulo apresentamos algumas delas.

5.1 Árvores

Árvores são grafos bem simples e bem estudados, o que as torna objeto de estudo para
a maioria dos problemas. Assim, é natural perguntar se têm um vértice de Gallai. A seguir
vamos provar um resultado mais geral sobre árvores.

Teorema 5. Seja 𝑇 uma árvore e seja S um conjunto de subárvores de 𝑇 . Se quaisquer duas
das subárvores de S têm um vértice em comum, então existe um vértice comum a todas elas.

Prova. Seja 𝑇 uma árvore com 𝑛 vértices. Vamos provar por indução em 𝑛 que existe um
vértice 𝑣 tal que 𝑣 ∈ ⋂

𝑆∈S 𝑆. Se 𝑛 = 1, o resultado é trivial.

Suponha que o resultado vale para toda árvore com no máximo 𝑛− 1 vértices. Suponha
então que 𝑛 ≥ 2. Como toda árvore (não trivial) possui pelo menos duas folhas, então tome
uma folha 𝑢 em 𝑇 . Considere os dois casos a seguir.

Caso 1: Existe uma árvore em S que consiste somente do vértice 𝑢. Neste caso, 𝑢
pertence à interseção de todas as subárvores de S , uma vez que duas a duas todas se
intersectam em pelo menos um vértice.

Caso 2: Se o caso 1 não ocorre, então seja 𝑤 o vértice adjacente a 𝑢 em 𝑇 . Seja
S ′

∶= {𝑆 − 𝑢 ∣ 𝑆 ∈ S }. Note que toda subárvore 𝑆 de 𝑇 que contém 𝑢 propriamente é
tal que 𝑆 − 𝑢 contém 𝑤. Seja 𝑇

′
∶= 𝑇 − 𝑢, então S ′ é um conjunto de subárvores de 𝑇

′

tal que quaisquer duas delas se intersectam em algum vértice. Pela hipótese de indução,
⋂

𝑆
′
∈S ′ 𝑆

′
≠ ∅, e portanto ⋂

𝑆∈S 𝑆 = ⋂
𝑆
′
∈S ′ 𝑆

′
≠ ∅.

Corolário 1. Se 𝑇 é uma árvore, então todos os caminhos mais longos de 𝑇 têm pelo menos
um vértice em comum.
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Prova. Tomando P o conjunto de todos os caminhos mais longos de 𝑇 , o resultado segue
pelo Teorema 1 e pelo Teorema 5.

O Teorema 5 é um caso especial de um teorema mais geral que diz respeito à Propri-
edade Helly.

Propriedade 1 (Propriedade Helly). Seja C uma coleção de subconjuntos. Dizemos que C
tem a propriedade Helly quando qualquer subcoleção de C formada por subconjuntos que se
intersectam dois a dois contém um elemento em comum.

O Teorema 5 prova que um conjunto de subárvores de uma árvore possui a propriedade
Helly.

5.2 Grafos divididos
Klavžar e Petkovšek (1990) provaram que grafos divididos possuem um vértice

comum a todos os seus caminhos mais longos.

Figura 5.1: Exemplo de um grafo dividido.

Teorema 6. Todo grafo dividido conexo têm vértice de Gallai.

Prova. Seja 𝐺 um grafo dividido conexo, e seja P o conjunto de todos os caminhos mais
longos de 𝐺. Seja 𝑉 (𝐺) = 𝐾 ∪𝑆, tal que 𝐾 induz uma clique e 𝑆 é um conjunto independente
com |𝑆| maior possível. Se 𝐾 = ∅, então pela conexidade de 𝐺 temos que 𝑆 possui apenas
um vértice. Logo, 𝐺 = 𝐾1 e o resultado vale.

Suponha então que 𝐾 ≠ ∅. Seja 𝑃 ∈ P um caminho mais longo de 𝐺. Suponha que
existe um vértice 𝑥 ∈ 𝐾 , tal que 𝑥 não pertence a 𝑃 .

Sabemos que ambos os extremos de 𝑃 pertencem a 𝑆, pois caso contrário, existiria um
caminho mais longo que 𝑃 . Seja então 𝑃 = 𝑃

′
(𝑢𝑣), tal que 𝑢 ∈ 𝐾 e 𝑣 ∈ 𝑆. Pela escolha de 𝑆,

sabemos que existe 𝑦 ∈ 𝑆 tal que 𝑦 é adjacente a 𝑥 (se não, 𝑆 ∪ {𝑥} contradiz a escolha de 𝑆).

Se 𝑦 ∉ 𝑃 , como 𝑥, 𝑢 ∈ 𝐾 , é possível construir o caminho 𝑃
′
(𝑢𝑥𝑦) que é mais longo

que 𝑃 , uma contradição. Se 𝑦 ∈ 𝑃 , então 𝑦 possui pelo menos dois vizinhos em 𝐾 que
pertencem a 𝑃 . Seja 𝑤 um desses vizinhos. Assim, é possível construir um caminho maior
que 𝑃 trocando a aresta 𝑦𝑤 em 𝑃 pelo caminho (𝑦, 𝑥, 𝑤).

Ambas as contradições ocorreram ao supor que 𝑥 ∉ 𝑃 . Assim, temos que 𝑥 ∈ 𝑃 , para
todo 𝑥 ∈ 𝐾 . Logo, ∅ ≠ 𝐾 ⊆ ⋂P .
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5.3 Condição sobre os blocos de um grafo
No mesmo artigo de 1990 sobre grafos divididos, Klavžar e Petkovšek (1990) também

apresentaram uma condição necessária e suficiente restrita aos caminhos mais longos que
passam por um bloco de um grafo que garante a existência de um vértice de Gallai.

Teorema 7. Seja 𝐺 um grafo conexo e seja P o conjunto de todos os seus caminhos mais
longos. 𝐺 tem vértice de Gallai se e somente se, para todo bloco 𝐵 de 𝐺, todos os caminhos de
P que têm pelo menos uma aresta em 𝐵 têm um vértice de Gallai.

Seja P𝐵 o subconjunto de P formado pelos caminhos que possuem pelo menos uma
aresta de 𝐵. Assim, podemos reescrever o teorema anterior da seguinte maneira:

Se P é o conjunto de todos os caminhos mais longos de um grafo 𝐺, então
⋂P ≠ ∅ ⟺ ⋂P𝐵 ≠ ∅ para todo bloco 𝐵 de 𝐺.

A necessidade da condição acima segue imediatamente do fato de que P𝐵 ⊆ P para
todo bloco 𝐵 em 𝐺.

A prova da suficiência dessa condição na realidade prova um teorema mais forte. O
teorema a seguir é mais forte que o anterior pois P não é necessariamente o conjunto
de todos os caminhos mais longos de 𝐺.

Teorema 8. Seja 𝐺 um grafo conexo e seja P um conjunto qualquer de caminhos mais
longos. Se não existe um vértice comum a todos os caminhos de P , então existe um bloco
em 𝐺 que contém ao menos uma aresta de cada caminho de P .

Ou seja, ou todos os caminhos de P se intersectam ou existe um bloco 𝐵 de 𝐺 tal que
P = P𝐵.

Prova. A prova será feita em dois casos.

Caso 1: Para cada par de caminhos em P existe um bloco que contém pelo menos
uma aresta de ambos os caminhos.

Defina B o conjunto de blocos de 𝐺 e W o conjunto de vértices de corte
de 𝐺. Defina 𝑇 (𝐺) a árvore de blocos associada a 𝐺 tal que 𝑉 (𝑇 ) = B ∪ W e
𝐸(𝑇 ) = {𝑒 ∈ 𝐸 ∣ 𝑒 = (𝐵, 𝑤), 𝐵 ∈ B, 𝑤 ∈ W , 𝑤 ∈ 𝐵}. Ou seja, existe uma aresta com ex-
tremidade em 𝐵 ∈ B e em 𝑤 ∈ W se o vértice de corte 𝑤 pertence ao bloco 𝐵.

Se 𝑃 é um caminho em 𝐺, defina 𝑓 (𝑃) como o caminho em 𝑇 (𝐺) tal que um vértice
𝑥 ∈ 𝑇 (𝐺) pertence a 𝑓 (𝑃) se e somente se 𝑥 intersecta 𝑃 . Ou seja, 𝑥 é um vértice de
corte que pertence a 𝑃 ou 𝑥 corresponde a um bloco de 𝐺 que contém uma aresta de 𝑃 .
Denotamos por 𝑓 (𝑃) a imagem de 𝑃 em 𝑇 (𝐺).

Defina P ′
∶= {𝑓 (𝑃) ∣ 𝑃 ∈ P}. Sejam então 𝑓 (𝑃1), 𝑓 (𝑃2) ∈ P ′. Por hipótese, existe um

bloco no qual 𝑃1 e 𝑃2 têm uma aresta em comum. Então 𝑓 (𝑃1) e 𝑓 (𝑃2) possuem um vértice
em comum e se intersectam em 𝑇 (𝐺). Isso vale para qualquer par de caminhos em P ′,
logo, pelo Teorema 5, existe um vértice 𝑣 ∈ 𝑇 (𝐺) tal que 𝑣 ∈ ⋂P ′.

Se 𝑣 é um vértice de corte, então 𝑥 ∈ ⋂P . Se 𝑣 corresponde a um bloco 𝐵 de 𝐺, então
P = P𝐵.
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Os vértices de corte de 𝐺 correspondem aos vértices vermelhos de 𝑇 (𝐺), os blocos não triviais correspondem aos
vértices verdes e os triviais correspondem aos vértices azuis.

Figura 5.2: Grafo 𝐺 e sua árvore de bloco 𝑇 (𝐺).

Caso 2: Existem dois caminhos 𝑃, 𝑄 ∈ P tais que não existe um bloco que contém
pelo menos uma aresta de cada um.

Pelo Teorema 1, a interseção de 𝑃 e 𝑄 é não nula. Nesse caso, 𝑃 e 𝑄 têm exatamente
um vértice em comum, pois caso contrário, ou teriam uma aresta em comum ou existiria
um circuito em 𝐺 formado por arestas de 𝑃 e 𝑄. Em ambos os casos existiria um bloco
que contém aresta de 𝑃 e 𝑄. Assim, seja 𝑥 o único vértice contido em 𝑃 ∩ 𝑄. Queremos
provar que 𝑥 ∈ P . Suponha por contradição que isso não ocorra, e suponha que 𝑅 ∈ P
não contém 𝑥 .

Como quaisquer dois caminhos mais longos se intersectam em pelo menos um vértice,
temos que 𝑅 ∩ 𝑃 ≠ ∅ e 𝑅 ∩ 𝑄 ≠ ∅. Seja 𝑦 ∈ 𝑅 ∩ 𝑃 tal que 𝑃𝑥𝑦 é mínimo, ou seja, não existe
nenhum vértice interno de 𝑃𝑥𝑦 que pertence a 𝑅. Seja 𝑧 ∈ 𝑅∩𝑄 tal que 𝑄𝑥𝑧 é mínimo. Como
𝑅 não contém 𝑥 , e 𝑥 é o único vértice em 𝑃 ∩ 𝑄, temos que 𝑦 ≠ 𝑥 ≠ 𝑧.

QP

R

x

yz

Figura 5.4: Circuito 𝑃𝑥𝑦 ⋅ 𝑅𝑦𝑧 ⋅ 𝑄𝑧𝑥

Dessa forma, temos que 𝑃𝑥𝑦 ⋅ 𝑅𝑦𝑧 ⋅ 𝑄𝑧𝑥 é um circuito, |𝑃𝑥𝑦 | ≥ 1 e |𝑄𝑧𝑥 | ≥ 1. Assim, temos
um bloco que contém pelo menos uma aresta de 𝑃 e pelo menos uma aresta de 𝑄, uma
contradição. Portanto, todo caminho de P contém 𝑥 , ou seja 𝑥 ∈ ⋂P .



5.4 | GRAFOS EXOPLANARES

21

5.4 Grafos exoplanares
Rezende et al. (2013) generalizaram o resultado da Conjectura 3 para grafos exoplanares

e provaram que grafos exoplanares têm vértice de Gallai.

Teorema 9. Todo grafo exoplanar conexo tem vértice de Gallai.

Prova. Seja 𝐺 um grafo exoplanar conexo e P o conjunto de todos os caminhos mais
longos de 𝐺. Suponha por contradição que ⋂P = ∅.

Pelo Teorema 8, existe um bloco 𝐵 que contém ao menos uma aresta de cada caminho
em P . Considere uma imersão plana de 𝐺 tal que todos os vértices pertencem à fronteira
de sua face externa.

Se 𝐵 é um bloco trivial, então todos os caminhos em 𝑃 têm ao menos um vértice em
comum. Suponhamos então que 𝐵 é um bloco não trivial. Seja 𝑅

∗ um caminho pendente
mais longo de 𝐵 e seja 𝑣 a origem de 𝑅

∗. Vamos provar que todos os caminhos em P
contêm 𝑣, ou seja, que todos os caminhos mais longos de 𝐺 se intersectam na origem de
um caminho pendente mais longo de 𝐵. Suponha que existe um caminho 𝑃 em P que não
contém 𝑣.

Como 𝐺 é exoplanar, existe um circuito que passa por todos os vértices de 𝐵 pela face
externa, seja 𝐶 esse circuito. Então 𝐶𝑢𝑣 é o caminho no sentido horário no circuito 𝐶 que vai
do vértice 𝑢 ao vértice 𝑣. Seja 𝑥 o vértice em 𝑉 (𝑃)∩𝑉 (𝐵) tal que |𝐶𝑥𝑣| é mínimo e 𝑦 o vértice
em 𝑉 (𝑃) ∩ 𝑉 (𝐵) tal que |𝐶𝑣𝑦 | é mínimo. Note que 𝑥 ≠ 𝑦, caso contrário 𝑃 intersectaria 𝐵

apenas em 𝑥 , porém 𝑃 possui ao menos uma aresta em 𝐵.

𝑥

𝑦

𝑣

𝑅
∗

Figura 5.5: Circuito 𝐶 e vértices 𝑥, 𝑦 e 𝑣

Seja 𝑧 o vértice tal que 𝑥𝑧 ∈ 𝐸(𝑃) ∩ 𝐸(𝐵) e |𝐶𝑦𝑥 | é mínimo.

Suponha que 𝑦 = 𝑧, assim, temos que 𝑥 é adjacente a 𝑦 em 𝑃 , ou seja (𝑥𝑦 ∈ 𝐸(𝑃)).
Considere o caminho 𝑃

′ obtido de 𝑃 substituindo a aresta 𝑥𝑦 pelo caminho 𝐶𝑥𝑦 , assim,
𝑃
′
= (𝑃 − 𝑥𝑦) ∪ 𝐶𝑥𝑦 . Temos que 𝑃 ′ é de fato um caminho, pois 𝐶𝑥𝑦 só intersecta 𝑃 em 𝑥 e 𝑦.

𝑥

𝑦 = 𝑧

𝑣

𝑅
∗

Figura 5.6: Circuito 𝐶 e caminhos 𝑃 e 𝑃 ′
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Como 𝑣 está no interior de𝐶𝑥𝑦 , então |𝑃 ′
| = |𝑃 |−1+|𝐶𝑥𝑦 | ≥ |𝑃 |−1+2Assim, |𝑃 ′

| ≥ |𝑃 |+1 > |𝑃|,
uma contradição no fato de 𝑃 ser um caminho mais longo de 𝐺.

Suponha então que 𝑦 ≠ 𝑧. Sejam 𝑃1 e 𝑃2 dois subcaminhos de 𝑃 tal que 𝑉 (𝑃1) ∩ 𝑉 (𝑃2) =
{𝑧}, 𝑃 = 𝑃1 ⋅ 𝑃2, 𝑥 ∈ 𝑉 (𝑃1) e 𝑦 ∈ 𝑉 (𝑃2). Como estamos considerando uma imersão plana de 𝐺
tal que todos os vértices pertencem à fronteira de sua face externa, então 𝑃2 contém somente
vértices de 𝐶𝑦𝑧 (não necessariamente todos) e possivelmente um caminho pendente 𝑅.

𝑧

𝑥

𝑦

𝑣

𝑅
∗

Figura 5.7: Circuito 𝐶 e caminhos 𝑃1, 𝑃2 e 𝑃 ′

Assim, |𝐶𝑦𝑧 | ≥ |𝑃2| − |𝑅|. Agora considere o caminho 𝑃
′
= 𝑃1 ⋅ 𝐶

−1

𝑣𝑧
⋅ 𝑅

∗. Temos que
|𝑃

′
| = |𝑃1| + |𝐶𝑦𝑧 | + |𝐶𝑣𝑦 | + |𝑅

∗
|. Como |𝐶𝑦𝑧 ||𝑃2| − |𝑅|, temos que

|𝑃
′
| = |𝑃1| + |𝐶𝑦𝑧 | + |𝐶𝑣𝑦 | + |𝑅

∗
| ≥ |𝑃1| + |𝑃2| − |𝑅| + |𝐶𝑣𝑦 | + |𝑅

∗
|. Como 𝑅

∗ é o maior caminho
pendente de 𝐵, temos que |𝑅

∗
| ≥ |𝑅|. Além disso, |𝐶𝑣𝑦 | > 0, pois 𝑣 ≠ 𝑦, já que 𝑃 não contém

𝑣.

Portanto, |𝑃 ′
| ≥ |𝑃1| + |𝑃2| + |𝑅

∗
| − |𝑅| + |𝐶𝑣𝑦 | > |𝑃1| + |𝑃2| = |𝑃 |, uma contradição no fato

de 𝑃 ser um caminho mais longo de 𝐺.

Com isso, concluímos que 𝑃 contém 𝑣. Logo, ⋂P ≠ ∅

5.5 Outras classes
A seguir, mencionamos resultados sobre outras classes de grafos que possuem vértice

de Gallai, e damos as respectivas referências. Todos os resultados são para grafos conexos.

No mesmo artigo, Klavžar e Petkovšek (1990) provaram que além dos grafos divididos,
grafos em que todos os blocos são hamiltonianos-conexos ou quase hamiltonianos-conexo
possuem vértice de Gallai. Esses resultados implicam que cactos e grafos de blocos têm
vértice de Gallai.

Balister et al. (2004) provaram para grafos arco-circulares e Joos (2015) fechou uma
lacuna na prova inicial.

Rezende et al. (2013) provaram para 2-árvores. Este resultado foi posteriormente obtido
como corolário de um teorema mais geral sobre grafos série-paralelos (uma superclasse
dos grafos exoplanares e das 2-árvores), provado por G. Chen et al. (2017).
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Para grafos com número de emparelhamento no máximo três a prova foi obtida por F.
Chen (2015).

Resultados para grafos dualmente cordais e cografos foram obtidos em 2016 por Jobson
et al. (2016). Contudo, o resultado para cografos foi posteriormente englobado pelo resultado
sobre grafos 𝑃4–esparsos.

Golan e Shan (2018) provaram para grafos livres de 2𝐾2, que é uma superclasse dos
grafos divididos.

Cerioli e Lima (2020) provaram para grafos starlike, grafos 𝑃4-esparsos, grafos livres
de (2𝑃5, 𝐾1,3), grafos que são a junção de dois grafos, grafos nos quais todos os blocos são
grafos divididos, grafos de intervalos e grafos com vértice universal. Um grafo 𝑃4–esparso
é um grafo 𝐺 no qual, para todo conjunto 𝑆 de cinco vértices de 𝐺, o subgrafo induzido
𝐺[𝑆] possui no máximo um 𝑃4. A junção de dois grafos 𝐺1 = (𝑉1, 𝐸1) e 𝐺2 = (𝑉2, 𝐸2) é
definida como 𝐺1∇𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2 ∪ {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝑉1, 𝑏 ∈ 𝑉2}).

Mais recentemente, Gao e Shan (2021) provaram para grafos livres de (𝐾1,3, 𝑅) em que
𝑅 ∈ {𝐶3, 𝑃4, 𝑃5, 𝑃6, 𝑍1, 𝑍2, 𝑍3, 𝐵1,1, 𝐵1,2}. O grafo 𝑍𝑛 é o grafo formado por 𝐾3 e um caminho
de comprimento 𝑛 ao identificar um vértice de 𝐾3 com uma extremidade do caminho. O
grafo 𝐵𝑛,𝑚 é o grafo formado por 𝐾3, um caminho 𝑃 de comprimento 𝑛 e um caminho 𝑄

de comprimento 𝑚 ao identificar um vértice de 𝐾3 com uma extremidade de 𝑃 e outro
vértice de 𝐾3 com uma extremidade de 𝑄.
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Capítulo 6

Abordagem algorítmica

Do ponto de vista algorítmico, sabemos que enquanto o problema de encontrar um
caminho mais curto em um grafo arbitrário é fácil, o problema de encontrar um caminho
mais longo é NP-difícil (Garey e Johnson, 1979). Apesar disso, existem classes especiais
de grafos para as quais o problema de encontrar um caminho mais longo pode ser resolvido
eficientemente.

6.1 Árvores

6.1.1 Caminho mais longo
No Capítulo 5 mostramos que as árvores possuem vértice de Gallai. Com isso, é natural

perguntar se é fácil encontrar um caminho mais longo numa árvore ou encontrar um vértice
de Gallai numa árvore. Existem algoritmos lineares que resolvem essas duas questões.

Por volta de 1960, Dijkstra propôs um algoritmo linear que encontra um caminho
mais longo em uma árvore, mas foi só em 2002 que Bulterman et al. (2002) apresentaram
uma prova formal desse algoritmo, descrito a seguir. Lembramos que, numa árvore um
vértice de grau 1 é chamado folha.

Algoritmo 1 - Caminho mais longo em uma árvore (𝑇 )

1: 𝑥 ← uma folha qualquer de 𝑇 .
2: 𝑃𝑥 ← caminho mais longo em 𝑇 com início em 𝑥 .
3: 𝑦 ← outra extremidade do caminho 𝑃𝑥 .
4: 𝑃𝑦 ← caminho mais longo em 𝑇 com início em 𝑦.
5: devolva 𝑃𝑦 , um caminho mais longo em 𝑇 .

Algoritmo de Dijkstra para encontrar um caminho mais longo numa árvore.

Para facilitar a compreensão do algoritmo acima, Bulterman et al. (2002) apresentaram
uma descrição bastante intuitiva. Imagine que temos um modelo físico de uma árvore,
onde cada par de vértices adjacentes está conectado por um pedaço de barbante de mesmo
comprimento. Escolha um vértice folha 𝑥 como raiz e segure a árvore nesse ponto, deixando



6.1 | ÁRVORES

25

o restante pendurado. Identifique como 𝑦 o vértice mais distante de 𝑥 , ou seja, aquele
que está mais abaixo no modelo físico. Em seguida, segure no ponto 𝑦 e faça a árvore
ficar novamente pendurada por esse ponto. Determine 𝑧, o vértice mais distante de 𝑦. O
caminho entre 𝑦 e 𝑧 representa um caminho mais longo na árvore.

Preliminares

Sabemos que numa árvore, entre quaisquer dois vértices 𝑢 e 𝑣 existe um único caminho
de 𝑢 a 𝑣. Denote por 𝑃𝑢𝑣 esse caminho. Além disso, para quaisquer vértices 𝑎, 𝑏, 𝑐, 𝑑 de
uma árvore, temos que

• |𝑃𝑎𝑏| ≤ |𝑃𝑎𝑐 | + |𝑃𝑐𝑏|.

• Se 𝑐 ∈ 𝑃𝑎𝑏, então |𝑃𝑎𝑏| = |𝑃𝑎𝑐 | + |𝑃𝑐𝑏|.

• Existe um vértice 𝑚 tal que 𝑚 ∈ 𝑃𝑎𝑏 ∩ 𝑃𝑐𝑑 ou 𝑚 ∈ 𝑃𝑎𝑐 ∩ 𝑃𝑏𝑑 .

Corretude do Algoritmo 1

Seja 𝑇 uma árvore, e sejam 𝑥, 𝑦 os vértices e 𝑃𝑥 , 𝑃𝑦 os caminhos encontrados pelo
Algoritmo 1. Segue desse algoritmo as seguintes desigualdades:

• ∀𝑧 ∈ 𝑉 (𝑇 ), |𝑃𝑥𝑧 | ≤ |𝑃𝑥 |,

• ∀𝑧 ∈ 𝑉 (𝑇 ), |𝑃𝑦𝑧 | ≤ |𝑃𝑦 |.

Queremos provar que para para todo par 𝑢, 𝑣 ∈ 𝑉 (𝑇 ) temos que |𝑃𝑢𝑣| ≤ |𝑃𝑦 |.

Suponha que exista um vértice 𝑚 ∈ 𝑉 (𝑇 ) tal que 𝑚 ∈ 𝑃𝑥𝑣 ∩𝑃𝑢𝑦 . Sabemos que |𝑃𝑥𝑣| ≤ |𝑃𝑥𝑦 |.
Assim, |𝑃𝑥𝑚| + |𝑃𝑚𝑣| ≤ |𝑃𝑥𝑚| + |𝑃𝑚𝑦 |. Logo, |𝑃𝑚𝑣| ≤ |𝑃𝑚𝑦 |. Somando |𝑃𝑢𝑚| em ambos os lados,
temos |𝑃𝑢𝑚| + |𝑃𝑚𝑣| ≤ |𝑃𝑢𝑚| + |𝑃𝑚𝑦 |. Portanto, |𝑃𝑢𝑣| ≤ |𝑃𝑢𝑦 |.

Analogamente, suponha agora que exista um vértice 𝑚 ∈ 𝑉 (𝑇 ) tal que 𝑚 ∈ 𝑃𝑥𝑢 ∩ 𝑃𝑣𝑦 .
Temos que |𝑃𝑥𝑢| ≤ |𝑃𝑥𝑦 |. Então, |𝑃𝑥𝑚| + |𝑃𝑚𝑢| ≤ |𝑃𝑥𝑚| + |𝑃𝑚𝑦 |. Logo, |𝑃𝑚𝑢| ≤ |𝑃𝑚𝑦 |. Somando
|𝑃𝑣𝑚| em ambos os lados, temos que |𝑃𝑣𝑚| + |𝑃𝑚𝑢| ≤ |𝑃𝑣𝑚| + |𝑃𝑚𝑦 |. Assim, |𝑃𝑣𝑢| ≤ |𝑃𝑣𝑦 |.

Dos dois casos, temos que |𝑃𝑢𝑣| ≤ |𝑃𝑢𝑦 | ou |𝑃𝑢𝑣| ≤ |𝑃𝑣𝑦 |. Assim, existe um vértice 𝑤 ∈ 𝑉 (𝑇 )

tal que |𝑃𝑢𝑣| ≤ |𝑃𝑤𝑦 | ≤ |𝑃𝑦 |, e então |𝑃𝑢𝑣| ≤ |𝑃𝑦 |. Logo, o caminho 𝑃𝑦 obtido pelo Algoritmo 1
é um caminho mais longo em 𝑇 .

6.1.2 Vértice de Gallai
Em árvores, além de ser fácil encontrar um caminho mais longo, é também fácil

encontrar um vértice de Gallai. Esse vértice, numa árvore é conhecido como centro (ele
pode não ser único).

Existe um algoritmo linear para encontrar um centro de uma árvore, digamos 𝑇 , que
consiste em remover inicialmente todas as folhas de 𝑇 , e iterativamente repetir esse
processo nas árvores que são obtidas, até que reste apenas uma aresta ou um vértice.
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Algoritmo 2 - Centro de uma árvore (𝑇 )

1: se 𝑇 tem um ou dois vértices, devolva os vértices de 𝑇 .
2: 𝑇

′
← 𝑇 − {𝑓 ∶ 𝑓 folha de 𝑇 }.

3: Centro de uma árvore (𝑇
′
)

Algoritmo para encontrar centro de uma árvore.

Começando com as marcações laranjas maiores, podemos ver as árvores que resultam em cada passo do
Algoritmo 2.

Figura 6.1: Exemplo de execução do Algoritimo 2

Corretude do Algoritmo 2

Vamos provar que o Algoritmo 2 devolve um ou dois vértices que são de fato centro
de uma árvore.

Seja 𝑇 uma árvore com 𝑛 vértices e seja 𝑇
′ a árvore obtida após remover todos as

folhas de 𝑇 . Se 𝑛 = 3, então 𝑇
′ possui apenas um vértice que está na interseção de todos

os caminhos mais longos de 𝑇 .

Assuma então que 𝑛 > 3. Com isso, temos que toda folha de 𝑇 possui um único vizinho
em 𝑇 que não é folha. Seja 𝑃 um caminho mais longo em 𝑇 . Claramente, os extremos de
𝑃 são folhas. Seja 𝑃

′ o caminho em 𝑇
′ que resulta de 𝑃 após a remoção das duas folhas

de 𝑃 . Sabemos que |𝑃
′
| = |𝑃 | − 2.

A árvore 𝑇
′ possui 𝑘 < 𝑛 vértices, e também possui um vértice na interseção de todos

os seus caminhos mais longos. Suponha que 𝑃 ′ não é um caminho mais longo em 𝑇
′. Então

existe um caminho 𝑄
′ em 𝑇

′ tal que |𝑄
′
| > |𝑃

′
|. Sabemos que os extremos de 𝑄

′ são folhas
em 𝑇

′; sejam eles 𝑥 e 𝑦. Sabemos que tanto 𝑥 como 𝑦 possuem pelo menos um vizinho de
grau 1 em 𝑇 , pois em caso contrário teriam sido removidos de 𝑇 . Podemos construir um
caminho 𝑄 em 𝑇 , que vai de uma folha (de 𝑇 ) que é adjacente a 𝑥 , percorre o caminho 𝑃

′

até 𝑦 e depois vai de 𝑦 até uma folha (de 𝑇 ) que é adjacente a 𝑦. Assim, |𝑄| = |𝑄
′
| + 2. Como

|𝑄
′
| > |𝑃

′
|, temos que |𝑄| = |𝑄

′
| + 2 > |𝑃

′
| + 2 = |𝑃|, o que contradiz a escolha de 𝑃 como

caminho mais longo em 𝑇 . Portanto, o caminho 𝑃
′ é um caminho mais longo em 𝑇

′.

Pela hipótese de indução, segue que um vértice que está na interseção de todos os
caminhos mais longos em 𝑇 continua presente nas subárvores que são obtidas em cada
iteração do algoritmo, até chegar em uma árvore com no máximo 2 vértices.
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6.2 Outros resultados
Existem diversas classes de grafos para as quais já se conhecem algoritmos polinomiais

para encontrar um caminho mais longo. Uehara e Uno (2005) e Uehara e Uno (2007)
demonstraram isso para grafos de blocos, cactos, grafos de permutação bipartido, grafos
limiares e outras classes adicionais. Uehara e Valiente (2007) aprimoraram o algoritmo
para grafos de permutação bipartido. Ghosh et al. (2011) provaram o mesmo resultado
para grafos biconvexos, uma superclasse dos grafos de permutação bipartido. Embora
esses autores estivessem trabalhando em subclasses de grafos de intervalos, foi apenas
em 2009 que Ioannidou et al. (2009) e Ioannidou et al. (2011) provaram que para os
grafos de intervalos, existe um algoritmo polinomial para encontrar um caminho mais
longo. Além disso, Markov et al. (2012) desenvolveram um algoritmo linear que encontra
um caminho mais longo em cactos.
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Capítulo 7

Conclusão

Nesta monografia apresentamos vários tópicos que estudamos sobre caminhos mais
longos, tanto do ponto de vista estrutural quanto do ponto de vista algorítmico. Contudo,
não mencionamos todos os resultados existentes na literatura, e também tratamos com
detalhes apenas alguns, pois é um assunto muito vasto. Nem tudo que estudamos consta
nesta monografia, que é uma resenha mais seletiva sobre o tema aqui tratado.

Buscamos apresentar, de maneira didática, provas de alguns resultados da literatura,
explicando cada passo e ilustrando com figuras quando necessário.

Nos Capítulos 3, 4 e 5 discutimos problemas sobre interseção de caminhos mais longos,
focando na existência ou não de um vértice comum a todos eles. Apresentamos resultados
sobre todos os caminhos mais longos e também para um número fixo de tais caminhos,
analisando quais classes de grafos respondem positivamente ou não a essas perguntas.

No Capítulo 6 abordamos brevemente alguns resultados algorítmicos sobre a busca de
um caminho mais longo ou um vértice de Gallai em determinadas classes de grafos.

Os estudos realizados ao longo da preparação desta monografia ofereceram ideias
valiosas sobre interseção de caminhos mais longos, contribuindo para o avanço do conhe-
cimento na área, tanto em termos estruturais quanto algorítmicos. Este trabalho não só
aprofundou o entendimento sobre questões teóricas específicas, mas também possibilitou
o aprendizado de diversas técnicas algorítmicas em diferentes classes de grafos. Esses
avanços ampliaram a compreensão das propriedades de interseção de caminhos mais
longos em diversas classes de grafos e forneceram uma boa base para a exploração de
problemas correlatos abertos.

Esperamos que esta monografia seja útil não só para aqueles que têm interesse nos
problema tratados aqui, mas também para aqueles que têm interesse em outros tópicos
da área de combinatória e teoria dos grafos.
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