Line data Source code
1 : /*
2 : * Copyright 2012-15 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : * Authors: AMD
23 : *
24 : */
25 :
26 : #include "reg_helper.h"
27 : #include "dcn20_optc.h"
28 : #include "dc.h"
29 :
30 : #define REG(reg)\
31 : optc1->tg_regs->reg
32 :
33 : #define CTX \
34 : optc1->base.ctx
35 :
36 : #undef FN
37 : #define FN(reg_name, field_name) \
38 : optc1->tg_shift->field_name, optc1->tg_mask->field_name
39 :
40 : /**
41 : * Enable CRTC
42 : * Enable CRTC - call ASIC Control Object to enable Timing generator.
43 : */
44 0 : bool optc2_enable_crtc(struct timing_generator *optc)
45 : {
46 : /* TODO FPGA wait for answer
47 : * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
48 : * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
49 : */
50 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
51 :
52 : /* opp instance for OTG. For DCN1.0, ODM is remoed.
53 : * OPP and OPTC should 1:1 mapping
54 : */
55 0 : REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
56 : OPTC_SEG0_SRC_SEL, optc->inst);
57 :
58 : /* VTG enable first is for HW workaround */
59 0 : REG_UPDATE(CONTROL,
60 : VTG0_ENABLE, 1);
61 :
62 0 : REG_SEQ_START();
63 :
64 : /* Enable CRTC */
65 0 : REG_UPDATE_2(OTG_CONTROL,
66 : OTG_DISABLE_POINT_CNTL, 3,
67 : OTG_MASTER_EN, 1);
68 :
69 0 : REG_SEQ_SUBMIT();
70 0 : REG_SEQ_WAIT_DONE();
71 :
72 0 : return true;
73 : }
74 :
75 : /**
76 : *For the below, I'm not sure how your GSL parameters are stored in your env,
77 : * so I will assume a gsl_params struct for now
78 : */
79 0 : void optc2_set_gsl(struct timing_generator *optc,
80 : const struct gsl_params *params)
81 : {
82 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
83 :
84 : /**
85 : * There are (MAX_OPTC+1)/2 gsl groups available for use.
86 : * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1,
87 : * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves.
88 : */
89 0 : REG_UPDATE_5(OTG_GSL_CONTROL,
90 : OTG_GSL0_EN, params->gsl0_en,
91 : OTG_GSL1_EN, params->gsl1_en,
92 : OTG_GSL2_EN, params->gsl2_en,
93 : OTG_GSL_MASTER_EN, params->gsl_master_en,
94 : OTG_GSL_MASTER_MODE, params->gsl_master_mode);
95 0 : }
96 :
97 :
98 0 : void optc2_set_gsl_source_select(
99 : struct timing_generator *optc,
100 : int group_idx,
101 : uint32_t gsl_ready_signal)
102 : {
103 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
104 :
105 0 : switch (group_idx) {
106 : case 1:
107 0 : REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal);
108 0 : break;
109 : case 2:
110 0 : REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal);
111 0 : break;
112 : case 3:
113 0 : REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal);
114 0 : break;
115 : default:
116 : break;
117 : }
118 0 : }
119 :
120 : /* Set DSC-related configuration.
121 : * dsc_mode: 0 disables DSC, other values enable DSC in specified format
122 : * sc_bytes_per_pixel: Bytes per pixel in u3.28 format
123 : * dsc_slice_width: Slice width in pixels
124 : */
125 0 : void optc2_set_dsc_config(struct timing_generator *optc,
126 : enum optc_dsc_mode dsc_mode,
127 : uint32_t dsc_bytes_per_pixel,
128 : uint32_t dsc_slice_width)
129 : {
130 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
131 :
132 0 : REG_UPDATE(OPTC_DATA_FORMAT_CONTROL,
133 : OPTC_DSC_MODE, dsc_mode);
134 :
135 0 : REG_SET(OPTC_BYTES_PER_PIXEL, 0,
136 : OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel);
137 :
138 0 : REG_UPDATE(OPTC_WIDTH_CONTROL,
139 : OPTC_DSC_SLICE_WIDTH, dsc_slice_width);
140 0 : }
141 :
142 : /* Get DSC-related configuration.
143 : * dsc_mode: 0 disables DSC, other values enable DSC in specified format
144 : */
145 0 : void optc2_get_dsc_status(struct timing_generator *optc,
146 : uint32_t *dsc_mode)
147 : {
148 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
149 :
150 0 : REG_GET(OPTC_DATA_FORMAT_CONTROL,
151 : OPTC_DSC_MODE, dsc_mode);
152 0 : }
153 :
154 :
155 : /*TEMP: Need to figure out inheritance model here.*/
156 0 : bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
157 : {
158 0 : return optc1_is_two_pixels_per_containter(timing);
159 : }
160 :
161 0 : void optc2_set_odm_bypass(struct timing_generator *optc,
162 : const struct dc_crtc_timing *dc_crtc_timing)
163 : {
164 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
165 0 : uint32_t h_div_2 = 0;
166 :
167 0 : REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
168 : OPTC_NUM_OF_INPUT_SEGMENT, 0,
169 : OPTC_SEG0_SRC_SEL, optc->inst,
170 : OPTC_SEG1_SRC_SEL, 0xf);
171 0 : REG_WRITE(OTG_H_TIMING_CNTL, 0);
172 :
173 0 : h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing);
174 0 : REG_UPDATE(OTG_H_TIMING_CNTL,
175 : OTG_H_TIMING_DIV_BY2, h_div_2);
176 0 : REG_SET(OPTC_MEMORY_CONFIG, 0,
177 : OPTC_MEM_SEL, 0);
178 0 : optc1->opp_count = 1;
179 0 : }
180 :
181 0 : void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt,
182 : struct dc_crtc_timing *timing)
183 : {
184 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
185 0 : int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right)
186 0 : / opp_cnt;
187 : uint32_t memory_mask;
188 :
189 0 : ASSERT(opp_cnt == 2);
190 :
191 : /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic
192 : * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1);
193 : * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start
194 : * REG_SET_2(OTG_GLOBAL_CONTROL1, 0,
195 : * MASTER_UPDATE_LOCK_DB_X, 160,
196 : * MASTER_UPDATE_LOCK_DB_Y, 240);
197 : */
198 :
199 : /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192,
200 : * however, for ODM combine we can simplify by always using 4.
201 : * To make sure there's no overlap, each instance "reserves" 2 memories and
202 : * they are uniquely combined here.
203 : */
204 0 : memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2);
205 :
206 0 : if (REG(OPTC_MEMORY_CONFIG))
207 0 : REG_SET(OPTC_MEMORY_CONFIG, 0,
208 : OPTC_MEM_SEL, memory_mask);
209 :
210 0 : REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
211 : OPTC_NUM_OF_INPUT_SEGMENT, 1,
212 : OPTC_SEG0_SRC_SEL, opp_id[0],
213 : OPTC_SEG1_SRC_SEL, opp_id[1]);
214 :
215 0 : REG_UPDATE(OPTC_WIDTH_CONTROL,
216 : OPTC_SEGMENT_WIDTH, mpcc_hactive);
217 :
218 0 : REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1);
219 0 : optc1->opp_count = opp_cnt;
220 0 : }
221 :
222 0 : void optc2_get_optc_source(struct timing_generator *optc,
223 : uint32_t *num_of_src_opp,
224 : uint32_t *src_opp_id_0,
225 : uint32_t *src_opp_id_1)
226 : {
227 : uint32_t num_of_input_segments;
228 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
229 :
230 0 : REG_GET_3(OPTC_DATA_SOURCE_SELECT,
231 : OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments,
232 : OPTC_SEG0_SRC_SEL, src_opp_id_0,
233 : OPTC_SEG1_SRC_SEL, src_opp_id_1);
234 :
235 0 : if (num_of_input_segments == 1)
236 0 : *num_of_src_opp = 2;
237 : else
238 0 : *num_of_src_opp = 1;
239 :
240 : /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */
241 0 : if (*src_opp_id_1 == 0xf)
242 0 : *num_of_src_opp = 1;
243 0 : }
244 :
245 0 : static void optc2_set_dwb_source(struct timing_generator *optc,
246 : uint32_t dwb_pipe_inst)
247 : {
248 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
249 :
250 0 : if (dwb_pipe_inst == 0)
251 0 : REG_UPDATE(DWB_SOURCE_SELECT,
252 : OPTC_DWB0_SOURCE_SELECT, optc->inst);
253 0 : else if (dwb_pipe_inst == 1)
254 0 : REG_UPDATE(DWB_SOURCE_SELECT,
255 : OPTC_DWB1_SOURCE_SELECT, optc->inst);
256 0 : }
257 :
258 0 : static void optc2_align_vblanks(
259 : struct timing_generator *optc_master,
260 : struct timing_generator *optc_slave,
261 : uint32_t master_pixel_clock_100Hz,
262 : uint32_t slave_pixel_clock_100Hz,
263 : uint8_t master_clock_divider,
264 : uint8_t slave_clock_divider)
265 : {
266 : /* accessing slave OTG registers */
267 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc_slave);
268 :
269 0 : uint32_t master_v_active = 0;
270 0 : uint32_t master_h_total = 0;
271 0 : uint32_t slave_h_total = 0;
272 : uint64_t L, XY;
273 0 : uint32_t X, Y, p = 10000;
274 : uint32_t master_update_lock;
275 :
276 : /* disable slave OTG */
277 0 : REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
278 : /* wait until disabled */
279 0 : REG_WAIT(OTG_CONTROL,
280 : OTG_CURRENT_MASTER_EN_STATE,
281 : 0, 10, 5000);
282 :
283 0 : REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total);
284 :
285 : /* assign slave OTG to be controlled by master update lock */
286 0 : REG_SET(OTG_GLOBAL_CONTROL0, 0,
287 : OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst);
288 :
289 : /* accessing master OTG registers */
290 0 : optc1 = DCN10TG_FROM_TG(optc_master);
291 :
292 : /* saving update lock state, not sure if it's needed */
293 0 : REG_GET(OTG_MASTER_UPDATE_LOCK,
294 : OTG_MASTER_UPDATE_LOCK, &master_update_lock);
295 : /* unlocking master OTG */
296 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
297 : OTG_MASTER_UPDATE_LOCK, 0);
298 :
299 0 : REG_GET(OTG_V_BLANK_START_END,
300 : OTG_V_BLANK_START, &master_v_active);
301 0 : REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total);
302 :
303 : /* calculate when to enable slave OTG */
304 0 : L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz;
305 0 : L = div_u64(L, master_h_total);
306 0 : L = div_u64(L, slave_pixel_clock_100Hz);
307 0 : XY = div_u64(L, p);
308 0 : Y = master_v_active - XY - 1;
309 0 : X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider);
310 :
311 : /*
312 : * set master OTG to unlock when V/H
313 : * counters reach calculated values
314 : */
315 0 : REG_UPDATE(OTG_GLOBAL_CONTROL1,
316 : MASTER_UPDATE_LOCK_DB_EN, 1);
317 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
318 : MASTER_UPDATE_LOCK_DB_X,
319 : X,
320 : MASTER_UPDATE_LOCK_DB_Y,
321 : Y);
322 :
323 : /* lock master OTG */
324 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
325 : OTG_MASTER_UPDATE_LOCK, 1);
326 0 : REG_WAIT(OTG_MASTER_UPDATE_LOCK,
327 : UPDATE_LOCK_STATUS, 1, 1, 10);
328 :
329 : /* accessing slave OTG registers */
330 0 : optc1 = DCN10TG_FROM_TG(optc_slave);
331 :
332 : /*
333 : * enable slave OTG, the OTG is locked with
334 : * master's update lock, so it will not run
335 : */
336 0 : REG_UPDATE(OTG_CONTROL,
337 : OTG_MASTER_EN, 1);
338 :
339 : /* accessing master OTG registers */
340 0 : optc1 = DCN10TG_FROM_TG(optc_master);
341 :
342 : /*
343 : * unlock master OTG. When master H/V counters reach
344 : * DB_XY point, slave OTG will start
345 : */
346 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
347 : OTG_MASTER_UPDATE_LOCK, 0);
348 :
349 : /* accessing slave OTG registers */
350 0 : optc1 = DCN10TG_FROM_TG(optc_slave);
351 :
352 : /* wait for slave OTG to start running*/
353 0 : REG_WAIT(OTG_CONTROL,
354 : OTG_CURRENT_MASTER_EN_STATE,
355 : 1, 10, 5000);
356 :
357 : /* accessing master OTG registers */
358 0 : optc1 = DCN10TG_FROM_TG(optc_master);
359 :
360 : /* disable the XY point*/
361 0 : REG_UPDATE(OTG_GLOBAL_CONTROL1,
362 : MASTER_UPDATE_LOCK_DB_EN, 0);
363 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
364 : MASTER_UPDATE_LOCK_DB_X,
365 : 0,
366 : MASTER_UPDATE_LOCK_DB_Y,
367 : 0);
368 :
369 : /*restore master update lock*/
370 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
371 : OTG_MASTER_UPDATE_LOCK, master_update_lock);
372 :
373 : /* accessing slave OTG registers */
374 0 : optc1 = DCN10TG_FROM_TG(optc_slave);
375 : /* restore slave to be controlled by it's own */
376 0 : REG_SET(OTG_GLOBAL_CONTROL0, 0,
377 : OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst);
378 :
379 0 : }
380 :
381 0 : void optc2_triplebuffer_lock(struct timing_generator *optc)
382 : {
383 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
384 :
385 0 : REG_SET(OTG_GLOBAL_CONTROL0, 0,
386 : OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
387 :
388 0 : REG_SET(OTG_VUPDATE_KEEPOUT, 0,
389 : OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1);
390 :
391 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
392 : OTG_MASTER_UPDATE_LOCK, 1);
393 :
394 0 : if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
395 0 : REG_WAIT(OTG_MASTER_UPDATE_LOCK,
396 : UPDATE_LOCK_STATUS, 1,
397 : 1, 10);
398 0 : }
399 :
400 0 : void optc2_triplebuffer_unlock(struct timing_generator *optc)
401 : {
402 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
403 :
404 0 : REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
405 : OTG_MASTER_UPDATE_LOCK, 0);
406 :
407 0 : REG_SET(OTG_VUPDATE_KEEPOUT, 0,
408 : OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0);
409 :
410 0 : }
411 :
412 0 : void optc2_lock_doublebuffer_enable(struct timing_generator *optc)
413 : {
414 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
415 0 : uint32_t v_blank_start = 0;
416 0 : uint32_t h_blank_start = 0;
417 :
418 0 : REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1);
419 :
420 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1,
421 : DIG_UPDATE_LOCATION, 20);
422 :
423 0 : REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start);
424 :
425 0 : REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start);
426 :
427 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
428 : MASTER_UPDATE_LOCK_DB_X,
429 : (h_blank_start - 200 - 1) / optc1->opp_count,
430 : MASTER_UPDATE_LOCK_DB_Y,
431 : v_blank_start - 1);
432 :
433 0 : REG_SET_3(OTG_VUPDATE_KEEPOUT, 0,
434 : MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, 0,
435 : MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, 100,
436 : OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1);
437 0 : }
438 :
439 0 : void optc2_lock_doublebuffer_disable(struct timing_generator *optc)
440 : {
441 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
442 :
443 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
444 : MASTER_UPDATE_LOCK_DB_X,
445 : 0,
446 : MASTER_UPDATE_LOCK_DB_Y,
447 : 0);
448 :
449 0 : REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0,
450 : DIG_UPDATE_LOCATION, 0);
451 :
452 0 : REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0);
453 0 : }
454 :
455 0 : void optc2_setup_manual_trigger(struct timing_generator *optc)
456 : {
457 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
458 :
459 0 : REG_SET_8(OTG_TRIGA_CNTL, 0,
460 : OTG_TRIGA_SOURCE_SELECT, 21,
461 : OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
462 : OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
463 : OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
464 : OTG_TRIGA_POLARITY_SELECT, 0,
465 : OTG_TRIGA_FREQUENCY_SELECT, 0,
466 : OTG_TRIGA_DELAY, 0,
467 : OTG_TRIGA_CLEAR, 1);
468 0 : }
469 :
470 0 : void optc2_program_manual_trigger(struct timing_generator *optc)
471 : {
472 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
473 :
474 0 : REG_SET(OTG_TRIGA_MANUAL_TRIG, 0,
475 : OTG_TRIGA_MANUAL_TRIG, 1);
476 0 : }
477 :
478 0 : bool optc2_configure_crc(struct timing_generator *optc,
479 : const struct crc_params *params)
480 : {
481 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
482 :
483 0 : REG_SET_2(OTG_CRC_CNTL2, 0,
484 : OTG_CRC_DSC_MODE, params->dsc_mode,
485 : OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode);
486 :
487 0 : return optc1_configure_crc(optc, params);
488 : }
489 :
490 :
491 0 : void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate)
492 : {
493 0 : struct optc *optc1 = DCN10TG_FROM_TG(optc);
494 :
495 0 : REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate);
496 0 : }
497 :
498 : static struct timing_generator_funcs dcn20_tg_funcs = {
499 : .validate_timing = optc1_validate_timing,
500 : .program_timing = optc1_program_timing,
501 : .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
502 : .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
503 : .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
504 : .program_global_sync = optc1_program_global_sync,
505 : .enable_crtc = optc2_enable_crtc,
506 : .disable_crtc = optc1_disable_crtc,
507 : /* used by enable_timing_synchronization. Not need for FPGA */
508 : .is_counter_moving = optc1_is_counter_moving,
509 : .get_position = optc1_get_position,
510 : .get_frame_count = optc1_get_vblank_counter,
511 : .get_scanoutpos = optc1_get_crtc_scanoutpos,
512 : .get_otg_active_size = optc1_get_otg_active_size,
513 : .set_early_control = optc1_set_early_control,
514 : /* used by enable_timing_synchronization. Not need for FPGA */
515 : .wait_for_state = optc1_wait_for_state,
516 : .set_blank = optc1_set_blank,
517 : .is_blanked = optc1_is_blanked,
518 : .set_blank_color = optc1_program_blank_color,
519 : .enable_reset_trigger = optc1_enable_reset_trigger,
520 : .enable_crtc_reset = optc1_enable_crtc_reset,
521 : .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
522 : .triplebuffer_lock = optc2_triplebuffer_lock,
523 : .triplebuffer_unlock = optc2_triplebuffer_unlock,
524 : .disable_reset_trigger = optc1_disable_reset_trigger,
525 : .lock = optc1_lock,
526 : .unlock = optc1_unlock,
527 : .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable,
528 : .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable,
529 : .enable_optc_clock = optc1_enable_optc_clock,
530 : .set_drr = optc1_set_drr,
531 : .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
532 : .set_static_screen_control = optc1_set_static_screen_control,
533 : .program_stereo = optc1_program_stereo,
534 : .is_stereo_left_eye = optc1_is_stereo_left_eye,
535 : .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
536 : .tg_init = optc1_tg_init,
537 : .is_tg_enabled = optc1_is_tg_enabled,
538 : .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
539 : .clear_optc_underflow = optc1_clear_optc_underflow,
540 : .setup_global_swap_lock = NULL,
541 : .get_crc = optc1_get_crc,
542 : .configure_crc = optc2_configure_crc,
543 : .set_dsc_config = optc2_set_dsc_config,
544 : .get_dsc_status = optc2_get_dsc_status,
545 : .set_dwb_source = optc2_set_dwb_source,
546 : .set_odm_bypass = optc2_set_odm_bypass,
547 : .set_odm_combine = optc2_set_odm_combine,
548 : .get_optc_source = optc2_get_optc_source,
549 : .set_gsl = optc2_set_gsl,
550 : .set_gsl_source_select = optc2_set_gsl_source_select,
551 : .set_vtg_params = optc1_set_vtg_params,
552 : .program_manual_trigger = optc2_program_manual_trigger,
553 : .setup_manual_trigger = optc2_setup_manual_trigger,
554 : .get_hw_timing = optc1_get_hw_timing,
555 : .align_vblanks = optc2_align_vblanks,
556 : };
557 :
558 0 : void dcn20_timing_generator_init(struct optc *optc1)
559 : {
560 0 : optc1->base.funcs = &dcn20_tg_funcs;
561 :
562 0 : optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
563 0 : optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
564 :
565 0 : optc1->min_h_blank = 32;
566 0 : optc1->min_v_blank = 3;
567 0 : optc1->min_v_blank_interlace = 5;
568 0 : optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue.
569 0 : optc1->min_v_sync_width = 1;
570 0 : }
|