
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

A study on linear piece wise
approximation of Neural Networks

João Felipe Lobo Pevidor

Final Essay

mac 499 — Capstone Project

Supervisor: Prof. Dr. Marcelo Finger

Co-supervisor: Dr. Sandro Márcio da Silva Preto

São Paulo

2022



The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/


Resumo

João Felipe Lobo Pevidor. Um estudo sobre aproximação de Redes Neurais por
funções lineares por partes. Monografia (Bacharelado). Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2022.

Redes Neurais são conhecidos como modelos de caixa preto em inteligência artificial, isso significa que

não podemos acessar diretamente a informação que o modelo utiliza para operar ou justificar suas decisões.

Ultimamente, tem existido um grande interesse em pesquisa sobre isso e múltiplas técnicas estão sendo

desencolvidas tentar abordar esse problema. Particularmente, Sandro Preto na sua tese de doutorado Preto,

2021 descreve um método que foi desenvolvido para atacar esse problema e apresenta um algoritmo para

realizar a inferência formal de propriedades de uma dada rede neural. O único porém desse método é que

sua entrada deve ser uma aproximação da rede, na forma de uma função linear por partes. O objetivo desse

trabaho é estudar e pesquisar métodos para gerar essas aproximações e complementar o trabalho realizado

na tese mencionada.

Palavras-chave: Redes Neurais. Lógica de Lukasiewicz. Modulo satisfabilidade. Funções lineares por

partes. Aproximação.





Abstract

João Felipe Lobo Pevidor. A study on linear piece wise approximation of Neural
Networks. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2022.

Neural Networks are famously known as black box models in artificial intelligence, that means that we

cannot directly access the information on which it operates or justify its decisions. Lately, there has been a

big interest in research and multiple techniques are being developed to try and approach this problem. In

particular, Sandro Preto in his thesis Preto, 2021 describes a method developed to help tackle this problem

and presents an algorithm to formally infer certain properties about a given network. The only thing is that

it relies on the existence of an approximation of a Neural Network using linear piecewise functions. The

aim of this work is to study methods to generate this approximation and complement the work done in the

previously mentioned thesis.

Keywords: Neural Networks. Lukasiewicz Logic. Modulo Satisfability. Piecewise linear functions. Ap-

proximation.





v

List of abbreviations

MIP Mixed Integer Linear Programming

ReLU Rectfied Linear Unit

TId Truncated Identity function

MLP Multi layered perceptrons

List of symbols

̂𝑓 An estimator for function 𝑓
Ł∞ The logical system of Łukasiewicz Infinitely-valued Logic

ℙ Set of propostional variables

Γ Set of logical connectives

 A logical language

𝑣 Valuation function

𝛼, 𝛽 Propositional variables

¬ Ł∞ negation

∨ Ł∞-maximum

∧ Ł∞-minimum

→ Ł∞-implication

⊕ Ł∞-disjunction

⊙ Ł∞-conjunction





vii

List of Figures

1.1 Process of verification of a neural network . . . . . . . . . . . . . . . . . 1

4.1 Example of a decision boundary for the XOR problem . . . . . . . . . . . 13

4.2 Example of a Multi Layered Perceptron architecture, from Zhang et al., 2021 14

6.1 Domain of function 𝑓 partitioned by the linear pieces generated by algo-

rithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Figure 6.1 with the delimitation of where the simplices will be created . . 23

6.3 Domain partitioned by the linear pieces generated and simplices . . . . . 24

7.1 Function learned by the neural network . . . . . . . . . . . . . . . . . . . 26





ix

List of Tables

3.1 Rules for building MILP Restrictions . . . . . . . . . . . . . . . . . . . . . 9

7.1 Truth table for the XOR boolean function . . . . . . . . . . . . . . . . . . 25

7.2 Verification of an approximation of the network depicted in figure 7.1,

utilizing sorting method C on the input points. . . . . . . . . . . . . . . . 28





xi

Contents

1 Introduction 1

2 Łukasiewicz Logic 3
2.1 Classical Propositional Logic vs Łukasiewicz Logic . . . . . . . . . . . . . 3

2.2 The Ł∞ language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Valuation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Ł∞ Connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Ł∞ satisfability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6 McNaughton Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6.1 Rational McNaughton Functions . . . . . . . . . . . . . . . . . . 6

3 Solving a Satisfability Problem in Łukasiewicz Logic 7
3.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . 8

3.3 Solving a Satisfability Problem in Ł∞ . . . . . . . . . . . . . . . . . . . . . 8

4 Neural Networks 11
4.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Beyond a single Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Formally Verifying a Neural Network . . . . . . . . . . . . . . . . . . . . 15

5 Piece Wise Linear Approximation of Neural Networks 17
5.1 Different ways to tackle the problem . . . . . . . . . . . . . . . . . . . . 17

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 An algorithm for segmented regression . . . . . . . . . . . . . . . . . . . 18

6 Inherent issues with this method 21
6.1 Order matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



xii

6.2 Simplex division: forcing continuity . . . . . . . . . . . . . . . . . . . . . 22

7 Approximating a trained network 25
7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.2 XOR Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Modeling reachability and robustness in Łukasiewicz Logic . . . . . . . . 26

7.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Conclusions 29
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Proofs for Łukasiewicz Logic connectives valuations 31
A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendixes

Annexes

References 35

’



1

Chapter 1

Introduction

Neural Networks are famously known as black box models in artificial intelligence,
which means that we know little to nothing about what happens inside of them. A block
box model is a system which inputs and outputs are observable, but there is no knowledge
available of its inner workings. To analyse behaviour of such models one usually has to
observe the response generated by certain inputs and try to infer the model’s machinery.
Lately, there has been a big interest in research and multiple techniques are being developed
to try and understand more about what happens inside of these models.

In particular, Preto (2021), has developed a method to help tackle this problem and has
presented an algorithm to formally infer certain properties about the network by using
Łukasiewicz Logic. This method relies on two important facts. The first one is that, as
shown by S. Aguzzoli and D. Mundici, 2001 Stefano Aguzzoli and Daniele Mundici,
2003, for any continuous function 𝑓 ∶ [0, 1]𝑛 → [0, 1] there is a linear piece wise function
called rational McNaughton function ̂𝑓 ∶ [0, 1]𝑛 → [0, 1] such that

|𝑓 (𝑥) − ̂𝑓 (𝑥)| < 𝜖, 𝜖 > 0.

And the second is that, any rational McNaughton function ̂𝑓 can be expressed as a logical
formula in Łukasiewicz Logic. With that, the algorithm presented by Preto allows us to
make logical inferences from a trained model.

The process of verification of neural network consists in a four part process that is
shown in 1.1

Figure 1.1: Process of verification of a neural network

To perform the formal verification of a neural network we need to combine multiple
theoretical results and techniques. In the next chapters (2, 3, 4) we will introduce important
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concepts (such as Łukasiewicz Logic and Neural Networks) and the theoretical results we
need to be able to this.

In chapter 5, we introduce a known dynammic programming algorithm to approximate
such models with a linear piece wise function which is what was used in the experiments
detailed after.

Chapter 6, details issues found during the process of experimentation and how they
were circumvented in order to be able to produce results.

In chapter 7, we detail the experiments and show the results obtained with the approx-
imation of a neural network that approximate the XOR boolean function.

Finally, in chapter 8 we draw some conclusions about the process of verifying neural
networks and some comments about the path taken to do so in this work.
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Chapter 2

Łukasiewicz Logic

2.1 Classical Propositional Logic vs Łukasiewicz
Logic

Classical Propositional Logic was created with the goal of being able to evaluate a
statement systematically, in order to clearly determine if what was being presented was
true or false. For that, mathematicians developed a system where you can represent and
connect sentences (which are formally defined as propositional symbols or a composition
of them) to create whatever statement possible, and of course, evaluate it. In this type of
logic, sentences can only be evaluated as being true or false. On the other hand, we have
logic systems that are called many-valued logics where it is possible to have a sentence
evaluated to more than just 1 or 0, which are extensions of their classical peer. In this
paper, we care about Łukasiewicz (infinetly-valued) Logic (Ł∞), where sentences can be
evaluated by any real number between [0, 1].

2.2 The Ł∞ language
To be able to work with such a system we, first, have to define the elements that we

will be using, the Ł∞ language.

Definition 1. Let ℙ be an infinitely countable set of elements called propositional variables.

Definition 2. Let Γ be a finite set that contains all logical connectives.

Initially it is sufficient to have the set Γ = {¬,→}, that will be extended later. Now we
define the language inductively:

Definition 3. Let  be a set such that:

• All elements of ℙ are elements of ;

• If 𝛼 ∈ , then ¬𝛼 ∈ .

• If 𝛼, 𝛽 ∈ , then 𝛼 → 𝛽 ∈ 
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 is referred to as the language of the system and because of the way it is defined, it
contains all possible well-formed formulas.

2.3 Valuation function

To evaluate a formula, first we define a valuation function.

Definition 4. Let ℙ be the set of propositional symbols present in a logical system. A valuation

of formulas 𝑣 ∶  → [0, 1] is a function that satisfies both conditions:

1) 𝑣(𝛼 → 𝛽) =
𝑑𝑒𝑓

𝑚𝑖𝑛(1, 1 − 𝑣(𝛼) + 𝑣(𝛽))

2) 𝑣(¬𝛼) =
𝑑𝑒𝑓

1 − 𝑣(𝛼)

2.4 Ł∞ Connectives

In Łukasiewicz Logic, the Łukasiewicz implication: → and the negation: ¬ can be used
as primitive connectives, and with them it is possible to derive other connectives and
extend the set Γ. Using what was defined before, we can define the connectives ∨ and ∧ in
terms of the implication and the negation.

Definition 5. For any two formulas 𝛼, 𝛽 ∈ , we define ∨ and ∧ as:

𝛼 ∨ 𝛽 =
𝑑𝑒𝑓

(𝛼 → 𝛽) → 𝛽

𝛼 ∧ 𝛽 =
𝑑𝑒𝑓

¬(¬𝛼 ∨ ¬𝛽)

First, let’s look at ∨:

Lemma 1. Let 𝑣 be the valuation previously discussed. Then:

𝑣(𝛼 ∨ 𝛽) = 𝑚𝑎𝑥(𝑣(𝛼), 𝑣(𝛽))

Now, we’ll do the same for ∧

Lemma 2. Let 𝑣 be the valuation previously discussed. Then:

𝑣(𝛼 ∧ 𝛽) = 𝑚𝑖𝑛(𝑣(𝛼), 𝑣(𝛽))

With what we defined before, it is possible to compute the maximum and minimum
semantic values. We can also define other connectives in order to develop more tools
for arithmetic operations, such as the strong conjunction ⊙ and the strong disjunction
⊕.
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Definition 6. For any two formulas 𝛼, 𝛽 ∈ , we define ⊙ and ⊕ as:

𝛼 ⊙ 𝛽 =
𝑑𝑒𝑓

¬𝛼 → 𝛽

𝛼 ⊕ 𝛽 =
𝑑𝑒𝑓

¬(¬𝛼 ⊕ ¬𝛽)

As we did before, we can derive an expression for the valuation of these two from the
implication and the negation. For ⊕:

Lemma 3. Let 𝑣 be the valuation previously discussed.

𝑣(𝛼 ⊕ 𝛽) = 𝑚𝑖𝑛(1, 𝑣(𝛼) + 𝑣(𝛽))

And for ⊙:

Lemma 4. Let 𝑣 be the valuation previously discussed.

𝑣(𝛼 ⊙ 𝛽) = 𝑚𝑎𝑥(0, 𝑣(𝛼) + 𝑣(𝛽) − 1)

Looking at these two connectives, we can see that with ⊙ we can compute how much
the sum of two semantic values surpasses 1. On the other hand, with ⊕ we can compute
the truncated sum of two semantic values, which returns 1 if the result is greater than
1.1

2.5 Ł∞ satisfability
Note that many valuation functions can be created, that yield different results to the

same formula, while still maintaining the two essential properties.

Definition 7. We say that a formula 𝜓 is Ł∞-satisfiable if there in a valuation 𝑣 such that

𝑣(𝜓) = 1. Otherwise, we say that 𝜓 is unsatisfiable.

We can extend this definition and say that a set of formulas Φ is satisfiable if, for some
valuation function 𝑣, 𝑣(𝜑) = 1, for every 𝜑 ∈ Φ.

Definition 8. If for every valuation 𝑣, we have 𝑣(𝜑) = 1, we say that 𝜑 is Ł∞-valid.

2.6 McNaughton Functions
Having introduced the fundamentals of Łukasiewicz Logic, we move to introduc-

ing another vital component to formally analysing a neural network McNaughton func-
tions.

Definition 9. A McNaughton function is a continuous function 𝑓 ∶ [0, 1]𝑛 → [0, 1] for which

there are linear polynomials 𝑝1, 𝑝2, ..., 𝑝𝑚 over [0, 1]𝑛 with integer coefficients in a way that,

1 The proofs for every stated lemma can be found at Appendix A
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for each 𝑥 ∈ [0, 1]𝑛, there is an index 𝑖 in {1, ..., 𝑚} such that 𝑓 (𝑥) = 𝑝𝑖(𝑥). The polynomials

𝑝1, 𝑝2, ..., 𝑝𝑛 are called the linear pieces of 𝑓 .

In McNaughton, 1951 McNaugthon showed that

Theorem 1. For any McNaughton function 𝑓 ∶ [0, 1]𝑛 → [0, 1], there is a logical formula

𝑆(𝑝1, 𝑝2, , ..., 𝑝𝑛) in Łukasiewicz Logic, such that 𝑣(𝑆) = 𝑓 , where 𝑝𝑖 are sentential variables

such that 𝑣(𝑝𝑖) = 𝑥𝑖.

2.6.1 Rational McNaughton Functions
For our purposes we are mainly concerned with rational McNaughton functions, which

are a variation of the one previously mentioned

Definition 10. A rational McNaughton function is a generalized function as in deinition 9

but whose linear pieces are allowed to have rational coefficients.

Unfortunaltely, McNaughton (1951) also shows that only (integer) McNaughton func-
tions may be represented by formulas of Łukasiewicz Logic. We may circumvent such
situation by employing an implicit representation called representation modulo satisfabil-
ity [Finger and Preto 2020; Preto and Finger 2020, 2022]. For that, first denote the set of
formulas and denote by 𝐕𝐚𝐥. Then, let Φ be a set of formulas and denote by 𝐕𝐚𝐥Φ ⊆ 𝐕𝐚𝐥 the
set of valuations that satisfy Φ.

Definition 11. Let 𝜑 be a formula and let Φ be a set of formulas. We say that a set of

propositional variables 𝐗𝑛, determines 𝜑 modulo Φ-satisfiable if:

• For any ⟨𝑥1, ..., 𝑥𝑛⟩ ∈ [0, 1]𝑛, there exists at least one valuation 𝑣 ∈ 𝐕𝐚𝐥Φ, such that

𝑣(𝑋𝑗) = 𝑥𝑗 , for 𝑗 = 1, ..., 𝑛;

• For any pair of valuations 𝑣, 𝑣′ ∈ 𝐕𝐚𝐥Φ such that 𝑣(𝑋𝑗) = 𝑣′(𝑋𝑗), for 𝑗 = 1, ..., 𝑛, we

have that 𝑣(𝜑) = 𝑣′(𝜑) - i.e. valuations in 𝐕𝐚𝐥Φ are truth-functional on variables in 𝐗𝑛.

Definition 12. Let 𝑓 ∶ [0, 1]𝑛 → [0, 1] be a function and ⟨𝜑,Φ⟩ be a pair where 𝜑 is a

formula and Φ is a set of formulas. We say that 𝜑 represents 𝑓 modulo Φ-satisfiable or that

⟨𝜑,Φ⟩ represents 𝑓 in the system Ł∞-MODSAT) if:

• 𝐗𝑛 determines 𝜑 modulo Φ-satisfiable;

• 𝑓 (𝑣(𝑋1), ..., 𝑣(𝑋𝑛)) = 𝑣(𝜑), for all 𝑣 ∈ 𝐕𝐚𝐥Φ.



7

Chapter 3

Solving a Satisfability Problem in
Łukasiewicz Logic

It is known that it is possible to reduce the Satisfability Problem to a Mixed Integer
Programming problem which is a generalization of a Linear Programming Problem.

3.1 Linear Programming
Linear Programming is a mathematical technique to maximize or minimize a linear

function, subject to certain constraints. Given a certain function 𝑓 , we want to maximize
(or minimize) 𝑓 in relation to all n-dimensional column vectors 𝑥 = (𝑥0, 𝑥1, ..., 𝑥𝑛), subject
to certain constraints. Our goal then, is to find 𝑥∗ ∈ ℝ𝑛 such that 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) ∀𝑥 ∈ ℝ𝑛 (or
−𝑓 (𝑥∗) ≤ −𝑓 (𝑥) ∀𝑥 ∈ ℝ𝑛). This function, as the name of the technique suggests, has to be
a linear function, so we define a n-dimensional column vector of costs 𝑐 = (𝑐0, 𝑐1, ..., 𝑐𝑛)
such that we can represent 𝑓 as

𝑓 (𝑥) = 𝑐𝑇𝑥.

To construct the constraints, we can follow the same logic and have vectors 𝑎𝑖 and scalars
𝑏𝑖 represent the 𝑖-th constraint of the problem

𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖, 𝑖 ∈ 𝐴

𝑎𝑇𝑖 𝑥 = 𝑏𝑖, 𝑖 ∈ 𝐵

𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖, 𝑖 ∈ 𝐶.

We may also constraints to specific elements of 𝑥:

𝑥𝑗 ≤ 0, 𝑗 ∈ 𝐷

𝑥𝑗 ≥ 0, 𝑗 ∈ 𝐸.

It is possible to further manipulate this formulation of the problem to create what is called
the canonical representation of a Linear Programming problem. First, note that all equality
constraints 𝑎𝑇𝑖 𝑥 = 𝑏𝑖 can be turned into the pair of inequalities 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 and 𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖. Also,
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all 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 constraints can be transformed into −(𝑎𝑖)𝑇𝑥 ≥ 𝑏𝑖. And finally, all constraints
like 𝑥𝑖 ≥ 0 are special cases of 𝑎𝑇𝑖 𝑥 ≥ 𝑏𝑖 where all elements in 𝑎𝑖 are 0, but the 𝑗-th.

Next, suppose that our problem has𝑚 constraints, let’s define a matrix𝐴 such that

𝐴 =
⎡
⎢
⎢
⎣

− 𝑎𝑇0 −
⋮

− 𝑎𝑇𝑚 −

⎤
⎥
⎥
⎦
,

and the column vector 𝑏 = (𝑏0, 𝑏1, ..., 𝑏𝑚). With the matrix 𝐴, the vector 𝑏 and what was
pointed out before, it is possible to write the whole linear programming problem as

minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

where 𝐴 ∈ ℝ𝑛×𝑚 and 𝑐, 𝑥, 𝑏 ∈ ℝ𝑛.

3.2 Mixed Integer Linear Programming
Given the definition above, we can further constrain it as we please. One special case

that is used to solve satisfability problems is Mixed Integer Linear Programming, which
can be formulated as

minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0

𝑥𝑖 ∈ ℤ, ∀𝑖 ∈ 𝕀

where 𝕀 ⊆ {1, ..., 𝑛}.

3.3 Solving a Satisfability Problem in Ł∞

Hähnle showed in Hähnle, 1994 that the satisfability of a formula in Łukasiewicz Logic
can be expressed as a Mixed Integer Programming Problem. In the article, a generalized
tableaux procedure was introduced that made it possible to extend the use of the technique
to many-valued logics, and infinitely valued logic. Making use of the concept of signed
formulas and constraint rules, which were introduced in the paper as a means to extend
the tableaux procedure, it is possible to verify if a certain formula is Ł∞-satisfiable. The
constraints that result from a tableaux such as this can be interpreted as the feasibility
part of a MIP problem and thus solving it would be, in fact, the same as checking the
satisfability of the initial formula and is defined as the MIP problem associated with a
certain formula.

A MIP-based solver for satisfiability in Łukasiweicz Logic would inductively translate
a given formula 𝜙 to a set of MIP restrictions according to the rules for Ł∞ operators in
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Table 3.1; each subformula 𝜓 of 𝜙 is associated to a MIP variable 𝑥𝜓. A valuation 𝑣 such
that 𝑣(𝜙) = 𝑥𝜙 may be derived from a feasible solution to the MILP restrictions.

Formula Restrictions
𝑋 0 ≤ 𝑥𝑋 ≤ 1
¬𝜙 𝑥¬𝜙 = 1 − 𝑥𝜙
𝜙 ⊕ 𝜓 𝑏 ∈ {0, 1}

𝑏 ≤ 𝑥𝜙⊕𝜓 ≤ 1
𝑥𝜙 + 𝑥𝜓 − 𝑏 ≤ 𝑥𝜙⊕𝜓 ≤ 𝑥𝜙 + 𝑥𝜓

𝜙 ⊙ 𝜓 𝑏 ∈ {0, 1}
0 ≤ 𝑥𝜙⊙𝜓 ≤ 𝑏
𝑥𝜙 + 𝑥𝜓 − 1 ≤ 𝑥𝜙⊙𝜓 ≤ 𝑥𝜙 + 𝑥𝜓 − 𝑏

𝜙 ∨ 𝜓 𝑏 ∈ {0, 1}
𝑥𝜙 ≤ 𝑥𝜙∨𝜓 ≤ 𝑥𝜙 + 𝑏
𝑥𝜓 ≤ 𝑥𝜙∨𝜓 ≤ 𝑥𝜓 + 1 − 𝑏

𝜙 ∧ 𝜓 𝑏 ∈ {0, 1}
𝑥𝜙 − 𝑏 ≤ 𝑥𝜙∧𝜓 ≤ 𝑥𝜙
𝑥𝜓 − (1 − 𝑏) ≤ 𝑥𝜙∧𝜓 ≤ 𝑥𝜓

𝜙 → 𝜓 𝑏 ∈ {0, 1}
𝑏 ≤ 𝑥𝜙→𝜓 ≤ 1
1 − 𝑥𝜙 + 𝑥𝜓 − 𝑏 ≤ 𝑥𝜙→𝜓 ≤ 1 − 𝑥𝜙 + 𝑥𝜓

𝜙 ↔ 𝜓 𝑏 ∈ {0, 1}
1 − 𝑥𝜙 + 𝑥𝜓 − 2𝑏 ≤ 𝑥𝜙↔𝜓 ≤ 1 − 𝑥𝜙 + 𝑥𝜓
−1 + 𝑥𝜙 − 𝑥𝜓 + 2𝑏 ≤ 𝑥𝜙↔𝜓 ≤ 1 + 𝑥𝜙 − 𝑥𝜓

Table 3.1: Rules for building MILP Restrictions

Given a set of formulas Φ, the solver decides on the feasibility of the MIP restrictions
generated from Φ plus restrictions 𝑥𝜙 = 1, for all 𝜙 ∈ Φ; Φ is satisfiable if, and only if, such
restrictions are feasible.
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Chapter 4

Neural Networks

4.1 Artificial Neural Networks

Neural Networks, or Artificial Neural Networks (ANNs) as they are called, are a
category of models developed by the field of Machine Learning and are the foundations of
today’s deep learning algorithms that seem perform spectacularly in tasks such as face
recognition, translation, among others. The inspiratin for ANNs is an algorithm called
perceptrons, a linear model that implements a learning algorithm for pattern recognition,
introduced by Frank Rosenblatt, 1958.

Mathematically, we can describe the perceptron as a weighted sum of its inputs. Let
𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) be our input signals and 𝑊 = (𝑤1, 𝑤2, ..., 𝑤𝑛) be a set of weights which
will be used to evaluate the input. The algorithm consists, if we look at 𝑋 and 𝑊 as vectors,
in the dot product between 𝑋 and 𝑊 followed by a threshold function 𝑓𝜑.

𝑋 =
⎡
⎢
⎢
⎣

𝑥1
⋮
𝑥𝑛

⎤
⎥
⎥
⎦
, 𝑊 =

⎡
⎢
⎢
⎣

𝑤1
⋮
𝑤𝑛

⎤
⎥
⎥
⎦

𝑅 = 𝑊 𝑇 .𝑋 = ∑𝑤𝑖.𝑥𝑖

𝑓𝜑(𝑅) =

{
−1, 𝑅 < 𝜑
1, 𝑅 ≥ 𝜑

We can eliminate the need for 𝜑 introducing new coordinates to X and W:

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

1
𝑥1
⋮
𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎦
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𝑊 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑤0
𝑤1
⋮
𝑤𝑛

⎤
⎥
⎥
⎥
⎥
⎦

and outputing a response with the following function 𝑓 :

𝑓 (𝑅) =

{
−1, 𝑅 < 0
1, 𝑅 ≥ 0

In order for the algorithm to output the correct response, the proper weights must be
adjusted somehow. In the perceptron that will happen through trial and error. By presenting
the algorithm with multiple input vectors 𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑁 ) and a vector of correct
responses for each signal 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑁 ), for each 𝑋𝑖 ∈ 𝑋 we calculate

𝑅𝑖 = 𝑊 𝑇 .𝑋𝑖

𝑓 (𝑅𝑖) =

{
−1, 𝑅𝑖 < 0
1, 𝑅𝑖 ≥ 0

and update the weights according to a rule that tells us how to iteratively learn the correct
response based on the lastest outcome. For the perceptron, that entails the following
update rule:

if 𝑠𝑖𝑔𝑛(𝑊 𝑇 .𝑋𝑖) ≠ 𝑦𝑖 then: 𝑊 = 𝑊 + 𝑦𝑖.𝑋𝑖

where 𝑊 is the aforementioned weights vector, 𝑋𝑖 is the i-th input signal presented and 𝑦𝑖
is the correct response for that signal. The pseudocode for the perceptron algorithm can
be written as:

Algorithm 1 Perceptron Learning Algorithm
Input

𝑋 Data matrix of points
𝑦 Data matrix of expected outputs for points in X

Output
Hyperplane that separates the data

𝑊 ← 0

for each input example (𝑋𝑖, 𝑦𝑖) do

if 𝑠𝑖𝑔𝑛(𝑊 𝑇 .𝑡𝑋𝑖) ≠ 𝑦𝑖 then
𝑊 ← 𝑊 + 𝑦𝑖.𝑋𝑖

end if
end for
return 𝑊

This algorithm converges when the input data is linearly separable as shown by F.
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Rosenblatt, 1962.

The perceptron was quickly disregarded as unuseful when it was proven unable to
solve the, now, simple problem of learning a XOR logical gate, the boolean function

𝑓 (𝑥1, 𝑥2) =

{
0, 𝑥1 = 𝑥2
1, 𝑥1 ≠ 𝑥2

.

Figure 4.1: Example of a decision boundary for the XOR problem

That is because the perceptron is nothing but a linear regressor, while the boundary to
separate data points for the XOR problem is non linear (see 4.1), something not expressable
for a single perceptron.

4.2 Beyond a single Perceptron
What Neural Networks try to do is build on the idea of the perceptron in a way that

captures the non linearity of a given function, by combining multiple perceptrons-like units
called neurons into one single model. That in itself is not enough to achieve the wanted
effect, after all it is just a linear model of linear models, or a superparameterized linear
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model. But by introducing the concept of hidden layers, it is possible to escape linearity.
With that, is created the fundamental architecture called Multi Layered Perceptrons (4.2),
or MLPs.

Figure 4.2: Example of a Multi Layered Perceptron architecture, from Zhang et al., 2021

Hidden layers are intermediate layers of neurons between the input and the output,
each one fully connected to the previous one (every input from the previous layer goes
into every neuron of the current layer). A hidden layer consists of multiple neurons,
arranged horizontally (meaning that they don’t have connections between themselves),
and their outputs is passed through an activation function 𝜎, a non linear differentiable
function.

Formally, let 𝑓 ∶ [ℝ𝑑 ,ℝ𝑑.ℎ+ℎ.𝑞] → ℝ𝑞 be a one-hidden-layer MLP Neural Network, with
ℎ hidden units. The hidden layer we will be computing a weighted sum of all inputs for
each neurons and applying an activation function to every element of the output, in other
words, let 𝑊1 ∈ ℝ𝑑×ℎ and 𝐻 ∈ ℝℎ be matrices such that

𝐻 = 𝑋.𝑊1, 𝐻 ∈ ℝℎ

where 𝐻 a matrix of ℎ weighted sums of the input elements for every neuron in the hidden
layer, 𝑋 is the input, and 𝑊1 is a weight matrix where every line represents the weights
that each neuron applied to the input. Next, every unit in the hidden layer applies the same
activation function 𝜎 (e.g. ReLu, Sigmoid, etc.). The expression of the result of the hidden

layer computation can be written as

𝐻 = 𝜎(𝑋.𝑊1).

After that, the hidden layer outputs are passed to output nodes which can be 𝑞 simple
linear regressors, that will make a prediction about that input. That entails that the output
of the model will be given by

𝑂 = 𝐻.𝑊2, 𝑂 ∈ ℝ𝑞

Where 𝑊2 ∈ ℝℎ×𝑞 is a weight matrix similar to 𝑊1 and 𝐻 is the output of our hidden layer.
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And, finally, the whole network can be expressed as:

𝑓 (𝑋, 𝜃) = 𝜎(𝑋.𝑊1).𝑊2

where 𝜃 is a vector of all the parameters in 𝑊1 and 𝑊2.

This architecture is a much more expressive model because it can utilize the hidden
layer outputs, called hidden representations, which have a non linearity aspect embbeded in
them. In fact, it has been shown by Hornik et al., 1989 that Neural Networks with a finite
number of neurons and as much as one hidden layer can approximate any continuous
function.

Learning on this architecture is a bit more complex and it couldn’t be done efficiently
until Rumelhart et al., 1988 developed the backpropagation algorithm. For that, a loss
function must be defined, which is a function that measures how far from the desired
output the model output is. Suppose you have an input data matrix 𝑋 ∈ ℝ𝑛×𝑑 , and a matrix
of expected outputs for each point in 𝑋 , 𝑦 ∈ ℝ𝑛×𝑞 . To evaluate a model in these points, one
of the most simple loss functions would be the mean squared error

𝐽 (𝜃) =
𝑁

∑
𝑖=0

(𝑦𝑖 − 𝑓 (𝑋𝑖, 𝜃))2.

The learning procedure for a MLP goes as follows: in the feedforward part we compute
the value of the model for all the inputs 𝑋 and calculate the loss function, after that, in
the backpropagation part we compute the gradient of the loss function with respect to
all weights 𝜃 by leveraging the chain rule and calculating the gradient backwards, one
layer at a time, reusing computations already done to calculate the gradient on earlier
layers via the back propagation algorithm. With these gradients calculated, the parameters
are adjusted in order to minimize the loss function with a chosen optimization algorithm
(Gradient Descent, LBFGS, etc).

4.3 Formally Verifying a Neural Network
As shown in the aforementioned work Preto, 2021, it is possible to use Łukasiewicz

Logic to represent the function created by the neural network and formally analyze
its properties. Let 𝑓 ∶ [0, 1]𝑛 → [0, 1] be a neural network, that is exactly a rational
McNaughton function, which represents a prediction model. If 𝑓 (𝑥) ≥ 0.5, we can say
that the network predicts Yes and if 𝑓 (𝑥) < 0.5, the network predicts No. With what was
presented in the thesis is possible to verify the network’s reachability and robustness if
we are able to construct a representation in Ł∞-MODSAT ⟨𝜑,Φ⟩ for 𝑓 .
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Piece Wise Linear Approximation
of Neural Networks

5.1 Different ways to tackle the problem

Two ways were noted to tackle the problem of approximating neural networks by
linear piece wise functions. One of them relies on the fact that the two activation functions
𝑅𝑒𝐿𝑈 (rectified linear unit) and 𝑇 𝐼𝑑 (truncated identity function) can be easily defined as
linear piece wise functions.

𝑅𝑒𝐿𝑈 (𝑥) =

{
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

𝑇 𝐼𝑑(𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0, 𝑥 < 0
𝑥, 0 ≤ 𝑥 ≤ 1
1, 𝑥 > 1

Looking at a particular family of neural networks which are composed by these functions,
it’s possible to take advantage of ideas discussed in Preto, 2021 in order to reduce it to a
rational McNaughton function which would be a linear piece wise representation of the
neural network.

Another method, which is the one actually investigated in this paper, is to construct a
linear piece wise function approximation by querying the network on a few different points,
and obtaining a function with k pieces that is a good approximation for the network.

5.2 Preliminaries

Linear piece wise Regression is a technique used to try and find a group of simpler
(affine) functions that are able to approximate a continuous function, which is known to
be possible due to the Stone-Weierstrass Theorem Weierstrass, 1885.

Doing this for 𝑓 ∶ ℝ → ℝ is a well studied problem. The aim is to sample an unknown
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function 𝑓 and create a piece wise linear function such that

̂𝑓 =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝛼1(𝑥 − 𝑏1) + 𝑐1, 𝑏1 < 𝑥 ≤ 𝑏2
𝛼2(𝑥 − 𝑏2) + 𝑐2, 𝑏2 < 𝑥 ≤ 𝑏3
⋮
𝛼𝑛(𝑥 − 𝑏𝑛) + 𝑐𝑛, 𝑏𝑛−1 < 𝑥 ≤ 𝑏𝑛

where 𝑏𝑖 is a point called breakpoint and determines the start of the segment that contains
the 𝑖th linear piece. This approximation can also be written as a single equation explicitly
expressing the error like so:

̂𝑓 = 𝛼1(𝑥 − 𝑏1)𝐼1 + 𝛼2(𝑥 − 𝑏2)𝐼2 + ... + 𝛼𝑛(𝑥 − 𝑏𝑛)𝐼𝑛 + 𝑐 + 𝜖

where 𝐼𝑖 are functions such that

𝐼𝑖 =

{
1, if 𝑏𝑖 < 𝑥 ≤ 𝑏𝑖+1
0, otherwise

and 𝜖 is an error term that follows a normal distribution with mean 0 and variance 𝜎2. The
goal is to create such a function focusing on minimizing the error between ̂𝑓 and the real
function value 𝑓 .

5.3 Dynamic Programming

Dynamic Programming is a technique used to solve a particular set of problems that
have two characteristics: optimal substructure and overlapping sub-problems.

Optimal substrucure refers to when the solution of the problem can be obtained by
combining the solution of its sub-problems. That means that we can formulate the problem
with a recursive relationship where the optimal solution is an expression containing the
optimal solution up to a certain point of the problem.

Overlapping sub-problems refers to the fact that during the execution of a any recursive
algorithm, the amount of sub-problems solved by the algorithm will be small and instead
of generating new sub-problems, these will keep reappearing as part of the solution.

That is exactly the case for segmented regression.

5.4 An algorithm for segmented regression

Even though literature has it that this problem is commonly solved with Dynamic
Programming, few descriptions of it can actually be found in scientific articles. Jayadev
Acharya et al. in Acharya et al., 2016, for the sake of completion, describes with detail
a Dynamic Programming algorithm to solve segmented regression problems before in-
troducing a new type of algorithm for these problems. The algorithm described here is
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a variation of that which tries to break segments based on an input cost 𝐶 for creating
segments instead of specifying how many pieces the regression should have.

For this we consider the following formulation: Let (𝑋, 𝑦) be a dataset of points sampled
from an arbitrary function 𝑓 , which we want to approximate. For an estimator ̂𝑓 of 𝑓 , the
square error generated by the estimator, for 𝑚 input-ouput pairs (𝑥𝑖, 𝑦𝑖)𝑚𝑖=𝑗 with 𝑗 , 𝑚 ∈ ℕ,
from the dataset is

𝑚

∑
𝑖=𝑗

(𝑦𝑖 − ̂𝑓 (𝑥𝑖))2.

The goal of the algorithm is to find an estimator ̂𝑓 , which should be a linear k-piece wise
function, such that it minimizes the square error between the approximation and the
observed data. In other words, we want ̂𝑓 to minimize:

𝑁

∑
𝑖=1

(𝑦𝑖 − ̂𝑓 (𝑥𝑖))2

which, in this case, corresponds to minimizing the squared error between a subset of input
points and a linear function for k linear pieces.

Let 𝑂𝑃𝑇 [𝑗] be the minimum possible error considering only pairs {(𝑥𝑝, 𝑦𝑝)}𝑝∈𝐽 from
𝑋, 𝑦 in the interval of indices 𝐽 = {1, ..., 𝑗}. Let, also, 𝑒𝑟𝑟(𝑖, 𝑗), where 𝑖 < 𝑗 , be the least
squared error generated by a segment fitted through the points lying in the interval of
indices 𝐼 = {𝑖, 𝑖 + 1, ..., 𝑗}. The optimal segment error for pairs with indices in 𝐽 can be
formulated as the recursive relationship:

𝑂𝑃𝑇 [𝑗] = 𝑚𝑖𝑛𝑖∈𝐼 {𝑒𝑟𝑟(𝑖, 𝑗) + 𝑂𝑃𝑇 [𝑖 − 1]}.

After constructing 𝑂𝑃𝑇 , we can backtrack and find the solution which has the minimum
overall squared error and determine the linear pieces.

The pseudocode for the algorithm that constructs such table 𝑂𝑃𝑇 is as follows:
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Algorithm 2 Segmented Regression by Dynamic Programming
Input

𝑋 Data matrix of points sampled
𝑦 Data matrix of outputs of the 𝑓 evaluated on 𝑋
𝐶 Cost for creating a segment

Output
Cost for creating the optimal piece wise linear function

𝑂𝑃𝑇 [0] ← 0

for 𝑗 ∈ {1, ..., 𝑁 } do

for 𝑖 ∈ {1, ..., 𝑗} do
𝑒𝑟𝑟(𝑖, 𝑗) ← least square error for indices in the interval {𝑖, 𝑖 + 1, ..., 𝑗}

end for
end for

for 𝑗 ∈ {1, ..., 𝑁 } do
𝑂𝑃𝑇 [𝑗] = 𝑚𝑖𝑛𝑖<𝑗(𝑒𝑟𝑟(𝑖, 𝑗) + 𝑂𝑃𝑇 [𝑖 − 1] + 𝐶)

end for
return 𝑂𝑃𝑇 [𝑛]

The way this algorithm works is that each interval of points is treated as a sub-problem.
If we have a point 𝑋𝑗 that is the last point of the optimal segment that starts at 𝑋𝑖, where
𝑖 < 𝑗 , we can compute the cost, 𝑂𝑃𝑇 (𝑗), of fitting a segment through {𝑋𝑖, ..., 𝑋𝑗 } if we
know the cost 𝑂𝑃𝑇 (𝑗 − 1). Also, by varying the value of 𝐶, we can determine how many
segments the algorithm should create because the final cost value will contain 𝐶 times the
number of segments created.
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Inherent issues with this method

Before obtaining an approximation for the function, we must address two different
issue:

• the order in which the points are presented to algorithm ?? matters and it generates
different pieces depending on how the data is presented;

• the function, which would be the union of the pieces generated by the algorithm, is
not guaranteed to be continuous.

6.1 Order matters

Taking a closer look at the algorithm, it is imperative that exists a certain order
underlying the data. Imagine, for the 1 dimensional case, we have a set of points ordered
by the 𝑥-axis. Suppose there are two optimal segments that divide this dataset, 𝑆1 which
is a regression for points {𝑋1, ..., 𝑋𝑗 } and 𝑆2 which is one for points {𝑋𝑗+1, ..., 𝑋𝑛}. If we
purposefully create a dataset where we show {𝑋1, ..., 𝑋𝑗+1, 𝑋𝑗 } to the algorithm, it will try to
construct the optimal segment of 𝑋𝑗 using the cost for 𝑋𝑗+1 which lies further in the 𝑥-axis
and that will either generate a poor regression for these points or break the segment earlier
than optimal. Depending on the different ways the data is presented to the algorithm, it
will generate vastly different linear pieces and we need to define ways to sort it before
anything else.

For the 1 dimensional case all you need is to just order the points based on the 𝑥-
axis.

For greater dimensions, we experimented with two arrangements. The first was de-
scribed by Acharya et al., 2016: sort the data by a determined coordinate, in this case,
by the first coordinate 𝑥1 of every point. We will call this type of ordering 𝐗𝟏 from now
on. The other one, which we will call 𝐂, sorts points by the values 𝑐 = 𝑥1 − 𝑥2. This was
created based on prior knowledge of the function and for experimentation purposes to
try and induce the algorithm to generate the pieces that one can intuitively derive from
looking at figure 7.1.
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6.2 Simplex division: forcing continuity
The other issue that should be adressed is that this algorithm is based on a discrete set

of input points, which means that between two segments created there is an interval of
points of the domain that don’t have a linear function "assigned" to them. Let the function
𝑓 ∶ [0, 1]𝑛 → [0, 1] be the function we are trying to approximate with our algorithm.
After sampling an arbitrary number of points from this function 𝑋 = (𝑋1, 𝑋1, ...), we
order them by their first coordinate (𝑥1) and run the algorithm with input 𝑋 and theirs
respective values 𝑓 (𝑋 ) = 𝑦 to get the linear pieces that best approximate this function.
Suppose that, from the output, we get two consecutive linear pieces 𝑝𝑖, 𝑝𝑘. Let 𝑝𝑖 be the
linear approximation of points in the domain interval delimited by 𝑋𝑖1 and 𝑋𝑗1 , and 𝑝𝑘
be the same thing, but for points 𝑋𝑘, 𝑋𝑙, where 𝑖 < 𝑗 < 𝑘 < 𝑙, and 𝑖, 𝑗 , 𝑘, 𝑙 ∈ ℕ. In this
setting, there are points 𝑋𝑞 such that 𝑋𝑘1 > 𝑋𝑞1 > 𝑋𝑗1 , which do not have a mapping in
our approximation, creating a discontinuity. To account for these points, we will partition
the unmapped interval into multiple simplices to make sure the whole domain is mapped.
Let’s look at an example of this in practice.

Figure 6.1: Domain of function 𝑓 partitioned by the linear pieces generated by algorithm 2

Suppose we are trying to approximate a function 𝑓 ∶ [0, 1]2 → [0, 1]. If we look at
figure 6.1, we can see an image of the domain of the function and the highlighted areas
are the segments created by algorithm 2. We have 𝑝1 constrained by 0 ≤ 𝑥1 ≤ 0.3 and
𝑝2 constrained by 0.5 ≤ 𝑥1 ≤ 1. That means that our approximation as is can’t produce
values for points of the form 𝑋 = (𝑥1, 𝑥2), with 0.3 < 𝑥1 < 0.5. To deal with this we divide
the domain as illustrated by figure 6.2, with a line and create two planes delimited by the
pieces and the line.
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Figure 6.2: Figure 6.1 with the delimitation of where the simplices will be created

We can treat the problem of finding a planes in this case as determining the plane for
the space [0, 1]3 considering points (𝑥, 𝑦, 𝑧) = (𝑥1, 𝑥2, 𝑓 (𝑥1, 𝑥2)). The equation for a plane
in this case is

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

where (𝑎, 𝑏, 𝑐) are coordinates of the normal vector to that plane. To obtain a linear function
from that plane we isolate the third coordinate and get

𝑓 (𝑥1, 𝑥2) = 𝑧 = (−𝑎𝑥 − 𝑏𝑦 − 𝑑)/𝑐.

For determining each simplex, we would need 3 points of the form (𝑥1, 𝑥2, 𝑓 (𝑥1, 𝑥2)), obtain
two linearly independent vectors from them and get their cross product, the normal vector.
In our example, for the first simplex, we use

(0, 0.3, 𝑝1(0, 0.3));

(1, 0.3, 𝑝1(0, 0.3));

(1, 0.5, 𝑝2(1, 0.5))

and for the second simplex
(0, 0.3, 𝑝1(0, 0.3));

(0, 0.5, 𝑝2(0, 0.5));

(1, 0.5, 𝑝2(1, 0.5)).

Note that, 𝑝1 and 𝑝2 are defined at such points and thus can be evaluated at them, giving
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us all the requirements we need for partitioning. The planes, or simplices, can be seen in
the domain in figure 6.3 colored red an blue, respectively. With that every point in the
domain is properly mapped and we have a continuous linear piece wise approximation of
our target function.

Figure 6.3: Domain partitioned by the linear pieces generated and simplices

Unfortunately, simplex partitioning grows exponentially in complexity as the dimen-
sion increases. In this case, we needed only two simplices to cover the unmapped region, but
in [0, 1]7 for example, we would need 1175 simplices at minimum Hughes and Anderson,
1996. This number grows uncontrollably, making this technique unfeasible for higher
dimensions. For this reason we will be focusing on functions, or neural networks, of the
form 𝑓 ∶ [0, 1]2 → [0, 1] for this work.
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Chapter 7

Approximating a trained
network

7.1 Implementation
We developed an implementation for algorithm 2 (and a module to perform the dis-

cussed simplex division) in C++, leveraging the linear algebra Eigen 1, to output a con-
tinuous linear piece wise approximation of a function 𝑓 ∶ [0, 1]2 → [0, 1]. After that,
we implemented another component to translate the output to the input of the already
implement algorithm by Preto, 2021 2 for representing linear piece wise functions with
Łukasiewicz Logic.

7.2 XOR Neural Network
A simple neural network was trained in order to conduct the experiments. The network

was trained to solve the XOR problem.

𝑥1 𝑥2 𝑥1 ⊕ 𝑥2
1 1 0
1 0 1
0 1 1
0 0 0

Table 7.1: Truth table for the XOR boolean function

The aim was for the network to learn an approximation for the function described by
the table

𝑓 (𝑥1, 𝑥2) =

{
0, 𝑥1 = 𝑥2
1, 𝑥1 ≠ 𝑥2

1 https://eigen.tuxfamily.org/
2 https://github.com/spreto/pwl2modsat

https://eigen.tuxfamily.org/
https://github.com/spreto/pwl2modsat
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.

The function 𝑓 ∶ [0, 1]2 → [0, 1] learned by the network is presented in figure 7.1. We
can look at 𝑓 as a classification network such that for input 𝐱 ∈ [0, 1]2, if 𝑓 (𝐱) ≥ 0.5 the
function outputs 1, if 𝑓 (𝐱) < 0.5 it outputs 0.

Figure 7.1: Function learned by the neural network

7.3 Modeling reachability and robustness in
Łukasiewicz Logic

First, let us introduce the modulo satisbality representation of the constant function
1
𝑑 .

⟨𝜑,Φ⟩ = ⟨𝑍 1
𝑑
, {𝑍 1

𝑑
↔ ¬(𝑑 − 1)𝑍 1

𝑑
}⟩

We from now on we denote by 𝜑 1
𝑑

the only formula in the set Φ, 𝑍 1
𝑑
↔ ¬(𝑑 − 1)𝑍 1

𝑑
. With

that, we can model the problems of reachability and robustness in Łukasiewicz Logic.

The reachability of a given state can be thought as the problem of determining if a
neural network 𝑓 ∶ [0, 1]𝑛 → [0, 1] reaches a specific probability 𝜋 = 𝑎

𝑏 ∈ ℚ ∩ [0, 1].

Theorem 2. Let 𝑓 ∶ [0, 1] → [0, 1] be a neural network which is a rational McNaughton

function and ⟨𝜑,Φ⟩ be the representation modulo satisfability of 𝑓 , then 𝑓 reaches probability

𝜋 = 𝑎
𝑏 if, and only if,

(⋀Φ) ∧ 𝜑 1
𝑏
∧ 𝑎𝑍 1

𝑑
↔ 𝜑

is satisfiable.

For robustness, we want to verify if a neural network which is a rational McNaughton
function is robust when predicting 𝐘𝐞𝐬 with respect to a fixed perturbation limit 𝜀 = 𝛼

𝛽 ∈ ℚ
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and to a fixed probability 𝜋 = 𝑎
𝑏 ∈ [0, 1] ∩ ℚ. We would like to see wether 𝑓 (𝑥 + 𝑝) ≥ 0.5,

for all 𝑥 ∈ [0, 1]𝑛 and 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛) ∈ ℝ, such that 𝑓 (𝑥) ≥ 𝜋, |𝑝𝑖| ≤ 𝜀, for 𝑖 = 1, 2, ..., 𝑛
and 𝑥 + 𝑝 ∈ [0, 1]𝑛. Let ⟨𝜑,Φ⟩ be the representation modulo satisfability of a neural
network 𝑓 which is a rational McNaughton function, for each propositional variable
𝑋 ∈ 𝑉 𝑎𝑟(𝜑) ∪ 𝑉 𝑎𝑟(Φ) we introduce 𝑋 ′ and for each propositional variable 𝑋𝑖 ∈ {𝑋1, ..., 𝑋𝑛}
we introduce a new variable 𝑃𝑖. Let ⟨𝜑′,Φ′⟩ be a representation such that all occurences of
𝑋 in 𝜑 and Φ are replaced by 𝑋 ′.

Theorem 3. Let 𝑓 ∶ [0, 1] → [0, 1] be a neural network which is a rational McNaughton

function and ⟨𝜑,Φ⟩ be the representation modulo satisfability of 𝑓 from which ⟨𝜑′,Φ′⟩ is

define as discussed. Then 𝑓 is robust with respecto to 𝜀 = 𝛼
𝛽 ∈ ℚ and 𝜋 = 𝑎

𝑏 ∈ [0, 1] ∩ ℚ if,

and only if,

Φ,Φ′, 𝜑 1
𝛽
, 𝜑 1

𝑏
, 𝜑 1

2
,

𝑃1 → 𝛼𝑍 1
𝛽
, ..., 𝑃𝑛 → 𝛼𝑍 1

𝛽
,

(𝑋 ′
1 ↔ 𝑋1 ⊕ 𝑃1) ∨ (𝑋 ′

1 ↔ ¬(𝑋1 → 𝑃1)),
...,

(𝑋 ′
𝑛 ↔ 𝑋𝑛 ⊕ 𝑃𝑛) ∨ (𝑋 ′

𝑛 ↔ ¬(𝑋𝑛 → 𝑃𝑛)),
𝑎𝑍 1

𝑏
→ 𝜑 ⊨ 𝑍 1

2
→ 𝜑′,

holds.

7.4 Experiments and results

For the approximation, we sampled 250 random points from the network, order them
with one of the mentioned sorting methods, and fed them to the algorithm 2. After doing the
simplex segmentation of the parts of the domain that remained unmapped, we translate the
output into the format taken by Preto’s algorithms in order to represent the approximation
in Łukasiewicz Logic using modulo satisfability. After that, we use the representation to
construct satisfability and logical consequence problems in order to verify the properties
we want, reachability and robustness.

The results obtained for the method 𝐗𝟏 of sorting the input were extremely very
unsatisfatory. The algorithm generated the maximum amount of linear pieces, taking the
minimum amount of neighboring points to create a plane, and doing this for all points.
This yielded too many linear pieces, making it very inefficient for the SAT Solver to deal
with and deeming the verification of the function untractable.

On the other hand, the pieces generated with method𝐂 are what one would expect to be
the best pieces when looking at the graph of the function. We obtained 3 pieces generated
by the algorithm plus 4 simplices used to assert the continuity of the approximation. This
is much better and very feasible to solve using the Solver. In table 7.2 we present the results
verified by our procedure.
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Reachability Robustness

Parameters Result Parameters Result
𝜋 = 0.1 ✓ 𝜋 = 0.75, 𝜀 = 0.01 ✓

𝜋 = 0.2 ✓ 𝜋 = 0.75, 𝜀 = 0.1 ✓

𝜋 = 0.3 ✓ 𝜋 = 0.75, 𝜀 = 0.2 ✓

𝜋 = 0.4 ✓ 𝜋 = 0.75, 𝜀 = 0.25 ✓

𝜋 = 0.5 ✓ 𝜋 = 0.75, 𝜀 = 0.3 ✗

𝜋 = 0.6 ✓ 𝜋 = 0.75, 𝜀 = 0.35 ✗

𝜋 = 0.7 ✓ 𝜋 = 0.75, 𝜀 = 0.4 ✗

𝜋 = 0.8 ✓ 𝜋 = 0.75, 𝜀 = 0.5 ✗

𝜋 = 0.9 ✓

Table 7.2: Verification of an approximation of the network depicted in figure 7.1, utilizing sorting

method C on the input points.

As expected given the nature of the XOR problem, and corroborated by the graph of
the function, the network accesses every single value between 0 and 1. As for robustness,
we tried to verify that if the network is in a given state 𝜋 = 3

4 we perturb it by adding
a small number to each coordinate of the input. In this particular scenario we can see
that the network is fairly robust, because it continues to reach 𝑓 (𝑥 + 𝑝) ≥ 0.5 even for a
perturbation of 0.25 in every coordinate of the input.
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Chapter 8

Conclusions

We researched and detailed the thoeretical results used in the process of verification pre-
sented in figure 1.1. We applied such theoretical results to conduct an experiment to verify
a trained neural network using Łukasiewicz Logic. During the process of implementation
we encountered multiple issues, most notably the dependence of an order underlying the
data and the fact that the used algorithm does not generate a continuous approximation
of the function. We used a few techniques to circumvent these, but they were reliant in a
few things that were available to us in this special case: prior knowledge of the function
the neural network constructed and the low dimensionality of such function.

The results obtained in our experiments were in accordance to expectation and to what
we knew beforehand about the function. That entails that if one is able to circumvent the
issues presented, this is a valid method to create a piece wise linear approximation of a
neural network.

8.1 Future Work
For future works that intend to use the aforementioned method of approximation,

specially when dealing with networks in a higher dimension, one must find an efficient
way to assert the continuity of the approximated function and find the optimal way of
ordering the input data before executing the algorithm, if one exists.

Moreover, one can investigate the other method of representing a neural network
as a linear piece wise function mentioned in chapter 5, and try to express the function
as a combination of ReLU functions, which already are piece wise linear. In the case
the network does not use ReLU as its actvation function, one idea is to try and create a
linear approximation for the used activation (i.e. Sigmoid) and express the network as a
combination of these approximated activations.
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Appendix A

Proofs for Łukasiewicz Logic
connectives valuations

A.1 Proof of Lemma 1

Proof.

𝑣(𝛼 ∨ 𝛽) = 𝑣((𝛼 → 𝛽) → 𝛽)
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − 𝑣(𝛼 → 𝛽) + 𝑣(𝛽))
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − 𝑚𝑖𝑛(1, 1 − 𝑣(𝛼) + 𝑣(𝛽)) + 𝑣(𝛽))

If 𝑣(𝛼) > 𝑣(𝛽), we have 1 − 𝑣(𝛼) + 𝑣(𝛽) < 1 and:

𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − 𝑚𝑖𝑛(1, 1 − 𝑣(𝛼) + 𝑣(𝛽)) + 𝑣(𝛽))
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − (1 − 𝑣(𝛼) + 𝑣(𝛽)) + 𝑣(𝛽))
𝑣((𝛼 → 𝛽) → 𝛽) = 1 − (1 − 𝑣(𝛼) + 𝑣(𝛽)) + 𝑣(𝛽)
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑣(𝛼)

On the other hand, if 𝑣(𝛽) > 𝑣(𝛼), then 1 − 𝑣(𝛼) + 𝑣(𝛽) > 1 and:

𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − 𝑚𝑖𝑛(1, 1 − 𝑣(𝛼) + 𝑣(𝛽)) + 𝑣(𝛽))
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑚𝑖𝑛(1, 1 − 1 + 𝑣(𝛽))
𝑣((𝛼 → 𝛽) → 𝛽) = 𝑣(𝛽)

We can see that (𝛼 → 𝛽) → 𝛽 behave exactly as the maximum function and, in fact, it is
possible to define ∨ as the maximum of the two values.
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A.2 Proof of Lemma 2

Proof.

𝑣(𝛼 ∧ 𝛽) = 𝑣(¬(¬𝛼 ∨ ¬𝛽))
𝑣(𝛼 ∧ 𝛽) = 1 − 𝑣(¬𝛼 ∨ ¬𝛽)
𝑣(𝛼 ∧ 𝛽) = 1 − 𝑚𝑎𝑥(𝑣(¬𝛼), 𝑣(¬𝛽))

𝑣(¬(¬𝛼 ∨ ¬𝛽)) = 1 − 𝑚𝑎𝑥(1 − 𝑣(𝛼), 1 − 𝑣(𝛽))

If 𝑣(𝛼) > 𝑣(𝛽), we have 𝑚𝑎𝑥(1 − 𝑣(𝛼), 1 − 𝑣(𝛽)) = 1 − 𝑣(𝛽) and:

𝑣(¬(¬𝛼 ∨ ¬𝛽)) = 1 − (1 − 𝑣(𝛽))
𝑣(¬(¬𝛼 ∨ ¬𝛽)) = 𝑣(𝛽)

Now, if 𝑣(𝛽) > 𝑣(𝛼), then 𝑚𝑎𝑥(1 − 𝑣(𝛼), 1 − 𝑣(𝛽)) = 1 − 𝑣(𝛼) and:

𝑣(¬(¬𝛼 ∨ ¬𝛽)) = 1 − (1 − 𝑣(𝛼))
𝑣(¬(¬𝛼 ∨ ¬𝛽)) = 𝑣(𝛼)

A.3 Proof of Lemma 3

Proof.

𝑣(𝛼 ⊕ 𝛽) = 𝑣(¬𝛼 → 𝛽)
𝑣(¬𝛼 → 𝛽) = 𝑚𝑖𝑛(1, 1 − 𝑣(¬𝛼) + 𝑣(𝛽))
𝑣(¬𝛼 → 𝛽) = 𝑚𝑖𝑛(1, 1 − (1 − 𝑣(𝛼)) + 𝑣(𝛽))
𝑣(¬𝛼 → 𝛽) = 𝑚𝑖𝑛(1, 𝑣(𝛼) + 𝑣(𝛽))

A.4 Proof of Lemma 4

Proof.

𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑣(¬𝛼 ⊕ ¬𝛽)
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑚𝑖𝑛(1, 𝑣(¬𝛼) + 𝑣(¬𝛽))
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑚𝑖𝑛(1, 1 − 𝑣(𝛼) + 1 − 𝑣(𝛽))
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑚𝑖𝑛(1, 2 − 𝑣(𝛼) − 𝑣(𝛽))
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If 2 − 𝑣(𝛼) − 𝑣(𝛽) < 1, we have

1 − 𝑣(𝛼) − 𝑣(𝛽) < 0
𝑣(𝛼) + 𝑣(𝛽) − 1 > 0
𝑚𝑎𝑥(0, 𝑣(𝛼) + 𝑣(𝛽) − 1) = 𝑣(𝛼) + 𝑣(𝛽) − 1

and also

𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑚𝑖𝑛(1, 2 − 𝑣(𝛼) − 𝑣(𝛽))
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − (2 − 𝑣(𝛼) − 𝑣(𝛽))
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 𝑣(𝛼) + 𝑣(𝛽) − 1.

Now, if 2 − 𝛼 − 𝛽 > 1, first we have

1 − 𝑣(𝛼) − 𝑣(𝛽) > 0
𝑣(𝛼) + 𝑣(𝛽) − 1 < 0
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 𝑚𝑎𝑥(0, 𝑣(𝛼) + 𝑣(𝛽) − 1)
𝑚𝑎𝑥(0, 𝑣(𝛼) + 𝑣(𝛽) − 1) = 0

and

𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 𝑚𝑖𝑛(1, 2 − 𝑣(𝛼) − 𝑣(𝛽))
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 1 − 1
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 0

so
𝑣(¬(¬𝛼 ⊕ ¬𝛽)) = 𝑚𝑎𝑥(0, 𝑣(𝛼) + 𝑣(𝛽) − 1).
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