
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

Explainable AI (XAI) Methods for
Convolutional Neural Networks

Antonio Fernando Silva e Cruz Filho
João Gabriel Andrade de Araujo Josephik

Final Essay

mac 499 — Capstone Project

Supervisor: Prof. Dr. Nina S. T. Hirata

São Paulo

2024



The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/


i

Acknowledgements

I dedicate this work to my family, especially my mother, whose constant support has

helped me pursue my dream of studying at USP from the very beginning. I am very grateful

to my advisor, Nina, for her guidance, not only in this project but also for introducing me

to the amazing world of Machine Learning. I also want to thank my girlfriend, Giovanna,

for always being by my side, supporting me during tough times, believing in my dreams,

and inspiring me with new ideas. Finally, I dedicate this work to my amazing friends

from BCC, who always motivate and inspire me to become a better person and reach

new goals. - Fernando Cruz

I dedicate this work to my family, for allowing me to see further and to dream higher at

tough times, and to my friends, for all the supporting. - João Gabriel Araujo Josephik





Resumo

Antonio Fernando Silva e Cruz Filho

João Gabriel Andrade de Araujo Josephik. Métodos de IA explicável (XAI) para
Redes Neurais Convolucionais. Monografia (Bacharelado). Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2024.

Com a ascensão do uso de Aprendizado de Máquina para problemas de Visão Computacional, o uso de

Redes Neurais Convolucionais (CNNs) se mostrou uma peça fundamental para a criação de modelos estado

da arte em tarefas como classificação, detecção de objetos e até mesmo segmentação. No entanto,em muitos

casos, a simples obtenção do resultado de uma predição não é suficiente, sendo necessária uma justificativa

para as decisões do modelo. Utilizando IA Explicável (XAI), podemos encontrar possíveis explicações para

predições de modelos complexos como Redes Convolucionais. Nesse trabalho, foram estudadas diversas

técnicas de Explicabilidade aplicadas a CNNs, utilizando de técnicas como GradCam e Visualização de

Características. Além disso, foram conduzidos experimentos com cada técnica abordada visando avaliar

a eficácia na interpretação dos modelos de Visão Computacional.

Palavras-chave: IA. Aprendizado de Máquina. IA Explicável. XAI. Visualização de Características. Grad-

Cam. LIME.





Abstract

Antonio Fernando Silva e Cruz Filho

João Gabriel Andrade de Araujo Josephik. Explainable AI (XAI) Methods for Convolu-
tional Neural Networks. Capstone Project Report (Bachelor). Institute of Mathematics

and Statistics, University of São Paulo, São Paulo, 2024.

With the rise of Machine Learning in Computer Vision problems, the use of Convolutional Neural

Networks (CNNs) has proven to be a fundamental component in developing state-of-the-art models for tasks

such as classification, object detection, and even segmentation. However, in many cases, simply obtaining

the result of a prediction is not sufficient; a justification for the model’s decisions is necessary. By employing

Explainable AI (XAI), it is possible to identify potential explanations for the predictions of complex models

such as Convolutional Neural Networks. In this study, various explainability techniques applied to CNNs

were analyzed, utilizing methods such as Grad-CAM and Feature Visualization. Additionally, experiments

were conducted with each technique to assess their effectiveness in interpreting Computer Vision models.

Keywords: AI. Machine Learning. Explainable AI. XAI. Feature visualization. GradCam. LIME.
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Chapter 1

Background

In this chapter, we will introduce important concepts required for the understanding
of this study. We begin by introducing Explainable AI (XAI) and its principles. We also
introduce Neural Networks and important concepts such as Gradient Descent and Back
Propagation. Finally, we introduce Convolutional Neural Networks, the main focus of
this study.

1.1 Explainable AI
With the rise of Machine Learning models in the last decade in the business and

academic areas, Artificial Intelligence (AI) is becoming increasingly present in important
decision-making tasks. However, as AI models have become more sophisticated, partic-
ularly with the advent of Deep Learning techniques, their internal workings have often
remained opaque. Explainable AI (XAI) aims to make models and their decisions more
transparent, interpretable and understandable to both experts and inexperienced users.

1.1.1 What is Explainable AI?
Defining a mathematical formalization to explainability of Machine Learning is a

difficult task considering the subjective nature of what one may consider "explainable".
In non-mathematical terms, Explainability in AI refers to the capacity to articulate or
justify the behavior of a model, focusing on methods that explain a model’s decisions
after they are made.

Another important concept in the area is Interpretability, which can be defined as "the
degree to which a human can understand the cause of a decision" by Miller, 2018. In this
case, however, a model’s decision is understandable entirely by its inherent transparency. In
other terms, the model is simple enough to be interpretable by a human directly, without
the use of external techniques.

Models with low complexity whose decisions are understandable by humans are
defined as Interpretable Models. Linear Regression, Logistic Regression and Decision Tree
models are examples of models classified as Interpretable Models. Now, models with a level
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of complexity that prevents humans from directly understanding their decision-making
processes are referred to as Explainable Models. Recently popular Deep Learning Models

are one kind of Explainable Models and will be the main focus of this essay, especially
Deep Convolutional Neural Networks, explored in section 1.3.

1.1.2 Why Explainable AI is Necessary
Creating explanations to a model’s decisions can yield many advantages, including

more ethical and fair decisions, correctly following regulatory compliances and easier
model debugging.

To ensure ethical and fair decision-making, Machine Learning systems must provide
justifiable decisions, as they often exploit discriminatory patterns to enhance accuracy,
which can perpetuate harmful biases. For instance, the COMPAS algorithm, used in U.S.
courts to assess recidivism risk, was analyzed by ProPublica1and found to exhibit significant
bias against Black defendants, frequently overestimating their likelihood of reoffending
compared to their actual risk.

Explainable AI (XAI) is sometimes a mandatory requirement, particularly under reg-
ulations like the United Kingdom’s General Data Protection Regulation (GDPR). The
GDPR mandates that organizations must provide clear and understandable explanations
for decisions that significantly impact individuals, especially those made by automated
systems commonly powered by Machine Learning algorithms. Without XAI, high-stakes
decisions cannot leverage such models in the United Kingdom, highlighting the crucial
role of explainability in enabling the broader adoption of Machine Learning for real-world
applications while ensuring compliance and fairness.

When debugging Machine Learning models, their behavior can often be unpredictable,
revealing biases that may not have been initially apparent to humans. These biases can
result in high performance on training, validation, or even test datasets but lead to poor
performance in real-world deployment. For instance, consider training an image classifier
to differentiate between dog and cat images. The model may achieve impressive accuracy on
images of dogs in green fields. However, upon examining the regions of the image the model
relies on for its predictions, researchers might discover that it focuses on the background
rather than the animals themselves. This happens because dog owners are more likely to
photograph their pets outdoors, leading to an unintended association between dogs and
green backgrounds. Techniques from Explainable AI, such as Grad-CAM (Selvaraju et al.,
2019) and Gradient Saliency methods, enable researchers to visualize these image regions,
providing critical insights into model behavior and helping to address such biases.

1.2 Gradient Descent
Let 𝑓 ∶ 𝐴 → 𝐵 where 𝐴 ⊆ ℝ

𝑛 for 𝑛 ∈ ℕ and 𝐵 ⊆ ℝ
+. Suppose we want to find the

solution to the optimization problem

1
"How We Analyzed the COMPAS Recidivism Algorithm", by ProPublica: https://www.propublica.org/article/how-

we-analyzed-the-compas-recidivism-algorithm
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argmin

𝑥∈𝐴

𝑓 (𝑥) (1.1)

when 𝜕𝑓

𝜕𝑥
is known for any value of 𝑥 . Considering that the vector 𝜕𝑓

𝜕𝑥
points to the

direction of the steepest ascent of the function, the vector −𝜕𝑓

𝜕𝑥
will point to the steepest

descent from the given point 𝑥 . Therefore, one can define an initial random value for 𝑥
and update 𝑥 using −

𝜕𝑓

𝜕𝑥
and a scaling factor 𝜂 in order to find a local minimum of 𝑓 and

an approximation to the solution of given optimization problem.

We can define such method using the following formula, where 𝑥𝑡 represents the value
of 𝑥 at iteration 𝑡 of the algorithm:

𝑥𝑡+1 = 𝑥𝑡 − 𝜂

𝜕𝑓 (𝑥𝑡)

𝜕𝑥𝑡

. (1.2)

The term 𝜂 is often called the learning rate used in the Gradient Descent method and
is often defined manually by the user.

The Gradient Descent method can be used to optimize a neural network’s parameters
to solve a given problem using a loss function.

1.3 Neural Networks
Neural Networks are proven to be universal approximators (Hornik et al., 1989). That

means that Neural Networks are Machine Learning models capable of representing any
continuous function, therefore making Neural networks adept at modeling a range of
different complex problems. This class of models have seen a growing presence across both
academic and industry landscapes. However, given the architecture of multiple hidden
layers of Neural Networks creating complex internal patterns, such models are classified
as Explainable Models.

In this section, the inner workings of Neural Networks will be explained, starting with
the Perceptron, considered the fundamental building block of Neural Networks.

1.3.1 Perceptron
A Perceptron is a Machine Learning model inspired by how biological neurons work.

It is a simple binary linear classifier that defines its parameters by linear combinations of
points in the dataset. The Perceptron model can be described by Figure 1.1.
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Figure 1.1: Perceptron Architecture. Font: Towards Data Science2
.

Where the weights 𝑤𝑖 for 𝑖 ∈ {0, 1,⋯ , 𝑛} are trainable parameters and the step function
can be defined as 𝜎∶ ℝ → {0, 1} such that

𝜎(𝑥) =

{

1 if 𝑥 ≥ 0

0 if 𝑥 < 0.

(1.3)

Therefore, the Perceptron model can be defined as the function3
𝑓 ∶ ℝ

𝑛
→ {0, 1}where

𝑓 (𝑥) = 𝜎(𝑤0 +

𝑛

∑

𝑖=1

𝑤𝑖𝑥𝑖). (1.4)

The Perceptron model updates its parameters using each sample (𝑥, 𝑦) of the dataset
with the rule

𝑤
𝑡+1

𝑖
= 𝑤

𝑡

𝑖
+ 𝜂 (𝑦 − 𝑓 (𝑥))𝑥𝑖 (1.5)

for 𝑖 ∈ {1,⋯ , 𝑛} and

𝑤
𝑡+1

0
= 𝑤

𝑡

0
+ 𝜂 (𝑦 − 𝑓 (𝑥)), (1.6)

where 𝜂 is the learning rate hyperparameter and 𝑡 is the update iteration number.

As a linear model, the Perceptron can only model linear problems, which only repre-
sent a small subset of real world problems. As a solution, researchers started combining
Perceptrons in a layered structure, called Multilayer Perceptron, also famously known
as Neural Networks.

2 https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
3 The independent term 𝑤0 is usually called the bias of the Perceptron (or neuron)



1.3 | NEURAL NETWORKS

5

1.3.2 Multilayer Perceptron (MLP)
By stacking multiple Perceptrons into multiple layers, one can build more complex deci-

sion boundaries and model more complex functions. For example, by using the Multilayer
Perceptron, one can model a XOR function:

Figure 1.2: The XOR Problem.

The XOR problem can not be solved by using a single Perceptron, since it is not a linear
problem. However, by using two Perceptrons (which corresponds to the two lines in the
figure), one can model the non-linear XOR problem. In this specific example, one can define
the uppermost line as the decision boundary of the Perceptron 𝑓1(𝑥) = 𝜎(−𝑥1 − 𝑥2 + 1.5)

and the lowermost line as the decision boundary of the Perceptron 𝑓2(𝑥) = 𝜎(𝑥1+ 𝑥2−0.5).
Considering the Perceptrons 𝑓1 and 𝑓2, we can create a new Perceptron that receives the
outputs of those Perceptrons and returns the result of the XOR function. For example, we
can define the Perceptron 𝑔(𝑥) = 𝜎(𝑥1 + 𝑥2 − 1.5), generating the following results:

𝑥1 𝑥2 𝑓1(𝑥) 𝑓2(𝑥) 𝑔(𝑓1(𝑥), 𝑓2(𝑥))

0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 0

Table 1.1: Perceptron output for binary combinations of 𝑥1 and 𝑥2.

Showing that the non-linear problem can be successfully be solved by the Multilayer
Perceptron.

Although the Multilayer Perceptron has the perk of being able to model complex
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functions, we are still limited by how to model is trained, since it cannot be trained by
using the update rule of the traditional Perceptron.

By using a technique known as Backpropagation, the Multilayer Perceptron can be
trained using gradient-based update rules, like the Gradient Descent.

1.3.3 Backpropagation
In order to find the weight’s gradients of our MLP, one can use Backpropagation, a

technique that involves computing those gradients by performing a Forward Pass and a
Backward Pass on the Neural Network.

Forward Pass

The Forward Pass basically consists in computing the input through the network and
comparing the output with the expected value using a loss function . During the forward
pass, the output of each layer is stored in memory to be later used in the Backward Pass.

Backward Pass

In the Backward Pass, the gradients of the loss with respect to the weights are calculated
to update the network. By using the chain rule, one can start off by calculating the gradients
of the last layer of the network, and then use the result to calculate the gradients of the
weights of the previous layer, going on the opposite direction of the Forward Pass.

Updating Weights

With the gradients of the loss with respect to the weights calculated, now the weights
are updated in an iterative process, until a satisfiable loss/accuracy is achieved or new
model/dataset tunning is necessary.

1.4 Convolutional Neural Networks

1.4.1 Convolutions
First, it is important to define what a convolution is. Given two discrete one-dimensional

signals 𝑓 and 𝑔 , their convolution 𝑓 ∗ 𝑔 is defined as:

(𝑓 ∗ 𝑔)[𝑛] =

+∞

∑

𝑖=−∞

𝑓 [𝑛]𝑔[𝑛 − 𝑖]

Given two discrete two-dimensional signals 𝑓 and 𝑔 , their convolution 𝑓 ∗ 𝑔 is
calculated as:

(𝑓 ∗ 𝑔)[𝑚][𝑛] =

+∞

∑

𝑖=−∞

+∞

∑

𝑗=−∞

𝑓 [𝑚][𝑛] ⋅ 𝑔[𝑚 − 𝑖][𝑛 − 𝑗]



1.4 | CONVOLUTIONAL NEURAL NETWORKS

7

In practice, the signal 𝑔 is represented by a window (or kernel), usually square and of
odd size. Thus, we can abstract convolution as the multiplication of a sliding window. The
picture below illustrates this process. It is important to note that the window needs to be
flipped during the convolution, although this is not illustrated in the picture.

Figure 1.3: 2D Convolution.
4

This process can be used to apply different filters to images. For example: using a 3 × 3

window with all weights equal to 1

9
, we can generate a filter that blurs the image (moving

average). Below is an example of applying this filter:

Figure 1.4: Filtered Image (3x3 Mean Filter).
5

It is also important to note that convolution is commonly implemented in machine
learning contexts as "cross-correlation," which is a very similar operation but without the
flipping of the window. Note that, since the weights are learned in our case, there is no
difference. Therefore, in our context, convolution and cross-correlation are synonymous.

A pertinent question that can be asked is what happens at the edges of the image.
When the window is sliding over them, what happens to the missing pixels? The process
of filling in these pixels is called padding. Padding can be done with zeros, the nearest
pixel, or not be done at all. Note that when there is no padding, the image decreases in
size after convolution.

Another important hyperparameter that can be adjusted is the "stride." This defines
how many positions the window is moved at a time. That is: a stride value different from
1 also implies a decrease in image size after convolution.

4 Source: https://www.geeksforgeeks.org/apply-a-2d-convolution-operation-in-pytorch/
5 Source: https://jeheonpark93.medium.com/vc-convolution-based-image-denoising-sharpening-

332bbe6293ff
6 Source: https://en.wikipedia.org/wiki/Cross-correlation
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Figure 1.5: Comparison with Cross-Correlation.
6

1.4.2 Convolutional Layer
In order to understand the need for convolutional networks, we have to understand

why it’s impractical to use fully-connected networks to process images. Let’s walk though
an example to see that.

Consider a color image with dimensions 512x512. If we were to process this image with
a conventional neural network, the input layer would have 3 ⋅512 ⋅512 = 786432 dimensions.
Assume a hidden layer with only 128 neurons (which is relatively small). Just between
these two layers, there would be 100663296 parameters! This is highly inefficient.

The solution to this problem is to extract features from the image, which will serve
as input to the network. These features could include various aspects such as symmetry,
black levels, contrast, presence or absence of patterns, etc. All of these features will serve
as input to the network. As a result, we can reduce the input layer’s dimensionality from
several hundred thousand to just a few dozen.

However, a challenge still remains: how do we select these features? We can apply
convolutions to the image to calculate interesting features, and these convolutions can
be learned alongside the rest of the network! It is important to understand some essen-
tial details about these networks before proceeding. Each convolutional layer has three
dimensions: height, width, and the number of channels. The input layer typically has one
channel for black and white images, or three channels for color images.

Each channel in each convolutional layer combines all the channels from the previous
layer. In other words, the "windows" used have weights for all the channels. These windows
slide over the data from the previous layer to generate one channel in the next layer.

Let us consider an example. Suppose we have a network that processes color images of
size 128 × 128 pixels. This network has 3 convolutional layers with 16, 32, and 64 channels
per layer, respectively. Assume a window size of 3 for all layers. In this case, we have:

• First layer: window size is 3 × 3 × 3. With 16 output channels, we will have

16 ⋅ 3 ⋅ 3 ⋅ 3 = 432 parameters.



1.4 | CONVOLUTIONAL NEURAL NETWORKS

9

• Second layer: window size is 3 × 3 × 16. With 32 output channels, we will have

32 ⋅ 3 ⋅ 3 ⋅ 16 = 4608 parameters.

• Third layer: window size is 3 × 3 × 32. With 64 output channels, we will have

64 ⋅ 3 ⋅ 3 ⋅ 32 = 18432 parameters.

Another important detail is the output dimension of each layer. This depends on
whether or not padding is used. Padding refers to how the layer behaves at the image
edges. We can complete the image with zeros, the nearest pixel value, or the pixel value
from the opposite edge of the image. If padding is not used, the output dimensions will
decrease by 2⌊

𝑊

2
⌋, where 𝑊 is the window size. For instance, with a window size of 3,

each layer will reduce the image size by 2 pixels. If the input is 128 × 128, the output of the
first layer will be 126 × 126, the second layer will output 124 × 124, and so on.

1.4.3 Pooling
Remember, each convolution extracts a feature from the image. Therefore, when we

perform another convolution using the outputs from the previous layer, we are combining
features extracted from the image to compute new features. As a result, deeper layers
extract more complex features from the image. For instance, the first layer may extract
features like the presence of vertical straight lines, while the tenth layer may extract
features like "presence of dog snouts."

Thus, the features involved gradually become less localized and more global (pertaining
to the entire image). This is why it is useful to summarize information into smaller
dimensions as the network deepens.

To accomplish this, we use "pooling" layers. These layers work similarly to convolutions:
windows slide over the data and compute an output based on nearby pixels. However,
this time, a function is used to aggregate these data. Common functions include "max"
(maximum value) and "avg" (average value).

Figure 1.6: Illustration of max pooling.
7
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1.4.4 Receptive Field
An important concept for understanding the power of deep convolutional networks

is the receptive fieldLe and Borji, 2017. This concept relates to the power that chained
convolutions have.

Consider an input image. Apply a 3 × 3 convolution to it. Now, apply another 3 × 3

convolution to the output of the first convolution. Observe this output image. How much
information does each pixel contain about its neighbors?

Figure 1.7: Illustration of receptive fields.
8

The answer is that each pixel contains information from a region of size 5 × 5 around
it! This is the receptive field of these neurons.

A common misconception is that, since the receptive field of two 3 × 3 convolutions is
5 × 5, two 3 × 3 convolutions have the same expressive power as a 5 × 5 convolution. This
is not true. A 5 × 5 convolution has 25 parameters, while two chained 3 × 3 convolutions
only have 18 parameters.

7 Source: https://nico-curti.github.io/NumPyNet/NumPyNet/layers/maxpool_layer.html
8 Source: https://medium.com/@rekalantar/receptive-fields-in-deep-convolutional-networks-43871d2ef2e9
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Local Interpretable Model-agnostic
Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) is a tool
used to visualize the importance of features on the result of a model’s prediction. A score
is given to each feature fed to the model, making it possible to understand a black-box
model’s decision based on its inputs.

In this chapter, we will discuss how LIME works, how can one use it on image clas-
sification models, we will present our implementation of the method and show some
experiments done using the technique.

2.1 How it Works
LIME works by training an interpretable model (1.1.1) to mock the complex black-box

model over a region of the model’s domain. The underlying idea is that while the model’s
decision boundary across the entire domain may be complex, it tends to be simpler within
smaller, localized regions.

Figure 2.1: Smaller regions of model’s decion boundary tend to have simple, linear behaviour. Font:

C3.ai
1

1 https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/
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To train the interpretable model, a single sample is selected and small perturbations
are applied to that data point in order to create a dataset, consisting of the sample image
and its perturbations. Using the dataset, the interpretable model is trained by minimizing
the optimization problem bellow:

𝑔
∗
= argmin

𝑔 ∈ 𝐺

(𝑓 , 𝑔, 𝜋𝑥) + Ω(𝑔). (2.1)

Where 𝑔
∗ is the final trained interpretable model, 𝐺 is a set of interpretable models,

𝑓 is the black-box model, Ω is a function that maps a model’s complexity to a number,
with higher complexity yielding higher numbers (Used to penalize complexity in models
used to mock the black-box model), 𝜋𝑥 is a function to penalize samples in the dataset
"too far" from the original sample 𝑥 and  is a cost function to quantify the similarity
between the interpretable model’s decisions and the complex model’s decisions, defined
by the expression bellow:

(𝑓 , 𝑔, 𝜋𝑥) = ∑

𝑧,𝑧
′
∈ 𝑍

𝜋𝑥(𝑧)(𝑓 (𝑧) − 𝑔(𝑧
′
))

2
. (2.2)

Where𝑍 is the artificial dataset created from the sample, with datapoints 𝑧 - a point with
the original model’s features, and 𝑧

′, a data point that represents a transformation applied
to those features, like using a subset of inputs or attributes created by feature engineering.

The function 𝜋𝑥 can be defined arbitrarily, provided that it satisfies the condition
𝜋𝑥(𝑧) ∈ [0, 1] for all possible samples 𝑧 in the artificial dataset. It must also ensure that
𝜋𝑥(𝑥) = 1 for the original sample 𝑥 , with scores decreasing as data points move further
away from 𝑥 , while higher scores are assigned to points closer to 𝑥

With the interpretable model trained, one can analyze its structure to interpret the
complex model locally. For example, a Linear Regression model could be interpreted by
analyzing its weights. A positive weight value would mean that a feature had a positive
impact in the prediction made by the complex model, while a negative weight associated
to a feature would represent a negative impact to the model’s inference.

Because of the huge ammount of variables in a image classification task, directly using
an image consisting of hundreds of thousands of pixels in an interpretable model would
yield poor results, since analyzing each individual pixel’s contribution to a prediction is
not well aligned with a human interpretation of image features. In order to generate more
valuable results, a feature engineering technique will be proposed on the next section
to model LIME for Image classification tasks.

2.2 LIME on Image Models
In order to use image models on LIME, one must find a way to transform the features

into a more valuable and human-aligned metric. To achieve better results, instead of using
granular structures such as pixels, we can use segmentation algorithms to create superpixels

of images. A superpixel of an image is a set of pixels in a continuous region of the image.
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For example, the use of the quickshift segmentation algorithm would yield the following
superpixel configuration, where the yellow lines represent borders of superpixels:

(a) Original Image (b) Quickshift segmentation

Figure 2.2: Superpixel generation using Quickshift

To train a model using superpixels, a new dataset would be generated by selecting
specific superpixels while discarding others. Each data point in this dataset would consist
of the original image with certain superpixel regions removed. Below is an example of
images from this newly created dataset:

Figure 2.3: New dataset samples

These images would then be fed into a complex model to assess the significance of
each superpixel in the final prediction. Superpixels that play a more crucial role in the
model’s decision would cause a greater impact on its output.

The interpretable model would be trained using a binary vector 𝑣 ∈ {0, 1}
𝑛 as input,

where each element indicates the presence (1) or absence (0) of a superpixel in the sample,
with 𝑛 representing the total number of superpixels. The output of this interpretable model
would be the predicted probability of the desired class.

In the scenario where a Linear Regression model is used, each weight related to each
superpixel would represent its importance to the prediction of the desired class. A high
positive weight means that a superpixel positively impacts a probability value, meaning
that the portion of the image occupied by the superpixel represents valuable information
for the final prediction and should be aligned with the corresponding class, if the model
is well trained.
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An image explanation is shown in image 2.4 for the class "Golden Retriever", using
a VGG16 (Simonyan and Zisserman, 2015) model:

(a) Original Image (b) LIME Visualization of image

Figure 2.4: Visualization of top 15 most important superpixels for "Golden Retriever" ImageNet

(Russakovsky et al., 2015) Class in image

2.3 Implementation
Using the theory presented in previous sections, an implementation using Pytorch

for loading pretrained CNNs, Scikit-Learn for Linear models and Scikit-image for image
segmentation using Quickshift.

Our implementation focused on the VGG16 CNN trained on ImageNet (Russakovsky
et al., 2015), using a Linear Regression model for LIME explanations. We can load both
models with the code bellow:

1 from torchvision.models import vgg16, VGG16_Weights
2 from sklearn.linear_model import LinearRegression
3
4 model = vgg16(weights=VGG16_Weights.IMAGENET1K_V1)
5 interpretable_model = LinearRegression()

The VGG16 model can be seamlessly swapped with other models since LIME operates
as a black-box approach, focusing solely on inputs and outputs rather than the model’s
internal workings.

After the models are loaded, an image to be explained by LIME needs to be loaded.
In this example, the image "dog.jpg" will be loaded.

1 from PIL import Image
2 from torchvision.transforms import ToTensor
3
4 to_tensor = ToTensor()
5
6 image = Image.open("dog.jpg")
7 image = to_tensor(image)

https://pytorch.org/
https://scikit-learn.org/stable/
https://scikit-image.org/
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Next, we will generate the superpixels of the image using Quickshift, specifying values
for kernel_size, max_dist and ratio:

1 import torch
2 from skimage.segmentation import quickshift
3
4 superpixels = torch.tensor(quickshift(
5 image.numpy(),
6 kernel_size=kernel_size,
7 max_dist=max_dist,
8 ratio=ratio
9 ))

With the superpixel mask created, we will generate a new dataset to train our linear
model by modifying the original image, chosing a subset of the superpixel set per sample.

1 # create samples tensor
2 probability_full_tensor = torch.full((num_samples, num_superpixels),

probability)
3 samples = torch.bernoulli(probability_full_tensor).to(dtype=torch.int)
4
5 # create masks for image to create dataset
6
7 image_masks = []
8 for sample in samples:
9 sample_indexes = torch.nonzero(sample == 1, as_tuple=True)

10 mask = torch.isin(superpixels, torch.cat(sample_indexes))
11 image_masks.append(mask)
12
13 image_masks = torch.stack(image_masks)
14
15 # apply each mask to the image, creating a new image per mask
16 dataset = image.unsqueeze(0) * image_masks.unsqueeze(1).expand(-1, 3, -1, -1)

Now, we extract predictions of the model over each image in the dataset, using a
predefined class to visualize called explained_class:

1 model.eval()
2 with torch.no_grad(): # avoid gradient computation
3 predictions = model(dataset)[:, explained_class]
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As the final step before training the interpretable model, we compute the distance of
each sample in the new dataset from the original image. This ensures that the linear model
training accounts for the variation between the original image and its modified versions.

1 cosine_similarity_evaluator = torch.nn.CosineSimilarity(dim=1)
2
3 full_ones_samples = torch.ones_like(samples).float()
4 cosine_similarity = cosine_similarity_evaluator(full_ones_samples, samples)
5
6 sample_weight = torch.sqrt(torch.exp(- cosine_similarity**2 / kernel_samples

**2))

Here, the sample weight function can be defined as the expression

sample_weight =

√

exp(cosine_similarity2/kernel_samples2) (2.3)

where cosine_similarity is the cosine similarity between the samples tensor and a
all-ones tensor and kernel_samples is a hyperparameter in the interval (0, 1).

Finally, the linear model can now be trained:

1 interpretable_model.fit(
2 X=samples,
3 y=predictions,
4 sample_weight=sample_weight
5 )

By extracting the interpretable model’s weights, we can find the most important
regions in the image:

1 from numpy import argsort
2
3 weights = interpretable_model.coef_
4 top_features = torch.tensor(argsort(coefs)[-num_selected_weights:]) # select

top "num_selected_weights" weights
5
6 masked_superpixels = torch.isin(superpixels, top_features)
7 visualization_image = image * masked_superpixels

Generating a LIME visualization for our desired image.
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2.4 Experiments
In this section, different hyperparameter configurations on different images using

LIME were explored. The experiments were conducted on the VGG16 CNN architecture
trained on ImageNet (Russakovsky et al., 2015). The Quickshift algorithm was used for
the images feature engineering. The distance function 𝜋𝑥 used in the experiments is the
same as the one used in 2.3.

We will examine instances where the complex model failed to predict the expected
class, as well as cases where it accurately identified the correct label.

2.4.1 Successful Predictions

(a) Original Image (b) Superpixel segmentation

Figure 2.5: Broom image with superpixel segmentation

(a) Top 5 Superpixels, Sampling

probability of 40% and distance

kernel of 0.5

(b) Top 10 Superpixels, Sampling

probability of 50% and distance

kernel of 0.5

(c) Top 15 Superpixels, Sampling

probability of 80% and distance

kernel of 1

Figure 2.6: Broom Visualizations with different hyperparameter configurations

(a) Original Image (b) Superpixel segmentation

Figure 2.7: Golden Retriever image with superpixel segmentation
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(a) Top 5 Superpixels, Sampling

probability of 40% and distance

kernel of 0.5

(b) Top 10 Superpixels, Sampling

probability of 60% and distance

kernel of 0.75

(c) Top 15 Superpixels, Sampling

probability of 80% and distance

kernel of 1

Figure 2.8: Golden Retriver Visualizations with different hyperparameter configurations

Our experiments confirm that the complex model aligns well with human judgment,
primarily focusing on highly distinctive features, such as the head of a broom and the
head and body of a Golden Retriever.

Hyperparameters can significantly influence the outcome of a LIME visualization. For
instance, in the broom example, one broom head appears in the Top 5 superpixels but is
absent from the Top 15 superpixels when using a different hyperparameter configuration.
The same goes for the dog’s visualization, with its frontal legs present in the Top 5 but
absent on the Top 15 of another hyperparameter configuration.

2.4.2 Failed Predictions

(a) Original Image (b) Superpixel segmentation

Figure 2.9: Sea Lion image with superpixel segmentation

(a) Top 5 Superpixels, Sampling

probability of 40% and distance

kernel of 0.5

(b) Top 10 Superpixels, Sampling

probability of 60% and distance

kernel of 0.75

(c) Top 15 Superpixels, Sampling

probability of 80% and distance

kernel of 1

Figure 2.10: Polar Bear Visualizations with different hyperparameter configurations (Expected: Sea

Lion)
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(a) Original Image (b) Superpixel segmentation

Figure 2.11: Peacock image with superpixel segmentation

(a) Top 5 Superpixels, Sampling

probability of 40% and distance

kernel of 0.5

(b) Top 10 Superpixels, Sampling

probability of 50% and distance

kernel of 0.75

(c) Top 15 Superpixels, Sampling

probability of 80% and distance

kernel of 0.75

Figure 2.12: Mosquito Net Visualizations with different hyperparameter configurations (Expected:

Peacock)

Analyzing the failed experiment cases reveals that the model may have misinter-
preted a peacock’s tail as a mosquito net. Additionally, in the sea lion image, the complex
model appears to focus on both the sea lion and the sandy ground, likely leading to a
misclassification due to the shared habitat of polar bears and sea lions.
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Chapter 3

GradCAM

3.1 Introduction

One of the most proeminent model-specific methods to acquire explanations for clas-
sification with CNNs is GradCAM. The intuition for the method is simple. At the last
conovlutional layers, we have several channels that represent each a different feature.
Those features are used by the next part of the network to produce the final output. If
we want to know which parts of the image are being more useful to the network, we
can look at the feature maps and observe which parts of the image are generating the
signal used by the rest of the network.

The problem with this approach is that the features have informations about all the
output classes. How we know what features are more important to the decision? The
idea behind GradCAM is to average the feature maps weighted by the gradient of
each channel with respect to a specific class.

However, this will still highlight the regions that have a negative influence to the
decision. To filter out those regions, the result is passed through ReLU. The result is a
coarse heatmap of the image highlighting important regions.

The formula for the heatmap with regard to the class 𝑐 is:

𝐻 = ReLU(∑
𝑘

𝛼
𝑐

𝑘
𝐴

𝑘
) (3.1)

Where 𝛼
𝑐

𝑘
, the weight of the 𝑘-th feature map for the class 𝑐, is defined as:

𝛼
𝑐

𝑘
=

1

𝑍

∑

𝑖

∑

𝑗

𝜕𝑦
𝑐

𝜕𝐴
𝑘

𝑖
𝑗

(3.2)

Where 𝐴
𝑘 is the 𝑘-th feature map, 𝑦𝑐 is the output for the 𝑐 class, and 𝑍 is the number

of neurons in each map.
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To visualize the process, we will use the ResNet-18 He et al., 2015 trained on the
ImageNet dataset, with the weights available at PyTorch. We will use as input two images
of airplanes.

Figure 3.1: Input images

The first step is to store the activations of the last convolutional layer of the network
for each of the images. For this network, we have 512 channels at the last layer.

Figure 3.2: Activations of last convolutional layer

The next step is to calculate the weight of each channel, according to eq:alpha. We
can then visualize the weights as a heatmap (each vertical line represents a channel):

Figure 3.3: Weight of each channel of the last convolutional layer

By calculating the average of the activations found at fig:actiovations weighted by ,
we can achieve a heatmap highlighting important regions of each image:
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Figure 3.4: Result of GradCAM

3.2 Guided Backpropagation
Guided Backprogation is one of the most proeminent way of creating saliency maps.

Following the same idea behind the application of the ReLU function at eq:heatmap,
we filter out negative gradients through the network, allowing the visualization of only
positive influences.

Figure 3.5: Results of Guided Backpropation

Figure 3.6: Results of Guided Backpropation



24

3 | GRADCAM

3.3 Guided GradCAM

The output of GradCAM has the dimensions of the last convolutional layer of the
network, and has to be upsampled to be overlayed on top of the input image. This results in
a very coarse heatmap, with rough borders and lost details. To solve this, we can multiply
(pixel by pixel) the heatmap with other simpler method, as guided-backpropagation.

Figure 3.7: Results of Guided GradCAM

3.4 Implementation

All these images were generated using the Python library Pytorch. The implementation
used a feature of the library called hooks. Hooks are functions that can be connected to the
network. Those hooks will be called either at the forward pass (for forward hooks), or at the
backward pass (for backward hooks). We used those hooks to register the activations and
the gradient at GradCAM, and to filter out negative gradients at Guided Backpropagation.

https://pytorch.org/
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Program 3.1 GradCAM Class

1 class GradCAM:
2
3 def __init__(self, model):
4 self.activations=None
5 self.gradients=None
6 self.model=model
7 self.model.eval()
8 def forward_hook(module, input, output):
9 self.activations = output

10
11 def backward_hook(module, input, output):
12 self.gradients = output[0]
13
14
15 model._modules['layer4'].register_forward_hook(forward_hook)
16 model._modules['layer4'].register_backward_hook(backward_hook)
17
18
19 def forward(self, im):
20 self.model.zero_grad()
21 output = self.model(im)
22 label = output.argmax().item()
23 output[0,label].backward()
24 alpha = self.gradients.squeeze(0).mean(dim=(1, 2))
25 print(categories_MNIST[label])
26 heatmap = (self.activations.squeeze(0) * alpha.view(-1, 1, 1)).sum(dim=0)
27 heatmap = transforms.Resize(im.shape[2:])(heatmap.unsqueeze(0))/heatmap.max

()
28 return (torch.clamp(heatmap, min=0).cpu(), categories_MNIST[label])
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Program 3.2 GradCAM Class

1
2
3 class GuidedBackPropagation:
4 def __init__(self, model):
5 self.activations=None
6 self.gradients=None
7 self.model=model
8 self.model.eval()
9

10 def backward_hook(module, input, output):
11 if isinstance(module, torch.nn.ReLU):
12 return (torch.clamp(input[0], min=0),)
13
14
15
16 for i, module in enumerate(model.modules()):
17 if isinstance(module, torch.nn.ReLU):
18 module.inplace = False
19 module.register_full_backward_hook(backward_hook)
20
21
22 def forward(self, im):
23 self.model.zero_grad()
24 output = self.model(im)
25 label = output.argmax().item()
26 print(label)
27 output[0,label].backward()
28 ret = im.grad.clone()
29 ret = ret.squeeze(0).sum(0)
30 ret = (ret - ret.min())/(ret.max() - ret.min())
31 return (ret.cpu(), categories_MNIST[label])

Following is an example of the utilization of those classes:
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Program 3.3 Utilization of the classes

1 from util import *
2 from GradCam import *
3 from glob import glob
4
5 model = torchvision.models.resnet18(weights=torchvision.models.

ResNet18_Weights.IMAGENET1K_V1).to(device).eval()
6 inp_trans = transforms.Compose([transforms.Resize(512), transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
0.225]),])

7 view_trans=transforms.Compose([transforms.Resize(512), transforms.ToTensor()])

8
9

10 files=glob('./imagens/*')
11 images=[Image.open(f) for f in files]
12 tensors = [inp_trans(im).unsqueeze(0).to(device) for im in images]
13 view_tensors = [view_trans(im).unsqueeze(0).to(device) for im in images]
14 print(len(tensors))
15
16 gr = GradCAM(model)
17 heatmaps=[gr.forward(tensor) for tensor in tensors]
18
19 gb = GuidedBackPropagation(model)
20 bp = [gb.forward(tensor.requires_grad_()) for tensor in tensors]

3.5 Experiments

In order to illustrate the usefulness of GradCAM, we conducted some experiments
inducing variations in the input image. Those variations were made in three ways: noise,
brightness and contrast. The GradCAM was calculated for the top class and the original
class.

Figure 3.8: Noise variation
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Figure 3.9: Brightness variation

Figure 3.10: Contrast variation

In the three figures, it’s possible to observe how the GradCAM outputs become dis-
persed as the image degrades. At the first experiment, for instance, the focus of the network
gets more dispersed as the noise increases. At the maximum level of noise, the GradCAM
outputs a heatmap focusing heavily on the ground and on the background.

The experiments also gives us some insights in what can be causing wrong outputs.
At the red fox experiment, at the last stage of the stage of degradation, the output is
"envelope". This seems absurd and completely nonsensical, but by examining the heatmap,
it’s clear that the network is being mislead by the vast amount of completely white regions
at the image.



29

Chapter 4

Feature Visualization

4.1 The Optimization Problem

Feature Visualization (Erhan et al., 2009) is a technique that involves maximizing
values of neurons, sets of neurons or even layers (Alexander Mordvintsev, 2015) of a
Neural Network in order to understand concepts learned by the model. By maximizing a
neuron’s value, we can better understand what set of features each part of our network is
learning to capture and verify if the network is aligned with human judgement. In simple
terms, Feature Visualization can be described by the following optimization problem:

img∗
= argmax

img
ℎ𝑛,𝑥,𝑦,𝑧(img) (4.1)

where ℎ represents the activation of a neuron, img is the input of the network, 𝑥 and 𝑦

represent the spatial position of the neuron, 𝑛 is the layer of the network and 𝑧 is the
channel index. This expressions represents the problem of maximizing a value of a single
neuron. For a set of neurons, the problem can be described as the formula:

img∗
= argmax

img
∑

(𝑛,𝑥,𝑦,𝑧) ∈ 𝐴

ℎ𝑛,𝑥,𝑦,𝑧(img) (4.2)

where 𝐴 ⊆ ℕ
4 is a set of combinations of network layer, channel index and spatial

position vectors.

In order to find a solution to the optimization problem, we can use the Gradient Descent
technique presented in Chapter 1. However, instead of minimizing an optimization problem,
we are looking for a solution that maximizes Equation 3.1 or Equation 3.2. Therefore, instead
of subtracting the partial derivative term of Equation 1.2 we just need to add the partial
derivative multiplied by the learning rate (We will call the technique Gradient Ascent).
Thus, the following formula is derived for Feature Visualization:
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img
𝑡+1

= img
𝑡
+ 𝜂∑

(𝑛,𝑥,𝑦,𝑧) ∈ 𝐴

𝜕ℎ𝑛,𝑥,𝑦,𝑧(img
𝑡
)

𝜕img
𝑡

(4.3)

where 𝑡 is the iteration 𝑡 of the algorithm.

The initial image img0 can be defined in two ways:

• A completely random initialization, with img0(𝑐, 𝑥, 𝑦) = 𝑈 [0, 1] for each channel 𝑐
and image spatial positions 𝑥 and 𝑦.

• A user defined image, normally a real world image.

The choice between these two approaches depends on the researcher’s ultimate objec-
tive when using the algorithm. Providing an initial non-random image allows researchers
to focus on specific features within the image and examine their effects on a particular
set of neurons. In contrast, using a random image may be better suited for discovering
unknown features.

Like most optimization problems, the Feature Visualization problem doesn’t strictly
have a single optimal solution, but rather multiple viable solutions that maximize the given
set of neurons. For example, a set of seemingly random images may activate a neuron fully
while at the same time an image of a cute dog may also activate this same neuron to its
maximum value. Directly applying Gradient Ascent to random images without additional
techniques often produces images that poorly align with human perception. This outcome
occurs not because human-aligned images fail to maximize the neuron’s value, but because
solutions comprising seemingly random pixels are closer to the image’s initial state.

(a) Original Image (b) Feature Visualization of

Convolution layer 10 of VGG16

(c) Feature Visualization of

Pug (ImageNet index 254)

neuron of VGG16

Figure 4.1: Feature Visualization images using solely Gradient Ascent. Little human-recognizable

features are present in the resulting images

To identify human-aligned features in our models, we need effective techniques for
generating images that closely correspond to those features. A closer examination reveals
that Feature Visualization using solely Gradient Ascent typically produces features that
occupy only small portions of the final image.

To expand these features across a larger area and create more intricate forms, we can
downscale the image and apply the Gradient Ascent step. Once the downscaled image has
been refined, it can be upscaled by a specific factor, and Gradient Ascent can be reapplied.
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Repeating this process until the image reaches its original size enables the generation of
more detailed and compelling results, as demonstrated below:

(a) Feature Visualization of Convolution layer 10

of VGG16

(b) Feature Visualization of Pug (ImageNet index

254) neuron of VGG16

Figure 4.2: By employing Gradient Ascent across multiple image scales, we achieve results that align

more closely with human perception. In Subfigure 4.2a, eye-like structures frequently emerge in the

generated images, while in Subfigure 4.2b, fur-like textures (top-left portion of image) reminiscent of a

Pug’s facial coat are present.

Some features aligned with human perception can now be visible by applying this
method on random images. However, high frequency noise is still very present in the
generated images, a feature not very common in real life pictures. In order to mitigate the
high frequency noise, we may apply regularization techniques to the random image on
every iteration of the Feature Visualization algorithm. For example, by applying Gaussian
Blur, high frequency regions are dimished because Gaussian blur is a low-pass filter.

(a) Feature Visualization of Convolution layer 10

of VGG16

(b) Feature Visualization of Pug (ImageNet index

254) neuron of VGG16

Figure 4.3: Feature Visualization images generated by applying Gaussian Blur besides multi-scale

Gradient Ascent. This technique applied on Layer 10 predictably yields an image with much lower

frequencies than 4.2a. Also, patterns like snouts or eyes are still present with round and circular

features. As for Subfigure 4.3b, pug-like faces are very present in the generated image, unlike what is

present in Subfigure 4.2b.
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By incorporating regularization, as shown in Figure 4.3, we generated more human-
aligned images with clearly recognizable features. Using the techniques found in this
section, an implementation will be proposed in the next section.

4.2 Implementation
Following the theory explored in the last section, an implementation in Python using

the library Pytorch will be proposed in this section.

For our experiments, we will use a VGG16 CNN architecture (Simonyan and Zisserman,
2015) trained on ImageNet (Russakovsky et al., 2015). The model is made available by the
library Torchvision. We can import the model with pretrained weights with the code bellow:

Program 4.1 Loading pretrained VGG16 model

1 from torchvision.models import vgg16, VGG16_Weights
2
3 model = vgg16(weights=VGG16_Weights.IMAGENET1K_V1)

Now, we need to define a way to track activations of certain layers or neurons of the
network in order optimize the Feature Visualization images. In Pytorch, we can define
Hooks, which will update every time a forward pass is executed in the network. In our
implementation, we defined the following Hook class to track activations:

Program 4.2 Hook Class

1 class Hook:
2 def __init__(self, model_layer: Sequential):
3 self.hook = model_layer.register_forward_hook(self.hook_fn)
4
5 def hook_fn(self, _, input: Tensor, output: Tensor):
6 self.input = input
7 self.output = output
8
9 def close(self):

10 self.hook.remove()

Where activations can be retrieved after each forward pass by checking the hook’s output:

Program 4.3 Hook Usage

1 model = vgg16(weights=VGG16_Weights.IMAGENET1K_V1)
2 hook = Hook(model.features[22])
3 model(image) # compute forward pass in model
4 activations = hook.output # retrieve model.features[22] activations

https://pytorch.org/
https://pytorch.org/vision/stable/index.html
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Using hooks, the Gradient Ascent step can now be implemented:

Program 4.4 Gradient Ascent Step with Normalization

1 def gradient_ascent_step(
2 image: torch.Tensor,
3 model: torch.nn.Module,
4 hook: Hook,
5 learning_rate: float
6 ) -> torch.Tensor:
7
8 blur = GaussianBlur(kernel_size=7, sigma=0.9)
9 image = blur(image)

10
11 image.requires_grad_()
12
13 model(image)
14 activations = hook.output
15
16 loss = (activations**2).sum()
17
18 loss.backward()
19 normalized_grad = (image.grad - image.grad.mean()) / image.grad.std()
20
21 image.grad.zero_()
22 image = image.detach()
23 image += learning_rate * normalized_grad
24
25 return image

The algorithm begins by applying a blur to the input image in lines 8 and 9 to regularize
the results, producing a smoother and less noisy output, as discussed in the previous
section. Next, gradient computation is enabled for the image in line 11, a necessary step
for handling PyTorch tensors. Following this, the activations in the layer are calculated
and aggregated into a single value in lines 13 to 16, which is then used to compute the
gradient. Finally, the gradient is computed in line 18, normalized in line 19, and the image
is updated in line 23, completing one step of Gradient Ascent.
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Now, we can compute Gradient Ascent through mulitple iterations with multiple image
scales, until we are satisfied with the results.

Program 4.5 Feature Visualization

1 def feature_visualization(
2 image: torch.Tensor,
3 model: torch.nn.Module,
4 model_layer: torch.nn.Module,
5 pyramid_levels: int,
6 growth_rate: float,
7 steps: int,
8 learning_rate: float
9 ) -> torch.Tensor:

10
11 resizer = Resizer(pyramid_levels, image)
12
13 hook = Hook(model_layer, backward=False)
14
15 for pyramid_level in range(pyramid_levels):
16 image = resizer.resize(image, pyramid_level)
17
18 for _ in range(steps):
19 image = gradient_ascent_step(image, model, hook, learning_rate)
20
21 image = image.clamp(0, 1)
22 return image

In simple terms, we create an Resizer object responsible to rescale the image on every
step of the outer for loop (line 16). Then, we bind the hook to the desired model layer
in line 13 and process the image for each image size computed in line 16 and for the
desired amount of Gradient Ascent steps for each iteration. After the process, the image is
clamped back to the interval [0, 1], since the Gradient Ascent steps can bring the generated
image pixels out of the interval.

4.3 Experiments

In this section, we present a series of experiments conducted to evaluate and demon-
strate the effectiveness of feature visualization techniques. These experiments are designed
to highlight the interpretability of the learned features in deep neural networks, analyze
their behavior across different layers and architectures, and explore their potential appli-
cations. Through these experiments, we aim to provide both qualitative and quantitative
insights into the representational power and limitations of feature visualization.

The experiments in this section are performed using the VGG16 convolutional neural
network (CNN) architecture, pre-trained on the ImageNet dataset. The hyperparameters
will be carefully optimized to produce results that closely align with human interpretability
and understanding.
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4.3.1 Layer-Wise Visualization
To create feature visualization images that capture the most significant features of an

entire layer, we compute the gradient of the sum of all neuron activations within that
layer. This approach highlights the collective importance of features across the layer. As
an initial example, feature visualization images were generated for Layer 10 of the VGG16
architecture, as shown in Figures 4.2a and 4.3a. Next, we will extend this exploration to
various layers of the network to analyze how features evolve throughout the architecture.

Initial Layers (1-5)

(a) No Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

Figure 4.4: Layer 1

(a) No Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

Figure 4.5: Layer 3
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(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.22

(b) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.08

Figure 4.6: Layer 5

Intuitively, the initial layers of a CNN capture more simple features from images, like
edges and simple formats. By analyzing the generated images, one can clearly notice the
complexity enhancement throughout the layers of the network. For layer 1 (Figure 4.4),
the generated images mainly focus on maximizing a color value similar to blue, probably
correlated to the color distribution of the images on ImageNet. However, in layers 3 (Figure
4.5) and 5 (Figure 4.6) some patterns are already noticeable in the figures, with patterns
similar to lines and curves being created.

Intermediary Layers (6-9)

(a) No Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.22

Figure 4.7: Layer 6
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(a) No Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.22

Figure 4.8: Layer 8

(a) No Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(c) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

Figure 4.9: Layer 9

From our experiments, we can observe that complex features emerge from intermediary
layers, with eye-like patterns appearing in Figures 4.8 and 4.9, probably related to the
huge amount of animal pictures in the training dataset. Also, curves and circles are way
more present in this layer range, showing that the network learned throughout its layers
to maximize its activation to more curvy patterns, since real life pictures tend to have
less linear line segments.

Final Layers (10-13)

(a) 4 Layer Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(b) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

Figure 4.10: Layer 10
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(a) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.22

(d) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(e) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

Figure 4.11: Layer 12

(a) No Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.4

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.08

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

Figure 4.12: Layer 13

On the final layers of the network, it is possible to see that not only complex shapes
are being generated but complete forms that appear like animals are also present. For
example, in Figure 4.11, in image (d), a pattern very close to a dog’s muzzle is present
close to the center of the image. Also, for image (c) in the same layer, patterns like birds
faces are also recognizable in the picture.

4.3.2 Class Visualization
By maximizing the activation of a neuron corresponding to a specific class, we can

generate images that visually represent the model’s understanding of each class. This
approach helps assess whether the model accurately captures the defining characteristics of
each class, rather than relying on unrelated noisy biases potentially present in the dataset.

An initial example of this technique is illustrated in Figures 4.2b and 4.3b. Next, we
will examine various classes using different hyperparameter configurations to explore
the method further.
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Class 1 - Goldfish

(a) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.13: Goldfish Class Feature Visualization for VGG16

It is possible to notice in the generated images the characteristic orange color of
Goldfishes, followed by eye-like shapes and patterns similar to a fish’s scales.

Class 33 - Turtle

(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

Figure 4.14: Turtle Class Feature Visualization for VGG16

The generated images feature the distinctive skin patterns of a turtle, but no recog-
nizable turtle face is visible.
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Class 77 - Spider

(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

(d) 6 Layer Multiscaling, No Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.15: Spider Class Feature Visualization for VGG16

A spider’s complete anatomy is visible throughout the generated images, with the
arachnid’s hairy limbs clearly visible at different angles.
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Class 207 - Golder Retriever

(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.07

Figure 4.16: Golden Retriever Class Feature Visualization for VGG16

The generated images predominantly feature fur patterns and facial details of a golden
retriever, with image (b) displaying a structure resembling a complete golden retriever
face on the left.

Class 254 - Pug

(a) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.08

Figure 4.17: Pug Class Feature Visualization for VGG16

The generated images exhibit certain facial features of a Pug, including patterns that
resemble its distinctive eyes and skin.

Class 761 - Remote Control

(a) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

Figure 4.18: Remote Controller Class Feature Visualization for VGG16
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The generated images do not strongly align with a human’s typical perception of a
remote controller. However, the convex shape with round patterns visible in image (c)
might bear some resemblance to a remote controller.

Class 771 - Safe

(a) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.19: Safe Class Feature Visualization for VGG16

Image (a) appears to have structures very similar to a safe, with a shape close to a
square with a circle inside. The generated images feature multiple straight lines and circular
patterns, which are also found in the structures of safes.

Class 783 - Screw

(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 4 Layer Multiscaling, No

Blurring, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.20: Screw Class Feature Visualization for VGG16

Patterns very closely related to screws are present in the generated images, with screws
in multiple positions and angles present in the generated content.
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Class 817 - Sports Car

(a) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.08

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.21: Sports Car Class Feature Visualization for VGG16

Circles similar to wheels are present in the generated images, but not much resemblance
is noticeable in the examples.

Class 883 - Vase

(a) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.04

(c) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.08

Figure 4.22: Vase Class Feature Visualization for VGG16

The sinuous shapes present in the images are very similar to a vase’s structure. It is
possible to notice that the characteristic curve is present in multiple parts of the images.
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Class 963 - Pizza

(a) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1

(b) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.01

(c) 4 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

(d) 6 Layer Multiscaling, Blurring,

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.09

Figure 4.23: Pizza Class Feature Visualization for VGG16

The images feature patterns reminiscent of melted cheese on a pizza, along with circular
structures that evoke the classic pizza shape.

4.3.3 Feature Visualization in Non-Random Initial Images
Feature visualization techniques can also be applied to images with non-random

initial states. By leveraging the methods discussed in this chapter, it becomes possible to
create visuals that appear as if they were pulled directly from a dream.1 The following
examples showcase images generated using this technique, illustrating its ability to produce
dreamlike and surreal visuals.

1 The idea of applying Feature Visualization to Non-Random Initial images became popular by a program
called DeepDream (Alexander Mordvintsev, 2015), created by Google
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(a) Original Image (b) Feature Visualization of Image with Layer 11

Figure 4.24: Christ the Redeemer

(a) Original Image (b) Feature Visualization of Image with Layer 11

Figure 4.25: IME-USP
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(a) Original Image (b) Feature Visualization of Image with Layer 11

Figure 4.26: Mona Lisa

(a) Original Image (b) Feature Visualization of Image with Layer 11

Figure 4.27: The Great Wave off Kanagawa

These transformations reveal how deep networks reinterpret complex imagery, yielding
novel insights into their internal representations. For example, despite the dreamlike
alterations, the Mona Lisa’s face retained a human-like structure, with recognizable eyes,
nose, and mouth still present in the resulting image. This persistence could potentially
be correlated with the model’s generalization capability, suggesting that it has learned to
consistently represent facial structures across different contexts. Such findings highlight
both the creative and analytical potential of modern deep learning systems.
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Chapter 5

Final Considerations

In this capstone project, various techniques for enhancing the interpretability of
Convolutional Neural Networks (CNNs) were explored, including LIME, Grad-CAM, and
Feature Visualization.

These methods have proven to be valuable tools for understanding different aspects
of a model’s decision-making process. LIME and Grad-CAM facilitate the visualization
of how a model justifies its predictions by highlighting the most influential regions of
an input. Meanwhile, Feature Visualization provides deeper insights into how individual
neurons and layers respond to distinct patterns in the input data, revealing the hierarchical
representations learned by the model.

Our experiments indicate that Grad-CAM is more effective than LIME for visualizing
model explanations. Grad-CAM produces a continuous heatmap over the pixels of an
image, whereas LIME generates only binary masks over the original image. Addition-
ally, LIME requires extensive hyperparameter tuning, while Grad-CAM operates without
hyperparameter adjustments, making it a more practical choice in many scenarios.

The experiments further demonstrated that Feature Visualization provides meaningful
insights into how different layers and class neurons process information, revealing the
inner workings of the CNN.

In conclusion, this study contributes to a better understanding of XAI methods in
CNNs, offering practical insights into the strengths and limitations of LIME, Grad-CAM,
and Feature Visualization in model interpretability.
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