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Abstract

To the best of our knowledge, there are very few results on how Heyting-valued models are affected by the morphisms on the complete Heyting algebras that determine them: the only cases found in the literature are
concerning automorphisms of complete Boolean algebras and complete embedding between them (i.e., injective Boolean algebra homomorphisms that preserves arbitrary suprema and arbitrary infima). In the present
work, we consider and explore how more general kinds of morphisms between complete Heyting algebras H and H′ induce arrows between V(H) and V(H′), and between their corresponding localic toposes Set(H) (' Sh (H))
and Set(H′) (' Sh (H′)). In more detail: any geometric morphism f ∗ : Set(H) → Set(H′) (that automatically came from a unique locale morphism f : H → H′), can be “lifted” to an arrow f̃ : V(H) → V(H′). We also provide also
some semantic preservation results concerning this arrow f̃ : V(H) → V(H′).

1 Locales, sheaves and topos
1.1 Intuition

If 〈X,O(X)〉 is a topological space, then the family of sets of
real continuous functions has the property that given a open
covering of an open set U , and a family of functions defined
on elements of the covering that coincide on their pairwise
intersections, there exists a unique “glueing” of that family
into a function U → R. Sheaves attempt to capture the idea
of objects locally defined giving rise to glueings.
Definition 1.1 Let 〈X,O(X)〉 be a topological space. Regard
the poset (O(X),⊆) as a category, a presheaf on X is a functor
F : O(X)op→ Set. A sheaf on X is a presheaf F such that, for
every open U ∈ O(X) and every open covering {Ui ∈ O(X) |
i ∈ I} of U , the diagram below is an equalizer:

F (U)
∏
i∈I

F (Ui)
∏

〈i,j〉∈I×I
F (Ui ∩ Uj)

We denote the category of presheaves on X by Psh (X) and
the category of sheaves on X by Sh (X).

Notice that the definition of a sheaf depends only on the
lattice of opens, therefore we may define presheaves and
sheaves for any locale 〈H,≤〉, i.e. a complete lattice satisfying
the following distributive law:

a ∧
∨
i∈I

ci =
∨
i∈I

a ∧ ci.

Locales are precisely the complete Heyting algebras (cHA),
where

a→ b =
∨
{c ∈ H : a ∧ c ≤ b}.

It is also possible to define sheaves in more general
categories, using Grothendieck topologies.
1.2 Development
Definition 1.2 Let C be a small category. A Grothendieck
topology on C is a function J which assigns to each object
c ∈ Obj (C) a family J(c) of sieves on c, satisfying some
technical conditions. A pair (C, J) is called a (small) site.

Every locale (H,≤) gives rise to a Grothendieck topology:
if c ∈ H, then J(c) is the set of all coverings of c that are
downward closed. Another important example is the Zariski
topology in Algebraic Geometry.

A Grothendieck topos is a category which is equivalent
to the topos of sheaves on a site. Some properties of
Grothendieck topos are interesting for developing logic in
the context of category theory, as it contains a subobject
classifier and is Cartesian closed.
Definition 1.3 A topos is said to be localic if it is equivalent
to the topos of sheaves on a locale.
Theorem 1.4 For a Grothendieck topos T , the following
conditions are equivalent:
1. T is a localic topos;
2. the subobjects of the terminal object constitute a family of

generators of T .
A continuous function between topological spaces defines

a (∧,
∨

)-preserving morphism between the locales of open
sets, and a geometric morphism between the corresponding
sheaf topos: That is, (ϕ∗, ϕ∗) is a pair of functors such that
ϕ∗ a ϕ∗ and ϕ∗ preserves finite limits.

This mapping from the category of topological spaces to the
category of topos and geometric morphisms is not full nor
faithful. However, the mapping from the category of locales
to the category of topos and geometric morphisms is fully
faithful:

2 Heyting valued expansions of V
Definition 2.1 Locale-Valued Model

We define, for a locale H, the universe of H-names by ordinal
recursion. Given an ordinal α let

V
(H)
α =

{
f ∈ HX | ∃β < α,X ⊆ V

(H)
β

}
It is readily seen that V(H)

α ⊂ V
(H)
α+1 and that for limit ordinals it

is simply the union of the earlier stages. So we let the (proper
class) V(H) be defined as:

V(H) =
⋃
α∈On

V
(H)
α

Definition 2.2 Atomic Formulas’ Values
We endow this class with two binary function on H, namely

J· ∈ ·K and J· = ·K defined by simultaneous recursion on

〈x, y〉 ≺ 〈u, v〉 ⇐⇒ (x = u ∧ y ∈ dom (v)) ∨ (x ∈ dom (u) ∧ y = v)

This is a well founded relation on V(H)×V(H). For now belief
suffices and we shall define the two functions of which we
spoke.

J· ∈ ·K : V(H) ×V(H)→ H
〈x, y〉 →

∨
u∈dom(y)

(y(u) ∧ Jx = uK)

J· = ·K : V(H) ×V(H)→ H
〈x, y〉 →

∧
u∈dom(y)
v∈dom(x)

(y(u)→ Ju ∈ xK) ∧ (x(v)→ Jv ∈ yK)

Definition 2.3 Valuation of Complex Formulae
The definition of valuation for atomic formulae can be

extended to give values in H to any sentence in the language
of ZF enriched with constant symbols for elements in V(H).
This is done, naturally, recursively: the binary connectives
and negation correspond to the lattice’s meet, join, implication
and pseudocomplementation; quantifications correspond to
big meets (∀) and big joins (∃) over the entire V(H).

We, thus, write Jφ(x1 · · · xn)KH for the value of the formula
φ with its free variables substituted by the constants
x1, · · · , xn ∈ V(H).
Theorem 2.4V(H) is a Model of Intuitionistic ZF

Model in the sense that V(H) always values the axioms of
Intuitionistic Logic and Set Theory (IZF) Theory as 1H and
modus ponens and other such intuitionistic inference rules
are all valid for the semantic V(H) � φ ⇐⇒ JφKH = 1H. If H is
a Boolean algebra, then V(H) is, as above, a (classical) model
of ZFC. And V(2) ∼= V in a model theoretical sense.

3 V(H) and Descriptions of Sh (H)
In this section we present, for the reader’s convenience,

an equivalent description of category of sheaves of a cHA
H, Sh (H) ' H-Set ' Set(H), where the former equivalence is
described in [Bor08c] and later is obtained by the cumulative
hierarchy V(H) by taking quotients as below:
Definition 3.1 Consider the equivalence relation in V(H)

given by x ≡ y if, and only if, Jx = yK = 1. The category Set(H)

is defined as:

Obj
(
Set(H)

)
··= V(H)

�≡

Set(H) ([x], [y]) ··=
{

[φ] ∈ Set(H)
∣∣∣ Jfun (φ : x→ y)K = 1

}
The arrows do not depend on the choice of representative
of the equivalence classes [x] and [y]. The composition and
identity are defined as in Set.

4 Induced morphisms in Heyting
valued models

There is an injection V → V(H) given by ·̂ which preserves
the truth values of Σ1 formulas, i.e.: ψ(x1 · · · xn) ⇐⇒
Jψ(x̂1 · · · x̂n)K = 1H. Currently, it is known that if φ : H → H′
is a complete and injective morfism of Heyting algebras, we
can define a map φ̃ : V(H) → V(H′) that is injective and such
that: for all x, y ∈ V(H),

φ Jx = yKH =
r
φ̃(x) = φ̃(y)

z

H′

φ Jx ∈ yKH =
r
φ̃(x) ∈ φ̃(y)

z

H′
For ∆0 formulas, the equality, trivially, still holds. One gets
the following inequalities for any Σ1 formula ψ:

φ Jψ(x1 · · ·xn)KH ≤
r
ψ(φ̃(x1) · · · φ̃(xn))

z

H′

4.1 Induced morphisms
Definition 4.1 Generalized Connection between V(H)s

Let φ : H → H′ function between complete Heyting algebras
that preserving (

∨
,∧). Define the following compatible family

of relations by ordinal recursion:

x φ̃α y ⇐⇒ ∃(ε : dom (x) � dom (y)) : (y ◦ ε = φ ◦ x)∧
∀u ∈ dom (x) : ∃v ∈ V(H′) :

∃β < α : (u φ̃β v) ∧ Jv = ε(u)K = 1

φ̃ =
⋃
α∈On

φ̃α

Proposition 4.2 If φ is injective, then, for all α ∈ On, φ̃α is an
injective function. In this case, the definition coincides with
that found in [Bel05].

Remark 4.3 Naı̈ve attempts to extend the definition found
in [Bel05] are fated to fail, for in the absence of injectivity,
relations defined without something similar to the Jv = ε(u)K =
1 condition are not functions, and even as relations may have
very limited (Small) domains.

There are a handful of alternative definitions, which are all
equivalent up to quotient by ≡.

Remark 4.4 We observe that V(H) is a proper class (for H 6=
{0}), since there exists an injection V � V(H). Hence it can
be shown that, for all x ∈ V(H),

{
y ∈ V(H) | Jx = yK = 1

}
is a

proper class. Indeed, for all Σ ⊆ V(H) such that Σ∩dom (x) = ∅,
we may define yΣ : dom (x) ∪ Σ→ H as:

yΣ(u) =

{
x(u) , if u ∈ dom (x)

0 , if u ∈ Σ

so that Jx = yΣK = 1.

Theorem 4.5 If φ : H → H′, we have managed to show the
domain of the relation φ̃ to be the whole V(H).

4.2 Main results
Theorem 4.6 For all

〈
x, x′

〉
,
〈
y, y′

〉
,
〈
z, z′

〉
∈ f̃ ,

f (Jy ∈ xK) ≤′
q
y′ ∈ x′

y′ and f (Jx = zK) ≤′
q
x′ = z′

y′

Corollary 4.7 Let ϕ be a positive formula with bounded
quantifiers and f : H → H′. Then, for all

〈
a1, a

′
1

〉
, ...,

〈
an, a

′
n

〉
∈

f̃ , we have:

f (Jϕ(a1, ..., an)KH) ≤
q
ϕ(a′1, ..., a

′
n)

y
H′

Another consequence of the previous theorem is that, if
Jx = zKH = 1H, then, since 1H =

∧
∅, we obtain:

f Jx = zKH = f (1H) = 1H′ ≤
q
x′ = z′

y
H′

that is,
q
x′ = z′

y
H′ = 1H′. Therefore, when we take the

quotient by ≡, the “semi-function” (i.e., a relation with total
domain) f̃ defines an object mapping f : Obj

(
Set(H)

)
→

Obj
(
Set(H′)

)
.

Proposition 4.8

1. idH = id
Set(H)

: Set(H)→ Set(H);

2. if f ′ : H′ → H′′ preserves finite meets and arbitrary joins,
then f ′ ◦ f = f ′ ◦ f : Set(H)→ Set(H′′).

Proposition 4.9 Let
〈
x, x′

〉
∈ f̃ with ε : dom (x) � dom

(
x′
)

as
witness. Consider the function εH

′
: dom (x) × dom

(
x′
)
→ H′

given by, for all
〈
u, v′

〉
∈ dom (x)× dom

(
x′
)
:

εH
′
(u, v′) ··= f Ju ∈ xKH ∧

q
ε(u) = v′

y
H′ ∧

q
v′ ∈ x′

y
H′

Then, εH′ determines a morphism of H-sets (see e.g. [Bor08c])
εH
′

: (dom (x) , f ◦ δx) → (dom
(
x′
)
, δx′) which does not depend

on the choice of witness, where

δx(u, v) ··= Ju ∈ xKH ∧ Ju = vKH , for all u, v ∈ dom (x)

δx′(u
′, v′) ··=

q
u′ ∈ x′

y
H′ ∧

q
u′ = v′

y
H′ , for all u′, v′ ∈ dom

(
x′
)

Therefore, observing the proof of the aforementioned
theorem, note that we may obtain these inequalities (and,
thus, that εH′ is iso) at least in the case that f : H → H′
preserves (strictly) the implication and both arbitrary meets
and joins. With that hypothesis, we could also adapt the
corollary to the theorem to obtain the strict preservation of
H-values of all formulas with bounded quantifiers.
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∗IME-USP, jose.alvim@usp.br
†IME-USP, arthur.cahali@usp.br
‡IME-USP, hugomar@ime.usp.br

1


