Line data Source code
1 : /*
2 : * Copyright 2014 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : */
23 :
24 : #include <linux/pci.h>
25 :
26 : #include "amdgpu.h"
27 : #include "amdgpu_ih.h"
28 : #include "vid.h"
29 :
30 : #include "oss/oss_3_0_d.h"
31 : #include "oss/oss_3_0_sh_mask.h"
32 :
33 : #include "bif/bif_5_1_d.h"
34 : #include "bif/bif_5_1_sh_mask.h"
35 :
36 : /*
37 : * Interrupts
38 : * Starting with r6xx, interrupts are handled via a ring buffer.
39 : * Ring buffers are areas of GPU accessible memory that the GPU
40 : * writes interrupt vectors into and the host reads vectors out of.
41 : * There is a rptr (read pointer) that determines where the
42 : * host is currently reading, and a wptr (write pointer)
43 : * which determines where the GPU has written. When the
44 : * pointers are equal, the ring is idle. When the GPU
45 : * writes vectors to the ring buffer, it increments the
46 : * wptr. When there is an interrupt, the host then starts
47 : * fetching commands and processing them until the pointers are
48 : * equal again at which point it updates the rptr.
49 : */
50 :
51 : static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
52 :
53 : /**
54 : * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
55 : *
56 : * @adev: amdgpu_device pointer
57 : *
58 : * Enable the interrupt ring buffer (VI).
59 : */
60 0 : static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
61 : {
62 0 : u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
63 :
64 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
65 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
66 0 : WREG32(mmIH_RB_CNTL, ih_rb_cntl);
67 0 : adev->irq.ih.enabled = true;
68 0 : }
69 :
70 : /**
71 : * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
72 : *
73 : * @adev: amdgpu_device pointer
74 : *
75 : * Disable the interrupt ring buffer (VI).
76 : */
77 0 : static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
78 : {
79 0 : u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
80 :
81 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
82 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
83 0 : WREG32(mmIH_RB_CNTL, ih_rb_cntl);
84 : /* set rptr, wptr to 0 */
85 0 : WREG32(mmIH_RB_RPTR, 0);
86 0 : WREG32(mmIH_RB_WPTR, 0);
87 0 : adev->irq.ih.enabled = false;
88 0 : adev->irq.ih.rptr = 0;
89 0 : }
90 :
91 : /**
92 : * tonga_ih_irq_init - init and enable the interrupt ring
93 : *
94 : * @adev: amdgpu_device pointer
95 : *
96 : * Allocate a ring buffer for the interrupt controller,
97 : * enable the RLC, disable interrupts, enable the IH
98 : * ring buffer and enable it (VI).
99 : * Called at device load and reume.
100 : * Returns 0 for success, errors for failure.
101 : */
102 0 : static int tonga_ih_irq_init(struct amdgpu_device *adev)
103 : {
104 : u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
105 0 : struct amdgpu_ih_ring *ih = &adev->irq.ih;
106 : int rb_bufsz;
107 :
108 : /* disable irqs */
109 0 : tonga_ih_disable_interrupts(adev);
110 :
111 : /* setup interrupt control */
112 0 : WREG32(mmINTERRUPT_CNTL2, adev->dummy_page_addr >> 8);
113 0 : interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
114 : /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
115 : * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
116 : */
117 0 : interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
118 : /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
119 0 : interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
120 0 : WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
121 :
122 : /* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
123 0 : WREG32(mmIH_RB_BASE, ih->gpu_addr >> 8);
124 :
125 0 : rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
126 0 : ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
127 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
128 : /* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
129 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
130 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
131 :
132 0 : if (adev->irq.msi_enabled)
133 0 : ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
134 :
135 0 : WREG32(mmIH_RB_CNTL, ih_rb_cntl);
136 :
137 : /* set the writeback address whether it's enabled or not */
138 0 : WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(ih->wptr_addr));
139 0 : WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(ih->wptr_addr) & 0xFF);
140 :
141 : /* set rptr, wptr to 0 */
142 0 : WREG32(mmIH_RB_RPTR, 0);
143 0 : WREG32(mmIH_RB_WPTR, 0);
144 :
145 0 : ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
146 0 : if (adev->irq.ih.use_doorbell) {
147 0 : ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
148 : OFFSET, adev->irq.ih.doorbell_index);
149 0 : ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
150 : ENABLE, 1);
151 : } else {
152 0 : ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
153 : ENABLE, 0);
154 : }
155 0 : WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
156 :
157 0 : pci_set_master(adev->pdev);
158 :
159 : /* enable interrupts */
160 0 : tonga_ih_enable_interrupts(adev);
161 :
162 0 : return 0;
163 : }
164 :
165 : /**
166 : * tonga_ih_irq_disable - disable interrupts
167 : *
168 : * @adev: amdgpu_device pointer
169 : *
170 : * Disable interrupts on the hw (VI).
171 : */
172 : static void tonga_ih_irq_disable(struct amdgpu_device *adev)
173 : {
174 0 : tonga_ih_disable_interrupts(adev);
175 :
176 : /* Wait and acknowledge irq */
177 0 : mdelay(1);
178 : }
179 :
180 : /**
181 : * tonga_ih_get_wptr - get the IH ring buffer wptr
182 : *
183 : * @adev: amdgpu_device pointer
184 : * @ih: IH ring buffer to fetch wptr
185 : *
186 : * Get the IH ring buffer wptr from either the register
187 : * or the writeback memory buffer (VI). Also check for
188 : * ring buffer overflow and deal with it.
189 : * Used by cz_irq_process(VI).
190 : * Returns the value of the wptr.
191 : */
192 0 : static u32 tonga_ih_get_wptr(struct amdgpu_device *adev,
193 : struct amdgpu_ih_ring *ih)
194 : {
195 : u32 wptr, tmp;
196 :
197 0 : wptr = le32_to_cpu(*ih->wptr_cpu);
198 :
199 0 : if (!REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW))
200 : goto out;
201 :
202 : /* Double check that the overflow wasn't already cleared. */
203 0 : wptr = RREG32(mmIH_RB_WPTR);
204 :
205 0 : if (!REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW))
206 : goto out;
207 :
208 0 : wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
209 :
210 : /* When a ring buffer overflow happen start parsing interrupt
211 : * from the last not overwritten vector (wptr + 16). Hopefully
212 : * this should allow us to catchup.
213 : */
214 :
215 0 : dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
216 : wptr, ih->rptr, (wptr + 16) & ih->ptr_mask);
217 0 : ih->rptr = (wptr + 16) & ih->ptr_mask;
218 0 : tmp = RREG32(mmIH_RB_CNTL);
219 0 : tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
220 0 : WREG32(mmIH_RB_CNTL, tmp);
221 :
222 : out:
223 0 : return (wptr & ih->ptr_mask);
224 : }
225 :
226 : /**
227 : * tonga_ih_decode_iv - decode an interrupt vector
228 : *
229 : * @adev: amdgpu_device pointer
230 : * @ih: IH ring buffer to decode
231 : * @entry: IV entry to place decoded information into
232 : *
233 : * Decodes the interrupt vector at the current rptr
234 : * position and also advance the position.
235 : */
236 0 : static void tonga_ih_decode_iv(struct amdgpu_device *adev,
237 : struct amdgpu_ih_ring *ih,
238 : struct amdgpu_iv_entry *entry)
239 : {
240 : /* wptr/rptr are in bytes! */
241 0 : u32 ring_index = ih->rptr >> 2;
242 : uint32_t dw[4];
243 :
244 0 : dw[0] = le32_to_cpu(ih->ring[ring_index + 0]);
245 0 : dw[1] = le32_to_cpu(ih->ring[ring_index + 1]);
246 0 : dw[2] = le32_to_cpu(ih->ring[ring_index + 2]);
247 0 : dw[3] = le32_to_cpu(ih->ring[ring_index + 3]);
248 :
249 0 : entry->client_id = AMDGPU_IRQ_CLIENTID_LEGACY;
250 0 : entry->src_id = dw[0] & 0xff;
251 0 : entry->src_data[0] = dw[1] & 0xfffffff;
252 0 : entry->ring_id = dw[2] & 0xff;
253 0 : entry->vmid = (dw[2] >> 8) & 0xff;
254 0 : entry->pasid = (dw[2] >> 16) & 0xffff;
255 :
256 : /* wptr/rptr are in bytes! */
257 0 : ih->rptr += 16;
258 0 : }
259 :
260 : /**
261 : * tonga_ih_set_rptr - set the IH ring buffer rptr
262 : *
263 : * @adev: amdgpu_device pointer
264 : * @ih: IH ring buffer to set rptr
265 : *
266 : * Set the IH ring buffer rptr.
267 : */
268 0 : static void tonga_ih_set_rptr(struct amdgpu_device *adev,
269 : struct amdgpu_ih_ring *ih)
270 : {
271 0 : if (ih->use_doorbell) {
272 : /* XXX check if swapping is necessary on BE */
273 0 : *ih->rptr_cpu = ih->rptr;
274 0 : WDOORBELL32(ih->doorbell_index, ih->rptr);
275 : } else {
276 0 : WREG32(mmIH_RB_RPTR, ih->rptr);
277 : }
278 0 : }
279 :
280 0 : static int tonga_ih_early_init(void *handle)
281 : {
282 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
283 : int ret;
284 :
285 0 : ret = amdgpu_irq_add_domain(adev);
286 0 : if (ret)
287 : return ret;
288 :
289 0 : tonga_ih_set_interrupt_funcs(adev);
290 :
291 0 : return 0;
292 : }
293 :
294 0 : static int tonga_ih_sw_init(void *handle)
295 : {
296 : int r;
297 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
298 :
299 0 : r = amdgpu_ih_ring_init(adev, &adev->irq.ih, 64 * 1024, true);
300 0 : if (r)
301 : return r;
302 :
303 0 : adev->irq.ih.use_doorbell = true;
304 0 : adev->irq.ih.doorbell_index = adev->doorbell_index.ih;
305 :
306 0 : r = amdgpu_irq_init(adev);
307 :
308 0 : return r;
309 : }
310 :
311 0 : static int tonga_ih_sw_fini(void *handle)
312 : {
313 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
314 :
315 0 : amdgpu_irq_fini_sw(adev);
316 0 : amdgpu_irq_remove_domain(adev);
317 :
318 0 : return 0;
319 : }
320 :
321 0 : static int tonga_ih_hw_init(void *handle)
322 : {
323 : int r;
324 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
325 :
326 0 : r = tonga_ih_irq_init(adev);
327 0 : if (r)
328 : return r;
329 :
330 0 : return 0;
331 : }
332 :
333 0 : static int tonga_ih_hw_fini(void *handle)
334 : {
335 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
336 :
337 0 : tonga_ih_irq_disable(adev);
338 :
339 0 : return 0;
340 : }
341 :
342 0 : static int tonga_ih_suspend(void *handle)
343 : {
344 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
345 :
346 0 : return tonga_ih_hw_fini(adev);
347 : }
348 :
349 0 : static int tonga_ih_resume(void *handle)
350 : {
351 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
352 :
353 0 : return tonga_ih_hw_init(adev);
354 : }
355 :
356 0 : static bool tonga_ih_is_idle(void *handle)
357 : {
358 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
359 0 : u32 tmp = RREG32(mmSRBM_STATUS);
360 :
361 0 : if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
362 : return false;
363 :
364 0 : return true;
365 : }
366 :
367 0 : static int tonga_ih_wait_for_idle(void *handle)
368 : {
369 : unsigned i;
370 : u32 tmp;
371 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
372 :
373 0 : for (i = 0; i < adev->usec_timeout; i++) {
374 : /* read MC_STATUS */
375 0 : tmp = RREG32(mmSRBM_STATUS);
376 0 : if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
377 : return 0;
378 0 : udelay(1);
379 : }
380 : return -ETIMEDOUT;
381 : }
382 :
383 0 : static bool tonga_ih_check_soft_reset(void *handle)
384 : {
385 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
386 0 : u32 srbm_soft_reset = 0;
387 0 : u32 tmp = RREG32(mmSRBM_STATUS);
388 :
389 0 : if (tmp & SRBM_STATUS__IH_BUSY_MASK)
390 0 : srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
391 : SOFT_RESET_IH, 1);
392 :
393 0 : if (srbm_soft_reset) {
394 0 : adev->irq.srbm_soft_reset = srbm_soft_reset;
395 0 : return true;
396 : } else {
397 0 : adev->irq.srbm_soft_reset = 0;
398 0 : return false;
399 : }
400 : }
401 :
402 0 : static int tonga_ih_pre_soft_reset(void *handle)
403 : {
404 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
405 :
406 0 : if (!adev->irq.srbm_soft_reset)
407 : return 0;
408 :
409 0 : return tonga_ih_hw_fini(adev);
410 : }
411 :
412 0 : static int tonga_ih_post_soft_reset(void *handle)
413 : {
414 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
415 :
416 0 : if (!adev->irq.srbm_soft_reset)
417 : return 0;
418 :
419 : return tonga_ih_hw_init(adev);
420 : }
421 :
422 0 : static int tonga_ih_soft_reset(void *handle)
423 : {
424 0 : struct amdgpu_device *adev = (struct amdgpu_device *)handle;
425 : u32 srbm_soft_reset;
426 :
427 0 : if (!adev->irq.srbm_soft_reset)
428 : return 0;
429 0 : srbm_soft_reset = adev->irq.srbm_soft_reset;
430 :
431 : if (srbm_soft_reset) {
432 : u32 tmp;
433 :
434 0 : tmp = RREG32(mmSRBM_SOFT_RESET);
435 0 : tmp |= srbm_soft_reset;
436 0 : dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
437 0 : WREG32(mmSRBM_SOFT_RESET, tmp);
438 0 : tmp = RREG32(mmSRBM_SOFT_RESET);
439 :
440 0 : udelay(50);
441 :
442 0 : tmp &= ~srbm_soft_reset;
443 0 : WREG32(mmSRBM_SOFT_RESET, tmp);
444 0 : tmp = RREG32(mmSRBM_SOFT_RESET);
445 :
446 : /* Wait a little for things to settle down */
447 : udelay(50);
448 : }
449 :
450 0 : return 0;
451 : }
452 :
453 0 : static int tonga_ih_set_clockgating_state(void *handle,
454 : enum amd_clockgating_state state)
455 : {
456 0 : return 0;
457 : }
458 :
459 0 : static int tonga_ih_set_powergating_state(void *handle,
460 : enum amd_powergating_state state)
461 : {
462 0 : return 0;
463 : }
464 :
465 : static const struct amd_ip_funcs tonga_ih_ip_funcs = {
466 : .name = "tonga_ih",
467 : .early_init = tonga_ih_early_init,
468 : .late_init = NULL,
469 : .sw_init = tonga_ih_sw_init,
470 : .sw_fini = tonga_ih_sw_fini,
471 : .hw_init = tonga_ih_hw_init,
472 : .hw_fini = tonga_ih_hw_fini,
473 : .suspend = tonga_ih_suspend,
474 : .resume = tonga_ih_resume,
475 : .is_idle = tonga_ih_is_idle,
476 : .wait_for_idle = tonga_ih_wait_for_idle,
477 : .check_soft_reset = tonga_ih_check_soft_reset,
478 : .pre_soft_reset = tonga_ih_pre_soft_reset,
479 : .soft_reset = tonga_ih_soft_reset,
480 : .post_soft_reset = tonga_ih_post_soft_reset,
481 : .set_clockgating_state = tonga_ih_set_clockgating_state,
482 : .set_powergating_state = tonga_ih_set_powergating_state,
483 : };
484 :
485 : static const struct amdgpu_ih_funcs tonga_ih_funcs = {
486 : .get_wptr = tonga_ih_get_wptr,
487 : .decode_iv = tonga_ih_decode_iv,
488 : .set_rptr = tonga_ih_set_rptr
489 : };
490 :
491 : static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
492 : {
493 0 : adev->irq.ih_funcs = &tonga_ih_funcs;
494 : }
495 :
496 : const struct amdgpu_ip_block_version tonga_ih_ip_block =
497 : {
498 : .type = AMD_IP_BLOCK_TYPE_IH,
499 : .major = 3,
500 : .minor = 0,
501 : .rev = 0,
502 : .funcs = &tonga_ih_ip_funcs,
503 : };
|