LCOV - code coverage report
Current view: top level - arch/um/kernel - process.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 44 142 31.0 %
Date: 2022-12-09 01:23:36 Functions: 7 29 24.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
       4             :  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
       5             :  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
       6             :  * Copyright 2003 PathScale, Inc.
       7             :  */
       8             : 
       9             : #include <linux/stddef.h>
      10             : #include <linux/err.h>
      11             : #include <linux/hardirq.h>
      12             : #include <linux/mm.h>
      13             : #include <linux/module.h>
      14             : #include <linux/personality.h>
      15             : #include <linux/proc_fs.h>
      16             : #include <linux/ptrace.h>
      17             : #include <linux/random.h>
      18             : #include <linux/slab.h>
      19             : #include <linux/sched.h>
      20             : #include <linux/sched/debug.h>
      21             : #include <linux/sched/task.h>
      22             : #include <linux/sched/task_stack.h>
      23             : #include <linux/seq_file.h>
      24             : #include <linux/tick.h>
      25             : #include <linux/threads.h>
      26             : #include <linux/resume_user_mode.h>
      27             : #include <asm/current.h>
      28             : #include <asm/mmu_context.h>
      29             : #include <linux/uaccess.h>
      30             : #include <as-layout.h>
      31             : #include <kern_util.h>
      32             : #include <os.h>
      33             : #include <skas.h>
      34             : #include <registers.h>
      35             : #include <linux/time-internal.h>
      36             : 
      37             : /*
      38             :  * This is a per-cpu array.  A processor only modifies its entry and it only
      39             :  * cares about its entry, so it's OK if another processor is modifying its
      40             :  * entry.
      41             :  */
      42             : struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
      43             : 
      44             : static inline int external_pid(void)
      45             : {
      46             :         /* FIXME: Need to look up userspace_pid by cpu */
      47         618 :         return userspace_pid[0];
      48             : }
      49             : 
      50           0 : int pid_to_processor_id(int pid)
      51             : {
      52             :         int i;
      53             : 
      54           0 :         for (i = 0; i < ncpus; i++) {
      55           0 :                 if (cpu_tasks[i].pid == pid)
      56             :                         return i;
      57             :         }
      58             :         return -1;
      59             : }
      60             : 
      61           0 : void free_stack(unsigned long stack, int order)
      62             : {
      63           0 :         free_pages(stack, order);
      64           0 : }
      65             : 
      66           0 : unsigned long alloc_stack(int order, int atomic)
      67             : {
      68             :         unsigned long page;
      69           0 :         gfp_t flags = GFP_KERNEL;
      70             : 
      71           0 :         if (atomic)
      72           0 :                 flags = GFP_ATOMIC;
      73           0 :         page = __get_free_pages(flags, order);
      74             : 
      75           0 :         return page;
      76             : }
      77             : 
      78             : static inline void set_current(struct task_struct *task)
      79             : {
      80        1236 :         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
      81             :                 { external_pid(), task });
      82             : }
      83             : 
      84             : extern void arch_switch_to(struct task_struct *to);
      85             : 
      86         618 : void *__switch_to(struct task_struct *from, struct task_struct *to)
      87             : {
      88         618 :         to->thread.prev_sched = from;
      89         618 :         set_current(to);
      90             : 
      91         618 :         switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
      92         511 :         arch_switch_to(current);
      93             : 
      94         511 :         return current->thread.prev_sched;
      95             : }
      96             : 
      97           0 : void interrupt_end(void)
      98             : {
      99           0 :         struct pt_regs *regs = &current->thread.regs;
     100             : 
     101           0 :         if (need_resched())
     102           0 :                 schedule();
     103           0 :         if (test_thread_flag(TIF_SIGPENDING) ||
     104           0 :             test_thread_flag(TIF_NOTIFY_SIGNAL))
     105           0 :                 do_signal(regs);
     106           0 :         if (test_thread_flag(TIF_NOTIFY_RESUME))
     107           0 :                 resume_user_mode_work(regs);
     108           0 : }
     109             : 
     110           0 : int get_current_pid(void)
     111             : {
     112           0 :         return task_pid_nr(current);
     113             : }
     114             : 
     115             : /*
     116             :  * This is called magically, by its address being stuffed in a jmp_buf
     117             :  * and being longjmp-d to.
     118             :  */
     119         108 : void new_thread_handler(void)
     120             : {
     121             :         int (*fn)(void *), n;
     122             :         void *arg;
     123             : 
     124         108 :         if (current->thread.prev_sched != NULL)
     125         107 :                 schedule_tail(current->thread.prev_sched);
     126         108 :         current->thread.prev_sched = NULL;
     127             : 
     128         108 :         fn = current->thread.request.u.thread.proc;
     129         108 :         arg = current->thread.request.u.thread.arg;
     130             : 
     131             :         /*
     132             :          * callback returns only if the kernel thread execs a process
     133             :          */
     134         108 :         n = fn(arg);
     135           0 :         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
     136           0 : }
     137             : 
     138             : /* Called magically, see new_thread_handler above */
     139           0 : void fork_handler(void)
     140             : {
     141           0 :         force_flush_all();
     142             : 
     143           0 :         schedule_tail(current->thread.prev_sched);
     144             : 
     145             :         /*
     146             :          * XXX: if interrupt_end() calls schedule, this call to
     147             :          * arch_switch_to isn't needed. We could want to apply this to
     148             :          * improve performance. -bb
     149             :          */
     150           0 :         arch_switch_to(current);
     151             : 
     152           0 :         current->thread.prev_sched = NULL;
     153             : 
     154           0 :         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
     155           0 : }
     156             : 
     157         107 : int copy_thread(unsigned long clone_flags, unsigned long sp,
     158             :                 unsigned long arg, struct task_struct * p, unsigned long tls)
     159             : {
     160             :         void (*handler)(void);
     161         107 :         int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER);
     162         107 :         int ret = 0;
     163             : 
     164         107 :         p->thread = (struct thread_struct) INIT_THREAD;
     165             : 
     166         107 :         if (!kthread) {
     167           0 :                 memcpy(&p->thread.regs.regs, current_pt_regs(),
     168             :                        sizeof(p->thread.regs.regs));
     169           0 :                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
     170           0 :                 if (sp != 0)
     171           0 :                         REGS_SP(p->thread.regs.regs.gp) = sp;
     172             : 
     173           0 :                 handler = fork_handler;
     174             : 
     175           0 :                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
     176             :         } else {
     177         107 :                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
     178         107 :                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
     179         107 :                 p->thread.request.u.thread.arg = (void *)arg;
     180         107 :                 handler = new_thread_handler;
     181             :         }
     182             : 
     183         107 :         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
     184             : 
     185         107 :         if (!kthread) {
     186           0 :                 clear_flushed_tls(p);
     187             : 
     188             :                 /*
     189             :                  * Set a new TLS for the child thread?
     190             :                  */
     191           0 :                 if (clone_flags & CLONE_SETTLS)
     192           0 :                         ret = arch_set_tls(p, tls);
     193             :         }
     194             : 
     195         107 :         return ret;
     196             : }
     197             : 
     198           1 : void initial_thread_cb(void (*proc)(void *), void *arg)
     199             : {
     200           1 :         int save_kmalloc_ok = kmalloc_ok;
     201             : 
     202           1 :         kmalloc_ok = 0;
     203           1 :         initial_thread_cb_skas(proc, arg);
     204           1 :         kmalloc_ok = save_kmalloc_ok;
     205           1 : }
     206             : 
     207           0 : void um_idle_sleep(void)
     208             : {
     209             :         if (time_travel_mode != TT_MODE_OFF)
     210             :                 time_travel_sleep();
     211             :         else
     212           0 :                 os_idle_sleep();
     213           0 : }
     214             : 
     215           0 : void arch_cpu_idle(void)
     216             : {
     217           0 :         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
     218             :         um_idle_sleep();
     219             :         raw_local_irq_enable();
     220           0 : }
     221             : 
     222           0 : int __cant_sleep(void) {
     223           0 :         return in_atomic() || irqs_disabled() || in_interrupt();
     224             :         /* Is in_interrupt() really needed? */
     225             : }
     226             : 
     227           0 : int user_context(unsigned long sp)
     228             : {
     229             :         unsigned long stack;
     230             : 
     231           0 :         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
     232           0 :         return stack != (unsigned long) current_thread_info();
     233             : }
     234             : 
     235             : extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
     236             : 
     237           1 : void do_uml_exitcalls(void)
     238             : {
     239             :         exitcall_t *call;
     240             : 
     241           1 :         call = &__uml_exitcall_end;
     242           7 :         while (--call >= &__uml_exitcall_begin)
     243           5 :                 (*call)();
     244           1 : }
     245             : 
     246           0 : char *uml_strdup(const char *string)
     247             : {
     248           0 :         return kstrdup(string, GFP_KERNEL);
     249             : }
     250             : EXPORT_SYMBOL(uml_strdup);
     251             : 
     252           0 : int copy_to_user_proc(void __user *to, void *from, int size)
     253             : {
     254           0 :         return copy_to_user(to, from, size);
     255             : }
     256             : 
     257           0 : int copy_from_user_proc(void *to, void __user *from, int size)
     258             : {
     259           0 :         return copy_from_user(to, from, size);
     260             : }
     261             : 
     262           0 : int clear_user_proc(void __user *buf, int size)
     263             : {
     264           0 :         return clear_user(buf, size);
     265             : }
     266             : 
     267             : static atomic_t using_sysemu = ATOMIC_INIT(0);
     268             : int sysemu_supported;
     269             : 
     270           5 : void set_using_sysemu(int value)
     271             : {
     272           5 :         if (value > sysemu_supported)
     273             :                 return;
     274             :         atomic_set(&using_sysemu, value);
     275             : }
     276             : 
     277           0 : int get_using_sysemu(void)
     278             : {
     279           0 :         return atomic_read(&using_sysemu);
     280             : }
     281             : 
     282           0 : static int sysemu_proc_show(struct seq_file *m, void *v)
     283             : {
     284           0 :         seq_printf(m, "%d\n", get_using_sysemu());
     285           0 :         return 0;
     286             : }
     287             : 
     288           0 : static int sysemu_proc_open(struct inode *inode, struct file *file)
     289             : {
     290           0 :         return single_open(file, sysemu_proc_show, NULL);
     291             : }
     292             : 
     293           0 : static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
     294             :                                  size_t count, loff_t *pos)
     295             : {
     296             :         char tmp[2];
     297             : 
     298           0 :         if (copy_from_user(tmp, buf, 1))
     299             :                 return -EFAULT;
     300             : 
     301           0 :         if (tmp[0] >= '0' && tmp[0] <= '2')
     302           0 :                 set_using_sysemu(tmp[0] - '0');
     303             :         /* We use the first char, but pretend to write everything */
     304           0 :         return count;
     305             : }
     306             : 
     307             : static const struct proc_ops sysemu_proc_ops = {
     308             :         .proc_open      = sysemu_proc_open,
     309             :         .proc_read      = seq_read,
     310             :         .proc_lseek     = seq_lseek,
     311             :         .proc_release   = single_release,
     312             :         .proc_write     = sysemu_proc_write,
     313             : };
     314             : 
     315           1 : int __init make_proc_sysemu(void)
     316             : {
     317             :         struct proc_dir_entry *ent;
     318           1 :         if (!sysemu_supported)
     319             :                 return 0;
     320             : 
     321           1 :         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
     322             : 
     323           1 :         if (ent == NULL)
     324             :         {
     325           0 :                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
     326           0 :                 return 0;
     327             :         }
     328             : 
     329             :         return 0;
     330             : }
     331             : 
     332             : late_initcall(make_proc_sysemu);
     333             : 
     334           0 : int singlestepping(void * t)
     335             : {
     336           0 :         struct task_struct *task = t ? t : current;
     337             : 
     338           0 :         if (!(task->ptrace & PT_DTRACE))
     339             :                 return 0;
     340             : 
     341           0 :         if (task->thread.singlestep_syscall)
     342             :                 return 1;
     343             : 
     344           0 :         return 2;
     345             : }
     346             : 
     347             : /*
     348             :  * Only x86 and x86_64 have an arch_align_stack().
     349             :  * All other arches have "#define arch_align_stack(x) (x)"
     350             :  * in their asm/exec.h
     351             :  * As this is included in UML from asm-um/system-generic.h,
     352             :  * we can use it to behave as the subarch does.
     353             :  */
     354             : #ifndef arch_align_stack
     355           0 : unsigned long arch_align_stack(unsigned long sp)
     356             : {
     357           0 :         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
     358           0 :                 sp -= get_random_int() % 8192;
     359           0 :         return sp & ~0xf;
     360             : }
     361             : #endif
     362             : 
     363           0 : unsigned long __get_wchan(struct task_struct *p)
     364             : {
     365             :         unsigned long stack_page, sp, ip;
     366           0 :         bool seen_sched = 0;
     367             : 
     368           0 :         stack_page = (unsigned long) task_stack_page(p);
     369             :         /* Bail if the process has no kernel stack for some reason */
     370           0 :         if (stack_page == 0)
     371             :                 return 0;
     372             : 
     373           0 :         sp = p->thread.switch_buf->JB_SP;
     374             :         /*
     375             :          * Bail if the stack pointer is below the bottom of the kernel
     376             :          * stack for some reason
     377             :          */
     378           0 :         if (sp < stack_page)
     379             :                 return 0;
     380             : 
     381           0 :         while (sp < stack_page + THREAD_SIZE) {
     382           0 :                 ip = *((unsigned long *) sp);
     383           0 :                 if (in_sched_functions(ip))
     384             :                         /* Ignore everything until we're above the scheduler */
     385             :                         seen_sched = 1;
     386           0 :                 else if (kernel_text_address(ip) && seen_sched)
     387             :                         return ip;
     388             : 
     389           0 :                 sp += sizeof(unsigned long);
     390             :         }
     391             : 
     392             :         return 0;
     393             : }
     394             : 
     395           0 : int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
     396             : {
     397           0 :         int cpu = current_thread_info()->cpu;
     398             : 
     399           0 :         return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
     400             : }
     401             : 

Generated by: LCOV version 1.14