Linearly approximating Neural Networks to formally verify its properties

Final goal

Represent a neural network as a logical formula in order to formally verify and explain certain properties

One way to try and desmistify the *black box* nature of neural networks

Lukasiewicz Logic

Understanding the problem

Neural Networks

Segmented Regression

McNaughton's Theorem

Lukasiewicz Logic

Extension of Classical Propositional Logic

Tries to capture the concept of "half truths"

Variables can be evaluated to any number in [0, 1]

$$= \min(1, 1 - v(\alpha) + v(\beta))$$
$$v(\neg \alpha) = 1 - v(\alpha)$$

 $v(\alpha \rightarrow \beta)$

Understanding the problem

Neural Networks

Segmented Regression

Lukasiewicz Logic

McNaughton's Theorem

McNaughton's Theorem

Definition 9. A McNaughton function is a function $f : [0,1]^n \rightarrow [0,1]$ such that

 $f(x_1, x_2, \dots, x_n) = min(max(0, b + m_1x_1 + m_2x_2 + \dots + m_nx_n), 1)$

where b and m_i are integers.

Theorem 1. For any function $f: [0,1]^n \to [0,1]$

 $f(x_1, x_2, ..., x_n) = min(max(0, b + m_1x_1 + m_2x_2 + ... + m_nx_n), 1),$

there is a logical formula $S(p_1, p_2, ..., p_n)$ in Lukasiewicz Logic, such that v(S) = f, where p_i are sentential variables such that $v(p_i) = x_i$.

Known Result

Rational McNaughton functions can approximate any continuous function

One problem

Rational McNaughton functions can approximate any continuous function

Rational McNaughton functions can approximate any continuous function

But McNaughton's theorem speaks only of functions with integer coefficients

Understanding the problem

Neural Networks

Segmented Regression

Lukasiewicz Logic

McNaughton's Theorem

Modulo Satisfability

Modulo satisfability is way to represent rational McNaughton functions with Lukasiewicz Logic

Define a valuation function for the formula ϕ as a function that satisfies all formulas in a set Φ

$\langle \varphi, \Phi \rangle = \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle$

$$\begin{split} \langle \varphi, \Phi \rangle &= \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle \\ v(\Phi) &= v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}}) \end{split}$$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

 $\langle \varphi, \Phi \rangle = \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle$ $v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1)Z_{\frac{1}{d}})$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})|$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

 $\langle \varphi, \Phi \rangle = \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle$ $v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1)Z_{\frac{1}{d}})$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})|$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - [1 - (d - 1)v(Z_{\frac{1}{d}})]|$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

$$\begin{split} \langle \varphi, \Phi \rangle &= \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle \\ v(\Phi) &= v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}}) \\ v(\Phi) &= 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})| \\ v(\Phi) &= 1 - |v(Z_{\frac{1}{d}}) - [1 - (d-1)v(Z_{\frac{1}{d}})]| \\ v(\Phi) &= 1 - |v(Z_{\frac{1}{d}}) - 1 + (d-1)v(Z_{\frac{1}{d}})| \end{split}$$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

 $\langle \varphi, \Phi \rangle = \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle$ $v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1)Z_{\frac{1}{d}})$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})|$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - [1 - (d - 1)v(Z_{\frac{1}{d}})]|$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + (d - 1)v(Z_{\frac{1}{d}})|$ $v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})|$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

$$\begin{split} \langle \varphi, \Phi \rangle &= \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle \\ &\quad v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}}) \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - [1 - (d-1)v(Z_{\frac{1}{d}})]| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + (d-1)v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ \end{split}$$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

$$\begin{split} \langle \varphi, \Phi \rangle &= \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle \\ &\quad v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}}) \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - [1 - (d-1)v(Z_{\frac{1}{d}})]| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + (d-1)v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) = 0 \\ &\quad -1 + dv(Z_{\frac{1}{d}}) = 0 \Longleftrightarrow dv(Z_{\frac{1}{d}}) = 1 \end{split}$$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

$$\begin{split} \langle \varphi, \Phi \rangle &= \left\langle Z_{\frac{1}{d}}, \left\{ Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}} \right\} \right\rangle \\ &\quad v(\Phi) = v(Z_{\frac{1}{d}} \leftrightarrow \neg (d-1) Z_{\frac{1}{d}}) \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - (d-1)v(\neg Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - [1 - (d-1)v(Z_{\frac{1}{d}})]| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + (d-1)v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |v(Z_{\frac{1}{d}}) - 1 + dv(Z_{\frac{1}{d}}) - v(Z_{\frac{1}{d}})| \\ &\quad v(\Phi) = 1 - |-1 + dv(Z_{\frac{1}{d}})| \Longrightarrow -1 + dv(Z_{\frac{1}{d}}) = 0 \\ &\quad -1 + dv(Z_{\frac{1}{d}}) = 0 \Longleftrightarrow dv(Z_{\frac{1}{d}}) = 1 \\ &\quad v(Z_{\frac{1}{d}}) = \frac{1}{d} \end{split}$$

$$egin{aligned} v(lpha \leftrightarrow eta) &= 1 - |v(lpha) - v(eta)| \ v(
eg lpha) &= 1 - v(lpha) \ v(\Phi) &= 1 \end{aligned}$$

Understanding the problem

Neural Networks

Segmented Regression

Lukasiewicz Logic

McNaughton's Theorem

Neural Networks

Can approximate any continuous function by generating a continuous function

Understanding the problem

Neural Networks

Segmented Regression

Lukasiewicz Logic

McNaughton's Theorem

Segmented Regression

Use an algorithm based on Dynammic programming to obtain the hyperplanes that best fit subsets of the input points

Figure 3.1: Continuous one-variable function approximated by rational McNaughton functions

Algorithm for segmented regression

Algorithm 2 Segmented Regression by Dynamic Programming

Input

- Data matrix of points sampled Х
- V
- Cost for creating a segment C

Output

Cost for creating the optimal piecewise linear function

 $OPT[0] \leftarrow 0$

for $j \in \{1, ..., N\}$ do

for $i \in \{1, ..., j\}$ do end for end for

for $j \in \{1, ..., N\}$ do $OPT[j] = min_{i < j}(err(i, j) + OPT[i - 1] + C)$ end for return OPT[n]

Data matrix of outputs of the f evaluated on X

 $err(i, j) \leftarrow$ least square error for indices in the interval $\{i, i + 1, ..., j\}$

Understanding the problem

Neural Networks

Segmented Regression

Lukasiewicz Logic

McNaughton's Theorem

Putting it all together

Train a neural net Approximate the network via segmented regression

Represent the function as a logical formula

Verify properties of the network

Experiments on Neural Networks

XOR Network

Digression I: Simplex Division

Partition the domain in mulitple pieces each one being a simplex in a way such that they cover the whole space

 $000 \rightarrow 100 \rightarrow 101 \rightarrow 111$

 $000 \rightarrow 010 \rightarrow 011 \rightarrow 111$

 $000 \rightarrow 001 \rightarrow 011 \rightarrow 111$

Simplex Division to force continuity

1						
-						
0.5						
0.0						
0			0	.5		

Simplex Division to force continuity

1						
		\setminus				
		\setminus				
0.5						
				\setminus		
0			0	.5		
						-

Simplex Division to force continuity

1						
0.5						
0			0	.5		

Digression II: Order matters

X1: sorting by the first coordinate x_1 ; **C**: sorting based on values $c = x_1 - x_2$.

Accessibility

Verify if the network reaches a certain state/value

Accesibility						
Parameters	Result					
$\pi = 0.1$	 Image: A second s					
$\pi = 0.2$	 Image: A second s					
$\pi = 0.3$	 Image: A second s					
$\pi = 0.4$	 Image: A second s					
$\pi = 0.5$	<					
$\pi = 0.6$	 Image: A second s					
$\pi = 0.7$	 					
$\pi = 0.8$	 Image: A second s					
$\pi = 0.9$	 Image: A second s					

Robustness

Verify how much the value of a neural network if affected by a "small" perturbation

Robustness						
Result						
 						
 Image: A second s						
-						
X						
X						
×						
×						

Conclusions and future work

I. Discontinuity

III. Other ideas

II. Order matters