Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : /*
3 : * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 : * Copyright 2003 PathScale, Inc.
5 : * Derived from include/asm-i386/pgtable.h
6 : */
7 :
8 : #ifndef __UM_PGTABLE_H
9 : #define __UM_PGTABLE_H
10 :
11 : #include <asm/fixmap.h>
12 :
13 : #define _PAGE_PRESENT 0x001
14 : #define _PAGE_NEWPAGE 0x002
15 : #define _PAGE_NEWPROT 0x004
16 : #define _PAGE_RW 0x020
17 : #define _PAGE_USER 0x040
18 : #define _PAGE_ACCESSED 0x080
19 : #define _PAGE_DIRTY 0x100
20 : /* If _PAGE_PRESENT is clear, we use these: */
21 : #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 : pte_present gives true */
23 :
24 : #ifdef CONFIG_3_LEVEL_PGTABLES
25 : #include <asm/pgtable-3level.h>
26 : #else
27 : #include <asm/pgtable-2level.h>
28 : #endif
29 :
30 : extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31 :
32 : /* zero page used for uninitialized stuff */
33 : extern unsigned long *empty_zero_page;
34 :
35 : /* Just any arbitrary offset to the start of the vmalloc VM area: the
36 : * current 8MB value just means that there will be a 8MB "hole" after the
37 : * physical memory until the kernel virtual memory starts. That means that
38 : * any out-of-bounds memory accesses will hopefully be caught.
39 : * The vmalloc() routines leaves a hole of 4kB between each vmalloced
40 : * area for the same reason. ;)
41 : */
42 :
43 : extern unsigned long end_iomem;
44 :
45 : #define VMALLOC_OFFSET (__va_space)
46 : #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 : #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
48 : #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
49 : #define MODULES_VADDR VMALLOC_START
50 : #define MODULES_END VMALLOC_END
51 : #define MODULES_LEN (MODULES_VADDR - MODULES_END)
52 :
53 : #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
54 : #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
55 : #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
56 : #define __PAGE_KERNEL_EXEC \
57 : (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
58 : #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
59 : #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
60 : #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
61 : #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
62 : #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
63 : #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
64 :
65 : /*
66 : * The i386 can't do page protection for execute, and considers that the same
67 : * are read.
68 : * Also, write permissions imply read permissions. This is the closest we can
69 : * get..
70 : */
71 : #define __P000 PAGE_NONE
72 : #define __P001 PAGE_READONLY
73 : #define __P010 PAGE_COPY
74 : #define __P011 PAGE_COPY
75 : #define __P100 PAGE_READONLY
76 : #define __P101 PAGE_READONLY
77 : #define __P110 PAGE_COPY
78 : #define __P111 PAGE_COPY
79 :
80 : #define __S000 PAGE_NONE
81 : #define __S001 PAGE_READONLY
82 : #define __S010 PAGE_SHARED
83 : #define __S011 PAGE_SHARED
84 : #define __S100 PAGE_READONLY
85 : #define __S101 PAGE_READONLY
86 : #define __S110 PAGE_SHARED
87 : #define __S111 PAGE_SHARED
88 :
89 : /*
90 : * ZERO_PAGE is a global shared page that is always zero: used
91 : * for zero-mapped memory areas etc..
92 : */
93 : #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
94 :
95 : #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
96 :
97 : #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
98 : #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
99 :
100 : #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
101 : #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
102 :
103 : #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
104 : #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
105 :
106 : #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
107 : #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
108 :
109 : #define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
110 : #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
111 :
112 : #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
113 : #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
114 :
115 : #define pte_page(x) pfn_to_page(pte_pfn(x))
116 :
117 : #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
118 :
119 : /*
120 : * =================================
121 : * Flags checking section.
122 : * =================================
123 : */
124 :
125 : static inline int pte_none(pte_t pte)
126 : {
127 60 : return pte_is_zero(pte);
128 : }
129 :
130 : /*
131 : * The following only work if pte_present() is true.
132 : * Undefined behaviour if not..
133 : */
134 : static inline int pte_read(pte_t pte)
135 : {
136 0 : return((pte_get_bits(pte, _PAGE_USER)) &&
137 : !(pte_get_bits(pte, _PAGE_PROTNONE)));
138 : }
139 :
140 : static inline int pte_exec(pte_t pte){
141 : return((pte_get_bits(pte, _PAGE_USER)) &&
142 : !(pte_get_bits(pte, _PAGE_PROTNONE)));
143 : }
144 :
145 : static inline int pte_write(pte_t pte)
146 : {
147 0 : return((pte_get_bits(pte, _PAGE_RW)) &&
148 : !(pte_get_bits(pte, _PAGE_PROTNONE)));
149 : }
150 :
151 : static inline int pte_dirty(pte_t pte)
152 : {
153 0 : return pte_get_bits(pte, _PAGE_DIRTY);
154 : }
155 :
156 : static inline int pte_young(pte_t pte)
157 : {
158 0 : return pte_get_bits(pte, _PAGE_ACCESSED);
159 : }
160 :
161 : static inline int pte_newpage(pte_t pte)
162 : {
163 60 : return pte_get_bits(pte, _PAGE_NEWPAGE);
164 : }
165 :
166 : static inline int pte_newprot(pte_t pte)
167 : {
168 0 : return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
169 : }
170 :
171 : /*
172 : * =================================
173 : * Flags setting section.
174 : * =================================
175 : */
176 :
177 : static inline pte_t pte_mknewprot(pte_t pte)
178 : {
179 60 : pte_set_bits(pte, _PAGE_NEWPROT);
180 : return(pte);
181 : }
182 :
183 : static inline pte_t pte_mkclean(pte_t pte)
184 : {
185 0 : pte_clear_bits(pte, _PAGE_DIRTY);
186 : return(pte);
187 : }
188 :
189 : static inline pte_t pte_mkold(pte_t pte)
190 : {
191 0 : pte_clear_bits(pte, _PAGE_ACCESSED);
192 : return(pte);
193 : }
194 :
195 : static inline pte_t pte_wrprotect(pte_t pte)
196 : {
197 0 : if (likely(pte_get_bits(pte, _PAGE_RW)))
198 0 : pte_clear_bits(pte, _PAGE_RW);
199 : else
200 : return pte;
201 : return(pte_mknewprot(pte));
202 : }
203 :
204 : static inline pte_t pte_mkread(pte_t pte)
205 : {
206 : if (unlikely(pte_get_bits(pte, _PAGE_USER)))
207 : return pte;
208 : pte_set_bits(pte, _PAGE_USER);
209 : return(pte_mknewprot(pte));
210 : }
211 :
212 : static inline pte_t pte_mkdirty(pte_t pte)
213 : {
214 0 : pte_set_bits(pte, _PAGE_DIRTY);
215 : return(pte);
216 : }
217 :
218 : static inline pte_t pte_mkyoung(pte_t pte)
219 : {
220 0 : pte_set_bits(pte, _PAGE_ACCESSED);
221 : return(pte);
222 : }
223 :
224 : static inline pte_t pte_mkwrite(pte_t pte)
225 : {
226 0 : if (unlikely(pte_get_bits(pte, _PAGE_RW)))
227 : return pte;
228 0 : pte_set_bits(pte, _PAGE_RW);
229 : return(pte_mknewprot(pte));
230 : }
231 :
232 : static inline pte_t pte_mkuptodate(pte_t pte)
233 : {
234 0 : pte_clear_bits(pte, _PAGE_NEWPAGE);
235 0 : if(pte_present(pte))
236 0 : pte_clear_bits(pte, _PAGE_NEWPROT);
237 : return(pte);
238 : }
239 :
240 : static inline pte_t pte_mknewpage(pte_t pte)
241 : {
242 60 : pte_set_bits(pte, _PAGE_NEWPAGE);
243 : return(pte);
244 : }
245 :
246 : static inline void set_pte(pte_t *pteptr, pte_t pteval)
247 : {
248 : pte_copy(*pteptr, pteval);
249 :
250 : /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
251 : * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
252 : * mapped pages.
253 : */
254 :
255 60 : *pteptr = pte_mknewpage(*pteptr);
256 120 : if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
257 : }
258 :
259 : static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
260 : pte_t *pteptr, pte_t pteval)
261 : {
262 60 : set_pte(pteptr, pteval);
263 : }
264 :
265 : #define __HAVE_ARCH_PTE_SAME
266 : static inline int pte_same(pte_t pte_a, pte_t pte_b)
267 : {
268 0 : return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
269 : }
270 :
271 : /*
272 : * Conversion functions: convert a page and protection to a page entry,
273 : * and a page entry and page directory to the page they refer to.
274 : */
275 :
276 : #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
277 : #define __virt_to_page(virt) phys_to_page(__pa(virt))
278 : #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
279 : #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
280 :
281 : #define mk_pte(page, pgprot) \
282 : ({ pte_t pte; \
283 : \
284 : pte_set_val(pte, page_to_phys(page), (pgprot)); \
285 : if (pte_present(pte)) \
286 : pte_mknewprot(pte_mknewpage(pte)); \
287 : pte;})
288 :
289 : static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
290 : {
291 0 : pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
292 : return pte;
293 : }
294 :
295 : /*
296 : * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
297 : *
298 : * this macro returns the index of the entry in the pmd page which would
299 : * control the given virtual address
300 : */
301 : #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
302 :
303 : struct mm_struct;
304 : extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
305 :
306 : #define update_mmu_cache(vma,address,ptep) do {} while (0)
307 :
308 : /* Encode and de-code a swap entry */
309 : #define __swp_type(x) (((x).val >> 5) & 0x1f)
310 : #define __swp_offset(x) ((x).val >> 11)
311 :
312 : #define __swp_entry(type, offset) \
313 : ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
314 : #define __pte_to_swp_entry(pte) \
315 : ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
316 : #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
317 :
318 : #define kern_addr_valid(addr) (1)
319 :
320 : /* Clear a kernel PTE and flush it from the TLB */
321 : #define kpte_clear_flush(ptep, vaddr) \
322 : do { \
323 : pte_clear(&init_mm, (vaddr), (ptep)); \
324 : __flush_tlb_one((vaddr)); \
325 : } while (0)
326 :
327 : #endif
|