Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 : * scalable techniques.
5 : *
6 : * Copyright (C) 2017 Facebook
7 : */
8 :
9 : #include <linux/kernel.h>
10 : #include <linux/blkdev.h>
11 : #include <linux/blk-mq.h>
12 : #include <linux/module.h>
13 : #include <linux/sbitmap.h>
14 :
15 : #include <trace/events/block.h>
16 :
17 : #include "elevator.h"
18 : #include "blk.h"
19 : #include "blk-mq.h"
20 : #include "blk-mq-debugfs.h"
21 : #include "blk-mq-sched.h"
22 : #include "blk-mq-tag.h"
23 :
24 : #define CREATE_TRACE_POINTS
25 : #include <trace/events/kyber.h>
26 :
27 : /*
28 : * Scheduling domains: the device is divided into multiple domains based on the
29 : * request type.
30 : */
31 : enum {
32 : KYBER_READ,
33 : KYBER_WRITE,
34 : KYBER_DISCARD,
35 : KYBER_OTHER,
36 : KYBER_NUM_DOMAINS,
37 : };
38 :
39 : static const char *kyber_domain_names[] = {
40 : [KYBER_READ] = "READ",
41 : [KYBER_WRITE] = "WRITE",
42 : [KYBER_DISCARD] = "DISCARD",
43 : [KYBER_OTHER] = "OTHER",
44 : };
45 :
46 : enum {
47 : /*
48 : * In order to prevent starvation of synchronous requests by a flood of
49 : * asynchronous requests, we reserve 25% of requests for synchronous
50 : * operations.
51 : */
52 : KYBER_ASYNC_PERCENT = 75,
53 : };
54 :
55 : /*
56 : * Maximum device-wide depth for each scheduling domain.
57 : *
58 : * Even for fast devices with lots of tags like NVMe, you can saturate the
59 : * device with only a fraction of the maximum possible queue depth. So, we cap
60 : * these to a reasonable value.
61 : */
62 : static const unsigned int kyber_depth[] = {
63 : [KYBER_READ] = 256,
64 : [KYBER_WRITE] = 128,
65 : [KYBER_DISCARD] = 64,
66 : [KYBER_OTHER] = 16,
67 : };
68 :
69 : /*
70 : * Default latency targets for each scheduling domain.
71 : */
72 : static const u64 kyber_latency_targets[] = {
73 : [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74 : [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75 : [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 : };
77 :
78 : /*
79 : * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 : * domain.
81 : */
82 : static const unsigned int kyber_batch_size[] = {
83 : [KYBER_READ] = 16,
84 : [KYBER_WRITE] = 8,
85 : [KYBER_DISCARD] = 1,
86 : [KYBER_OTHER] = 1,
87 : };
88 :
89 : /*
90 : * Requests latencies are recorded in a histogram with buckets defined relative
91 : * to the target latency:
92 : *
93 : * <= 1/4 * target latency
94 : * <= 1/2 * target latency
95 : * <= 3/4 * target latency
96 : * <= target latency
97 : * <= 1 1/4 * target latency
98 : * <= 1 1/2 * target latency
99 : * <= 1 3/4 * target latency
100 : * > 1 3/4 * target latency
101 : */
102 : enum {
103 : /*
104 : * The width of the latency histogram buckets is
105 : * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106 : */
107 : KYBER_LATENCY_SHIFT = 2,
108 : /*
109 : * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 : * thus, "good".
111 : */
112 : KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113 : /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114 : KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 : };
116 :
117 : /*
118 : * We measure both the total latency and the I/O latency (i.e., latency after
119 : * submitting to the device).
120 : */
121 : enum {
122 : KYBER_TOTAL_LATENCY,
123 : KYBER_IO_LATENCY,
124 : };
125 :
126 : static const char *kyber_latency_type_names[] = {
127 : [KYBER_TOTAL_LATENCY] = "total",
128 : [KYBER_IO_LATENCY] = "I/O",
129 : };
130 :
131 : /*
132 : * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133 : * domain except for KYBER_OTHER.
134 : */
135 : struct kyber_cpu_latency {
136 : atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 : };
138 :
139 : /*
140 : * There is a same mapping between ctx & hctx and kcq & khd,
141 : * we use request->mq_ctx->index_hw to index the kcq in khd.
142 : */
143 : struct kyber_ctx_queue {
144 : /*
145 : * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146 : * Also protect the rqs on rq_list when merge.
147 : */
148 : spinlock_t lock;
149 : struct list_head rq_list[KYBER_NUM_DOMAINS];
150 : } ____cacheline_aligned_in_smp;
151 :
152 : struct kyber_queue_data {
153 : struct request_queue *q;
154 : dev_t dev;
155 :
156 : /*
157 : * Each scheduling domain has a limited number of in-flight requests
158 : * device-wide, limited by these tokens.
159 : */
160 : struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161 :
162 : /*
163 : * Async request percentage, converted to per-word depth for
164 : * sbitmap_get_shallow().
165 : */
166 : unsigned int async_depth;
167 :
168 : struct kyber_cpu_latency __percpu *cpu_latency;
169 :
170 : /* Timer for stats aggregation and adjusting domain tokens. */
171 : struct timer_list timer;
172 :
173 : unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
174 :
175 : unsigned long latency_timeout[KYBER_OTHER];
176 :
177 : int domain_p99[KYBER_OTHER];
178 :
179 : /* Target latencies in nanoseconds. */
180 : u64 latency_targets[KYBER_OTHER];
181 : };
182 :
183 : struct kyber_hctx_data {
184 : spinlock_t lock;
185 : struct list_head rqs[KYBER_NUM_DOMAINS];
186 : unsigned int cur_domain;
187 : unsigned int batching;
188 : struct kyber_ctx_queue *kcqs;
189 : struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
190 : struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
191 : struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
192 : atomic_t wait_index[KYBER_NUM_DOMAINS];
193 : };
194 :
195 : static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196 : void *key);
197 :
198 : static unsigned int kyber_sched_domain(unsigned int op)
199 : {
200 0 : switch (op & REQ_OP_MASK) {
201 : case REQ_OP_READ:
202 : return KYBER_READ;
203 : case REQ_OP_WRITE:
204 : return KYBER_WRITE;
205 : case REQ_OP_DISCARD:
206 : return KYBER_DISCARD;
207 : default:
208 : return KYBER_OTHER;
209 : }
210 : }
211 :
212 : static void flush_latency_buckets(struct kyber_queue_data *kqd,
213 : struct kyber_cpu_latency *cpu_latency,
214 : unsigned int sched_domain, unsigned int type)
215 : {
216 0 : unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
217 0 : atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218 : unsigned int bucket;
219 :
220 0 : for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
221 0 : buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
222 : }
223 :
224 : /*
225 : * Calculate the histogram bucket with the given percentile rank, or -1 if there
226 : * aren't enough samples yet.
227 : */
228 0 : static int calculate_percentile(struct kyber_queue_data *kqd,
229 : unsigned int sched_domain, unsigned int type,
230 : unsigned int percentile)
231 : {
232 0 : unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
233 0 : unsigned int bucket, samples = 0, percentile_samples;
234 :
235 0 : for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
236 0 : samples += buckets[bucket];
237 :
238 0 : if (!samples)
239 : return -1;
240 :
241 : /*
242 : * We do the calculation once we have 500 samples or one second passes
243 : * since the first sample was recorded, whichever comes first.
244 : */
245 0 : if (!kqd->latency_timeout[sched_domain])
246 0 : kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
247 0 : if (samples < 500 &&
248 0 : time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249 : return -1;
250 : }
251 0 : kqd->latency_timeout[sched_domain] = 0;
252 :
253 0 : percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
254 0 : for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
255 0 : if (buckets[bucket] >= percentile_samples)
256 : break;
257 0 : percentile_samples -= buckets[bucket];
258 : }
259 0 : memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
260 :
261 0 : trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
262 : kyber_latency_type_names[type], percentile,
263 : bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
264 :
265 0 : return bucket;
266 : }
267 :
268 : static void kyber_resize_domain(struct kyber_queue_data *kqd,
269 : unsigned int sched_domain, unsigned int depth)
270 : {
271 0 : depth = clamp(depth, 1U, kyber_depth[sched_domain]);
272 0 : if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
273 0 : sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
274 0 : trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
275 : depth);
276 : }
277 : }
278 :
279 0 : static void kyber_timer_fn(struct timer_list *t)
280 : {
281 0 : struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
282 : unsigned int sched_domain;
283 : int cpu;
284 0 : bool bad = false;
285 :
286 : /* Sum all of the per-cpu latency histograms. */
287 0 : for_each_online_cpu(cpu) {
288 : struct kyber_cpu_latency *cpu_latency;
289 :
290 0 : cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
291 0 : for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
292 0 : flush_latency_buckets(kqd, cpu_latency, sched_domain,
293 : KYBER_TOTAL_LATENCY);
294 0 : flush_latency_buckets(kqd, cpu_latency, sched_domain,
295 : KYBER_IO_LATENCY);
296 : }
297 : }
298 :
299 : /*
300 : * Check if any domains have a high I/O latency, which might indicate
301 : * congestion in the device. Note that we use the p90; we don't want to
302 : * be too sensitive to outliers here.
303 : */
304 0 : for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305 : int p90;
306 :
307 0 : p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
308 : 90);
309 0 : if (p90 >= KYBER_GOOD_BUCKETS)
310 0 : bad = true;
311 : }
312 :
313 : /*
314 : * Adjust the scheduling domain depths. If we determined that there was
315 : * congestion, we throttle all domains with good latencies. Either way,
316 : * we ease up on throttling domains with bad latencies.
317 : */
318 0 : for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
319 : unsigned int orig_depth, depth;
320 : int p99;
321 :
322 0 : p99 = calculate_percentile(kqd, sched_domain,
323 : KYBER_TOTAL_LATENCY, 99);
324 : /*
325 : * This is kind of subtle: different domains will not
326 : * necessarily have enough samples to calculate the latency
327 : * percentiles during the same window, so we have to remember
328 : * the p99 for the next time we observe congestion; once we do,
329 : * we don't want to throttle again until we get more data, so we
330 : * reset it to -1.
331 : */
332 0 : if (bad) {
333 0 : if (p99 < 0)
334 0 : p99 = kqd->domain_p99[sched_domain];
335 0 : kqd->domain_p99[sched_domain] = -1;
336 0 : } else if (p99 >= 0) {
337 0 : kqd->domain_p99[sched_domain] = p99;
338 : }
339 0 : if (p99 < 0)
340 0 : continue;
341 :
342 : /*
343 : * If this domain has bad latency, throttle less. Otherwise,
344 : * throttle more iff we determined that there is congestion.
345 : *
346 : * The new depth is scaled linearly with the p99 latency vs the
347 : * latency target. E.g., if the p99 is 3/4 of the target, then
348 : * we throttle down to 3/4 of the current depth, and if the p99
349 : * is 2x the target, then we double the depth.
350 : */
351 0 : if (bad || p99 >= KYBER_GOOD_BUCKETS) {
352 0 : orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
353 0 : depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
354 : kyber_resize_domain(kqd, sched_domain, depth);
355 : }
356 : }
357 0 : }
358 :
359 0 : static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
360 : {
361 : struct kyber_queue_data *kqd;
362 0 : int ret = -ENOMEM;
363 : int i;
364 :
365 0 : kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
366 0 : if (!kqd)
367 : goto err;
368 :
369 0 : kqd->q = q;
370 0 : kqd->dev = disk_devt(q->disk);
371 :
372 0 : kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
373 : GFP_KERNEL | __GFP_ZERO);
374 0 : if (!kqd->cpu_latency)
375 : goto err_kqd;
376 :
377 0 : timer_setup(&kqd->timer, kyber_timer_fn, 0);
378 :
379 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
380 0 : WARN_ON(!kyber_depth[i]);
381 0 : WARN_ON(!kyber_batch_size[i]);
382 0 : ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
383 : kyber_depth[i], -1, false,
384 : GFP_KERNEL, q->node);
385 0 : if (ret) {
386 0 : while (--i >= 0)
387 0 : sbitmap_queue_free(&kqd->domain_tokens[i]);
388 : goto err_buckets;
389 : }
390 : }
391 :
392 0 : for (i = 0; i < KYBER_OTHER; i++) {
393 0 : kqd->domain_p99[i] = -1;
394 0 : kqd->latency_targets[i] = kyber_latency_targets[i];
395 : }
396 :
397 : return kqd;
398 :
399 : err_buckets:
400 0 : free_percpu(kqd->cpu_latency);
401 : err_kqd:
402 0 : kfree(kqd);
403 : err:
404 0 : return ERR_PTR(ret);
405 : }
406 :
407 0 : static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
408 : {
409 : struct kyber_queue_data *kqd;
410 : struct elevator_queue *eq;
411 :
412 0 : eq = elevator_alloc(q, e);
413 0 : if (!eq)
414 : return -ENOMEM;
415 :
416 0 : kqd = kyber_queue_data_alloc(q);
417 0 : if (IS_ERR(kqd)) {
418 0 : kobject_put(&eq->kobj);
419 0 : return PTR_ERR(kqd);
420 : }
421 :
422 0 : blk_stat_enable_accounting(q);
423 :
424 0 : eq->elevator_data = kqd;
425 0 : q->elevator = eq;
426 :
427 0 : return 0;
428 : }
429 :
430 0 : static void kyber_exit_sched(struct elevator_queue *e)
431 : {
432 0 : struct kyber_queue_data *kqd = e->elevator_data;
433 : int i;
434 :
435 0 : del_timer_sync(&kqd->timer);
436 0 : blk_stat_disable_accounting(kqd->q);
437 :
438 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++)
439 0 : sbitmap_queue_free(&kqd->domain_tokens[i]);
440 0 : free_percpu(kqd->cpu_latency);
441 0 : kfree(kqd);
442 0 : }
443 :
444 : static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
445 : {
446 : unsigned int i;
447 :
448 0 : spin_lock_init(&kcq->lock);
449 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++)
450 0 : INIT_LIST_HEAD(&kcq->rq_list[i]);
451 : }
452 :
453 0 : static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
454 : {
455 0 : struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
456 0 : struct blk_mq_tags *tags = hctx->sched_tags;
457 0 : unsigned int shift = tags->bitmap_tags.sb.shift;
458 :
459 0 : kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
460 :
461 0 : sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
462 0 : }
463 :
464 0 : static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
465 : {
466 : struct kyber_hctx_data *khd;
467 : int i;
468 :
469 0 : khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
470 0 : if (!khd)
471 : return -ENOMEM;
472 :
473 0 : khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474 : sizeof(struct kyber_ctx_queue),
475 0 : GFP_KERNEL, hctx->numa_node);
476 0 : if (!khd->kcqs)
477 : goto err_khd;
478 :
479 0 : for (i = 0; i < hctx->nr_ctx; i++)
480 0 : kyber_ctx_queue_init(&khd->kcqs[i]);
481 :
482 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 0 : if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
484 0 : ilog2(8), GFP_KERNEL, hctx->numa_node,
485 : false, false)) {
486 0 : while (--i >= 0)
487 0 : sbitmap_free(&khd->kcq_map[i]);
488 : goto err_kcqs;
489 : }
490 : }
491 :
492 : spin_lock_init(&khd->lock);
493 :
494 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
495 0 : INIT_LIST_HEAD(&khd->rqs[i]);
496 0 : khd->domain_wait[i].sbq = NULL;
497 0 : init_waitqueue_func_entry(&khd->domain_wait[i].wait,
498 : kyber_domain_wake);
499 0 : khd->domain_wait[i].wait.private = hctx;
500 0 : INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
501 0 : atomic_set(&khd->wait_index[i], 0);
502 : }
503 :
504 0 : khd->cur_domain = 0;
505 0 : khd->batching = 0;
506 :
507 0 : hctx->sched_data = khd;
508 0 : kyber_depth_updated(hctx);
509 :
510 0 : return 0;
511 :
512 : err_kcqs:
513 0 : kfree(khd->kcqs);
514 : err_khd:
515 0 : kfree(khd);
516 0 : return -ENOMEM;
517 : }
518 :
519 0 : static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
520 : {
521 0 : struct kyber_hctx_data *khd = hctx->sched_data;
522 : int i;
523 :
524 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++)
525 0 : sbitmap_free(&khd->kcq_map[i]);
526 0 : kfree(khd->kcqs);
527 0 : kfree(hctx->sched_data);
528 0 : }
529 :
530 : static int rq_get_domain_token(struct request *rq)
531 : {
532 0 : return (long)rq->elv.priv[0];
533 : }
534 :
535 : static void rq_set_domain_token(struct request *rq, int token)
536 : {
537 0 : rq->elv.priv[0] = (void *)(long)token;
538 : }
539 :
540 0 : static void rq_clear_domain_token(struct kyber_queue_data *kqd,
541 : struct request *rq)
542 : {
543 : unsigned int sched_domain;
544 : int nr;
545 :
546 0 : nr = rq_get_domain_token(rq);
547 0 : if (nr != -1) {
548 0 : sched_domain = kyber_sched_domain(rq->cmd_flags);
549 0 : sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
550 0 : rq->mq_ctx->cpu);
551 : }
552 0 : }
553 :
554 0 : static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
555 : {
556 : /*
557 : * We use the scheduler tags as per-hardware queue queueing tokens.
558 : * Async requests can be limited at this stage.
559 : */
560 0 : if (!op_is_sync(op)) {
561 0 : struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
562 :
563 0 : data->shallow_depth = kqd->async_depth;
564 : }
565 0 : }
566 :
567 0 : static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
568 : unsigned int nr_segs)
569 : {
570 0 : struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
571 0 : struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
572 0 : struct kyber_hctx_data *khd = hctx->sched_data;
573 0 : struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
574 0 : unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
575 0 : struct list_head *rq_list = &kcq->rq_list[sched_domain];
576 : bool merged;
577 :
578 0 : spin_lock(&kcq->lock);
579 0 : merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
580 0 : spin_unlock(&kcq->lock);
581 :
582 0 : return merged;
583 : }
584 :
585 0 : static void kyber_prepare_request(struct request *rq)
586 : {
587 0 : rq_set_domain_token(rq, -1);
588 0 : }
589 :
590 0 : static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
591 : struct list_head *rq_list, bool at_head)
592 : {
593 0 : struct kyber_hctx_data *khd = hctx->sched_data;
594 : struct request *rq, *next;
595 :
596 0 : list_for_each_entry_safe(rq, next, rq_list, queuelist) {
597 0 : unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
598 0 : struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
599 0 : struct list_head *head = &kcq->rq_list[sched_domain];
600 :
601 0 : spin_lock(&kcq->lock);
602 0 : trace_block_rq_insert(rq);
603 0 : if (at_head)
604 0 : list_move(&rq->queuelist, head);
605 : else
606 0 : list_move_tail(&rq->queuelist, head);
607 0 : sbitmap_set_bit(&khd->kcq_map[sched_domain],
608 0 : rq->mq_ctx->index_hw[hctx->type]);
609 0 : spin_unlock(&kcq->lock);
610 : }
611 0 : }
612 :
613 0 : static void kyber_finish_request(struct request *rq)
614 : {
615 0 : struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
616 :
617 0 : rq_clear_domain_token(kqd, rq);
618 0 : }
619 :
620 : static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
621 : unsigned int sched_domain, unsigned int type,
622 : u64 target, u64 latency)
623 : {
624 : unsigned int bucket;
625 : u64 divisor;
626 :
627 0 : if (latency > 0) {
628 0 : divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
629 0 : bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
630 : KYBER_LATENCY_BUCKETS - 1);
631 : } else {
632 : bucket = 0;
633 : }
634 :
635 0 : atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
636 : }
637 :
638 0 : static void kyber_completed_request(struct request *rq, u64 now)
639 : {
640 0 : struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
641 : struct kyber_cpu_latency *cpu_latency;
642 : unsigned int sched_domain;
643 : u64 target;
644 :
645 0 : sched_domain = kyber_sched_domain(rq->cmd_flags);
646 0 : if (sched_domain == KYBER_OTHER)
647 : return;
648 :
649 0 : cpu_latency = get_cpu_ptr(kqd->cpu_latency);
650 0 : target = kqd->latency_targets[sched_domain];
651 0 : add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
652 0 : target, now - rq->start_time_ns);
653 0 : add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
654 0 : now - rq->io_start_time_ns);
655 0 : put_cpu_ptr(kqd->cpu_latency);
656 :
657 0 : timer_reduce(&kqd->timer, jiffies + HZ / 10);
658 : }
659 :
660 : struct flush_kcq_data {
661 : struct kyber_hctx_data *khd;
662 : unsigned int sched_domain;
663 : struct list_head *list;
664 : };
665 :
666 0 : static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
667 : {
668 0 : struct flush_kcq_data *flush_data = data;
669 0 : struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
670 :
671 0 : spin_lock(&kcq->lock);
672 0 : list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
673 : flush_data->list);
674 0 : sbitmap_clear_bit(sb, bitnr);
675 0 : spin_unlock(&kcq->lock);
676 :
677 0 : return true;
678 : }
679 :
680 : static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
681 : unsigned int sched_domain,
682 : struct list_head *list)
683 : {
684 0 : struct flush_kcq_data data = {
685 : .khd = khd,
686 : .sched_domain = sched_domain,
687 : .list = list,
688 : };
689 :
690 0 : sbitmap_for_each_set(&khd->kcq_map[sched_domain],
691 : flush_busy_kcq, &data);
692 : }
693 :
694 0 : static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
695 : void *key)
696 : {
697 0 : struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
698 0 : struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
699 :
700 0 : sbitmap_del_wait_queue(wait);
701 0 : blk_mq_run_hw_queue(hctx, true);
702 0 : return 1;
703 : }
704 :
705 0 : static int kyber_get_domain_token(struct kyber_queue_data *kqd,
706 : struct kyber_hctx_data *khd,
707 : struct blk_mq_hw_ctx *hctx)
708 : {
709 0 : unsigned int sched_domain = khd->cur_domain;
710 0 : struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
711 0 : struct sbq_wait *wait = &khd->domain_wait[sched_domain];
712 : struct sbq_wait_state *ws;
713 : int nr;
714 :
715 0 : nr = __sbitmap_queue_get(domain_tokens);
716 :
717 : /*
718 : * If we failed to get a domain token, make sure the hardware queue is
719 : * run when one becomes available. Note that this is serialized on
720 : * khd->lock, but we still need to be careful about the waker.
721 : */
722 0 : if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
723 0 : ws = sbq_wait_ptr(domain_tokens,
724 : &khd->wait_index[sched_domain]);
725 0 : khd->domain_ws[sched_domain] = ws;
726 0 : sbitmap_add_wait_queue(domain_tokens, ws, wait);
727 :
728 : /*
729 : * Try again in case a token was freed before we got on the wait
730 : * queue.
731 : */
732 0 : nr = __sbitmap_queue_get(domain_tokens);
733 : }
734 :
735 : /*
736 : * If we got a token while we were on the wait queue, remove ourselves
737 : * from the wait queue to ensure that all wake ups make forward
738 : * progress. It's possible that the waker already deleted the entry
739 : * between the !list_empty_careful() check and us grabbing the lock, but
740 : * list_del_init() is okay with that.
741 : */
742 0 : if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
743 0 : ws = khd->domain_ws[sched_domain];
744 0 : spin_lock_irq(&ws->wait.lock);
745 0 : sbitmap_del_wait_queue(wait);
746 0 : spin_unlock_irq(&ws->wait.lock);
747 : }
748 :
749 0 : return nr;
750 : }
751 :
752 : static struct request *
753 0 : kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
754 : struct kyber_hctx_data *khd,
755 : struct blk_mq_hw_ctx *hctx)
756 : {
757 : struct list_head *rqs;
758 : struct request *rq;
759 : int nr;
760 :
761 0 : rqs = &khd->rqs[khd->cur_domain];
762 :
763 : /*
764 : * If we already have a flushed request, then we just need to get a
765 : * token for it. Otherwise, if there are pending requests in the kcqs,
766 : * flush the kcqs, but only if we can get a token. If not, we should
767 : * leave the requests in the kcqs so that they can be merged. Note that
768 : * khd->lock serializes the flushes, so if we observed any bit set in
769 : * the kcq_map, we will always get a request.
770 : */
771 0 : rq = list_first_entry_or_null(rqs, struct request, queuelist);
772 0 : if (rq) {
773 0 : nr = kyber_get_domain_token(kqd, khd, hctx);
774 0 : if (nr >= 0) {
775 0 : khd->batching++;
776 0 : rq_set_domain_token(rq, nr);
777 0 : list_del_init(&rq->queuelist);
778 : return rq;
779 : } else {
780 : trace_kyber_throttled(kqd->dev,
781 : kyber_domain_names[khd->cur_domain]);
782 : }
783 0 : } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
784 0 : nr = kyber_get_domain_token(kqd, khd, hctx);
785 0 : if (nr >= 0) {
786 0 : kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
787 0 : rq = list_first_entry(rqs, struct request, queuelist);
788 0 : khd->batching++;
789 0 : rq_set_domain_token(rq, nr);
790 0 : list_del_init(&rq->queuelist);
791 : return rq;
792 : } else {
793 : trace_kyber_throttled(kqd->dev,
794 : kyber_domain_names[khd->cur_domain]);
795 : }
796 : }
797 :
798 : /* There were either no pending requests or no tokens. */
799 : return NULL;
800 : }
801 :
802 0 : static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
803 : {
804 0 : struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
805 0 : struct kyber_hctx_data *khd = hctx->sched_data;
806 : struct request *rq;
807 : int i;
808 :
809 0 : spin_lock(&khd->lock);
810 :
811 : /*
812 : * First, if we are still entitled to batch, try to dispatch a request
813 : * from the batch.
814 : */
815 0 : if (khd->batching < kyber_batch_size[khd->cur_domain]) {
816 0 : rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
817 0 : if (rq)
818 : goto out;
819 : }
820 :
821 : /*
822 : * Either,
823 : * 1. We were no longer entitled to a batch.
824 : * 2. The domain we were batching didn't have any requests.
825 : * 3. The domain we were batching was out of tokens.
826 : *
827 : * Start another batch. Note that this wraps back around to the original
828 : * domain if no other domains have requests or tokens.
829 : */
830 0 : khd->batching = 0;
831 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
832 0 : if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
833 0 : khd->cur_domain = 0;
834 : else
835 0 : khd->cur_domain++;
836 :
837 0 : rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
838 0 : if (rq)
839 : goto out;
840 : }
841 :
842 : rq = NULL;
843 : out:
844 0 : spin_unlock(&khd->lock);
845 0 : return rq;
846 : }
847 :
848 0 : static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
849 : {
850 0 : struct kyber_hctx_data *khd = hctx->sched_data;
851 : int i;
852 :
853 0 : for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
854 0 : if (!list_empty_careful(&khd->rqs[i]) ||
855 0 : sbitmap_any_bit_set(&khd->kcq_map[i]))
856 : return true;
857 : }
858 :
859 : return false;
860 : }
861 :
862 : #define KYBER_LAT_SHOW_STORE(domain, name) \
863 : static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
864 : char *page) \
865 : { \
866 : struct kyber_queue_data *kqd = e->elevator_data; \
867 : \
868 : return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
869 : } \
870 : \
871 : static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
872 : const char *page, size_t count) \
873 : { \
874 : struct kyber_queue_data *kqd = e->elevator_data; \
875 : unsigned long long nsec; \
876 : int ret; \
877 : \
878 : ret = kstrtoull(page, 10, &nsec); \
879 : if (ret) \
880 : return ret; \
881 : \
882 : kqd->latency_targets[domain] = nsec; \
883 : \
884 : return count; \
885 : }
886 0 : KYBER_LAT_SHOW_STORE(KYBER_READ, read);
887 0 : KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
888 : #undef KYBER_LAT_SHOW_STORE
889 :
890 : #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
891 : static struct elv_fs_entry kyber_sched_attrs[] = {
892 : KYBER_LAT_ATTR(read),
893 : KYBER_LAT_ATTR(write),
894 : __ATTR_NULL
895 : };
896 : #undef KYBER_LAT_ATTR
897 :
898 : #ifdef CONFIG_BLK_DEBUG_FS
899 : #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
900 : static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
901 : { \
902 : struct request_queue *q = data; \
903 : struct kyber_queue_data *kqd = q->elevator->elevator_data; \
904 : \
905 : sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
906 : return 0; \
907 : } \
908 : \
909 : static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
910 : __acquires(&khd->lock) \
911 : { \
912 : struct blk_mq_hw_ctx *hctx = m->private; \
913 : struct kyber_hctx_data *khd = hctx->sched_data; \
914 : \
915 : spin_lock(&khd->lock); \
916 : return seq_list_start(&khd->rqs[domain], *pos); \
917 : } \
918 : \
919 : static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
920 : loff_t *pos) \
921 : { \
922 : struct blk_mq_hw_ctx *hctx = m->private; \
923 : struct kyber_hctx_data *khd = hctx->sched_data; \
924 : \
925 : return seq_list_next(v, &khd->rqs[domain], pos); \
926 : } \
927 : \
928 : static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
929 : __releases(&khd->lock) \
930 : { \
931 : struct blk_mq_hw_ctx *hctx = m->private; \
932 : struct kyber_hctx_data *khd = hctx->sched_data; \
933 : \
934 : spin_unlock(&khd->lock); \
935 : } \
936 : \
937 : static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
938 : .start = kyber_##name##_rqs_start, \
939 : .next = kyber_##name##_rqs_next, \
940 : .stop = kyber_##name##_rqs_stop, \
941 : .show = blk_mq_debugfs_rq_show, \
942 : }; \
943 : \
944 : static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
945 : { \
946 : struct blk_mq_hw_ctx *hctx = data; \
947 : struct kyber_hctx_data *khd = hctx->sched_data; \
948 : wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
949 : \
950 : seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
951 : return 0; \
952 : }
953 : KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
954 : KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
955 : KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
956 : KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
957 : #undef KYBER_DEBUGFS_DOMAIN_ATTRS
958 :
959 : static int kyber_async_depth_show(void *data, struct seq_file *m)
960 : {
961 : struct request_queue *q = data;
962 : struct kyber_queue_data *kqd = q->elevator->elevator_data;
963 :
964 : seq_printf(m, "%u\n", kqd->async_depth);
965 : return 0;
966 : }
967 :
968 : static int kyber_cur_domain_show(void *data, struct seq_file *m)
969 : {
970 : struct blk_mq_hw_ctx *hctx = data;
971 : struct kyber_hctx_data *khd = hctx->sched_data;
972 :
973 : seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
974 : return 0;
975 : }
976 :
977 : static int kyber_batching_show(void *data, struct seq_file *m)
978 : {
979 : struct blk_mq_hw_ctx *hctx = data;
980 : struct kyber_hctx_data *khd = hctx->sched_data;
981 :
982 : seq_printf(m, "%u\n", khd->batching);
983 : return 0;
984 : }
985 :
986 : #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
987 : {#name "_tokens", 0400, kyber_##name##_tokens_show}
988 : static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
989 : KYBER_QUEUE_DOMAIN_ATTRS(read),
990 : KYBER_QUEUE_DOMAIN_ATTRS(write),
991 : KYBER_QUEUE_DOMAIN_ATTRS(discard),
992 : KYBER_QUEUE_DOMAIN_ATTRS(other),
993 : {"async_depth", 0400, kyber_async_depth_show},
994 : {},
995 : };
996 : #undef KYBER_QUEUE_DOMAIN_ATTRS
997 :
998 : #define KYBER_HCTX_DOMAIN_ATTRS(name) \
999 : {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1000 : {#name "_waiting", 0400, kyber_##name##_waiting_show}
1001 : static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1002 : KYBER_HCTX_DOMAIN_ATTRS(read),
1003 : KYBER_HCTX_DOMAIN_ATTRS(write),
1004 : KYBER_HCTX_DOMAIN_ATTRS(discard),
1005 : KYBER_HCTX_DOMAIN_ATTRS(other),
1006 : {"cur_domain", 0400, kyber_cur_domain_show},
1007 : {"batching", 0400, kyber_batching_show},
1008 : {},
1009 : };
1010 : #undef KYBER_HCTX_DOMAIN_ATTRS
1011 : #endif
1012 :
1013 : static struct elevator_type kyber_sched = {
1014 : .ops = {
1015 : .init_sched = kyber_init_sched,
1016 : .exit_sched = kyber_exit_sched,
1017 : .init_hctx = kyber_init_hctx,
1018 : .exit_hctx = kyber_exit_hctx,
1019 : .limit_depth = kyber_limit_depth,
1020 : .bio_merge = kyber_bio_merge,
1021 : .prepare_request = kyber_prepare_request,
1022 : .insert_requests = kyber_insert_requests,
1023 : .finish_request = kyber_finish_request,
1024 : .requeue_request = kyber_finish_request,
1025 : .completed_request = kyber_completed_request,
1026 : .dispatch_request = kyber_dispatch_request,
1027 : .has_work = kyber_has_work,
1028 : .depth_updated = kyber_depth_updated,
1029 : },
1030 : #ifdef CONFIG_BLK_DEBUG_FS
1031 : .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1032 : .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1033 : #endif
1034 : .elevator_attrs = kyber_sched_attrs,
1035 : .elevator_name = "kyber",
1036 : .elevator_features = ELEVATOR_F_MQ_AWARE,
1037 : .elevator_owner = THIS_MODULE,
1038 : };
1039 :
1040 1 : static int __init kyber_init(void)
1041 : {
1042 1 : return elv_register(&kyber_sched);
1043 : }
1044 :
1045 0 : static void __exit kyber_exit(void)
1046 : {
1047 0 : elv_unregister(&kyber_sched);
1048 0 : }
1049 :
1050 : module_init(kyber_init);
1051 : module_exit(kyber_exit);
1052 :
1053 : MODULE_AUTHOR("Omar Sandoval");
1054 : MODULE_LICENSE("GPL");
1055 : MODULE_DESCRIPTION("Kyber I/O scheduler");
|