Line data Source code
1 : /*
2 : * Copyright 2016 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : * Authors: AMD
23 : *
24 : */
25 :
26 : #include "dm_services.h"
27 :
28 : #include "core_types.h"
29 :
30 : #include "reg_helper.h"
31 : #include "dcn10_dpp.h"
32 : #include "basics/conversion.h"
33 : #include "dcn10_cm_common.h"
34 :
35 : #define NUM_PHASES 64
36 : #define HORZ_MAX_TAPS 8
37 : #define VERT_MAX_TAPS 8
38 :
39 : #define BLACK_OFFSET_RGB_Y 0x0
40 : #define BLACK_OFFSET_CBCR 0x8000
41 :
42 : #define REG(reg)\
43 : dpp->tf_regs->reg
44 :
45 : #define CTX \
46 : dpp->base.ctx
47 :
48 : #undef FN
49 : #define FN(reg_name, field_name) \
50 : dpp->tf_shift->field_name, dpp->tf_mask->field_name
51 :
52 : #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
53 :
54 :
55 : enum dcn10_coef_filter_type_sel {
56 : SCL_COEF_LUMA_VERT_FILTER = 0,
57 : SCL_COEF_LUMA_HORZ_FILTER = 1,
58 : SCL_COEF_CHROMA_VERT_FILTER = 2,
59 : SCL_COEF_CHROMA_HORZ_FILTER = 3,
60 : SCL_COEF_ALPHA_VERT_FILTER = 4,
61 : SCL_COEF_ALPHA_HORZ_FILTER = 5
62 : };
63 :
64 : enum dscl_autocal_mode {
65 : AUTOCAL_MODE_OFF = 0,
66 :
67 : /* Autocal calculate the scaling ratio and initial phase and the
68 : * DSCL_MODE_SEL must be set to 1
69 : */
70 : AUTOCAL_MODE_AUTOSCALE = 1,
71 : /* Autocal perform auto centering without replication and the
72 : * DSCL_MODE_SEL must be set to 0
73 : */
74 : AUTOCAL_MODE_AUTOCENTER = 2,
75 : /* Autocal perform auto centering and auto replication and the
76 : * DSCL_MODE_SEL must be set to 0
77 : */
78 : AUTOCAL_MODE_AUTOREPLICATE = 3
79 : };
80 :
81 : enum dscl_mode_sel {
82 : DSCL_MODE_SCALING_444_BYPASS = 0,
83 : DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
84 : DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
85 : DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
86 : DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
87 : DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
88 : DSCL_MODE_DSCL_BYPASS = 6
89 : };
90 :
91 0 : static void program_gamut_remap(
92 : struct dcn10_dpp *dpp,
93 : const uint16_t *regval,
94 : enum gamut_remap_select select)
95 : {
96 0 : uint16_t selection = 0;
97 : struct color_matrices_reg gam_regs;
98 :
99 0 : if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
100 0 : REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
101 : CM_GAMUT_REMAP_MODE, 0);
102 0 : return;
103 : }
104 : switch (select) {
105 : case GAMUT_REMAP_COEFF:
106 : selection = 1;
107 : break;
108 : case GAMUT_REMAP_COMA_COEFF:
109 : selection = 2;
110 : break;
111 : case GAMUT_REMAP_COMB_COEFF:
112 : selection = 3;
113 : break;
114 : default:
115 : break;
116 : }
117 :
118 0 : gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
119 0 : gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11;
120 0 : gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
121 0 : gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
122 :
123 :
124 0 : if (select == GAMUT_REMAP_COEFF) {
125 0 : gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
126 0 : gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
127 :
128 0 : cm_helper_program_color_matrices(
129 : dpp->base.ctx,
130 : regval,
131 : &gam_regs);
132 :
133 0 : } else if (select == GAMUT_REMAP_COMA_COEFF) {
134 :
135 0 : gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
136 0 : gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
137 :
138 0 : cm_helper_program_color_matrices(
139 : dpp->base.ctx,
140 : regval,
141 : &gam_regs);
142 :
143 : } else {
144 :
145 0 : gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
146 0 : gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
147 :
148 0 : cm_helper_program_color_matrices(
149 : dpp->base.ctx,
150 : regval,
151 : &gam_regs);
152 : }
153 :
154 0 : REG_SET(
155 : CM_GAMUT_REMAP_CONTROL, 0,
156 : CM_GAMUT_REMAP_MODE, selection);
157 :
158 : }
159 :
160 0 : void dpp1_cm_set_gamut_remap(
161 : struct dpp *dpp_base,
162 : const struct dpp_grph_csc_adjustment *adjust)
163 : {
164 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
165 0 : int i = 0;
166 :
167 0 : if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
168 : /* Bypass if type is bypass or hw */
169 0 : program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
170 : else {
171 : struct fixed31_32 arr_matrix[12];
172 : uint16_t arr_reg_val[12];
173 :
174 0 : for (i = 0; i < 12; i++)
175 0 : arr_matrix[i] = adjust->temperature_matrix[i];
176 :
177 0 : convert_float_matrix(
178 : arr_reg_val, arr_matrix, 12);
179 :
180 0 : program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
181 : }
182 0 : }
183 :
184 0 : static void dpp1_cm_program_color_matrix(
185 : struct dcn10_dpp *dpp,
186 : const uint16_t *regval)
187 : {
188 : uint32_t ocsc_mode;
189 : uint32_t cur_mode;
190 : struct color_matrices_reg gam_regs;
191 :
192 0 : if (regval == NULL) {
193 0 : BREAK_TO_DEBUGGER();
194 0 : return;
195 : }
196 :
197 : /* determine which CSC matrix (ocsc or comb) we are using
198 : * currently. select the alternate set to double buffer
199 : * the CSC update so CSC is updated on frame boundary
200 : */
201 0 : REG_SET(CM_TEST_DEBUG_INDEX, 0,
202 : CM_TEST_DEBUG_INDEX, 9);
203 :
204 0 : REG_GET(CM_TEST_DEBUG_DATA,
205 : CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode);
206 :
207 0 : if (cur_mode != 4)
208 : ocsc_mode = 4;
209 : else
210 0 : ocsc_mode = 5;
211 :
212 :
213 0 : gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
214 0 : gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11;
215 0 : gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
216 0 : gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;
217 :
218 0 : if (ocsc_mode == 4) {
219 :
220 0 : gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
221 0 : gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);
222 :
223 : } else {
224 :
225 0 : gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
226 0 : gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
227 :
228 : }
229 :
230 0 : cm_helper_program_color_matrices(
231 : dpp->base.ctx,
232 : regval,
233 : &gam_regs);
234 :
235 0 : REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
236 :
237 : }
238 :
239 0 : void dpp1_cm_set_output_csc_default(
240 : struct dpp *dpp_base,
241 : enum dc_color_space colorspace)
242 : {
243 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
244 0 : const uint16_t *regval = NULL;
245 : int arr_size;
246 :
247 0 : regval = find_color_matrix(colorspace, &arr_size);
248 0 : if (regval == NULL) {
249 0 : BREAK_TO_DEBUGGER();
250 0 : return;
251 : }
252 :
253 0 : dpp1_cm_program_color_matrix(dpp, regval);
254 : }
255 :
256 0 : static void dpp1_cm_get_reg_field(
257 : struct dcn10_dpp *dpp,
258 : struct xfer_func_reg *reg)
259 : {
260 0 : reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
261 0 : reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
262 0 : reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
263 0 : reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
264 0 : reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
265 0 : reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
266 0 : reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
267 0 : reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
268 :
269 0 : reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
270 0 : reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
271 0 : reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
272 0 : reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
273 0 : reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
274 0 : reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
275 0 : reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
276 0 : reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
277 0 : reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
278 0 : reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
279 0 : reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
280 0 : reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
281 0 : }
282 :
283 0 : static void dpp1_cm_get_degamma_reg_field(
284 : struct dcn10_dpp *dpp,
285 : struct xfer_func_reg *reg)
286 : {
287 0 : reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
288 0 : reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
289 0 : reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
290 0 : reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
291 0 : reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
292 0 : reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
293 0 : reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
294 0 : reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
295 :
296 0 : reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B;
297 0 : reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B;
298 0 : reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
299 0 : reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
300 0 : reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
301 0 : reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
302 0 : reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
303 0 : reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
304 0 : reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B;
305 0 : reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B;
306 0 : reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
307 0 : reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
308 0 : }
309 0 : void dpp1_cm_set_output_csc_adjustment(
310 : struct dpp *dpp_base,
311 : const uint16_t *regval)
312 : {
313 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
314 :
315 0 : dpp1_cm_program_color_matrix(dpp, regval);
316 0 : }
317 :
318 0 : void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base,
319 : bool power_on)
320 : {
321 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
322 :
323 0 : REG_SET(CM_MEM_PWR_CTRL, 0,
324 : RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
325 :
326 0 : }
327 :
328 0 : void dpp1_cm_program_regamma_lut(struct dpp *dpp_base,
329 : const struct pwl_result_data *rgb,
330 : uint32_t num)
331 : {
332 : uint32_t i;
333 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
334 :
335 0 : REG_SEQ_START();
336 :
337 0 : for (i = 0 ; i < num; i++) {
338 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
339 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
340 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
341 :
342 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
343 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
344 0 : REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
345 :
346 : }
347 :
348 0 : }
349 :
350 0 : void dpp1_cm_configure_regamma_lut(
351 : struct dpp *dpp_base,
352 : bool is_ram_a)
353 : {
354 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
355 :
356 0 : REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
357 : CM_RGAM_LUT_WRITE_EN_MASK, 7);
358 0 : REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
359 : CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
360 0 : REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
361 0 : }
362 :
363 : /*program re gamma RAM A*/
364 0 : void dpp1_cm_program_regamma_luta_settings(
365 : struct dpp *dpp_base,
366 : const struct pwl_params *params)
367 : {
368 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
369 : struct xfer_func_reg gam_regs;
370 :
371 0 : dpp1_cm_get_reg_field(dpp, &gam_regs);
372 :
373 0 : gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
374 0 : gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
375 0 : gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
376 0 : gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
377 0 : gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
378 0 : gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
379 0 : gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
380 0 : gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
381 0 : gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
382 0 : gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
383 0 : gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
384 0 : gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
385 0 : gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
386 0 : gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);
387 :
388 0 : cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
389 :
390 0 : }
391 :
392 : /*program re gamma RAM B*/
393 0 : void dpp1_cm_program_regamma_lutb_settings(
394 : struct dpp *dpp_base,
395 : const struct pwl_params *params)
396 : {
397 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
398 : struct xfer_func_reg gam_regs;
399 :
400 0 : dpp1_cm_get_reg_field(dpp, &gam_regs);
401 :
402 0 : gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
403 0 : gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
404 0 : gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
405 0 : gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
406 0 : gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
407 0 : gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
408 0 : gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
409 0 : gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
410 0 : gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
411 0 : gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
412 0 : gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
413 0 : gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
414 0 : gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
415 0 : gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);
416 :
417 0 : cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
418 0 : }
419 :
420 0 : void dpp1_program_input_csc(
421 : struct dpp *dpp_base,
422 : enum dc_color_space color_space,
423 : enum dcn10_input_csc_select input_select,
424 : const struct out_csc_color_matrix *tbl_entry)
425 : {
426 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
427 : int i;
428 0 : int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
429 0 : const uint16_t *regval = NULL;
430 0 : uint32_t cur_select = 0;
431 : enum dcn10_input_csc_select select;
432 : struct color_matrices_reg gam_regs;
433 :
434 0 : if (input_select == INPUT_CSC_SELECT_BYPASS) {
435 0 : REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
436 0 : return;
437 : }
438 :
439 0 : if (tbl_entry == NULL) {
440 0 : for (i = 0; i < arr_size; i++)
441 0 : if (dpp_input_csc_matrix[i].color_space == color_space) {
442 0 : regval = dpp_input_csc_matrix[i].regval;
443 0 : break;
444 : }
445 :
446 0 : if (regval == NULL) {
447 0 : BREAK_TO_DEBUGGER();
448 0 : return;
449 : }
450 : } else {
451 0 : regval = tbl_entry->regval;
452 : }
453 :
454 : /* determine which CSC matrix (icsc or coma) we are using
455 : * currently. select the alternate set to double buffer
456 : * the CSC update so CSC is updated on frame boundary
457 : */
458 0 : REG_SET(CM_TEST_DEBUG_INDEX, 0,
459 : CM_TEST_DEBUG_INDEX, 9);
460 :
461 0 : REG_GET(CM_TEST_DEBUG_DATA,
462 : CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select);
463 :
464 0 : if (cur_select != INPUT_CSC_SELECT_ICSC)
465 : select = INPUT_CSC_SELECT_ICSC;
466 : else
467 0 : select = INPUT_CSC_SELECT_COMA;
468 :
469 0 : gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
470 0 : gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11;
471 0 : gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
472 0 : gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
473 :
474 0 : if (select == INPUT_CSC_SELECT_ICSC) {
475 :
476 0 : gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
477 0 : gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
478 :
479 : } else {
480 :
481 0 : gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
482 0 : gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
483 :
484 : }
485 :
486 0 : cm_helper_program_color_matrices(
487 : dpp->base.ctx,
488 : regval,
489 : &gam_regs);
490 :
491 0 : REG_SET(CM_ICSC_CONTROL, 0,
492 : CM_ICSC_MODE, select);
493 : }
494 :
495 : //keep here for now, decide multi dce support later
496 0 : void dpp1_program_bias_and_scale(
497 : struct dpp *dpp_base,
498 : struct dc_bias_and_scale *params)
499 : {
500 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
501 :
502 0 : REG_SET_2(CM_BNS_VALUES_R, 0,
503 : CM_BNS_SCALE_R, params->scale_red,
504 : CM_BNS_BIAS_R, params->bias_red);
505 :
506 0 : REG_SET_2(CM_BNS_VALUES_G, 0,
507 : CM_BNS_SCALE_G, params->scale_green,
508 : CM_BNS_BIAS_G, params->bias_green);
509 :
510 0 : REG_SET_2(CM_BNS_VALUES_B, 0,
511 : CM_BNS_SCALE_B, params->scale_blue,
512 : CM_BNS_BIAS_B, params->bias_blue);
513 :
514 0 : }
515 :
516 : /*program de gamma RAM B*/
517 0 : void dpp1_program_degamma_lutb_settings(
518 : struct dpp *dpp_base,
519 : const struct pwl_params *params)
520 : {
521 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
522 : struct xfer_func_reg gam_regs;
523 :
524 0 : dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
525 :
526 0 : gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
527 0 : gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
528 0 : gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
529 0 : gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
530 0 : gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
531 0 : gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
532 0 : gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
533 0 : gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
534 0 : gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
535 0 : gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
536 0 : gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
537 0 : gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
538 0 : gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
539 0 : gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);
540 :
541 :
542 0 : cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
543 0 : }
544 :
545 : /*program de gamma RAM A*/
546 0 : void dpp1_program_degamma_luta_settings(
547 : struct dpp *dpp_base,
548 : const struct pwl_params *params)
549 : {
550 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
551 : struct xfer_func_reg gam_regs;
552 :
553 0 : dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
554 :
555 0 : gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
556 0 : gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
557 0 : gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
558 0 : gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
559 0 : gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
560 0 : gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
561 0 : gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
562 0 : gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
563 0 : gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
564 0 : gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
565 0 : gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
566 0 : gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
567 0 : gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
568 0 : gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);
569 :
570 0 : cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
571 0 : }
572 :
573 0 : void dpp1_power_on_degamma_lut(
574 : struct dpp *dpp_base,
575 : bool power_on)
576 : {
577 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
578 :
579 0 : REG_SET(CM_MEM_PWR_CTRL, 0,
580 : SHARED_MEM_PWR_DIS, power_on ? 0:1);
581 :
582 0 : }
583 :
584 0 : static void dpp1_enable_cm_block(
585 : struct dpp *dpp_base)
586 : {
587 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
588 :
589 0 : REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
590 0 : REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
591 0 : }
592 :
593 0 : void dpp1_set_degamma(
594 : struct dpp *dpp_base,
595 : enum ipp_degamma_mode mode)
596 : {
597 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
598 0 : dpp1_enable_cm_block(dpp_base);
599 :
600 0 : switch (mode) {
601 : case IPP_DEGAMMA_MODE_BYPASS:
602 : /* Setting de gamma bypass for now */
603 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
604 0 : break;
605 : case IPP_DEGAMMA_MODE_HW_sRGB:
606 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
607 0 : break;
608 : case IPP_DEGAMMA_MODE_HW_xvYCC:
609 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
610 0 : break;
611 : case IPP_DEGAMMA_MODE_USER_PWL:
612 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
613 0 : break;
614 : default:
615 0 : BREAK_TO_DEBUGGER();
616 0 : break;
617 : }
618 :
619 0 : REG_SEQ_SUBMIT();
620 0 : REG_SEQ_WAIT_DONE();
621 0 : }
622 :
623 0 : void dpp1_degamma_ram_select(
624 : struct dpp *dpp_base,
625 : bool use_ram_a)
626 : {
627 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
628 :
629 0 : if (use_ram_a)
630 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
631 : else
632 0 : REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
633 :
634 0 : }
635 :
636 0 : static bool dpp1_degamma_ram_inuse(
637 : struct dpp *dpp_base,
638 : bool *ram_a_inuse)
639 : {
640 0 : bool ret = false;
641 0 : uint32_t status_reg = 0;
642 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
643 :
644 0 : REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
645 : &status_reg);
646 :
647 0 : if (status_reg == 9) {
648 0 : *ram_a_inuse = true;
649 0 : ret = true;
650 0 : } else if (status_reg == 10) {
651 0 : *ram_a_inuse = false;
652 0 : ret = true;
653 : }
654 0 : return ret;
655 : }
656 :
657 0 : void dpp1_program_degamma_lut(
658 : struct dpp *dpp_base,
659 : const struct pwl_result_data *rgb,
660 : uint32_t num,
661 : bool is_ram_a)
662 : {
663 : uint32_t i;
664 :
665 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
666 0 : REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
667 0 : REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
668 : CM_DGAM_LUT_WRITE_EN_MASK, 7);
669 0 : REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
670 : is_ram_a == true ? 0:1);
671 :
672 0 : REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
673 0 : for (i = 0 ; i < num; i++) {
674 0 : REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
675 0 : REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
676 0 : REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
677 :
678 0 : REG_SET(CM_DGAM_LUT_DATA, 0,
679 : CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
680 0 : REG_SET(CM_DGAM_LUT_DATA, 0,
681 : CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
682 0 : REG_SET(CM_DGAM_LUT_DATA, 0,
683 : CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
684 : }
685 0 : }
686 :
687 0 : void dpp1_set_degamma_pwl(struct dpp *dpp_base,
688 : const struct pwl_params *params)
689 : {
690 0 : bool is_ram_a = true;
691 :
692 0 : dpp1_power_on_degamma_lut(dpp_base, true);
693 0 : dpp1_enable_cm_block(dpp_base);
694 0 : dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
695 0 : if (is_ram_a == true)
696 0 : dpp1_program_degamma_lutb_settings(dpp_base, params);
697 : else
698 0 : dpp1_program_degamma_luta_settings(dpp_base, params);
699 :
700 0 : dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
701 0 : params->hw_points_num, !is_ram_a);
702 0 : dpp1_degamma_ram_select(dpp_base, !is_ram_a);
703 0 : }
704 :
705 0 : void dpp1_full_bypass(struct dpp *dpp_base)
706 : {
707 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
708 :
709 : /* Input pixel format: ARGB8888 */
710 0 : REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
711 : CNVC_SURFACE_PIXEL_FORMAT, 0x8);
712 :
713 : /* Zero expansion */
714 0 : REG_SET_3(FORMAT_CONTROL, 0,
715 : CNVC_BYPASS, 0,
716 : FORMAT_CONTROL__ALPHA_EN, 0,
717 : FORMAT_EXPANSION_MODE, 0);
718 :
719 : /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
720 0 : if (dpp->tf_mask->CM_BYPASS_EN)
721 0 : REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
722 : else
723 0 : REG_SET(CM_CONTROL, 0, CM_BYPASS, 1);
724 :
725 : /* Setting degamma bypass for now */
726 0 : REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
727 0 : }
728 :
729 0 : static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
730 : bool *ram_a_inuse)
731 : {
732 0 : bool in_use = false;
733 0 : uint32_t status_reg = 0;
734 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
735 :
736 0 : REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
737 : &status_reg);
738 :
739 : // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
740 0 : if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
741 0 : *ram_a_inuse = true;
742 0 : in_use = true;
743 : // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
744 0 : } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
745 0 : *ram_a_inuse = false;
746 0 : in_use = true;
747 : }
748 0 : return in_use;
749 : }
750 :
751 : /*
752 : * Input gamma LUT currently supports 256 values only. This means input color
753 : * can have a maximum of 8 bits per channel (= 256 possible values) in order to
754 : * have a one-to-one mapping with the LUT. Truncation will occur with color
755 : * values greater than 8 bits.
756 : *
757 : * In the future, this function should support additional input gamma methods,
758 : * such as piecewise linear mapping, and input gamma bypass.
759 : */
760 0 : void dpp1_program_input_lut(
761 : struct dpp *dpp_base,
762 : const struct dc_gamma *gamma)
763 : {
764 : int i;
765 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
766 0 : bool rama_occupied = false;
767 : uint32_t ram_num;
768 : // Power on LUT memory.
769 0 : REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
770 0 : dpp1_enable_cm_block(dpp_base);
771 : // Determine whether to use RAM A or RAM B
772 0 : dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
773 0 : if (!rama_occupied)
774 0 : REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
775 : else
776 0 : REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
777 : // RW mode is 256-entry LUT
778 0 : REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
779 : // IGAM Input format should be 8 bits per channel.
780 0 : REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
781 : // Do not mask any R,G,B values
782 0 : REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
783 : // LUT-256, unsigned, integer, new u0.12 format
784 0 : REG_UPDATE_3(
785 : CM_IGAM_CONTROL,
786 : CM_IGAM_LUT_FORMAT_R, 3,
787 : CM_IGAM_LUT_FORMAT_G, 3,
788 : CM_IGAM_LUT_FORMAT_B, 3);
789 : // Start at index 0 of IGAM LUT
790 0 : REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
791 0 : for (i = 0; i < gamma->num_entries; i++) {
792 0 : REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
793 : dc_fixpt_round(
794 : gamma->entries.red[i]));
795 0 : REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
796 : dc_fixpt_round(
797 : gamma->entries.green[i]));
798 0 : REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
799 : dc_fixpt_round(
800 : gamma->entries.blue[i]));
801 : }
802 : // Power off LUT memory
803 0 : REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
804 : // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
805 0 : REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
806 0 : REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
807 0 : }
808 :
809 0 : void dpp1_set_hdr_multiplier(
810 : struct dpp *dpp_base,
811 : uint32_t multiplier)
812 : {
813 0 : struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
814 :
815 0 : REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
816 0 : }
|