Line data Source code
1 : /*
2 : * Copyright 2009 Jerome Glisse.
3 : * All Rights Reserved.
4 : *
5 : * Permission is hereby granted, free of charge, to any person obtaining a
6 : * copy of this software and associated documentation files (the
7 : * "Software"), to deal in the Software without restriction, including
8 : * without limitation the rights to use, copy, modify, merge, publish,
9 : * distribute, sub license, and/or sell copies of the Software, and to
10 : * permit persons to whom the Software is furnished to do so, subject to
11 : * the following conditions:
12 : *
13 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 : * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 : * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 : * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 : * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 : * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 : *
21 : * The above copyright notice and this permission notice (including the
22 : * next paragraph) shall be included in all copies or substantial portions
23 : * of the Software.
24 : *
25 : */
26 : /*
27 : * Authors:
28 : * Jerome Glisse <glisse@freedesktop.org>
29 : * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 : * Dave Airlie
31 : */
32 :
33 : #include <linux/dma-mapping.h>
34 : #include <linux/iommu.h>
35 : #include <linux/pagemap.h>
36 : #include <linux/sched/task.h>
37 : #include <linux/sched/mm.h>
38 : #include <linux/seq_file.h>
39 : #include <linux/slab.h>
40 : #include <linux/swap.h>
41 : #include <linux/swiotlb.h>
42 : #include <linux/dma-buf.h>
43 : #include <linux/sizes.h>
44 : #include <linux/module.h>
45 :
46 : #include <drm/drm_drv.h>
47 : #include <drm/ttm/ttm_bo_api.h>
48 : #include <drm/ttm/ttm_bo_driver.h>
49 : #include <drm/ttm/ttm_placement.h>
50 : #include <drm/ttm/ttm_range_manager.h>
51 :
52 : #include <drm/amdgpu_drm.h>
53 : #include <drm/drm_drv.h>
54 :
55 : #include "amdgpu.h"
56 : #include "amdgpu_object.h"
57 : #include "amdgpu_trace.h"
58 : #include "amdgpu_amdkfd.h"
59 : #include "amdgpu_sdma.h"
60 : #include "amdgpu_ras.h"
61 : #include "amdgpu_atomfirmware.h"
62 : #include "amdgpu_res_cursor.h"
63 : #include "bif/bif_4_1_d.h"
64 :
65 : MODULE_IMPORT_NS(DMA_BUF);
66 :
67 : #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
68 :
69 : static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 : struct ttm_tt *ttm,
71 : struct ttm_resource *bo_mem);
72 : static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 : struct ttm_tt *ttm);
74 :
75 : static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 : unsigned int type,
77 : uint64_t size_in_page)
78 : {
79 0 : return ttm_range_man_init(&adev->mman.bdev, type,
80 : false, size_in_page);
81 : }
82 :
83 : /**
84 : * amdgpu_evict_flags - Compute placement flags
85 : *
86 : * @bo: The buffer object to evict
87 : * @placement: Possible destination(s) for evicted BO
88 : *
89 : * Fill in placement data when ttm_bo_evict() is called
90 : */
91 0 : static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 : struct ttm_placement *placement)
93 : {
94 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 : struct amdgpu_bo *abo;
96 : static const struct ttm_place placements = {
97 : .fpfn = 0,
98 : .lpfn = 0,
99 : .mem_type = TTM_PL_SYSTEM,
100 : .flags = 0
101 : };
102 :
103 : /* Don't handle scatter gather BOs */
104 0 : if (bo->type == ttm_bo_type_sg) {
105 0 : placement->num_placement = 0;
106 0 : placement->num_busy_placement = 0;
107 0 : return;
108 : }
109 :
110 : /* Object isn't an AMDGPU object so ignore */
111 0 : if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 0 : placement->placement = &placements;
113 0 : placement->busy_placement = &placements;
114 0 : placement->num_placement = 1;
115 0 : placement->num_busy_placement = 1;
116 0 : return;
117 : }
118 :
119 0 : abo = ttm_to_amdgpu_bo(bo);
120 0 : if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 0 : placement->num_placement = 0;
122 0 : placement->num_busy_placement = 0;
123 0 : return;
124 : }
125 :
126 0 : switch (bo->resource->mem_type) {
127 : case AMDGPU_PL_GDS:
128 : case AMDGPU_PL_GWS:
129 : case AMDGPU_PL_OA:
130 0 : placement->num_placement = 0;
131 0 : placement->num_busy_placement = 0;
132 0 : return;
133 :
134 : case TTM_PL_VRAM:
135 0 : if (!adev->mman.buffer_funcs_enabled) {
136 : /* Move to system memory */
137 0 : amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 0 : } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 0 : !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 0 : amdgpu_bo_in_cpu_visible_vram(abo)) {
141 :
142 : /* Try evicting to the CPU inaccessible part of VRAM
143 : * first, but only set GTT as busy placement, so this
144 : * BO will be evicted to GTT rather than causing other
145 : * BOs to be evicted from VRAM
146 : */
147 0 : amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 : AMDGPU_GEM_DOMAIN_GTT |
149 : AMDGPU_GEM_DOMAIN_CPU);
150 0 : abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 0 : abo->placements[0].lpfn = 0;
152 0 : abo->placement.busy_placement = &abo->placements[1];
153 0 : abo->placement.num_busy_placement = 1;
154 : } else {
155 : /* Move to GTT memory */
156 0 : amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 : AMDGPU_GEM_DOMAIN_CPU);
158 : }
159 : break;
160 : case TTM_PL_TT:
161 : case AMDGPU_PL_PREEMPT:
162 : default:
163 0 : amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 0 : break;
165 : }
166 0 : *placement = abo->placement;
167 : }
168 :
169 : /**
170 : * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 : * @bo: buffer object to map
172 : * @mem: memory object to map
173 : * @mm_cur: range to map
174 : * @window: which GART window to use
175 : * @ring: DMA ring to use for the copy
176 : * @tmz: if we should setup a TMZ enabled mapping
177 : * @size: in number of bytes to map, out number of bytes mapped
178 : * @addr: resulting address inside the MC address space
179 : *
180 : * Setup one of the GART windows to access a specific piece of memory or return
181 : * the physical address for local memory.
182 : */
183 0 : static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 : struct ttm_resource *mem,
185 : struct amdgpu_res_cursor *mm_cur,
186 : unsigned window, struct amdgpu_ring *ring,
187 : bool tmz, uint64_t *size, uint64_t *addr)
188 : {
189 0 : struct amdgpu_device *adev = ring->adev;
190 : unsigned offset, num_pages, num_dw, num_bytes;
191 : uint64_t src_addr, dst_addr;
192 : struct dma_fence *fence;
193 : struct amdgpu_job *job;
194 : void *cpu_addr;
195 : uint64_t flags;
196 : unsigned int i;
197 : int r;
198 :
199 0 : BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 : AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 :
202 0 : if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 : return -EINVAL;
204 :
205 : /* Map only what can't be accessed directly */
206 0 : if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 0 : *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 0 : mm_cur->start;
209 0 : return 0;
210 : }
211 :
212 :
213 : /*
214 : * If start begins at an offset inside the page, then adjust the size
215 : * and addr accordingly
216 : */
217 0 : offset = mm_cur->start & ~PAGE_MASK;
218 :
219 0 : num_pages = PFN_UP(*size + offset);
220 0 : num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 :
222 0 : *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 :
224 0 : *addr = adev->gmc.gart_start;
225 0 : *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 : AMDGPU_GPU_PAGE_SIZE;
227 0 : *addr += offset;
228 :
229 0 : num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 0 : num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 :
232 0 : r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 : AMDGPU_IB_POOL_DELAYED, &job);
234 0 : if (r)
235 : return r;
236 :
237 0 : src_addr = num_dw * 4;
238 0 : src_addr += job->ibs[0].gpu_addr;
239 :
240 0 : dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 0 : dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 0 : amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 : dst_addr, num_bytes, false);
244 :
245 0 : amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 0 : WARN_ON(job->ibs[0].length_dw > num_dw);
247 :
248 0 : flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 0 : if (tmz)
250 0 : flags |= AMDGPU_PTE_TMZ;
251 :
252 0 : cpu_addr = &job->ibs[0].ptr[num_dw];
253 :
254 0 : if (mem->mem_type == TTM_PL_TT) {
255 : dma_addr_t *dma_addr;
256 :
257 0 : dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 0 : amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 : } else {
260 : dma_addr_t dma_address;
261 :
262 0 : dma_address = mm_cur->start;
263 0 : dma_address += adev->vm_manager.vram_base_offset;
264 :
265 0 : for (i = 0; i < num_pages; ++i) {
266 0 : amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 : flags, cpu_addr);
268 0 : dma_address += PAGE_SIZE;
269 : }
270 : }
271 :
272 0 : r = amdgpu_job_submit(job, &adev->mman.entity,
273 : AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 0 : if (r)
275 : goto error_free;
276 :
277 0 : dma_fence_put(fence);
278 :
279 : return r;
280 :
281 : error_free:
282 0 : amdgpu_job_free(job);
283 0 : return r;
284 : }
285 :
286 : /**
287 : * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288 : * @adev: amdgpu device
289 : * @src: buffer/address where to read from
290 : * @dst: buffer/address where to write to
291 : * @size: number of bytes to copy
292 : * @tmz: if a secure copy should be used
293 : * @resv: resv object to sync to
294 : * @f: Returns the last fence if multiple jobs are submitted.
295 : *
296 : * The function copies @size bytes from {src->mem + src->offset} to
297 : * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 : * move and different for a BO to BO copy.
299 : *
300 : */
301 0 : int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 : const struct amdgpu_copy_mem *src,
303 : const struct amdgpu_copy_mem *dst,
304 : uint64_t size, bool tmz,
305 : struct dma_resv *resv,
306 : struct dma_fence **f)
307 : {
308 0 : struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 : struct amdgpu_res_cursor src_mm, dst_mm;
310 0 : struct dma_fence *fence = NULL;
311 0 : int r = 0;
312 :
313 0 : if (!adev->mman.buffer_funcs_enabled) {
314 0 : DRM_ERROR("Trying to move memory with ring turned off.\n");
315 0 : return -EINVAL;
316 : }
317 :
318 0 : amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 0 : amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 :
321 0 : mutex_lock(&adev->mman.gtt_window_lock);
322 0 : while (src_mm.remaining) {
323 : uint64_t from, to, cur_size;
324 : struct dma_fence *next;
325 :
326 : /* Never copy more than 256MiB at once to avoid a timeout */
327 0 : cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 :
329 : /* Map src to window 0 and dst to window 1. */
330 0 : r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 : 0, ring, tmz, &cur_size, &from);
332 0 : if (r)
333 : goto error;
334 :
335 0 : r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 : 1, ring, tmz, &cur_size, &to);
337 0 : if (r)
338 : goto error;
339 :
340 0 : r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 : resv, &next, false, true, tmz);
342 0 : if (r)
343 : goto error;
344 :
345 0 : dma_fence_put(fence);
346 0 : fence = next;
347 :
348 0 : amdgpu_res_next(&src_mm, cur_size);
349 0 : amdgpu_res_next(&dst_mm, cur_size);
350 : }
351 : error:
352 0 : mutex_unlock(&adev->mman.gtt_window_lock);
353 0 : if (f)
354 0 : *f = dma_fence_get(fence);
355 : dma_fence_put(fence);
356 : return r;
357 : }
358 :
359 : /*
360 : * amdgpu_move_blit - Copy an entire buffer to another buffer
361 : *
362 : * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363 : * help move buffers to and from VRAM.
364 : */
365 0 : static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 : bool evict,
367 : struct ttm_resource *new_mem,
368 : struct ttm_resource *old_mem)
369 : {
370 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 0 : struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 : struct amdgpu_copy_mem src, dst;
373 0 : struct dma_fence *fence = NULL;
374 : int r;
375 :
376 0 : src.bo = bo;
377 0 : dst.bo = bo;
378 0 : src.mem = old_mem;
379 0 : dst.mem = new_mem;
380 0 : src.offset = 0;
381 0 : dst.offset = 0;
382 :
383 0 : r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 0 : new_mem->num_pages << PAGE_SHIFT,
385 : amdgpu_bo_encrypted(abo),
386 : bo->base.resv, &fence);
387 0 : if (r)
388 : goto error;
389 :
390 : /* clear the space being freed */
391 0 : if (old_mem->mem_type == TTM_PL_VRAM &&
392 0 : (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 0 : struct dma_fence *wipe_fence = NULL;
394 :
395 0 : r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 0 : if (r) {
397 : goto error;
398 0 : } else if (wipe_fence) {
399 0 : dma_fence_put(fence);
400 0 : fence = wipe_fence;
401 : }
402 : }
403 :
404 : /* Always block for VM page tables before committing the new location */
405 0 : if (bo->type == ttm_bo_type_kernel)
406 0 : r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 : else
408 0 : r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 0 : dma_fence_put(fence);
410 : return r;
411 :
412 : error:
413 0 : if (fence)
414 0 : dma_fence_wait(fence, false);
415 0 : dma_fence_put(fence);
416 : return r;
417 : }
418 :
419 : /*
420 : * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421 : *
422 : * Called by amdgpu_bo_move()
423 : */
424 0 : static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 : struct ttm_resource *mem)
426 : {
427 0 : uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 : struct amdgpu_res_cursor cursor;
429 :
430 0 : if (mem->mem_type == TTM_PL_SYSTEM ||
431 : mem->mem_type == TTM_PL_TT)
432 : return true;
433 0 : if (mem->mem_type != TTM_PL_VRAM)
434 : return false;
435 :
436 0 : amdgpu_res_first(mem, 0, mem_size, &cursor);
437 :
438 : /* ttm_resource_ioremap only supports contiguous memory */
439 0 : if (cursor.size != mem_size)
440 : return false;
441 :
442 0 : return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 : }
444 :
445 : /*
446 : * amdgpu_bo_move - Move a buffer object to a new memory location
447 : *
448 : * Called by ttm_bo_handle_move_mem()
449 : */
450 0 : static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 : struct ttm_operation_ctx *ctx,
452 : struct ttm_resource *new_mem,
453 : struct ttm_place *hop)
454 : {
455 : struct amdgpu_device *adev;
456 : struct amdgpu_bo *abo;
457 0 : struct ttm_resource *old_mem = bo->resource;
458 : int r;
459 :
460 0 : if (new_mem->mem_type == TTM_PL_TT ||
461 : new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 0 : r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 0 : if (r)
464 : return r;
465 : }
466 :
467 : /* Can't move a pinned BO */
468 0 : abo = ttm_to_amdgpu_bo(bo);
469 0 : if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 : return -EINVAL;
471 :
472 0 : adev = amdgpu_ttm_adev(bo->bdev);
473 :
474 0 : if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475 0 : ttm_bo_move_null(bo, new_mem);
476 0 : goto out;
477 : }
478 0 : if (old_mem->mem_type == TTM_PL_SYSTEM &&
479 0 : (new_mem->mem_type == TTM_PL_TT ||
480 : new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481 0 : ttm_bo_move_null(bo, new_mem);
482 0 : goto out;
483 : }
484 0 : if ((old_mem->mem_type == TTM_PL_TT ||
485 0 : old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486 0 : new_mem->mem_type == TTM_PL_SYSTEM) {
487 0 : r = ttm_bo_wait_ctx(bo, ctx);
488 0 : if (r)
489 : return r;
490 :
491 0 : amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492 0 : ttm_resource_free(bo, &bo->resource);
493 0 : ttm_bo_assign_mem(bo, new_mem);
494 : goto out;
495 : }
496 :
497 0 : if (old_mem->mem_type == AMDGPU_PL_GDS ||
498 0 : old_mem->mem_type == AMDGPU_PL_GWS ||
499 0 : old_mem->mem_type == AMDGPU_PL_OA ||
500 0 : new_mem->mem_type == AMDGPU_PL_GDS ||
501 0 : new_mem->mem_type == AMDGPU_PL_GWS ||
502 : new_mem->mem_type == AMDGPU_PL_OA) {
503 : /* Nothing to save here */
504 0 : ttm_bo_move_null(bo, new_mem);
505 0 : goto out;
506 : }
507 :
508 0 : if (bo->type == ttm_bo_type_device &&
509 0 : new_mem->mem_type == TTM_PL_VRAM &&
510 : old_mem->mem_type != TTM_PL_VRAM) {
511 : /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512 : * accesses the BO after it's moved.
513 : */
514 0 : abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515 : }
516 :
517 0 : if (adev->mman.buffer_funcs_enabled) {
518 0 : if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519 0 : new_mem->mem_type == TTM_PL_VRAM) ||
520 0 : (old_mem->mem_type == TTM_PL_VRAM &&
521 0 : new_mem->mem_type == TTM_PL_SYSTEM))) {
522 0 : hop->fpfn = 0;
523 0 : hop->lpfn = 0;
524 0 : hop->mem_type = TTM_PL_TT;
525 0 : hop->flags = TTM_PL_FLAG_TEMPORARY;
526 0 : return -EMULTIHOP;
527 : }
528 :
529 0 : r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530 : } else {
531 : r = -ENODEV;
532 : }
533 :
534 0 : if (r) {
535 : /* Check that all memory is CPU accessible */
536 0 : if (!amdgpu_mem_visible(adev, old_mem) ||
537 0 : !amdgpu_mem_visible(adev, new_mem)) {
538 0 : pr_err("Move buffer fallback to memcpy unavailable\n");
539 0 : return r;
540 : }
541 :
542 0 : r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543 0 : if (r)
544 : return r;
545 : }
546 :
547 : out:
548 : /* update statistics */
549 0 : atomic64_add(bo->base.size, &adev->num_bytes_moved);
550 0 : amdgpu_bo_move_notify(bo, evict, new_mem);
551 0 : return 0;
552 : }
553 :
554 : /*
555 : * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556 : *
557 : * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558 : */
559 0 : static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560 : struct ttm_resource *mem)
561 : {
562 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563 0 : size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564 :
565 0 : switch (mem->mem_type) {
566 : case TTM_PL_SYSTEM:
567 : /* system memory */
568 : return 0;
569 : case TTM_PL_TT:
570 : case AMDGPU_PL_PREEMPT:
571 : break;
572 : case TTM_PL_VRAM:
573 0 : mem->bus.offset = mem->start << PAGE_SHIFT;
574 : /* check if it's visible */
575 0 : if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576 : return -EINVAL;
577 :
578 0 : if (adev->mman.aper_base_kaddr &&
579 0 : mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580 0 : mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581 : mem->bus.offset;
582 :
583 0 : mem->bus.offset += adev->gmc.aper_base;
584 0 : mem->bus.is_iomem = true;
585 0 : break;
586 : default:
587 0 : return -EINVAL;
588 : }
589 : return 0;
590 : }
591 :
592 0 : static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593 : unsigned long page_offset)
594 : {
595 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596 : struct amdgpu_res_cursor cursor;
597 :
598 0 : amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 : &cursor);
600 0 : return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 : }
602 :
603 : /**
604 : * amdgpu_ttm_domain_start - Returns GPU start address
605 : * @adev: amdgpu device object
606 : * @type: type of the memory
607 : *
608 : * Returns:
609 : * GPU start address of a memory domain
610 : */
611 :
612 0 : uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 : {
614 0 : switch (type) {
615 : case TTM_PL_TT:
616 0 : return adev->gmc.gart_start;
617 : case TTM_PL_VRAM:
618 0 : return adev->gmc.vram_start;
619 : }
620 :
621 : return 0;
622 : }
623 :
624 : /*
625 : * TTM backend functions.
626 : */
627 : struct amdgpu_ttm_tt {
628 : struct ttm_tt ttm;
629 : struct drm_gem_object *gobj;
630 : u64 offset;
631 : uint64_t userptr;
632 : struct task_struct *usertask;
633 : uint32_t userflags;
634 : bool bound;
635 : #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636 : struct hmm_range *range;
637 : #endif
638 : };
639 :
640 : #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
641 :
642 : #ifdef CONFIG_DRM_AMDGPU_USERPTR
643 : /*
644 : * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645 : * memory and start HMM tracking CPU page table update
646 : *
647 : * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648 : * once afterwards to stop HMM tracking
649 : */
650 : int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
651 : {
652 : struct ttm_tt *ttm = bo->tbo.ttm;
653 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
654 : unsigned long start = gtt->userptr;
655 : struct vm_area_struct *vma;
656 : struct mm_struct *mm;
657 : bool readonly;
658 : int r = 0;
659 :
660 : mm = bo->notifier.mm;
661 : if (unlikely(!mm)) {
662 : DRM_DEBUG_DRIVER("BO is not registered?\n");
663 : return -EFAULT;
664 : }
665 :
666 : /* Another get_user_pages is running at the same time?? */
667 : if (WARN_ON(gtt->range))
668 : return -EFAULT;
669 :
670 : if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 : return -ESRCH;
672 :
673 : mmap_read_lock(mm);
674 : vma = vma_lookup(mm, start);
675 : if (unlikely(!vma)) {
676 : r = -EFAULT;
677 : goto out_unlock;
678 : }
679 : if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680 : vma->vm_file)) {
681 : r = -EPERM;
682 : goto out_unlock;
683 : }
684 :
685 : readonly = amdgpu_ttm_tt_is_readonly(ttm);
686 : r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
687 : ttm->num_pages, >t->range, readonly,
688 : true, NULL);
689 : out_unlock:
690 : mmap_read_unlock(mm);
691 : if (r)
692 : pr_debug("failed %d to get user pages 0x%lx\n", r, start);
693 :
694 : mmput(mm);
695 :
696 : return r;
697 : }
698 :
699 : /*
700 : * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
701 : * Check if the pages backing this ttm range have been invalidated
702 : *
703 : * Returns: true if pages are still valid
704 : */
705 : bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
706 : {
707 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
708 : bool r = false;
709 :
710 : if (!gtt || !gtt->userptr)
711 : return false;
712 :
713 : DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
714 : gtt->userptr, ttm->num_pages);
715 :
716 : WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
717 : "No user pages to check\n");
718 :
719 : if (gtt->range) {
720 : /*
721 : * FIXME: Must always hold notifier_lock for this, and must
722 : * not ignore the return code.
723 : */
724 : r = amdgpu_hmm_range_get_pages_done(gtt->range);
725 : gtt->range = NULL;
726 : }
727 :
728 : return !r;
729 : }
730 : #endif
731 :
732 : /*
733 : * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734 : *
735 : * Called by amdgpu_cs_list_validate(). This creates the page list
736 : * that backs user memory and will ultimately be mapped into the device
737 : * address space.
738 : */
739 0 : void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 : {
741 : unsigned long i;
742 :
743 0 : for (i = 0; i < ttm->num_pages; ++i)
744 0 : ttm->pages[i] = pages ? pages[i] : NULL;
745 0 : }
746 :
747 : /*
748 : * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749 : *
750 : * Called by amdgpu_ttm_backend_bind()
751 : **/
752 0 : static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753 : struct ttm_tt *ttm)
754 : {
755 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757 0 : int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758 0 : enum dma_data_direction direction = write ?
759 0 : DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760 : int r;
761 :
762 : /* Allocate an SG array and squash pages into it */
763 0 : r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764 0 : (u64)ttm->num_pages << PAGE_SHIFT,
765 : GFP_KERNEL);
766 0 : if (r)
767 : goto release_sg;
768 :
769 : /* Map SG to device */
770 0 : r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 0 : if (r)
772 : goto release_sg;
773 :
774 : /* convert SG to linear array of pages and dma addresses */
775 0 : drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776 0 : ttm->num_pages);
777 :
778 0 : return 0;
779 :
780 : release_sg:
781 0 : kfree(ttm->sg);
782 0 : ttm->sg = NULL;
783 0 : return r;
784 : }
785 :
786 : /*
787 : * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788 : */
789 0 : static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790 : struct ttm_tt *ttm)
791 : {
792 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794 0 : int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795 0 : enum dma_data_direction direction = write ?
796 0 : DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797 :
798 : /* double check that we don't free the table twice */
799 0 : if (!ttm->sg || !ttm->sg->sgl)
800 : return;
801 :
802 : /* unmap the pages mapped to the device */
803 0 : dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804 0 : sg_free_table(ttm->sg);
805 :
806 : #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
807 : if (gtt->range) {
808 : unsigned long i;
809 :
810 : for (i = 0; i < ttm->num_pages; i++) {
811 : if (ttm->pages[i] !=
812 : hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
813 : break;
814 : }
815 :
816 : WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
817 : }
818 : #endif
819 : }
820 :
821 0 : static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
822 : struct ttm_buffer_object *tbo,
823 : uint64_t flags)
824 : {
825 0 : struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
826 0 : struct ttm_tt *ttm = tbo->ttm;
827 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
828 :
829 0 : if (amdgpu_bo_encrypted(abo))
830 0 : flags |= AMDGPU_PTE_TMZ;
831 :
832 0 : if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
833 0 : uint64_t page_idx = 1;
834 :
835 0 : amdgpu_gart_bind(adev, gtt->offset, page_idx,
836 : gtt->ttm.dma_address, flags);
837 :
838 : /* The memory type of the first page defaults to UC. Now
839 : * modify the memory type to NC from the second page of
840 : * the BO onward.
841 : */
842 0 : flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
843 0 : flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844 :
845 0 : amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
846 0 : ttm->num_pages - page_idx,
847 0 : &(gtt->ttm.dma_address[page_idx]), flags);
848 : } else {
849 0 : amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
850 : gtt->ttm.dma_address, flags);
851 : }
852 0 : }
853 :
854 : /*
855 : * amdgpu_ttm_backend_bind - Bind GTT memory
856 : *
857 : * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
858 : * This handles binding GTT memory to the device address space.
859 : */
860 0 : static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
861 : struct ttm_tt *ttm,
862 : struct ttm_resource *bo_mem)
863 : {
864 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
865 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
866 : uint64_t flags;
867 : int r;
868 :
869 0 : if (!bo_mem)
870 : return -EINVAL;
871 :
872 0 : if (gtt->bound)
873 : return 0;
874 :
875 0 : if (gtt->userptr) {
876 0 : r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
877 0 : if (r) {
878 0 : DRM_ERROR("failed to pin userptr\n");
879 0 : return r;
880 : }
881 0 : } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
882 0 : if (!ttm->sg) {
883 : struct dma_buf_attachment *attach;
884 : struct sg_table *sgt;
885 :
886 0 : attach = gtt->gobj->import_attach;
887 0 : sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
888 0 : if (IS_ERR(sgt))
889 0 : return PTR_ERR(sgt);
890 :
891 0 : ttm->sg = sgt;
892 : }
893 :
894 0 : drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
895 0 : ttm->num_pages);
896 : }
897 :
898 0 : if (!ttm->num_pages) {
899 0 : WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
900 : ttm->num_pages, bo_mem, ttm);
901 : }
902 :
903 0 : if (bo_mem->mem_type != TTM_PL_TT ||
904 0 : !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
905 0 : gtt->offset = AMDGPU_BO_INVALID_OFFSET;
906 0 : return 0;
907 : }
908 :
909 : /* compute PTE flags relevant to this BO memory */
910 0 : flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
911 :
912 : /* bind pages into GART page tables */
913 0 : gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
914 0 : amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
915 : gtt->ttm.dma_address, flags);
916 0 : gtt->bound = true;
917 0 : return 0;
918 : }
919 :
920 : /*
921 : * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
922 : * through AGP or GART aperture.
923 : *
924 : * If bo is accessible through AGP aperture, then use AGP aperture
925 : * to access bo; otherwise allocate logical space in GART aperture
926 : * and map bo to GART aperture.
927 : */
928 0 : int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
929 : {
930 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
931 0 : struct ttm_operation_ctx ctx = { false, false };
932 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
933 : struct ttm_placement placement;
934 : struct ttm_place placements;
935 : struct ttm_resource *tmp;
936 : uint64_t addr, flags;
937 : int r;
938 :
939 0 : if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
940 : return 0;
941 :
942 0 : addr = amdgpu_gmc_agp_addr(bo);
943 0 : if (addr != AMDGPU_BO_INVALID_OFFSET) {
944 0 : bo->resource->start = addr >> PAGE_SHIFT;
945 0 : return 0;
946 : }
947 :
948 : /* allocate GART space */
949 0 : placement.num_placement = 1;
950 0 : placement.placement = &placements;
951 0 : placement.num_busy_placement = 1;
952 0 : placement.busy_placement = &placements;
953 0 : placements.fpfn = 0;
954 0 : placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
955 0 : placements.mem_type = TTM_PL_TT;
956 0 : placements.flags = bo->resource->placement;
957 :
958 0 : r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
959 0 : if (unlikely(r))
960 : return r;
961 :
962 : /* compute PTE flags for this buffer object */
963 0 : flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
964 :
965 : /* Bind pages */
966 0 : gtt->offset = (u64)tmp->start << PAGE_SHIFT;
967 0 : amdgpu_ttm_gart_bind(adev, bo, flags);
968 0 : amdgpu_gart_invalidate_tlb(adev);
969 0 : ttm_resource_free(bo, &bo->resource);
970 0 : ttm_bo_assign_mem(bo, tmp);
971 :
972 0 : return 0;
973 : }
974 :
975 : /*
976 : * amdgpu_ttm_recover_gart - Rebind GTT pages
977 : *
978 : * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
979 : * rebind GTT pages during a GPU reset.
980 : */
981 0 : void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
982 : {
983 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
984 : uint64_t flags;
985 :
986 0 : if (!tbo->ttm)
987 : return;
988 :
989 0 : flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
990 0 : amdgpu_ttm_gart_bind(adev, tbo, flags);
991 : }
992 :
993 : /*
994 : * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
995 : *
996 : * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
997 : * ttm_tt_destroy().
998 : */
999 0 : static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1000 : struct ttm_tt *ttm)
1001 : {
1002 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1003 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1004 :
1005 : /* if the pages have userptr pinning then clear that first */
1006 0 : if (gtt->userptr) {
1007 0 : amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1008 0 : } else if (ttm->sg && gtt->gobj->import_attach) {
1009 : struct dma_buf_attachment *attach;
1010 :
1011 0 : attach = gtt->gobj->import_attach;
1012 0 : dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1013 0 : ttm->sg = NULL;
1014 : }
1015 :
1016 0 : if (!gtt->bound)
1017 : return;
1018 :
1019 0 : if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1020 : return;
1021 :
1022 : /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1023 0 : amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1024 0 : gtt->bound = false;
1025 : }
1026 :
1027 0 : static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1028 : struct ttm_tt *ttm)
1029 : {
1030 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031 :
1032 0 : if (gtt->usertask)
1033 0 : put_task_struct(gtt->usertask);
1034 :
1035 0 : ttm_tt_fini(>t->ttm);
1036 0 : kfree(gtt);
1037 0 : }
1038 :
1039 : /**
1040 : * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1041 : *
1042 : * @bo: The buffer object to create a GTT ttm_tt object around
1043 : * @page_flags: Page flags to be added to the ttm_tt object
1044 : *
1045 : * Called by ttm_tt_create().
1046 : */
1047 0 : static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1048 : uint32_t page_flags)
1049 : {
1050 0 : struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1051 : struct amdgpu_ttm_tt *gtt;
1052 : enum ttm_caching caching;
1053 :
1054 0 : gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1055 0 : if (gtt == NULL) {
1056 : return NULL;
1057 : }
1058 0 : gtt->gobj = &bo->base;
1059 :
1060 0 : if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1061 : caching = ttm_write_combined;
1062 : else
1063 0 : caching = ttm_cached;
1064 :
1065 : /* allocate space for the uninitialized page entries */
1066 0 : if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1067 0 : kfree(gtt);
1068 0 : return NULL;
1069 : }
1070 : return >t->ttm;
1071 : }
1072 :
1073 : /*
1074 : * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1075 : *
1076 : * Map the pages of a ttm_tt object to an address space visible
1077 : * to the underlying device.
1078 : */
1079 0 : static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1080 : struct ttm_tt *ttm,
1081 : struct ttm_operation_ctx *ctx)
1082 : {
1083 : struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1084 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1085 : pgoff_t i;
1086 : int ret;
1087 :
1088 : /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1089 0 : if (gtt->userptr) {
1090 0 : ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1091 0 : if (!ttm->sg)
1092 : return -ENOMEM;
1093 0 : return 0;
1094 : }
1095 :
1096 0 : if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1097 : return 0;
1098 :
1099 0 : ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1100 0 : if (ret)
1101 : return ret;
1102 :
1103 0 : for (i = 0; i < ttm->num_pages; ++i)
1104 0 : ttm->pages[i]->mapping = bdev->dev_mapping;
1105 :
1106 : return 0;
1107 : }
1108 :
1109 : /*
1110 : * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1111 : *
1112 : * Unmaps pages of a ttm_tt object from the device address space and
1113 : * unpopulates the page array backing it.
1114 : */
1115 0 : static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1116 : struct ttm_tt *ttm)
1117 : {
1118 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1119 : struct amdgpu_device *adev;
1120 : pgoff_t i;
1121 :
1122 0 : amdgpu_ttm_backend_unbind(bdev, ttm);
1123 :
1124 0 : if (gtt->userptr) {
1125 0 : amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1126 0 : kfree(ttm->sg);
1127 0 : ttm->sg = NULL;
1128 0 : return;
1129 : }
1130 :
1131 0 : if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1132 : return;
1133 :
1134 0 : for (i = 0; i < ttm->num_pages; ++i)
1135 0 : ttm->pages[i]->mapping = NULL;
1136 :
1137 0 : adev = amdgpu_ttm_adev(bdev);
1138 0 : return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1139 : }
1140 :
1141 : /**
1142 : * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1143 : * task
1144 : *
1145 : * @tbo: The ttm_buffer_object that contains the userptr
1146 : * @user_addr: The returned value
1147 : */
1148 0 : int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1149 : uint64_t *user_addr)
1150 : {
1151 : struct amdgpu_ttm_tt *gtt;
1152 :
1153 0 : if (!tbo->ttm)
1154 : return -EINVAL;
1155 :
1156 0 : gtt = (void *)tbo->ttm;
1157 0 : *user_addr = gtt->userptr;
1158 0 : return 0;
1159 : }
1160 :
1161 : /**
1162 : * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1163 : * task
1164 : *
1165 : * @bo: The ttm_buffer_object to bind this userptr to
1166 : * @addr: The address in the current tasks VM space to use
1167 : * @flags: Requirements of userptr object.
1168 : *
1169 : * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1170 : * to current task
1171 : */
1172 0 : int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1173 : uint64_t addr, uint32_t flags)
1174 : {
1175 : struct amdgpu_ttm_tt *gtt;
1176 :
1177 0 : if (!bo->ttm) {
1178 : /* TODO: We want a separate TTM object type for userptrs */
1179 0 : bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1180 0 : if (bo->ttm == NULL)
1181 : return -ENOMEM;
1182 : }
1183 :
1184 : /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1185 0 : bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1186 :
1187 0 : gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1188 0 : gtt->userptr = addr;
1189 0 : gtt->userflags = flags;
1190 :
1191 0 : if (gtt->usertask)
1192 0 : put_task_struct(gtt->usertask);
1193 0 : gtt->usertask = current->group_leader;
1194 0 : get_task_struct(gtt->usertask);
1195 :
1196 0 : return 0;
1197 : }
1198 :
1199 : /*
1200 : * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1201 : */
1202 0 : struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1203 : {
1204 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1205 :
1206 0 : if (gtt == NULL)
1207 : return NULL;
1208 :
1209 0 : if (gtt->usertask == NULL)
1210 : return NULL;
1211 :
1212 0 : return gtt->usertask->mm;
1213 : }
1214 :
1215 : /*
1216 : * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1217 : * address range for the current task.
1218 : *
1219 : */
1220 0 : bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1221 : unsigned long end, unsigned long *userptr)
1222 : {
1223 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1224 : unsigned long size;
1225 :
1226 0 : if (gtt == NULL || !gtt->userptr)
1227 : return false;
1228 :
1229 : /* Return false if no part of the ttm_tt object lies within
1230 : * the range
1231 : */
1232 0 : size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1233 0 : if (gtt->userptr > end || gtt->userptr + size <= start)
1234 : return false;
1235 :
1236 0 : if (userptr)
1237 0 : *userptr = gtt->userptr;
1238 : return true;
1239 : }
1240 :
1241 : /*
1242 : * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243 : */
1244 0 : bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245 : {
1246 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247 :
1248 0 : if (gtt == NULL || !gtt->userptr)
1249 : return false;
1250 :
1251 0 : return true;
1252 : }
1253 :
1254 : /*
1255 : * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256 : */
1257 0 : bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258 : {
1259 0 : struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 :
1261 0 : if (gtt == NULL)
1262 : return false;
1263 :
1264 0 : return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265 : }
1266 :
1267 : /**
1268 : * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269 : *
1270 : * @ttm: The ttm_tt object to compute the flags for
1271 : * @mem: The memory registry backing this ttm_tt object
1272 : *
1273 : * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274 : */
1275 0 : uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276 : {
1277 0 : uint64_t flags = 0;
1278 :
1279 0 : if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280 0 : flags |= AMDGPU_PTE_VALID;
1281 :
1282 0 : if (mem && (mem->mem_type == TTM_PL_TT ||
1283 : mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284 0 : flags |= AMDGPU_PTE_SYSTEM;
1285 :
1286 0 : if (ttm->caching == ttm_cached)
1287 0 : flags |= AMDGPU_PTE_SNOOPED;
1288 : }
1289 :
1290 0 : if (mem && mem->mem_type == TTM_PL_VRAM &&
1291 0 : mem->bus.caching == ttm_cached)
1292 0 : flags |= AMDGPU_PTE_SNOOPED;
1293 :
1294 0 : return flags;
1295 : }
1296 :
1297 : /**
1298 : * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299 : *
1300 : * @adev: amdgpu_device pointer
1301 : * @ttm: The ttm_tt object to compute the flags for
1302 : * @mem: The memory registry backing this ttm_tt object
1303 : *
1304 : * Figure out the flags to use for a VM PTE (Page Table Entry).
1305 : */
1306 0 : uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307 : struct ttm_resource *mem)
1308 : {
1309 0 : uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310 :
1311 0 : flags |= adev->gart.gart_pte_flags;
1312 0 : flags |= AMDGPU_PTE_READABLE;
1313 :
1314 0 : if (!amdgpu_ttm_tt_is_readonly(ttm))
1315 0 : flags |= AMDGPU_PTE_WRITEABLE;
1316 :
1317 0 : return flags;
1318 : }
1319 :
1320 : /*
1321 : * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322 : * object.
1323 : *
1324 : * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325 : * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326 : * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327 : * used to clean out a memory space.
1328 : */
1329 0 : static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330 : const struct ttm_place *place)
1331 : {
1332 0 : unsigned long num_pages = bo->resource->num_pages;
1333 : struct dma_resv_iter resv_cursor;
1334 : struct amdgpu_res_cursor cursor;
1335 : struct dma_fence *f;
1336 :
1337 : /* Swapout? */
1338 0 : if (bo->resource->mem_type == TTM_PL_SYSTEM)
1339 : return true;
1340 :
1341 0 : if (bo->type == ttm_bo_type_kernel &&
1342 0 : !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1343 : return false;
1344 :
1345 : /* If bo is a KFD BO, check if the bo belongs to the current process.
1346 : * If true, then return false as any KFD process needs all its BOs to
1347 : * be resident to run successfully
1348 : */
1349 0 : dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1350 : DMA_RESV_USAGE_BOOKKEEP, f) {
1351 0 : if (amdkfd_fence_check_mm(f, current->mm))
1352 : return false;
1353 : }
1354 :
1355 0 : switch (bo->resource->mem_type) {
1356 : case AMDGPU_PL_PREEMPT:
1357 : /* Preemptible BOs don't own system resources managed by the
1358 : * driver (pages, VRAM, GART space). They point to resources
1359 : * owned by someone else (e.g. pageable memory in user mode
1360 : * or a DMABuf). They are used in a preemptible context so we
1361 : * can guarantee no deadlocks and good QoS in case of MMU
1362 : * notifiers or DMABuf move notifiers from the resource owner.
1363 : */
1364 : return false;
1365 : case TTM_PL_TT:
1366 0 : if (amdgpu_bo_is_amdgpu_bo(bo) &&
1367 0 : amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1368 : return false;
1369 : return true;
1370 :
1371 : case TTM_PL_VRAM:
1372 : /* Check each drm MM node individually */
1373 0 : amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1374 : &cursor);
1375 0 : while (cursor.remaining) {
1376 0 : if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1377 0 : && !(place->lpfn &&
1378 0 : place->lpfn <= PFN_DOWN(cursor.start)))
1379 : return true;
1380 :
1381 0 : amdgpu_res_next(&cursor, cursor.size);
1382 : }
1383 : return false;
1384 :
1385 : default:
1386 : break;
1387 : }
1388 :
1389 0 : return ttm_bo_eviction_valuable(bo, place);
1390 : }
1391 :
1392 0 : static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1393 : void *buf, size_t size, bool write)
1394 : {
1395 0 : while (size) {
1396 0 : uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1397 0 : uint64_t bytes = 4 - (pos & 0x3);
1398 0 : uint32_t shift = (pos & 0x3) * 8;
1399 0 : uint32_t mask = 0xffffffff << shift;
1400 0 : uint32_t value = 0;
1401 :
1402 0 : if (size < bytes) {
1403 0 : mask &= 0xffffffff >> (bytes - size) * 8;
1404 0 : bytes = size;
1405 : }
1406 :
1407 0 : if (mask != 0xffffffff) {
1408 0 : amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1409 0 : if (write) {
1410 0 : value &= ~mask;
1411 0 : value |= (*(uint32_t *)buf << shift) & mask;
1412 0 : amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1413 : } else {
1414 0 : value = (value & mask) >> shift;
1415 0 : memcpy(buf, &value, bytes);
1416 : }
1417 : } else {
1418 0 : amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1419 : }
1420 :
1421 0 : pos += bytes;
1422 0 : buf += bytes;
1423 0 : size -= bytes;
1424 : }
1425 0 : }
1426 :
1427 0 : static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1428 : unsigned long offset, void *buf, int len, int write)
1429 : {
1430 0 : struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1431 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1432 : struct amdgpu_res_cursor src_mm;
1433 : struct amdgpu_job *job;
1434 : struct dma_fence *fence;
1435 : uint64_t src_addr, dst_addr;
1436 : unsigned int num_dw;
1437 : int r, idx;
1438 :
1439 0 : if (len != PAGE_SIZE)
1440 : return -EINVAL;
1441 :
1442 0 : if (!adev->mman.sdma_access_ptr)
1443 : return -EACCES;
1444 :
1445 0 : if (!drm_dev_enter(adev_to_drm(adev), &idx))
1446 : return -ENODEV;
1447 :
1448 0 : if (write)
1449 0 : memcpy(adev->mman.sdma_access_ptr, buf, len);
1450 :
1451 0 : num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1452 0 : r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1453 0 : if (r)
1454 : goto out;
1455 :
1456 0 : amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1457 0 : src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1458 0 : dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1459 0 : if (write)
1460 0 : swap(src_addr, dst_addr);
1461 :
1462 0 : amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1463 :
1464 0 : amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1465 0 : WARN_ON(job->ibs[0].length_dw > num_dw);
1466 :
1467 0 : r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1468 0 : if (r) {
1469 0 : amdgpu_job_free(job);
1470 0 : goto out;
1471 : }
1472 :
1473 0 : if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1474 0 : r = -ETIMEDOUT;
1475 0 : dma_fence_put(fence);
1476 :
1477 0 : if (!(r || write))
1478 0 : memcpy(buf, adev->mman.sdma_access_ptr, len);
1479 : out:
1480 0 : drm_dev_exit(idx);
1481 0 : return r;
1482 : }
1483 :
1484 : /**
1485 : * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1486 : *
1487 : * @bo: The buffer object to read/write
1488 : * @offset: Offset into buffer object
1489 : * @buf: Secondary buffer to write/read from
1490 : * @len: Length in bytes of access
1491 : * @write: true if writing
1492 : *
1493 : * This is used to access VRAM that backs a buffer object via MMIO
1494 : * access for debugging purposes.
1495 : */
1496 0 : static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1497 : unsigned long offset, void *buf, int len,
1498 : int write)
1499 : {
1500 0 : struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1501 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1502 : struct amdgpu_res_cursor cursor;
1503 0 : int ret = 0;
1504 :
1505 0 : if (bo->resource->mem_type != TTM_PL_VRAM)
1506 : return -EIO;
1507 :
1508 0 : if (amdgpu_device_has_timeouts_enabled(adev) &&
1509 0 : !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1510 : return len;
1511 :
1512 0 : amdgpu_res_first(bo->resource, offset, len, &cursor);
1513 0 : while (cursor.remaining) {
1514 0 : size_t count, size = cursor.size;
1515 0 : loff_t pos = cursor.start;
1516 :
1517 0 : count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1518 0 : size -= count;
1519 0 : if (size) {
1520 : /* using MM to access rest vram and handle un-aligned address */
1521 0 : pos += count;
1522 0 : buf += count;
1523 0 : amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1524 : }
1525 :
1526 0 : ret += cursor.size;
1527 0 : buf += cursor.size;
1528 0 : amdgpu_res_next(&cursor, cursor.size);
1529 : }
1530 :
1531 : return ret;
1532 : }
1533 :
1534 : static void
1535 0 : amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1536 : {
1537 0 : amdgpu_bo_move_notify(bo, false, NULL);
1538 0 : }
1539 :
1540 : static struct ttm_device_funcs amdgpu_bo_driver = {
1541 : .ttm_tt_create = &amdgpu_ttm_tt_create,
1542 : .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1543 : .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1544 : .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1545 : .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1546 : .evict_flags = &amdgpu_evict_flags,
1547 : .move = &amdgpu_bo_move,
1548 : .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1549 : .release_notify = &amdgpu_bo_release_notify,
1550 : .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1551 : .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1552 : .access_memory = &amdgpu_ttm_access_memory,
1553 : };
1554 :
1555 : /*
1556 : * Firmware Reservation functions
1557 : */
1558 : /**
1559 : * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1560 : *
1561 : * @adev: amdgpu_device pointer
1562 : *
1563 : * free fw reserved vram if it has been reserved.
1564 : */
1565 : static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1566 : {
1567 0 : amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1568 : NULL, &adev->mman.fw_vram_usage_va);
1569 : }
1570 :
1571 : /**
1572 : * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1573 : *
1574 : * @adev: amdgpu_device pointer
1575 : *
1576 : * create bo vram reservation from fw.
1577 : */
1578 0 : static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1579 : {
1580 0 : uint64_t vram_size = adev->gmc.visible_vram_size;
1581 :
1582 0 : adev->mman.fw_vram_usage_va = NULL;
1583 0 : adev->mman.fw_vram_usage_reserved_bo = NULL;
1584 :
1585 0 : if (adev->mman.fw_vram_usage_size == 0 ||
1586 : adev->mman.fw_vram_usage_size > vram_size)
1587 : return 0;
1588 :
1589 0 : return amdgpu_bo_create_kernel_at(adev,
1590 : adev->mman.fw_vram_usage_start_offset,
1591 : adev->mman.fw_vram_usage_size,
1592 : AMDGPU_GEM_DOMAIN_VRAM,
1593 : &adev->mman.fw_vram_usage_reserved_bo,
1594 : &adev->mman.fw_vram_usage_va);
1595 : }
1596 :
1597 : /*
1598 : * Memoy training reservation functions
1599 : */
1600 :
1601 : /**
1602 : * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1603 : *
1604 : * @adev: amdgpu_device pointer
1605 : *
1606 : * free memory training reserved vram if it has been reserved.
1607 : */
1608 : static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1609 : {
1610 0 : struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1611 :
1612 0 : ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1613 0 : amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1614 0 : ctx->c2p_bo = NULL;
1615 :
1616 : return 0;
1617 : }
1618 :
1619 0 : static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1620 : {
1621 0 : struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622 :
1623 0 : memset(ctx, 0, sizeof(*ctx));
1624 :
1625 0 : ctx->c2p_train_data_offset =
1626 0 : ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1627 0 : ctx->p2c_train_data_offset =
1628 0 : (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1629 0 : ctx->train_data_size =
1630 : GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1631 :
1632 0 : DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1633 : ctx->train_data_size,
1634 : ctx->p2c_train_data_offset,
1635 : ctx->c2p_train_data_offset);
1636 0 : }
1637 :
1638 : /*
1639 : * reserve TMR memory at the top of VRAM which holds
1640 : * IP Discovery data and is protected by PSP.
1641 : */
1642 0 : static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1643 : {
1644 : int ret;
1645 0 : struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1646 0 : bool mem_train_support = false;
1647 :
1648 0 : if (!amdgpu_sriov_vf(adev)) {
1649 0 : if (amdgpu_atomfirmware_mem_training_supported(adev))
1650 : mem_train_support = true;
1651 : else
1652 0 : DRM_DEBUG("memory training does not support!\n");
1653 : }
1654 :
1655 : /*
1656 : * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1657 : * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1658 : *
1659 : * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1660 : * discovery data and G6 memory training data respectively
1661 : */
1662 0 : adev->mman.discovery_tmr_size =
1663 0 : amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1664 0 : if (!adev->mman.discovery_tmr_size)
1665 0 : adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1666 :
1667 0 : if (mem_train_support) {
1668 : /* reserve vram for mem train according to TMR location */
1669 0 : amdgpu_ttm_training_data_block_init(adev);
1670 0 : ret = amdgpu_bo_create_kernel_at(adev,
1671 : ctx->c2p_train_data_offset,
1672 : ctx->train_data_size,
1673 : AMDGPU_GEM_DOMAIN_VRAM,
1674 : &ctx->c2p_bo,
1675 : NULL);
1676 0 : if (ret) {
1677 0 : DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1678 0 : amdgpu_ttm_training_reserve_vram_fini(adev);
1679 0 : return ret;
1680 : }
1681 0 : ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1682 : }
1683 :
1684 0 : ret = amdgpu_bo_create_kernel_at(adev,
1685 0 : adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1686 0 : adev->mman.discovery_tmr_size,
1687 : AMDGPU_GEM_DOMAIN_VRAM,
1688 : &adev->mman.discovery_memory,
1689 : NULL);
1690 0 : if (ret) {
1691 0 : DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1692 0 : amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1693 0 : return ret;
1694 : }
1695 :
1696 : return 0;
1697 : }
1698 :
1699 : /*
1700 : * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1701 : * gtt/vram related fields.
1702 : *
1703 : * This initializes all of the memory space pools that the TTM layer
1704 : * will need such as the GTT space (system memory mapped to the device),
1705 : * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1706 : * can be mapped per VMID.
1707 : */
1708 0 : int amdgpu_ttm_init(struct amdgpu_device *adev)
1709 : {
1710 : uint64_t gtt_size;
1711 : int r;
1712 : u64 vis_vram_limit;
1713 :
1714 0 : mutex_init(&adev->mman.gtt_window_lock);
1715 :
1716 : /* No others user of address space so set it to 0 */
1717 0 : r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1718 0 : adev_to_drm(adev)->anon_inode->i_mapping,
1719 0 : adev_to_drm(adev)->vma_offset_manager,
1720 0 : adev->need_swiotlb,
1721 0 : dma_addressing_limited(adev->dev));
1722 0 : if (r) {
1723 0 : DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1724 0 : return r;
1725 : }
1726 0 : adev->mman.initialized = true;
1727 :
1728 : /* Initialize VRAM pool with all of VRAM divided into pages */
1729 0 : r = amdgpu_vram_mgr_init(adev);
1730 0 : if (r) {
1731 0 : DRM_ERROR("Failed initializing VRAM heap.\n");
1732 0 : return r;
1733 : }
1734 :
1735 : /* Reduce size of CPU-visible VRAM if requested */
1736 0 : vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1737 0 : if (amdgpu_vis_vram_limit > 0 &&
1738 0 : vis_vram_limit <= adev->gmc.visible_vram_size)
1739 0 : adev->gmc.visible_vram_size = vis_vram_limit;
1740 :
1741 : /* Change the size here instead of the init above so only lpfn is affected */
1742 0 : amdgpu_ttm_set_buffer_funcs_status(adev, false);
1743 : #ifdef CONFIG_64BIT
1744 : #ifdef CONFIG_X86
1745 : if (adev->gmc.xgmi.connected_to_cpu)
1746 : adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1747 : adev->gmc.visible_vram_size);
1748 :
1749 : else
1750 : #endif
1751 0 : adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1752 0 : adev->gmc.visible_vram_size);
1753 : #endif
1754 :
1755 : /*
1756 : *The reserved vram for firmware must be pinned to the specified
1757 : *place on the VRAM, so reserve it early.
1758 : */
1759 0 : r = amdgpu_ttm_fw_reserve_vram_init(adev);
1760 0 : if (r) {
1761 : return r;
1762 : }
1763 :
1764 : /*
1765 : * only NAVI10 and onwards ASIC support for IP discovery.
1766 : * If IP discovery enabled, a block of memory should be
1767 : * reserved for IP discovey.
1768 : */
1769 0 : if (adev->mman.discovery_bin) {
1770 0 : r = amdgpu_ttm_reserve_tmr(adev);
1771 0 : if (r)
1772 : return r;
1773 : }
1774 :
1775 : /* allocate memory as required for VGA
1776 : * This is used for VGA emulation and pre-OS scanout buffers to
1777 : * avoid display artifacts while transitioning between pre-OS
1778 : * and driver. */
1779 0 : r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1780 : AMDGPU_GEM_DOMAIN_VRAM,
1781 : &adev->mman.stolen_vga_memory,
1782 : NULL);
1783 0 : if (r)
1784 : return r;
1785 0 : r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1786 : adev->mman.stolen_extended_size,
1787 : AMDGPU_GEM_DOMAIN_VRAM,
1788 : &adev->mman.stolen_extended_memory,
1789 : NULL);
1790 0 : if (r)
1791 : return r;
1792 0 : r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1793 : adev->mman.stolen_reserved_size,
1794 : AMDGPU_GEM_DOMAIN_VRAM,
1795 : &adev->mman.stolen_reserved_memory,
1796 : NULL);
1797 0 : if (r)
1798 : return r;
1799 :
1800 0 : DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1801 : (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1802 :
1803 : /* Compute GTT size, either based on 1/2 the size of RAM size
1804 : * or whatever the user passed on module init */
1805 0 : if (amdgpu_gtt_size == -1) {
1806 : struct sysinfo si;
1807 :
1808 0 : si_meminfo(&si);
1809 : /* Certain GL unit tests for large textures can cause problems
1810 : * with the OOM killer since there is no way to link this memory
1811 : * to a process. This was originally mitigated (but not necessarily
1812 : * eliminated) by limiting the GTT size. The problem is this limit
1813 : * is often too low for many modern games so just make the limit 1/2
1814 : * of system memory which aligns with TTM. The OOM accounting needs
1815 : * to be addressed, but we shouldn't prevent common 3D applications
1816 : * from being usable just to potentially mitigate that corner case.
1817 : */
1818 0 : gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1819 : (u64)si.totalram * si.mem_unit / 2);
1820 : } else {
1821 0 : gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1822 : }
1823 :
1824 : /* Initialize GTT memory pool */
1825 0 : r = amdgpu_gtt_mgr_init(adev, gtt_size);
1826 0 : if (r) {
1827 0 : DRM_ERROR("Failed initializing GTT heap.\n");
1828 0 : return r;
1829 : }
1830 0 : DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1831 : (unsigned)(gtt_size / (1024 * 1024)));
1832 :
1833 : /* Initialize preemptible memory pool */
1834 0 : r = amdgpu_preempt_mgr_init(adev);
1835 0 : if (r) {
1836 0 : DRM_ERROR("Failed initializing PREEMPT heap.\n");
1837 0 : return r;
1838 : }
1839 :
1840 : /* Initialize various on-chip memory pools */
1841 0 : r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1842 0 : if (r) {
1843 0 : DRM_ERROR("Failed initializing GDS heap.\n");
1844 0 : return r;
1845 : }
1846 :
1847 0 : r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1848 0 : if (r) {
1849 0 : DRM_ERROR("Failed initializing gws heap.\n");
1850 0 : return r;
1851 : }
1852 :
1853 0 : r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1854 0 : if (r) {
1855 0 : DRM_ERROR("Failed initializing oa heap.\n");
1856 0 : return r;
1857 : }
1858 :
1859 0 : if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1860 : AMDGPU_GEM_DOMAIN_GTT,
1861 : &adev->mman.sdma_access_bo, NULL,
1862 : &adev->mman.sdma_access_ptr))
1863 0 : DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1864 :
1865 : return 0;
1866 : }
1867 :
1868 : /*
1869 : * amdgpu_ttm_fini - De-initialize the TTM memory pools
1870 : */
1871 0 : void amdgpu_ttm_fini(struct amdgpu_device *adev)
1872 : {
1873 : int idx;
1874 0 : if (!adev->mman.initialized)
1875 0 : return;
1876 :
1877 0 : amdgpu_ttm_training_reserve_vram_fini(adev);
1878 : /* return the stolen vga memory back to VRAM */
1879 0 : amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1880 0 : amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1881 : /* return the IP Discovery TMR memory back to VRAM */
1882 0 : amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1883 0 : if (adev->mman.stolen_reserved_size)
1884 0 : amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1885 : NULL, NULL);
1886 0 : amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1887 : &adev->mman.sdma_access_ptr);
1888 0 : amdgpu_ttm_fw_reserve_vram_fini(adev);
1889 :
1890 0 : if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1891 :
1892 0 : if (adev->mman.aper_base_kaddr)
1893 0 : iounmap(adev->mman.aper_base_kaddr);
1894 0 : adev->mman.aper_base_kaddr = NULL;
1895 :
1896 0 : drm_dev_exit(idx);
1897 : }
1898 :
1899 0 : amdgpu_vram_mgr_fini(adev);
1900 0 : amdgpu_gtt_mgr_fini(adev);
1901 0 : amdgpu_preempt_mgr_fini(adev);
1902 0 : ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1903 0 : ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1904 0 : ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1905 0 : ttm_device_fini(&adev->mman.bdev);
1906 0 : adev->mman.initialized = false;
1907 0 : DRM_INFO("amdgpu: ttm finalized\n");
1908 : }
1909 :
1910 : /**
1911 : * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1912 : *
1913 : * @adev: amdgpu_device pointer
1914 : * @enable: true when we can use buffer functions.
1915 : *
1916 : * Enable/disable use of buffer functions during suspend/resume. This should
1917 : * only be called at bootup or when userspace isn't running.
1918 : */
1919 0 : void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1920 : {
1921 0 : struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1922 : uint64_t size;
1923 : int r;
1924 :
1925 0 : if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1926 0 : adev->mman.buffer_funcs_enabled == enable)
1927 : return;
1928 :
1929 0 : if (enable) {
1930 : struct amdgpu_ring *ring;
1931 : struct drm_gpu_scheduler *sched;
1932 :
1933 0 : ring = adev->mman.buffer_funcs_ring;
1934 0 : sched = &ring->sched;
1935 0 : r = drm_sched_entity_init(&adev->mman.entity,
1936 : DRM_SCHED_PRIORITY_KERNEL, &sched,
1937 : 1, NULL);
1938 0 : if (r) {
1939 0 : DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1940 : r);
1941 0 : return;
1942 : }
1943 : } else {
1944 0 : drm_sched_entity_destroy(&adev->mman.entity);
1945 0 : dma_fence_put(man->move);
1946 0 : man->move = NULL;
1947 : }
1948 :
1949 : /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1950 0 : if (enable)
1951 0 : size = adev->gmc.real_vram_size;
1952 : else
1953 0 : size = adev->gmc.visible_vram_size;
1954 0 : man->size = size;
1955 0 : adev->mman.buffer_funcs_enabled = enable;
1956 : }
1957 :
1958 0 : static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1959 : bool direct_submit,
1960 : unsigned int num_dw,
1961 : struct dma_resv *resv,
1962 : bool vm_needs_flush,
1963 : struct amdgpu_job **job)
1964 : {
1965 0 : enum amdgpu_ib_pool_type pool = direct_submit ?
1966 0 : AMDGPU_IB_POOL_DIRECT :
1967 : AMDGPU_IB_POOL_DELAYED;
1968 : int r;
1969 :
1970 0 : r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1971 0 : if (r)
1972 : return r;
1973 :
1974 0 : if (vm_needs_flush) {
1975 0 : (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1976 : adev->gmc.pdb0_bo :
1977 : adev->gart.bo);
1978 0 : (*job)->vm_needs_flush = true;
1979 : }
1980 0 : if (resv) {
1981 0 : r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1982 : AMDGPU_SYNC_ALWAYS,
1983 : AMDGPU_FENCE_OWNER_UNDEFINED);
1984 0 : if (r) {
1985 0 : DRM_ERROR("sync failed (%d).\n", r);
1986 0 : amdgpu_job_free(*job);
1987 0 : return r;
1988 : }
1989 : }
1990 : return 0;
1991 : }
1992 :
1993 0 : int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1994 : uint64_t dst_offset, uint32_t byte_count,
1995 : struct dma_resv *resv,
1996 : struct dma_fence **fence, bool direct_submit,
1997 : bool vm_needs_flush, bool tmz)
1998 : {
1999 0 : struct amdgpu_device *adev = ring->adev;
2000 : unsigned num_loops, num_dw;
2001 : struct amdgpu_job *job;
2002 : uint32_t max_bytes;
2003 : unsigned i;
2004 : int r;
2005 :
2006 0 : if (!direct_submit && !ring->sched.ready) {
2007 0 : DRM_ERROR("Trying to move memory with ring turned off.\n");
2008 0 : return -EINVAL;
2009 : }
2010 :
2011 0 : max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2012 0 : num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2013 0 : num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2014 0 : r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2015 : resv, vm_needs_flush, &job);
2016 0 : if (r)
2017 : return r;
2018 :
2019 0 : for (i = 0; i < num_loops; i++) {
2020 0 : uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2021 :
2022 0 : amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2023 : dst_offset, cur_size_in_bytes, tmz);
2024 :
2025 0 : src_offset += cur_size_in_bytes;
2026 0 : dst_offset += cur_size_in_bytes;
2027 0 : byte_count -= cur_size_in_bytes;
2028 : }
2029 :
2030 0 : amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2031 0 : WARN_ON(job->ibs[0].length_dw > num_dw);
2032 0 : if (direct_submit)
2033 0 : r = amdgpu_job_submit_direct(job, ring, fence);
2034 : else
2035 0 : r = amdgpu_job_submit(job, &adev->mman.entity,
2036 : AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2037 0 : if (r)
2038 : goto error_free;
2039 :
2040 : return r;
2041 :
2042 : error_free:
2043 0 : amdgpu_job_free(job);
2044 0 : DRM_ERROR("Error scheduling IBs (%d)\n", r);
2045 0 : return r;
2046 : }
2047 :
2048 0 : static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2049 : uint64_t dst_addr, uint32_t byte_count,
2050 : struct dma_resv *resv,
2051 : struct dma_fence **fence,
2052 : bool vm_needs_flush)
2053 : {
2054 0 : struct amdgpu_device *adev = ring->adev;
2055 : unsigned int num_loops, num_dw;
2056 : struct amdgpu_job *job;
2057 : uint32_t max_bytes;
2058 : unsigned int i;
2059 : int r;
2060 :
2061 0 : max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2062 0 : num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2063 0 : num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2064 0 : r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2065 : &job);
2066 0 : if (r)
2067 : return r;
2068 :
2069 0 : for (i = 0; i < num_loops; i++) {
2070 0 : uint32_t cur_size = min(byte_count, max_bytes);
2071 :
2072 0 : amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2073 : cur_size);
2074 :
2075 0 : dst_addr += cur_size;
2076 0 : byte_count -= cur_size;
2077 : }
2078 :
2079 0 : amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2080 0 : WARN_ON(job->ibs[0].length_dw > num_dw);
2081 0 : r = amdgpu_job_submit(job, &adev->mman.entity,
2082 : AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2083 0 : if (r)
2084 : goto error_free;
2085 :
2086 : return 0;
2087 :
2088 : error_free:
2089 0 : amdgpu_job_free(job);
2090 0 : return r;
2091 : }
2092 :
2093 0 : int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2094 : uint32_t src_data,
2095 : struct dma_resv *resv,
2096 : struct dma_fence **f)
2097 : {
2098 0 : struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2099 0 : struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2100 0 : struct dma_fence *fence = NULL;
2101 : struct amdgpu_res_cursor dst;
2102 : int r;
2103 :
2104 0 : if (!adev->mman.buffer_funcs_enabled) {
2105 0 : DRM_ERROR("Trying to clear memory with ring turned off.\n");
2106 0 : return -EINVAL;
2107 : }
2108 :
2109 0 : amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2110 :
2111 0 : mutex_lock(&adev->mman.gtt_window_lock);
2112 0 : while (dst.remaining) {
2113 : struct dma_fence *next;
2114 : uint64_t cur_size, to;
2115 :
2116 : /* Never fill more than 256MiB at once to avoid timeouts */
2117 0 : cur_size = min(dst.size, 256ULL << 20);
2118 :
2119 0 : r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2120 : 1, ring, false, &cur_size, &to);
2121 0 : if (r)
2122 : goto error;
2123 :
2124 0 : r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2125 : &next, true);
2126 0 : if (r)
2127 : goto error;
2128 :
2129 0 : dma_fence_put(fence);
2130 0 : fence = next;
2131 :
2132 0 : amdgpu_res_next(&dst, cur_size);
2133 : }
2134 : error:
2135 0 : mutex_unlock(&adev->mman.gtt_window_lock);
2136 0 : if (f)
2137 0 : *f = dma_fence_get(fence);
2138 : dma_fence_put(fence);
2139 : return r;
2140 : }
2141 :
2142 : /**
2143 : * amdgpu_ttm_evict_resources - evict memory buffers
2144 : * @adev: amdgpu device object
2145 : * @mem_type: evicted BO's memory type
2146 : *
2147 : * Evicts all @mem_type buffers on the lru list of the memory type.
2148 : *
2149 : * Returns:
2150 : * 0 for success or a negative error code on failure.
2151 : */
2152 0 : int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2153 : {
2154 : struct ttm_resource_manager *man;
2155 :
2156 0 : switch (mem_type) {
2157 : case TTM_PL_VRAM:
2158 : case TTM_PL_TT:
2159 : case AMDGPU_PL_GWS:
2160 : case AMDGPU_PL_GDS:
2161 : case AMDGPU_PL_OA:
2162 0 : man = ttm_manager_type(&adev->mman.bdev, mem_type);
2163 : break;
2164 : default:
2165 0 : DRM_ERROR("Trying to evict invalid memory type\n");
2166 0 : return -EINVAL;
2167 : }
2168 :
2169 0 : return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2170 : }
2171 :
2172 : #if defined(CONFIG_DEBUG_FS)
2173 :
2174 : static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2175 : {
2176 : struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2177 :
2178 : return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2179 : }
2180 :
2181 : DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2182 :
2183 : /*
2184 : * amdgpu_ttm_vram_read - Linear read access to VRAM
2185 : *
2186 : * Accesses VRAM via MMIO for debugging purposes.
2187 : */
2188 : static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2189 : size_t size, loff_t *pos)
2190 : {
2191 : struct amdgpu_device *adev = file_inode(f)->i_private;
2192 : ssize_t result = 0;
2193 :
2194 : if (size & 0x3 || *pos & 0x3)
2195 : return -EINVAL;
2196 :
2197 : if (*pos >= adev->gmc.mc_vram_size)
2198 : return -ENXIO;
2199 :
2200 : size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2201 : while (size) {
2202 : size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2203 : uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2204 :
2205 : amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2206 : if (copy_to_user(buf, value, bytes))
2207 : return -EFAULT;
2208 :
2209 : result += bytes;
2210 : buf += bytes;
2211 : *pos += bytes;
2212 : size -= bytes;
2213 : }
2214 :
2215 : return result;
2216 : }
2217 :
2218 : /*
2219 : * amdgpu_ttm_vram_write - Linear write access to VRAM
2220 : *
2221 : * Accesses VRAM via MMIO for debugging purposes.
2222 : */
2223 : static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2224 : size_t size, loff_t *pos)
2225 : {
2226 : struct amdgpu_device *adev = file_inode(f)->i_private;
2227 : ssize_t result = 0;
2228 : int r;
2229 :
2230 : if (size & 0x3 || *pos & 0x3)
2231 : return -EINVAL;
2232 :
2233 : if (*pos >= adev->gmc.mc_vram_size)
2234 : return -ENXIO;
2235 :
2236 : while (size) {
2237 : uint32_t value;
2238 :
2239 : if (*pos >= adev->gmc.mc_vram_size)
2240 : return result;
2241 :
2242 : r = get_user(value, (uint32_t *)buf);
2243 : if (r)
2244 : return r;
2245 :
2246 : amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2247 :
2248 : result += 4;
2249 : buf += 4;
2250 : *pos += 4;
2251 : size -= 4;
2252 : }
2253 :
2254 : return result;
2255 : }
2256 :
2257 : static const struct file_operations amdgpu_ttm_vram_fops = {
2258 : .owner = THIS_MODULE,
2259 : .read = amdgpu_ttm_vram_read,
2260 : .write = amdgpu_ttm_vram_write,
2261 : .llseek = default_llseek,
2262 : };
2263 :
2264 : /*
2265 : * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2266 : *
2267 : * This function is used to read memory that has been mapped to the
2268 : * GPU and the known addresses are not physical addresses but instead
2269 : * bus addresses (e.g., what you'd put in an IB or ring buffer).
2270 : */
2271 : static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2272 : size_t size, loff_t *pos)
2273 : {
2274 : struct amdgpu_device *adev = file_inode(f)->i_private;
2275 : struct iommu_domain *dom;
2276 : ssize_t result = 0;
2277 : int r;
2278 :
2279 : /* retrieve the IOMMU domain if any for this device */
2280 : dom = iommu_get_domain_for_dev(adev->dev);
2281 :
2282 : while (size) {
2283 : phys_addr_t addr = *pos & PAGE_MASK;
2284 : loff_t off = *pos & ~PAGE_MASK;
2285 : size_t bytes = PAGE_SIZE - off;
2286 : unsigned long pfn;
2287 : struct page *p;
2288 : void *ptr;
2289 :
2290 : bytes = bytes < size ? bytes : size;
2291 :
2292 : /* Translate the bus address to a physical address. If
2293 : * the domain is NULL it means there is no IOMMU active
2294 : * and the address translation is the identity
2295 : */
2296 : addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2297 :
2298 : pfn = addr >> PAGE_SHIFT;
2299 : if (!pfn_valid(pfn))
2300 : return -EPERM;
2301 :
2302 : p = pfn_to_page(pfn);
2303 : if (p->mapping != adev->mman.bdev.dev_mapping)
2304 : return -EPERM;
2305 :
2306 : ptr = kmap(p);
2307 : r = copy_to_user(buf, ptr + off, bytes);
2308 : kunmap(p);
2309 : if (r)
2310 : return -EFAULT;
2311 :
2312 : size -= bytes;
2313 : *pos += bytes;
2314 : result += bytes;
2315 : }
2316 :
2317 : return result;
2318 : }
2319 :
2320 : /*
2321 : * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2322 : *
2323 : * This function is used to write memory that has been mapped to the
2324 : * GPU and the known addresses are not physical addresses but instead
2325 : * bus addresses (e.g., what you'd put in an IB or ring buffer).
2326 : */
2327 : static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2328 : size_t size, loff_t *pos)
2329 : {
2330 : struct amdgpu_device *adev = file_inode(f)->i_private;
2331 : struct iommu_domain *dom;
2332 : ssize_t result = 0;
2333 : int r;
2334 :
2335 : dom = iommu_get_domain_for_dev(adev->dev);
2336 :
2337 : while (size) {
2338 : phys_addr_t addr = *pos & PAGE_MASK;
2339 : loff_t off = *pos & ~PAGE_MASK;
2340 : size_t bytes = PAGE_SIZE - off;
2341 : unsigned long pfn;
2342 : struct page *p;
2343 : void *ptr;
2344 :
2345 : bytes = bytes < size ? bytes : size;
2346 :
2347 : addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2348 :
2349 : pfn = addr >> PAGE_SHIFT;
2350 : if (!pfn_valid(pfn))
2351 : return -EPERM;
2352 :
2353 : p = pfn_to_page(pfn);
2354 : if (p->mapping != adev->mman.bdev.dev_mapping)
2355 : return -EPERM;
2356 :
2357 : ptr = kmap(p);
2358 : r = copy_from_user(ptr + off, buf, bytes);
2359 : kunmap(p);
2360 : if (r)
2361 : return -EFAULT;
2362 :
2363 : size -= bytes;
2364 : *pos += bytes;
2365 : result += bytes;
2366 : }
2367 :
2368 : return result;
2369 : }
2370 :
2371 : static const struct file_operations amdgpu_ttm_iomem_fops = {
2372 : .owner = THIS_MODULE,
2373 : .read = amdgpu_iomem_read,
2374 : .write = amdgpu_iomem_write,
2375 : .llseek = default_llseek
2376 : };
2377 :
2378 : #endif
2379 :
2380 0 : void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2381 : {
2382 : #if defined(CONFIG_DEBUG_FS)
2383 : struct drm_minor *minor = adev_to_drm(adev)->primary;
2384 : struct dentry *root = minor->debugfs_root;
2385 :
2386 : debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2387 : &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2388 : debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2389 : &amdgpu_ttm_iomem_fops);
2390 : debugfs_create_file("ttm_page_pool", 0444, root, adev,
2391 : &amdgpu_ttm_page_pool_fops);
2392 : ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2393 : TTM_PL_VRAM),
2394 : root, "amdgpu_vram_mm");
2395 : ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2396 : TTM_PL_TT),
2397 : root, "amdgpu_gtt_mm");
2398 : ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2399 : AMDGPU_PL_GDS),
2400 : root, "amdgpu_gds_mm");
2401 : ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2402 : AMDGPU_PL_GWS),
2403 : root, "amdgpu_gws_mm");
2404 : ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2405 : AMDGPU_PL_OA),
2406 : root, "amdgpu_oa_mm");
2407 :
2408 : #endif
2409 0 : }
|