Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Fence mechanism for dma-buf and to allow for asynchronous dma access
4 : *
5 : * Copyright (C) 2012 Canonical Ltd
6 : * Copyright (C) 2012 Texas Instruments
7 : *
8 : * Authors:
9 : * Rob Clark <robdclark@gmail.com>
10 : * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11 : */
12 :
13 : #include <linux/slab.h>
14 : #include <linux/export.h>
15 : #include <linux/atomic.h>
16 : #include <linux/dma-fence.h>
17 : #include <linux/sched/signal.h>
18 : #include <linux/seq_file.h>
19 :
20 : #define CREATE_TRACE_POINTS
21 : #include <trace/events/dma_fence.h>
22 :
23 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 :
27 : static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 : static struct dma_fence dma_fence_stub;
29 :
30 : /*
31 : * fence context counter: each execution context should have its own
32 : * fence context, this allows checking if fences belong to the same
33 : * context or not. One device can have multiple separate contexts,
34 : * and they're used if some engine can run independently of another.
35 : */
36 : static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 :
38 : /**
39 : * DOC: DMA fences overview
40 : *
41 : * DMA fences, represented by &struct dma_fence, are the kernel internal
42 : * synchronization primitive for DMA operations like GPU rendering, video
43 : * encoding/decoding, or displaying buffers on a screen.
44 : *
45 : * A fence is initialized using dma_fence_init() and completed using
46 : * dma_fence_signal(). Fences are associated with a context, allocated through
47 : * dma_fence_context_alloc(), and all fences on the same context are
48 : * fully ordered.
49 : *
50 : * Since the purposes of fences is to facilitate cross-device and
51 : * cross-application synchronization, there's multiple ways to use one:
52 : *
53 : * - Individual fences can be exposed as a &sync_file, accessed as a file
54 : * descriptor from userspace, created by calling sync_file_create(). This is
55 : * called explicit fencing, since userspace passes around explicit
56 : * synchronization points.
57 : *
58 : * - Some subsystems also have their own explicit fencing primitives, like
59 : * &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60 : * fence to be updated.
61 : *
62 : * - Then there's also implicit fencing, where the synchronization points are
63 : * implicitly passed around as part of shared &dma_buf instances. Such
64 : * implicit fences are stored in &struct dma_resv through the
65 : * &dma_buf.resv pointer.
66 : */
67 :
68 : /**
69 : * DOC: fence cross-driver contract
70 : *
71 : * Since &dma_fence provide a cross driver contract, all drivers must follow the
72 : * same rules:
73 : *
74 : * * Fences must complete in a reasonable time. Fences which represent kernels
75 : * and shaders submitted by userspace, which could run forever, must be backed
76 : * up by timeout and gpu hang recovery code. Minimally that code must prevent
77 : * further command submission and force complete all in-flight fences, e.g.
78 : * when the driver or hardware do not support gpu reset, or if the gpu reset
79 : * failed for some reason. Ideally the driver supports gpu recovery which only
80 : * affects the offending userspace context, and no other userspace
81 : * submissions.
82 : *
83 : * * Drivers may have different ideas of what completion within a reasonable
84 : * time means. Some hang recovery code uses a fixed timeout, others a mix
85 : * between observing forward progress and increasingly strict timeouts.
86 : * Drivers should not try to second guess timeout handling of fences from
87 : * other drivers.
88 : *
89 : * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90 : * drivers should annotate all code required to reach dma_fence_signal(),
91 : * which completes the fences, with dma_fence_begin_signalling() and
92 : * dma_fence_end_signalling().
93 : *
94 : * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95 : * This means any code required for fence completion cannot acquire a
96 : * &dma_resv lock. Note that this also pulls in the entire established
97 : * locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98 : *
99 : * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100 : * callbacks. This means any code required for fence completion cannot
101 : * allocate memory with GFP_KERNEL.
102 : *
103 : * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104 : * respectively &mmu_interval_notifier callbacks. This means any code required
105 : * for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106 : * Only GFP_ATOMIC is permissible, which might fail.
107 : *
108 : * Note that only GPU drivers have a reasonable excuse for both requiring
109 : * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110 : * track asynchronous compute work using &dma_fence. No driver outside of
111 : * drivers/gpu should ever call dma_fence_wait() in such contexts.
112 : */
113 :
114 0 : static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 : {
116 0 : return "stub";
117 : }
118 :
119 : static const struct dma_fence_ops dma_fence_stub_ops = {
120 : .get_driver_name = dma_fence_stub_get_name,
121 : .get_timeline_name = dma_fence_stub_get_name,
122 : };
123 :
124 : /**
125 : * dma_fence_get_stub - return a signaled fence
126 : *
127 : * Return a stub fence which is already signaled. The fence's
128 : * timestamp corresponds to the first time after boot this
129 : * function is called.
130 : */
131 0 : struct dma_fence *dma_fence_get_stub(void)
132 : {
133 0 : spin_lock(&dma_fence_stub_lock);
134 0 : if (!dma_fence_stub.ops) {
135 0 : dma_fence_init(&dma_fence_stub,
136 : &dma_fence_stub_ops,
137 : &dma_fence_stub_lock,
138 : 0, 0);
139 : dma_fence_signal_locked(&dma_fence_stub);
140 : }
141 0 : spin_unlock(&dma_fence_stub_lock);
142 :
143 0 : return dma_fence_get(&dma_fence_stub);
144 : }
145 : EXPORT_SYMBOL(dma_fence_get_stub);
146 :
147 : /**
148 : * dma_fence_allocate_private_stub - return a private, signaled fence
149 : *
150 : * Return a newly allocated and signaled stub fence.
151 : */
152 0 : struct dma_fence *dma_fence_allocate_private_stub(void)
153 : {
154 : struct dma_fence *fence;
155 :
156 0 : fence = kzalloc(sizeof(*fence), GFP_KERNEL);
157 0 : if (fence == NULL)
158 : return ERR_PTR(-ENOMEM);
159 :
160 0 : dma_fence_init(fence,
161 : &dma_fence_stub_ops,
162 : &dma_fence_stub_lock,
163 : 0, 0);
164 0 : dma_fence_signal(fence);
165 :
166 0 : return fence;
167 : }
168 : EXPORT_SYMBOL(dma_fence_allocate_private_stub);
169 :
170 : /**
171 : * dma_fence_context_alloc - allocate an array of fence contexts
172 : * @num: amount of contexts to allocate
173 : *
174 : * This function will return the first index of the number of fence contexts
175 : * allocated. The fence context is used for setting &dma_fence.context to a
176 : * unique number by passing the context to dma_fence_init().
177 : */
178 0 : u64 dma_fence_context_alloc(unsigned num)
179 : {
180 0 : WARN_ON(!num);
181 0 : return atomic64_fetch_add(num, &dma_fence_context_counter);
182 : }
183 : EXPORT_SYMBOL(dma_fence_context_alloc);
184 :
185 : /**
186 : * DOC: fence signalling annotation
187 : *
188 : * Proving correctness of all the kernel code around &dma_fence through code
189 : * review and testing is tricky for a few reasons:
190 : *
191 : * * It is a cross-driver contract, and therefore all drivers must follow the
192 : * same rules for lock nesting order, calling contexts for various functions
193 : * and anything else significant for in-kernel interfaces. But it is also
194 : * impossible to test all drivers in a single machine, hence brute-force N vs.
195 : * N testing of all combinations is impossible. Even just limiting to the
196 : * possible combinations is infeasible.
197 : *
198 : * * There is an enormous amount of driver code involved. For render drivers
199 : * there's the tail of command submission, after fences are published,
200 : * scheduler code, interrupt and workers to process job completion,
201 : * and timeout, gpu reset and gpu hang recovery code. Plus for integration
202 : * with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
203 : * and &shrinker. For modesetting drivers there's the commit tail functions
204 : * between when fences for an atomic modeset are published, and when the
205 : * corresponding vblank completes, including any interrupt processing and
206 : * related workers. Auditing all that code, across all drivers, is not
207 : * feasible.
208 : *
209 : * * Due to how many other subsystems are involved and the locking hierarchies
210 : * this pulls in there is extremely thin wiggle-room for driver-specific
211 : * differences. &dma_fence interacts with almost all of the core memory
212 : * handling through page fault handlers via &dma_resv, dma_resv_lock() and
213 : * dma_resv_unlock(). On the other side it also interacts through all
214 : * allocation sites through &mmu_notifier and &shrinker.
215 : *
216 : * Furthermore lockdep does not handle cross-release dependencies, which means
217 : * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
218 : * at runtime with some quick testing. The simplest example is one thread
219 : * waiting on a &dma_fence while holding a lock::
220 : *
221 : * lock(A);
222 : * dma_fence_wait(B);
223 : * unlock(A);
224 : *
225 : * while the other thread is stuck trying to acquire the same lock, which
226 : * prevents it from signalling the fence the previous thread is stuck waiting
227 : * on::
228 : *
229 : * lock(A);
230 : * unlock(A);
231 : * dma_fence_signal(B);
232 : *
233 : * By manually annotating all code relevant to signalling a &dma_fence we can
234 : * teach lockdep about these dependencies, which also helps with the validation
235 : * headache since now lockdep can check all the rules for us::
236 : *
237 : * cookie = dma_fence_begin_signalling();
238 : * lock(A);
239 : * unlock(A);
240 : * dma_fence_signal(B);
241 : * dma_fence_end_signalling(cookie);
242 : *
243 : * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
244 : * annotate critical sections the following rules need to be observed:
245 : *
246 : * * All code necessary to complete a &dma_fence must be annotated, from the
247 : * point where a fence is accessible to other threads, to the point where
248 : * dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
249 : * and due to the very strict rules and many corner cases it is infeasible to
250 : * catch these just with review or normal stress testing.
251 : *
252 : * * &struct dma_resv deserves a special note, since the readers are only
253 : * protected by rcu. This means the signalling critical section starts as soon
254 : * as the new fences are installed, even before dma_resv_unlock() is called.
255 : *
256 : * * The only exception are fast paths and opportunistic signalling code, which
257 : * calls dma_fence_signal() purely as an optimization, but is not required to
258 : * guarantee completion of a &dma_fence. The usual example is a wait IOCTL
259 : * which calls dma_fence_signal(), while the mandatory completion path goes
260 : * through a hardware interrupt and possible job completion worker.
261 : *
262 : * * To aid composability of code, the annotations can be freely nested, as long
263 : * as the overall locking hierarchy is consistent. The annotations also work
264 : * both in interrupt and process context. Due to implementation details this
265 : * requires that callers pass an opaque cookie from
266 : * dma_fence_begin_signalling() to dma_fence_end_signalling().
267 : *
268 : * * Validation against the cross driver contract is implemented by priming
269 : * lockdep with the relevant hierarchy at boot-up. This means even just
270 : * testing with a single device is enough to validate a driver, at least as
271 : * far as deadlocks with dma_fence_wait() against dma_fence_signal() are
272 : * concerned.
273 : */
274 : #ifdef CONFIG_LOCKDEP
275 : static struct lockdep_map dma_fence_lockdep_map = {
276 : .name = "dma_fence_map"
277 : };
278 :
279 : /**
280 : * dma_fence_begin_signalling - begin a critical DMA fence signalling section
281 : *
282 : * Drivers should use this to annotate the beginning of any code section
283 : * required to eventually complete &dma_fence by calling dma_fence_signal().
284 : *
285 : * The end of these critical sections are annotated with
286 : * dma_fence_end_signalling().
287 : *
288 : * Returns:
289 : *
290 : * Opaque cookie needed by the implementation, which needs to be passed to
291 : * dma_fence_end_signalling().
292 : */
293 : bool dma_fence_begin_signalling(void)
294 : {
295 : /* explicitly nesting ... */
296 : if (lock_is_held_type(&dma_fence_lockdep_map, 1))
297 : return true;
298 :
299 : /* rely on might_sleep check for soft/hardirq locks */
300 : if (in_atomic())
301 : return true;
302 :
303 : /* ... and non-recursive readlock */
304 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
305 :
306 : return false;
307 : }
308 : EXPORT_SYMBOL(dma_fence_begin_signalling);
309 :
310 : /**
311 : * dma_fence_end_signalling - end a critical DMA fence signalling section
312 : * @cookie: opaque cookie from dma_fence_begin_signalling()
313 : *
314 : * Closes a critical section annotation opened by dma_fence_begin_signalling().
315 : */
316 : void dma_fence_end_signalling(bool cookie)
317 : {
318 : if (cookie)
319 : return;
320 :
321 : lock_release(&dma_fence_lockdep_map, _RET_IP_);
322 : }
323 : EXPORT_SYMBOL(dma_fence_end_signalling);
324 :
325 : void __dma_fence_might_wait(void)
326 : {
327 : bool tmp;
328 :
329 : tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
330 : if (tmp)
331 : lock_release(&dma_fence_lockdep_map, _THIS_IP_);
332 : lock_map_acquire(&dma_fence_lockdep_map);
333 : lock_map_release(&dma_fence_lockdep_map);
334 : if (tmp)
335 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
336 : }
337 : #endif
338 :
339 :
340 : /**
341 : * dma_fence_signal_timestamp_locked - signal completion of a fence
342 : * @fence: the fence to signal
343 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
344 : *
345 : * Signal completion for software callbacks on a fence, this will unblock
346 : * dma_fence_wait() calls and run all the callbacks added with
347 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
348 : * can only go from the unsignaled to the signaled state and not back, it will
349 : * only be effective the first time. Set the timestamp provided as the fence
350 : * signal timestamp.
351 : *
352 : * Unlike dma_fence_signal_timestamp(), this function must be called with
353 : * &dma_fence.lock held.
354 : *
355 : * Returns 0 on success and a negative error value when @fence has been
356 : * signalled already.
357 : */
358 0 : int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
359 : ktime_t timestamp)
360 : {
361 : struct dma_fence_cb *cur, *tmp;
362 : struct list_head cb_list;
363 :
364 : lockdep_assert_held(fence->lock);
365 :
366 0 : if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
367 : &fence->flags)))
368 : return -EINVAL;
369 :
370 : /* Stash the cb_list before replacing it with the timestamp */
371 0 : list_replace(&fence->cb_list, &cb_list);
372 :
373 0 : fence->timestamp = timestamp;
374 0 : set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
375 0 : trace_dma_fence_signaled(fence);
376 :
377 0 : list_for_each_entry_safe(cur, tmp, &cb_list, node) {
378 0 : INIT_LIST_HEAD(&cur->node);
379 0 : cur->func(fence, cur);
380 : }
381 :
382 : return 0;
383 : }
384 : EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
385 :
386 : /**
387 : * dma_fence_signal_timestamp - signal completion of a fence
388 : * @fence: the fence to signal
389 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
390 : *
391 : * Signal completion for software callbacks on a fence, this will unblock
392 : * dma_fence_wait() calls and run all the callbacks added with
393 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
394 : * can only go from the unsignaled to the signaled state and not back, it will
395 : * only be effective the first time. Set the timestamp provided as the fence
396 : * signal timestamp.
397 : *
398 : * Returns 0 on success and a negative error value when @fence has been
399 : * signalled already.
400 : */
401 0 : int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
402 : {
403 : unsigned long flags;
404 : int ret;
405 :
406 0 : if (!fence)
407 : return -EINVAL;
408 :
409 0 : spin_lock_irqsave(fence->lock, flags);
410 0 : ret = dma_fence_signal_timestamp_locked(fence, timestamp);
411 0 : spin_unlock_irqrestore(fence->lock, flags);
412 :
413 0 : return ret;
414 : }
415 : EXPORT_SYMBOL(dma_fence_signal_timestamp);
416 :
417 : /**
418 : * dma_fence_signal_locked - signal completion of a fence
419 : * @fence: the fence to signal
420 : *
421 : * Signal completion for software callbacks on a fence, this will unblock
422 : * dma_fence_wait() calls and run all the callbacks added with
423 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
424 : * can only go from the unsignaled to the signaled state and not back, it will
425 : * only be effective the first time.
426 : *
427 : * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
428 : * held.
429 : *
430 : * Returns 0 on success and a negative error value when @fence has been
431 : * signalled already.
432 : */
433 0 : int dma_fence_signal_locked(struct dma_fence *fence)
434 : {
435 0 : return dma_fence_signal_timestamp_locked(fence, ktime_get());
436 : }
437 : EXPORT_SYMBOL(dma_fence_signal_locked);
438 :
439 : /**
440 : * dma_fence_signal - signal completion of a fence
441 : * @fence: the fence to signal
442 : *
443 : * Signal completion for software callbacks on a fence, this will unblock
444 : * dma_fence_wait() calls and run all the callbacks added with
445 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
446 : * can only go from the unsignaled to the signaled state and not back, it will
447 : * only be effective the first time.
448 : *
449 : * Returns 0 on success and a negative error value when @fence has been
450 : * signalled already.
451 : */
452 0 : int dma_fence_signal(struct dma_fence *fence)
453 : {
454 : unsigned long flags;
455 : int ret;
456 : bool tmp;
457 :
458 0 : if (!fence)
459 : return -EINVAL;
460 :
461 0 : tmp = dma_fence_begin_signalling();
462 :
463 0 : spin_lock_irqsave(fence->lock, flags);
464 0 : ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
465 0 : spin_unlock_irqrestore(fence->lock, flags);
466 :
467 0 : dma_fence_end_signalling(tmp);
468 :
469 0 : return ret;
470 : }
471 : EXPORT_SYMBOL(dma_fence_signal);
472 :
473 : /**
474 : * dma_fence_wait_timeout - sleep until the fence gets signaled
475 : * or until timeout elapses
476 : * @fence: the fence to wait on
477 : * @intr: if true, do an interruptible wait
478 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
479 : *
480 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
481 : * remaining timeout in jiffies on success. Other error values may be
482 : * returned on custom implementations.
483 : *
484 : * Performs a synchronous wait on this fence. It is assumed the caller
485 : * directly or indirectly (buf-mgr between reservation and committing)
486 : * holds a reference to the fence, otherwise the fence might be
487 : * freed before return, resulting in undefined behavior.
488 : *
489 : * See also dma_fence_wait() and dma_fence_wait_any_timeout().
490 : */
491 : signed long
492 0 : dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
493 : {
494 : signed long ret;
495 :
496 0 : if (WARN_ON(timeout < 0))
497 : return -EINVAL;
498 :
499 : might_sleep();
500 :
501 : __dma_fence_might_wait();
502 :
503 0 : trace_dma_fence_wait_start(fence);
504 0 : if (fence->ops->wait)
505 0 : ret = fence->ops->wait(fence, intr, timeout);
506 : else
507 0 : ret = dma_fence_default_wait(fence, intr, timeout);
508 : trace_dma_fence_wait_end(fence);
509 : return ret;
510 : }
511 : EXPORT_SYMBOL(dma_fence_wait_timeout);
512 :
513 : /**
514 : * dma_fence_release - default relese function for fences
515 : * @kref: &dma_fence.recfount
516 : *
517 : * This is the default release functions for &dma_fence. Drivers shouldn't call
518 : * this directly, but instead call dma_fence_put().
519 : */
520 0 : void dma_fence_release(struct kref *kref)
521 : {
522 0 : struct dma_fence *fence =
523 0 : container_of(kref, struct dma_fence, refcount);
524 :
525 0 : trace_dma_fence_destroy(fence);
526 :
527 0 : if (WARN(!list_empty(&fence->cb_list) &&
528 : !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
529 : "Fence %s:%s:%llx:%llx released with pending signals!\n",
530 : fence->ops->get_driver_name(fence),
531 : fence->ops->get_timeline_name(fence),
532 : fence->context, fence->seqno)) {
533 : unsigned long flags;
534 :
535 : /*
536 : * Failed to signal before release, likely a refcounting issue.
537 : *
538 : * This should never happen, but if it does make sure that we
539 : * don't leave chains dangling. We set the error flag first
540 : * so that the callbacks know this signal is due to an error.
541 : */
542 0 : spin_lock_irqsave(fence->lock, flags);
543 0 : fence->error = -EDEADLK;
544 0 : dma_fence_signal_locked(fence);
545 0 : spin_unlock_irqrestore(fence->lock, flags);
546 : }
547 :
548 0 : if (fence->ops->release)
549 0 : fence->ops->release(fence);
550 : else
551 : dma_fence_free(fence);
552 0 : }
553 : EXPORT_SYMBOL(dma_fence_release);
554 :
555 : /**
556 : * dma_fence_free - default release function for &dma_fence.
557 : * @fence: fence to release
558 : *
559 : * This is the default implementation for &dma_fence_ops.release. It calls
560 : * kfree_rcu() on @fence.
561 : */
562 0 : void dma_fence_free(struct dma_fence *fence)
563 : {
564 0 : kfree_rcu(fence, rcu);
565 0 : }
566 : EXPORT_SYMBOL(dma_fence_free);
567 :
568 0 : static bool __dma_fence_enable_signaling(struct dma_fence *fence)
569 : {
570 : bool was_set;
571 :
572 : lockdep_assert_held(fence->lock);
573 :
574 0 : was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
575 0 : &fence->flags);
576 :
577 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
578 : return false;
579 :
580 0 : if (!was_set && fence->ops->enable_signaling) {
581 0 : trace_dma_fence_enable_signal(fence);
582 :
583 0 : if (!fence->ops->enable_signaling(fence)) {
584 0 : dma_fence_signal_locked(fence);
585 0 : return false;
586 : }
587 : }
588 :
589 : return true;
590 : }
591 :
592 : /**
593 : * dma_fence_enable_sw_signaling - enable signaling on fence
594 : * @fence: the fence to enable
595 : *
596 : * This will request for sw signaling to be enabled, to make the fence
597 : * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
598 : * internally.
599 : */
600 0 : void dma_fence_enable_sw_signaling(struct dma_fence *fence)
601 : {
602 : unsigned long flags;
603 :
604 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
605 : return;
606 :
607 0 : spin_lock_irqsave(fence->lock, flags);
608 0 : __dma_fence_enable_signaling(fence);
609 0 : spin_unlock_irqrestore(fence->lock, flags);
610 : }
611 : EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
612 :
613 : /**
614 : * dma_fence_add_callback - add a callback to be called when the fence
615 : * is signaled
616 : * @fence: the fence to wait on
617 : * @cb: the callback to register
618 : * @func: the function to call
619 : *
620 : * Add a software callback to the fence. The caller should keep a reference to
621 : * the fence.
622 : *
623 : * @cb will be initialized by dma_fence_add_callback(), no initialization
624 : * by the caller is required. Any number of callbacks can be registered
625 : * to a fence, but a callback can only be registered to one fence at a time.
626 : *
627 : * If fence is already signaled, this function will return -ENOENT (and
628 : * *not* call the callback).
629 : *
630 : * Note that the callback can be called from an atomic context or irq context.
631 : *
632 : * Returns 0 in case of success, -ENOENT if the fence is already signaled
633 : * and -EINVAL in case of error.
634 : */
635 0 : int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
636 : dma_fence_func_t func)
637 : {
638 : unsigned long flags;
639 0 : int ret = 0;
640 :
641 0 : if (WARN_ON(!fence || !func))
642 : return -EINVAL;
643 :
644 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
645 0 : INIT_LIST_HEAD(&cb->node);
646 0 : return -ENOENT;
647 : }
648 :
649 0 : spin_lock_irqsave(fence->lock, flags);
650 :
651 0 : if (__dma_fence_enable_signaling(fence)) {
652 0 : cb->func = func;
653 0 : list_add_tail(&cb->node, &fence->cb_list);
654 : } else {
655 0 : INIT_LIST_HEAD(&cb->node);
656 0 : ret = -ENOENT;
657 : }
658 :
659 0 : spin_unlock_irqrestore(fence->lock, flags);
660 :
661 0 : return ret;
662 : }
663 : EXPORT_SYMBOL(dma_fence_add_callback);
664 :
665 : /**
666 : * dma_fence_get_status - returns the status upon completion
667 : * @fence: the dma_fence to query
668 : *
669 : * This wraps dma_fence_get_status_locked() to return the error status
670 : * condition on a signaled fence. See dma_fence_get_status_locked() for more
671 : * details.
672 : *
673 : * Returns 0 if the fence has not yet been signaled, 1 if the fence has
674 : * been signaled without an error condition, or a negative error code
675 : * if the fence has been completed in err.
676 : */
677 0 : int dma_fence_get_status(struct dma_fence *fence)
678 : {
679 : unsigned long flags;
680 : int status;
681 :
682 0 : spin_lock_irqsave(fence->lock, flags);
683 0 : status = dma_fence_get_status_locked(fence);
684 0 : spin_unlock_irqrestore(fence->lock, flags);
685 :
686 0 : return status;
687 : }
688 : EXPORT_SYMBOL(dma_fence_get_status);
689 :
690 : /**
691 : * dma_fence_remove_callback - remove a callback from the signaling list
692 : * @fence: the fence to wait on
693 : * @cb: the callback to remove
694 : *
695 : * Remove a previously queued callback from the fence. This function returns
696 : * true if the callback is successfully removed, or false if the fence has
697 : * already been signaled.
698 : *
699 : * *WARNING*:
700 : * Cancelling a callback should only be done if you really know what you're
701 : * doing, since deadlocks and race conditions could occur all too easily. For
702 : * this reason, it should only ever be done on hardware lockup recovery,
703 : * with a reference held to the fence.
704 : *
705 : * Behaviour is undefined if @cb has not been added to @fence using
706 : * dma_fence_add_callback() beforehand.
707 : */
708 : bool
709 0 : dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
710 : {
711 : unsigned long flags;
712 : bool ret;
713 :
714 0 : spin_lock_irqsave(fence->lock, flags);
715 :
716 0 : ret = !list_empty(&cb->node);
717 0 : if (ret)
718 0 : list_del_init(&cb->node);
719 :
720 0 : spin_unlock_irqrestore(fence->lock, flags);
721 :
722 0 : return ret;
723 : }
724 : EXPORT_SYMBOL(dma_fence_remove_callback);
725 :
726 : struct default_wait_cb {
727 : struct dma_fence_cb base;
728 : struct task_struct *task;
729 : };
730 :
731 : static void
732 0 : dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
733 : {
734 0 : struct default_wait_cb *wait =
735 0 : container_of(cb, struct default_wait_cb, base);
736 :
737 0 : wake_up_state(wait->task, TASK_NORMAL);
738 0 : }
739 :
740 : /**
741 : * dma_fence_default_wait - default sleep until the fence gets signaled
742 : * or until timeout elapses
743 : * @fence: the fence to wait on
744 : * @intr: if true, do an interruptible wait
745 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
746 : *
747 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
748 : * remaining timeout in jiffies on success. If timeout is zero the value one is
749 : * returned if the fence is already signaled for consistency with other
750 : * functions taking a jiffies timeout.
751 : */
752 : signed long
753 0 : dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
754 : {
755 : struct default_wait_cb cb;
756 : unsigned long flags;
757 0 : signed long ret = timeout ? timeout : 1;
758 :
759 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
760 : return ret;
761 :
762 0 : spin_lock_irqsave(fence->lock, flags);
763 :
764 0 : if (intr && signal_pending(current)) {
765 : ret = -ERESTARTSYS;
766 : goto out;
767 : }
768 :
769 0 : if (!__dma_fence_enable_signaling(fence))
770 : goto out;
771 :
772 0 : if (!timeout) {
773 : ret = 0;
774 : goto out;
775 : }
776 :
777 0 : cb.base.func = dma_fence_default_wait_cb;
778 0 : cb.task = current;
779 0 : list_add(&cb.base.node, &fence->cb_list);
780 :
781 0 : while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
782 0 : if (intr)
783 0 : __set_current_state(TASK_INTERRUPTIBLE);
784 : else
785 0 : __set_current_state(TASK_UNINTERRUPTIBLE);
786 0 : spin_unlock_irqrestore(fence->lock, flags);
787 :
788 0 : ret = schedule_timeout(ret);
789 :
790 0 : spin_lock_irqsave(fence->lock, flags);
791 0 : if (ret > 0 && intr && signal_pending(current))
792 0 : ret = -ERESTARTSYS;
793 : }
794 :
795 0 : if (!list_empty(&cb.base.node))
796 : list_del(&cb.base.node);
797 0 : __set_current_state(TASK_RUNNING);
798 :
799 : out:
800 0 : spin_unlock_irqrestore(fence->lock, flags);
801 0 : return ret;
802 : }
803 : EXPORT_SYMBOL(dma_fence_default_wait);
804 :
805 : static bool
806 : dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
807 : uint32_t *idx)
808 : {
809 : int i;
810 :
811 0 : for (i = 0; i < count; ++i) {
812 0 : struct dma_fence *fence = fences[i];
813 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
814 0 : if (idx)
815 0 : *idx = i;
816 : return true;
817 : }
818 : }
819 : return false;
820 : }
821 :
822 : /**
823 : * dma_fence_wait_any_timeout - sleep until any fence gets signaled
824 : * or until timeout elapses
825 : * @fences: array of fences to wait on
826 : * @count: number of fences to wait on
827 : * @intr: if true, do an interruptible wait
828 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
829 : * @idx: used to store the first signaled fence index, meaningful only on
830 : * positive return
831 : *
832 : * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
833 : * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
834 : * on success.
835 : *
836 : * Synchronous waits for the first fence in the array to be signaled. The
837 : * caller needs to hold a reference to all fences in the array, otherwise a
838 : * fence might be freed before return, resulting in undefined behavior.
839 : *
840 : * See also dma_fence_wait() and dma_fence_wait_timeout().
841 : */
842 : signed long
843 0 : dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
844 : bool intr, signed long timeout, uint32_t *idx)
845 : {
846 : struct default_wait_cb *cb;
847 0 : signed long ret = timeout;
848 : unsigned i;
849 :
850 0 : if (WARN_ON(!fences || !count || timeout < 0))
851 : return -EINVAL;
852 :
853 0 : if (timeout == 0) {
854 0 : for (i = 0; i < count; ++i)
855 0 : if (dma_fence_is_signaled(fences[i])) {
856 0 : if (idx)
857 0 : *idx = i;
858 : return 1;
859 : }
860 :
861 : return 0;
862 : }
863 :
864 0 : cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
865 0 : if (cb == NULL) {
866 : ret = -ENOMEM;
867 : goto err_free_cb;
868 : }
869 :
870 0 : for (i = 0; i < count; ++i) {
871 0 : struct dma_fence *fence = fences[i];
872 :
873 0 : cb[i].task = current;
874 0 : if (dma_fence_add_callback(fence, &cb[i].base,
875 : dma_fence_default_wait_cb)) {
876 : /* This fence is already signaled */
877 0 : if (idx)
878 0 : *idx = i;
879 : goto fence_rm_cb;
880 : }
881 : }
882 :
883 0 : while (ret > 0) {
884 0 : if (intr)
885 0 : set_current_state(TASK_INTERRUPTIBLE);
886 : else
887 0 : set_current_state(TASK_UNINTERRUPTIBLE);
888 :
889 0 : if (dma_fence_test_signaled_any(fences, count, idx))
890 : break;
891 :
892 0 : ret = schedule_timeout(ret);
893 :
894 0 : if (ret > 0 && intr && signal_pending(current))
895 0 : ret = -ERESTARTSYS;
896 : }
897 :
898 0 : __set_current_state(TASK_RUNNING);
899 :
900 : fence_rm_cb:
901 0 : while (i-- > 0)
902 0 : dma_fence_remove_callback(fences[i], &cb[i].base);
903 :
904 : err_free_cb:
905 0 : kfree(cb);
906 :
907 0 : return ret;
908 : }
909 : EXPORT_SYMBOL(dma_fence_wait_any_timeout);
910 :
911 : /**
912 : * dma_fence_describe - Dump fence describtion into seq_file
913 : * @fence: the 6fence to describe
914 : * @seq: the seq_file to put the textual description into
915 : *
916 : * Dump a textual description of the fence and it's state into the seq_file.
917 : */
918 0 : void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
919 : {
920 0 : seq_printf(seq, "%s %s seq %llu %ssignalled\n",
921 0 : fence->ops->get_driver_name(fence),
922 0 : fence->ops->get_timeline_name(fence), fence->seqno,
923 0 : dma_fence_is_signaled(fence) ? "" : "un");
924 0 : }
925 : EXPORT_SYMBOL(dma_fence_describe);
926 :
927 : /**
928 : * dma_fence_init - Initialize a custom fence.
929 : * @fence: the fence to initialize
930 : * @ops: the dma_fence_ops for operations on this fence
931 : * @lock: the irqsafe spinlock to use for locking this fence
932 : * @context: the execution context this fence is run on
933 : * @seqno: a linear increasing sequence number for this context
934 : *
935 : * Initializes an allocated fence, the caller doesn't have to keep its
936 : * refcount after committing with this fence, but it will need to hold a
937 : * refcount again if &dma_fence_ops.enable_signaling gets called.
938 : *
939 : * context and seqno are used for easy comparison between fences, allowing
940 : * to check which fence is later by simply using dma_fence_later().
941 : */
942 : void
943 0 : dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
944 : spinlock_t *lock, u64 context, u64 seqno)
945 : {
946 0 : BUG_ON(!lock);
947 0 : BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
948 :
949 0 : kref_init(&fence->refcount);
950 0 : fence->ops = ops;
951 0 : INIT_LIST_HEAD(&fence->cb_list);
952 0 : fence->lock = lock;
953 0 : fence->context = context;
954 0 : fence->seqno = seqno;
955 0 : fence->flags = 0UL;
956 0 : fence->error = 0;
957 :
958 0 : trace_dma_fence_init(fence);
959 0 : }
960 : EXPORT_SYMBOL(dma_fence_init);
|