LCOV - code coverage report
Current view: top level - block - blk-settings.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 267 0.0 %
Date: 2022-12-09 01:23:36 Functions: 0 33 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Functions related to setting various queue properties from drivers
       4             :  */
       5             : #include <linux/kernel.h>
       6             : #include <linux/module.h>
       7             : #include <linux/init.h>
       8             : #include <linux/bio.h>
       9             : #include <linux/blkdev.h>
      10             : #include <linux/pagemap.h>
      11             : #include <linux/backing-dev-defs.h>
      12             : #include <linux/gcd.h>
      13             : #include <linux/lcm.h>
      14             : #include <linux/jiffies.h>
      15             : #include <linux/gfp.h>
      16             : #include <linux/dma-mapping.h>
      17             : 
      18             : #include "blk.h"
      19             : #include "blk-wbt.h"
      20             : 
      21           0 : void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
      22             : {
      23           0 :         q->rq_timeout = timeout;
      24           0 : }
      25             : EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
      26             : 
      27             : /**
      28             :  * blk_set_default_limits - reset limits to default values
      29             :  * @lim:  the queue_limits structure to reset
      30             :  *
      31             :  * Description:
      32             :  *   Returns a queue_limit struct to its default state.
      33             :  */
      34           0 : void blk_set_default_limits(struct queue_limits *lim)
      35             : {
      36           0 :         lim->max_segments = BLK_MAX_SEGMENTS;
      37           0 :         lim->max_discard_segments = 1;
      38           0 :         lim->max_integrity_segments = 0;
      39           0 :         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
      40           0 :         lim->virt_boundary_mask = 0;
      41           0 :         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
      42           0 :         lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
      43           0 :         lim->max_dev_sectors = 0;
      44           0 :         lim->chunk_sectors = 0;
      45           0 :         lim->max_write_zeroes_sectors = 0;
      46           0 :         lim->max_zone_append_sectors = 0;
      47           0 :         lim->max_discard_sectors = 0;
      48           0 :         lim->max_hw_discard_sectors = 0;
      49           0 :         lim->discard_granularity = 0;
      50           0 :         lim->discard_alignment = 0;
      51           0 :         lim->discard_misaligned = 0;
      52           0 :         lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
      53           0 :         lim->bounce = BLK_BOUNCE_NONE;
      54           0 :         lim->alignment_offset = 0;
      55           0 :         lim->io_opt = 0;
      56           0 :         lim->misaligned = 0;
      57           0 :         lim->zoned = BLK_ZONED_NONE;
      58           0 :         lim->zone_write_granularity = 0;
      59           0 : }
      60             : EXPORT_SYMBOL(blk_set_default_limits);
      61             : 
      62             : /**
      63             :  * blk_set_stacking_limits - set default limits for stacking devices
      64             :  * @lim:  the queue_limits structure to reset
      65             :  *
      66             :  * Description:
      67             :  *   Returns a queue_limit struct to its default state. Should be used
      68             :  *   by stacking drivers like DM that have no internal limits.
      69             :  */
      70           0 : void blk_set_stacking_limits(struct queue_limits *lim)
      71             : {
      72           0 :         blk_set_default_limits(lim);
      73             : 
      74             :         /* Inherit limits from component devices */
      75           0 :         lim->max_segments = USHRT_MAX;
      76           0 :         lim->max_discard_segments = USHRT_MAX;
      77           0 :         lim->max_hw_sectors = UINT_MAX;
      78           0 :         lim->max_segment_size = UINT_MAX;
      79           0 :         lim->max_sectors = UINT_MAX;
      80           0 :         lim->max_dev_sectors = UINT_MAX;
      81           0 :         lim->max_write_zeroes_sectors = UINT_MAX;
      82           0 :         lim->max_zone_append_sectors = UINT_MAX;
      83           0 : }
      84             : EXPORT_SYMBOL(blk_set_stacking_limits);
      85             : 
      86             : /**
      87             :  * blk_queue_bounce_limit - set bounce buffer limit for queue
      88             :  * @q: the request queue for the device
      89             :  * @bounce: bounce limit to enforce
      90             :  *
      91             :  * Description:
      92             :  *    Force bouncing for ISA DMA ranges or highmem.
      93             :  *
      94             :  *    DEPRECATED, don't use in new code.
      95             :  **/
      96           0 : void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
      97             : {
      98           0 :         q->limits.bounce = bounce;
      99           0 : }
     100             : EXPORT_SYMBOL(blk_queue_bounce_limit);
     101             : 
     102             : /**
     103             :  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
     104             :  * @q:  the request queue for the device
     105             :  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
     106             :  *
     107             :  * Description:
     108             :  *    Enables a low level driver to set a hard upper limit,
     109             :  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
     110             :  *    the device driver based upon the capabilities of the I/O
     111             :  *    controller.
     112             :  *
     113             :  *    max_dev_sectors is a hard limit imposed by the storage device for
     114             :  *    READ/WRITE requests. It is set by the disk driver.
     115             :  *
     116             :  *    max_sectors is a soft limit imposed by the block layer for
     117             :  *    filesystem type requests.  This value can be overridden on a
     118             :  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
     119             :  *    The soft limit can not exceed max_hw_sectors.
     120             :  **/
     121           0 : void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
     122             : {
     123           0 :         struct queue_limits *limits = &q->limits;
     124             :         unsigned int max_sectors;
     125             : 
     126           0 :         if ((max_hw_sectors << 9) < PAGE_SIZE) {
     127           0 :                 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
     128           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     129             :                        __func__, max_hw_sectors);
     130             :         }
     131             : 
     132           0 :         max_hw_sectors = round_down(max_hw_sectors,
     133             :                                     limits->logical_block_size >> SECTOR_SHIFT);
     134           0 :         limits->max_hw_sectors = max_hw_sectors;
     135             : 
     136           0 :         max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
     137           0 :         max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
     138           0 :         max_sectors = round_down(max_sectors,
     139             :                                  limits->logical_block_size >> SECTOR_SHIFT);
     140           0 :         limits->max_sectors = max_sectors;
     141             : 
     142           0 :         if (!q->disk)
     143             :                 return;
     144           0 :         q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
     145             : }
     146             : EXPORT_SYMBOL(blk_queue_max_hw_sectors);
     147             : 
     148             : /**
     149             :  * blk_queue_chunk_sectors - set size of the chunk for this queue
     150             :  * @q:  the request queue for the device
     151             :  * @chunk_sectors:  chunk sectors in the usual 512b unit
     152             :  *
     153             :  * Description:
     154             :  *    If a driver doesn't want IOs to cross a given chunk size, it can set
     155             :  *    this limit and prevent merging across chunks. Note that the block layer
     156             :  *    must accept a page worth of data at any offset. So if the crossing of
     157             :  *    chunks is a hard limitation in the driver, it must still be prepared
     158             :  *    to split single page bios.
     159             :  **/
     160           0 : void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
     161             : {
     162           0 :         q->limits.chunk_sectors = chunk_sectors;
     163           0 : }
     164             : EXPORT_SYMBOL(blk_queue_chunk_sectors);
     165             : 
     166             : /**
     167             :  * blk_queue_max_discard_sectors - set max sectors for a single discard
     168             :  * @q:  the request queue for the device
     169             :  * @max_discard_sectors: maximum number of sectors to discard
     170             :  **/
     171           0 : void blk_queue_max_discard_sectors(struct request_queue *q,
     172             :                 unsigned int max_discard_sectors)
     173             : {
     174           0 :         q->limits.max_hw_discard_sectors = max_discard_sectors;
     175           0 :         q->limits.max_discard_sectors = max_discard_sectors;
     176           0 : }
     177             : EXPORT_SYMBOL(blk_queue_max_discard_sectors);
     178             : 
     179             : /**
     180             :  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
     181             :  *                                      write zeroes
     182             :  * @q:  the request queue for the device
     183             :  * @max_write_zeroes_sectors: maximum number of sectors to write per command
     184             :  **/
     185           0 : void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
     186             :                 unsigned int max_write_zeroes_sectors)
     187             : {
     188           0 :         q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
     189           0 : }
     190             : EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
     191             : 
     192             : /**
     193             :  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
     194             :  * @q:  the request queue for the device
     195             :  * @max_zone_append_sectors: maximum number of sectors to write per command
     196             :  **/
     197           0 : void blk_queue_max_zone_append_sectors(struct request_queue *q,
     198             :                 unsigned int max_zone_append_sectors)
     199             : {
     200             :         unsigned int max_sectors;
     201             : 
     202           0 :         if (WARN_ON(!blk_queue_is_zoned(q)))
     203             :                 return;
     204             : 
     205             :         max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
     206             :         max_sectors = min(q->limits.chunk_sectors, max_sectors);
     207             : 
     208             :         /*
     209             :          * Signal eventual driver bugs resulting in the max_zone_append sectors limit
     210             :          * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
     211             :          * or the max_hw_sectors limit not set.
     212             :          */
     213             :         WARN_ON(!max_sectors);
     214             : 
     215             :         q->limits.max_zone_append_sectors = max_sectors;
     216             : }
     217             : EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
     218             : 
     219             : /**
     220             :  * blk_queue_max_segments - set max hw segments for a request for this queue
     221             :  * @q:  the request queue for the device
     222             :  * @max_segments:  max number of segments
     223             :  *
     224             :  * Description:
     225             :  *    Enables a low level driver to set an upper limit on the number of
     226             :  *    hw data segments in a request.
     227             :  **/
     228           0 : void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
     229             : {
     230           0 :         if (!max_segments) {
     231           0 :                 max_segments = 1;
     232           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     233             :                        __func__, max_segments);
     234             :         }
     235             : 
     236           0 :         q->limits.max_segments = max_segments;
     237           0 : }
     238             : EXPORT_SYMBOL(blk_queue_max_segments);
     239             : 
     240             : /**
     241             :  * blk_queue_max_discard_segments - set max segments for discard requests
     242             :  * @q:  the request queue for the device
     243             :  * @max_segments:  max number of segments
     244             :  *
     245             :  * Description:
     246             :  *    Enables a low level driver to set an upper limit on the number of
     247             :  *    segments in a discard request.
     248             :  **/
     249           0 : void blk_queue_max_discard_segments(struct request_queue *q,
     250             :                 unsigned short max_segments)
     251             : {
     252           0 :         q->limits.max_discard_segments = max_segments;
     253           0 : }
     254             : EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
     255             : 
     256             : /**
     257             :  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
     258             :  * @q:  the request queue for the device
     259             :  * @max_size:  max size of segment in bytes
     260             :  *
     261             :  * Description:
     262             :  *    Enables a low level driver to set an upper limit on the size of a
     263             :  *    coalesced segment
     264             :  **/
     265           0 : void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
     266             : {
     267           0 :         if (max_size < PAGE_SIZE) {
     268           0 :                 max_size = PAGE_SIZE;
     269           0 :                 printk(KERN_INFO "%s: set to minimum %d\n",
     270             :                        __func__, max_size);
     271             :         }
     272             : 
     273             :         /* see blk_queue_virt_boundary() for the explanation */
     274           0 :         WARN_ON_ONCE(q->limits.virt_boundary_mask);
     275             : 
     276           0 :         q->limits.max_segment_size = max_size;
     277           0 : }
     278             : EXPORT_SYMBOL(blk_queue_max_segment_size);
     279             : 
     280             : /**
     281             :  * blk_queue_logical_block_size - set logical block size for the queue
     282             :  * @q:  the request queue for the device
     283             :  * @size:  the logical block size, in bytes
     284             :  *
     285             :  * Description:
     286             :  *   This should be set to the lowest possible block size that the
     287             :  *   storage device can address.  The default of 512 covers most
     288             :  *   hardware.
     289             :  **/
     290           0 : void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
     291             : {
     292           0 :         struct queue_limits *limits = &q->limits;
     293             : 
     294           0 :         limits->logical_block_size = size;
     295             : 
     296           0 :         if (limits->physical_block_size < size)
     297           0 :                 limits->physical_block_size = size;
     298             : 
     299           0 :         if (limits->io_min < limits->physical_block_size)
     300           0 :                 limits->io_min = limits->physical_block_size;
     301             : 
     302           0 :         limits->max_hw_sectors =
     303           0 :                 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
     304           0 :         limits->max_sectors =
     305           0 :                 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
     306           0 : }
     307             : EXPORT_SYMBOL(blk_queue_logical_block_size);
     308             : 
     309             : /**
     310             :  * blk_queue_physical_block_size - set physical block size for the queue
     311             :  * @q:  the request queue for the device
     312             :  * @size:  the physical block size, in bytes
     313             :  *
     314             :  * Description:
     315             :  *   This should be set to the lowest possible sector size that the
     316             :  *   hardware can operate on without reverting to read-modify-write
     317             :  *   operations.
     318             :  */
     319           0 : void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
     320             : {
     321           0 :         q->limits.physical_block_size = size;
     322             : 
     323           0 :         if (q->limits.physical_block_size < q->limits.logical_block_size)
     324           0 :                 q->limits.physical_block_size = q->limits.logical_block_size;
     325             : 
     326           0 :         if (q->limits.io_min < q->limits.physical_block_size)
     327           0 :                 q->limits.io_min = q->limits.physical_block_size;
     328           0 : }
     329             : EXPORT_SYMBOL(blk_queue_physical_block_size);
     330             : 
     331             : /**
     332             :  * blk_queue_zone_write_granularity - set zone write granularity for the queue
     333             :  * @q:  the request queue for the zoned device
     334             :  * @size:  the zone write granularity size, in bytes
     335             :  *
     336             :  * Description:
     337             :  *   This should be set to the lowest possible size allowing to write in
     338             :  *   sequential zones of a zoned block device.
     339             :  */
     340           0 : void blk_queue_zone_write_granularity(struct request_queue *q,
     341             :                                       unsigned int size)
     342             : {
     343           0 :         if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
     344             :                 return;
     345             : 
     346             :         q->limits.zone_write_granularity = size;
     347             : 
     348             :         if (q->limits.zone_write_granularity < q->limits.logical_block_size)
     349             :                 q->limits.zone_write_granularity = q->limits.logical_block_size;
     350             : }
     351             : EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
     352             : 
     353             : /**
     354             :  * blk_queue_alignment_offset - set physical block alignment offset
     355             :  * @q:  the request queue for the device
     356             :  * @offset: alignment offset in bytes
     357             :  *
     358             :  * Description:
     359             :  *   Some devices are naturally misaligned to compensate for things like
     360             :  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
     361             :  *   should call this function for devices whose first sector is not
     362             :  *   naturally aligned.
     363             :  */
     364           0 : void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
     365             : {
     366           0 :         q->limits.alignment_offset =
     367           0 :                 offset & (q->limits.physical_block_size - 1);
     368           0 :         q->limits.misaligned = 0;
     369           0 : }
     370             : EXPORT_SYMBOL(blk_queue_alignment_offset);
     371             : 
     372           0 : void disk_update_readahead(struct gendisk *disk)
     373             : {
     374           0 :         struct request_queue *q = disk->queue;
     375             : 
     376             :         /*
     377             :          * For read-ahead of large files to be effective, we need to read ahead
     378             :          * at least twice the optimal I/O size.
     379             :          */
     380           0 :         disk->bdi->ra_pages =
     381           0 :                 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
     382           0 :         disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
     383           0 : }
     384             : EXPORT_SYMBOL_GPL(disk_update_readahead);
     385             : 
     386             : /**
     387             :  * blk_limits_io_min - set minimum request size for a device
     388             :  * @limits: the queue limits
     389             :  * @min:  smallest I/O size in bytes
     390             :  *
     391             :  * Description:
     392             :  *   Some devices have an internal block size bigger than the reported
     393             :  *   hardware sector size.  This function can be used to signal the
     394             :  *   smallest I/O the device can perform without incurring a performance
     395             :  *   penalty.
     396             :  */
     397           0 : void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
     398             : {
     399           0 :         limits->io_min = min;
     400             : 
     401           0 :         if (limits->io_min < limits->logical_block_size)
     402           0 :                 limits->io_min = limits->logical_block_size;
     403             : 
     404           0 :         if (limits->io_min < limits->physical_block_size)
     405           0 :                 limits->io_min = limits->physical_block_size;
     406           0 : }
     407             : EXPORT_SYMBOL(blk_limits_io_min);
     408             : 
     409             : /**
     410             :  * blk_queue_io_min - set minimum request size for the queue
     411             :  * @q:  the request queue for the device
     412             :  * @min:  smallest I/O size in bytes
     413             :  *
     414             :  * Description:
     415             :  *   Storage devices may report a granularity or preferred minimum I/O
     416             :  *   size which is the smallest request the device can perform without
     417             :  *   incurring a performance penalty.  For disk drives this is often the
     418             :  *   physical block size.  For RAID arrays it is often the stripe chunk
     419             :  *   size.  A properly aligned multiple of minimum_io_size is the
     420             :  *   preferred request size for workloads where a high number of I/O
     421             :  *   operations is desired.
     422             :  */
     423           0 : void blk_queue_io_min(struct request_queue *q, unsigned int min)
     424             : {
     425           0 :         blk_limits_io_min(&q->limits, min);
     426           0 : }
     427             : EXPORT_SYMBOL(blk_queue_io_min);
     428             : 
     429             : /**
     430             :  * blk_limits_io_opt - set optimal request size for a device
     431             :  * @limits: the queue limits
     432             :  * @opt:  smallest I/O size in bytes
     433             :  *
     434             :  * Description:
     435             :  *   Storage devices may report an optimal I/O size, which is the
     436             :  *   device's preferred unit for sustained I/O.  This is rarely reported
     437             :  *   for disk drives.  For RAID arrays it is usually the stripe width or
     438             :  *   the internal track size.  A properly aligned multiple of
     439             :  *   optimal_io_size is the preferred request size for workloads where
     440             :  *   sustained throughput is desired.
     441             :  */
     442           0 : void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
     443             : {
     444           0 :         limits->io_opt = opt;
     445           0 : }
     446             : EXPORT_SYMBOL(blk_limits_io_opt);
     447             : 
     448             : /**
     449             :  * blk_queue_io_opt - set optimal request size for the queue
     450             :  * @q:  the request queue for the device
     451             :  * @opt:  optimal request size in bytes
     452             :  *
     453             :  * Description:
     454             :  *   Storage devices may report an optimal I/O size, which is the
     455             :  *   device's preferred unit for sustained I/O.  This is rarely reported
     456             :  *   for disk drives.  For RAID arrays it is usually the stripe width or
     457             :  *   the internal track size.  A properly aligned multiple of
     458             :  *   optimal_io_size is the preferred request size for workloads where
     459             :  *   sustained throughput is desired.
     460             :  */
     461           0 : void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
     462             : {
     463           0 :         blk_limits_io_opt(&q->limits, opt);
     464           0 :         if (!q->disk)
     465             :                 return;
     466           0 :         q->disk->bdi->ra_pages =
     467           0 :                 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
     468             : }
     469             : EXPORT_SYMBOL(blk_queue_io_opt);
     470             : 
     471             : static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
     472             : {
     473           0 :         sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
     474           0 :         if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
     475           0 :                 sectors = PAGE_SIZE >> SECTOR_SHIFT;
     476             :         return sectors;
     477             : }
     478             : 
     479             : /**
     480             :  * blk_stack_limits - adjust queue_limits for stacked devices
     481             :  * @t:  the stacking driver limits (top device)
     482             :  * @b:  the underlying queue limits (bottom, component device)
     483             :  * @start:  first data sector within component device
     484             :  *
     485             :  * Description:
     486             :  *    This function is used by stacking drivers like MD and DM to ensure
     487             :  *    that all component devices have compatible block sizes and
     488             :  *    alignments.  The stacking driver must provide a queue_limits
     489             :  *    struct (top) and then iteratively call the stacking function for
     490             :  *    all component (bottom) devices.  The stacking function will
     491             :  *    attempt to combine the values and ensure proper alignment.
     492             :  *
     493             :  *    Returns 0 if the top and bottom queue_limits are compatible.  The
     494             :  *    top device's block sizes and alignment offsets may be adjusted to
     495             :  *    ensure alignment with the bottom device. If no compatible sizes
     496             :  *    and alignments exist, -1 is returned and the resulting top
     497             :  *    queue_limits will have the misaligned flag set to indicate that
     498             :  *    the alignment_offset is undefined.
     499             :  */
     500           0 : int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
     501             :                      sector_t start)
     502             : {
     503           0 :         unsigned int top, bottom, alignment, ret = 0;
     504             : 
     505           0 :         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
     506           0 :         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
     507           0 :         t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
     508           0 :         t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
     509             :                                         b->max_write_zeroes_sectors);
     510           0 :         t->max_zone_append_sectors = min(t->max_zone_append_sectors,
     511             :                                         b->max_zone_append_sectors);
     512           0 :         t->bounce = max(t->bounce, b->bounce);
     513             : 
     514           0 :         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
     515             :                                             b->seg_boundary_mask);
     516           0 :         t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
     517             :                                             b->virt_boundary_mask);
     518             : 
     519           0 :         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
     520           0 :         t->max_discard_segments = min_not_zero(t->max_discard_segments,
     521             :                                                b->max_discard_segments);
     522           0 :         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
     523             :                                                  b->max_integrity_segments);
     524             : 
     525           0 :         t->max_segment_size = min_not_zero(t->max_segment_size,
     526             :                                            b->max_segment_size);
     527             : 
     528           0 :         t->misaligned |= b->misaligned;
     529             : 
     530           0 :         alignment = queue_limit_alignment_offset(b, start);
     531             : 
     532             :         /* Bottom device has different alignment.  Check that it is
     533             :          * compatible with the current top alignment.
     534             :          */
     535           0 :         if (t->alignment_offset != alignment) {
     536             : 
     537           0 :                 top = max(t->physical_block_size, t->io_min)
     538             :                         + t->alignment_offset;
     539           0 :                 bottom = max(b->physical_block_size, b->io_min) + alignment;
     540             : 
     541             :                 /* Verify that top and bottom intervals line up */
     542           0 :                 if (max(top, bottom) % min(top, bottom)) {
     543           0 :                         t->misaligned = 1;
     544           0 :                         ret = -1;
     545             :                 }
     546             :         }
     547             : 
     548           0 :         t->logical_block_size = max(t->logical_block_size,
     549             :                                     b->logical_block_size);
     550             : 
     551           0 :         t->physical_block_size = max(t->physical_block_size,
     552             :                                      b->physical_block_size);
     553             : 
     554           0 :         t->io_min = max(t->io_min, b->io_min);
     555           0 :         t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
     556             : 
     557             :         /* Set non-power-of-2 compatible chunk_sectors boundary */
     558           0 :         if (b->chunk_sectors)
     559           0 :                 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
     560             : 
     561             :         /* Physical block size a multiple of the logical block size? */
     562           0 :         if (t->physical_block_size & (t->logical_block_size - 1)) {
     563           0 :                 t->physical_block_size = t->logical_block_size;
     564           0 :                 t->misaligned = 1;
     565           0 :                 ret = -1;
     566             :         }
     567             : 
     568             :         /* Minimum I/O a multiple of the physical block size? */
     569           0 :         if (t->io_min & (t->physical_block_size - 1)) {
     570           0 :                 t->io_min = t->physical_block_size;
     571           0 :                 t->misaligned = 1;
     572           0 :                 ret = -1;
     573             :         }
     574             : 
     575             :         /* Optimal I/O a multiple of the physical block size? */
     576           0 :         if (t->io_opt & (t->physical_block_size - 1)) {
     577           0 :                 t->io_opt = 0;
     578           0 :                 t->misaligned = 1;
     579           0 :                 ret = -1;
     580             :         }
     581             : 
     582             :         /* chunk_sectors a multiple of the physical block size? */
     583           0 :         if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
     584           0 :                 t->chunk_sectors = 0;
     585           0 :                 t->misaligned = 1;
     586           0 :                 ret = -1;
     587             :         }
     588             : 
     589           0 :         t->raid_partial_stripes_expensive =
     590           0 :                 max(t->raid_partial_stripes_expensive,
     591             :                     b->raid_partial_stripes_expensive);
     592             : 
     593             :         /* Find lowest common alignment_offset */
     594           0 :         t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
     595           0 :                 % max(t->physical_block_size, t->io_min);
     596             : 
     597             :         /* Verify that new alignment_offset is on a logical block boundary */
     598           0 :         if (t->alignment_offset & (t->logical_block_size - 1)) {
     599           0 :                 t->misaligned = 1;
     600           0 :                 ret = -1;
     601             :         }
     602             : 
     603           0 :         t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
     604           0 :         t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
     605           0 :         t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
     606             : 
     607             :         /* Discard alignment and granularity */
     608           0 :         if (b->discard_granularity) {
     609           0 :                 alignment = queue_limit_discard_alignment(b, start);
     610             : 
     611           0 :                 if (t->discard_granularity != 0 &&
     612           0 :                     t->discard_alignment != alignment) {
     613           0 :                         top = t->discard_granularity + t->discard_alignment;
     614           0 :                         bottom = b->discard_granularity + alignment;
     615             : 
     616             :                         /* Verify that top and bottom intervals line up */
     617           0 :                         if ((max(top, bottom) % min(top, bottom)) != 0)
     618           0 :                                 t->discard_misaligned = 1;
     619             :                 }
     620             : 
     621           0 :                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
     622             :                                                       b->max_discard_sectors);
     623           0 :                 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
     624             :                                                          b->max_hw_discard_sectors);
     625           0 :                 t->discard_granularity = max(t->discard_granularity,
     626             :                                              b->discard_granularity);
     627           0 :                 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
     628           0 :                         t->discard_granularity;
     629             :         }
     630             : 
     631           0 :         t->zone_write_granularity = max(t->zone_write_granularity,
     632             :                                         b->zone_write_granularity);
     633           0 :         t->zoned = max(t->zoned, b->zoned);
     634           0 :         return ret;
     635             : }
     636             : EXPORT_SYMBOL(blk_stack_limits);
     637             : 
     638             : /**
     639             :  * disk_stack_limits - adjust queue limits for stacked drivers
     640             :  * @disk:  MD/DM gendisk (top)
     641             :  * @bdev:  the underlying block device (bottom)
     642             :  * @offset:  offset to beginning of data within component device
     643             :  *
     644             :  * Description:
     645             :  *    Merges the limits for a top level gendisk and a bottom level
     646             :  *    block_device.
     647             :  */
     648           0 : void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
     649             :                        sector_t offset)
     650             : {
     651           0 :         struct request_queue *t = disk->queue;
     652             : 
     653           0 :         if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
     654           0 :                         get_start_sect(bdev) + (offset >> 9)) < 0)
     655           0 :                 pr_notice("%s: Warning: Device %pg is misaligned\n",
     656             :                         disk->disk_name, bdev);
     657             : 
     658           0 :         disk_update_readahead(disk);
     659           0 : }
     660             : EXPORT_SYMBOL(disk_stack_limits);
     661             : 
     662             : /**
     663             :  * blk_queue_update_dma_pad - update pad mask
     664             :  * @q:     the request queue for the device
     665             :  * @mask:  pad mask
     666             :  *
     667             :  * Update dma pad mask.
     668             :  *
     669             :  * Appending pad buffer to a request modifies the last entry of a
     670             :  * scatter list such that it includes the pad buffer.
     671             :  **/
     672           0 : void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
     673             : {
     674           0 :         if (mask > q->dma_pad_mask)
     675           0 :                 q->dma_pad_mask = mask;
     676           0 : }
     677             : EXPORT_SYMBOL(blk_queue_update_dma_pad);
     678             : 
     679             : /**
     680             :  * blk_queue_segment_boundary - set boundary rules for segment merging
     681             :  * @q:  the request queue for the device
     682             :  * @mask:  the memory boundary mask
     683             :  **/
     684           0 : void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
     685             : {
     686           0 :         if (mask < PAGE_SIZE - 1) {
     687           0 :                 mask = PAGE_SIZE - 1;
     688           0 :                 printk(KERN_INFO "%s: set to minimum %lx\n",
     689             :                        __func__, mask);
     690             :         }
     691             : 
     692           0 :         q->limits.seg_boundary_mask = mask;
     693           0 : }
     694             : EXPORT_SYMBOL(blk_queue_segment_boundary);
     695             : 
     696             : /**
     697             :  * blk_queue_virt_boundary - set boundary rules for bio merging
     698             :  * @q:  the request queue for the device
     699             :  * @mask:  the memory boundary mask
     700             :  **/
     701           0 : void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
     702             : {
     703           0 :         q->limits.virt_boundary_mask = mask;
     704             : 
     705             :         /*
     706             :          * Devices that require a virtual boundary do not support scatter/gather
     707             :          * I/O natively, but instead require a descriptor list entry for each
     708             :          * page (which might not be idential to the Linux PAGE_SIZE).  Because
     709             :          * of that they are not limited by our notion of "segment size".
     710             :          */
     711           0 :         if (mask)
     712           0 :                 q->limits.max_segment_size = UINT_MAX;
     713           0 : }
     714             : EXPORT_SYMBOL(blk_queue_virt_boundary);
     715             : 
     716             : /**
     717             :  * blk_queue_dma_alignment - set dma length and memory alignment
     718             :  * @q:     the request queue for the device
     719             :  * @mask:  alignment mask
     720             :  *
     721             :  * description:
     722             :  *    set required memory and length alignment for direct dma transactions.
     723             :  *    this is used when building direct io requests for the queue.
     724             :  *
     725             :  **/
     726           0 : void blk_queue_dma_alignment(struct request_queue *q, int mask)
     727             : {
     728           0 :         q->dma_alignment = mask;
     729           0 : }
     730             : EXPORT_SYMBOL(blk_queue_dma_alignment);
     731             : 
     732             : /**
     733             :  * blk_queue_update_dma_alignment - update dma length and memory alignment
     734             :  * @q:     the request queue for the device
     735             :  * @mask:  alignment mask
     736             :  *
     737             :  * description:
     738             :  *    update required memory and length alignment for direct dma transactions.
     739             :  *    If the requested alignment is larger than the current alignment, then
     740             :  *    the current queue alignment is updated to the new value, otherwise it
     741             :  *    is left alone.  The design of this is to allow multiple objects
     742             :  *    (driver, device, transport etc) to set their respective
     743             :  *    alignments without having them interfere.
     744             :  *
     745             :  **/
     746           0 : void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
     747             : {
     748           0 :         BUG_ON(mask > PAGE_SIZE);
     749             : 
     750           0 :         if (mask > q->dma_alignment)
     751           0 :                 q->dma_alignment = mask;
     752           0 : }
     753             : EXPORT_SYMBOL(blk_queue_update_dma_alignment);
     754             : 
     755             : /**
     756             :  * blk_set_queue_depth - tell the block layer about the device queue depth
     757             :  * @q:          the request queue for the device
     758             :  * @depth:              queue depth
     759             :  *
     760             :  */
     761           0 : void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
     762             : {
     763           0 :         q->queue_depth = depth;
     764           0 :         rq_qos_queue_depth_changed(q);
     765           0 : }
     766             : EXPORT_SYMBOL(blk_set_queue_depth);
     767             : 
     768             : /**
     769             :  * blk_queue_write_cache - configure queue's write cache
     770             :  * @q:          the request queue for the device
     771             :  * @wc:         write back cache on or off
     772             :  * @fua:        device supports FUA writes, if true
     773             :  *
     774             :  * Tell the block layer about the write cache of @q.
     775             :  */
     776           0 : void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
     777             : {
     778           0 :         if (wc)
     779           0 :                 blk_queue_flag_set(QUEUE_FLAG_WC, q);
     780             :         else
     781           0 :                 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
     782           0 :         if (fua)
     783           0 :                 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
     784             :         else
     785           0 :                 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
     786             : 
     787           0 :         wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
     788           0 : }
     789             : EXPORT_SYMBOL_GPL(blk_queue_write_cache);
     790             : 
     791             : /**
     792             :  * blk_queue_required_elevator_features - Set a queue required elevator features
     793             :  * @q:          the request queue for the target device
     794             :  * @features:   Required elevator features OR'ed together
     795             :  *
     796             :  * Tell the block layer that for the device controlled through @q, only the
     797             :  * only elevators that can be used are those that implement at least the set of
     798             :  * features specified by @features.
     799             :  */
     800           0 : void blk_queue_required_elevator_features(struct request_queue *q,
     801             :                                           unsigned int features)
     802             : {
     803           0 :         q->required_elevator_features = features;
     804           0 : }
     805             : EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
     806             : 
     807             : /**
     808             :  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
     809             :  * @q:          the request queue for the device
     810             :  * @dev:        the device pointer for dma
     811             :  *
     812             :  * Tell the block layer about merging the segments by dma map of @q.
     813             :  */
     814           0 : bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
     815             :                                        struct device *dev)
     816             : {
     817           0 :         unsigned long boundary = dma_get_merge_boundary(dev);
     818             : 
     819           0 :         if (!boundary)
     820             :                 return false;
     821             : 
     822             :         /* No need to update max_segment_size. see blk_queue_virt_boundary() */
     823           0 :         blk_queue_virt_boundary(q, boundary);
     824             : 
     825           0 :         return true;
     826             : }
     827             : EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
     828             : 
     829             : static bool disk_has_partitions(struct gendisk *disk)
     830             : {
     831             :         unsigned long idx;
     832             :         struct block_device *part;
     833             :         bool ret = false;
     834             : 
     835             :         rcu_read_lock();
     836             :         xa_for_each(&disk->part_tbl, idx, part) {
     837             :                 if (bdev_is_partition(part)) {
     838             :                         ret = true;
     839             :                         break;
     840             :                 }
     841             :         }
     842             :         rcu_read_unlock();
     843             : 
     844             :         return ret;
     845             : }
     846             : 
     847             : /**
     848             :  * blk_queue_set_zoned - configure a disk queue zoned model.
     849             :  * @disk:       the gendisk of the queue to configure
     850             :  * @model:      the zoned model to set
     851             :  *
     852             :  * Set the zoned model of the request queue of @disk according to @model.
     853             :  * When @model is BLK_ZONED_HM (host managed), this should be called only
     854             :  * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
     855             :  * If @model specifies BLK_ZONED_HA (host aware), the effective model used
     856             :  * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
     857             :  * on the disk.
     858             :  */
     859           0 : void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
     860             : {
     861           0 :         struct request_queue *q = disk->queue;
     862             : 
     863           0 :         switch (model) {
     864             :         case BLK_ZONED_HM:
     865             :                 /*
     866             :                  * Host managed devices are supported only if
     867             :                  * CONFIG_BLK_DEV_ZONED is enabled.
     868             :                  */
     869           0 :                 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
     870             :                 break;
     871             :         case BLK_ZONED_HA:
     872             :                 /*
     873             :                  * Host aware devices can be treated either as regular block
     874             :                  * devices (similar to drive managed devices) or as zoned block
     875             :                  * devices to take advantage of the zone command set, similarly
     876             :                  * to host managed devices. We try the latter if there are no
     877             :                  * partitions and zoned block device support is enabled, else
     878             :                  * we do nothing special as far as the block layer is concerned.
     879             :                  */
     880             :                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
     881             :                     disk_has_partitions(disk))
     882             :                         model = BLK_ZONED_NONE;
     883             :                 break;
     884             :         case BLK_ZONED_NONE:
     885             :         default:
     886           0 :                 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
     887           0 :                         model = BLK_ZONED_NONE;
     888             :                 break;
     889             :         }
     890             : 
     891           0 :         q->limits.zoned = model;
     892           0 :         if (model != BLK_ZONED_NONE) {
     893             :                 /*
     894             :                  * Set the zone write granularity to the device logical block
     895             :                  * size by default. The driver can change this value if needed.
     896             :                  */
     897           0 :                 blk_queue_zone_write_granularity(q,
     898             :                                                 queue_logical_block_size(q));
     899             :         } else {
     900             :                 blk_queue_clear_zone_settings(q);
     901             :         }
     902           0 : }
     903             : EXPORT_SYMBOL_GPL(blk_queue_set_zoned);

Generated by: LCOV version 1.14