LCOV - code coverage report
Current view: top level - drivers/gpu/drm/amd/pm/powerplay/hwmgr - ppevvmath.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 160 0.0 %
Date: 2022-12-09 01:23:36 Functions: 0 11 0.0 %

          Line data    Source code
       1             : /*
       2             :  * Copyright 2015 Advanced Micro Devices, Inc.
       3             :  *
       4             :  * Permission is hereby granted, free of charge, to any person obtaining a
       5             :  * copy of this software and associated documentation files (the "Software"),
       6             :  * to deal in the Software without restriction, including without limitation
       7             :  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
       8             :  * and/or sell copies of the Software, and to permit persons to whom the
       9             :  * Software is furnished to do so, subject to the following conditions:
      10             :  *
      11             :  * The above copyright notice and this permission notice shall be included in
      12             :  * all copies or substantial portions of the Software.
      13             :  *
      14             :  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
      15             :  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
      16             :  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
      17             :  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
      18             :  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
      19             :  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
      20             :  * OTHER DEALINGS IN THE SOFTWARE.
      21             :  *
      22             :  */
      23             : #include <asm/div64.h>
      24             : 
      25             : #define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
      26             : 
      27             : #define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
      28             : 
      29             : #define SHIFTED_2 (2 << SHIFT_AMOUNT)
      30             : #define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
      31             : 
      32             : /* -------------------------------------------------------------------------------
      33             :  * NEW TYPE - fINT
      34             :  * -------------------------------------------------------------------------------
      35             :  * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
      36             :  * fInt A;
      37             :  * A.full => The full number as it is. Generally not easy to read
      38             :  * A.partial.real => Only the integer portion
      39             :  * A.partial.decimal => Only the fractional portion
      40             :  */
      41             : typedef union _fInt {
      42             :     int full;
      43             :     struct _partial {
      44             :         unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
      45             :         int real: 32 - SHIFT_AMOUNT;
      46             :     } partial;
      47             : } fInt;
      48             : 
      49             : /* -------------------------------------------------------------------------------
      50             :  * Function Declarations
      51             :  *  -------------------------------------------------------------------------------
      52             :  */
      53             : static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
      54             : static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
      55             : static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
      56             : static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
      57             : 
      58             : static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
      59             : static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
      60             : static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
      61             : static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
      62             : static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
      63             : static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
      64             : static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
      65             : 
      66             : static int uAbs(int);                                     /* Returns the Absolute value of the Int */
      67             : static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
      68             : 
      69             : static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
      70             : static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
      71             : static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */
      72             : 
      73             : static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
      74             : static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
      75             : 
      76             : /* Fuse decoding functions
      77             :  * -------------------------------------------------------------------------------------
      78             :  */
      79             : static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
      80             : static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
      81             : static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
      82             : 
      83             : /* Internal Support Functions - Use these ONLY for testing or adding to internal functions
      84             :  * -------------------------------------------------------------------------------------
      85             :  * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
      86             :  */
      87             : static fInt Divide (int, int);                            /* Divide two INTs and return result as FINT */
      88             : static fInt fNegate(fInt);
      89             : 
      90             : static int uGetScaledDecimal (fInt);                      /* Internal function */
      91             : static int GetReal (fInt A);                              /* Internal function */
      92             : 
      93             : /* -------------------------------------------------------------------------------------
      94             :  * TROUBLESHOOTING INFORMATION
      95             :  * -------------------------------------------------------------------------------------
      96             :  * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
      97             :  * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
      98             :  * 3) fMultiply - OutputOutOfRangeException:
      99             :  * 4) fGetSquare - OutputOutOfRangeException:
     100             :  * 5) fDivide - DivideByZeroException
     101             :  * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
     102             :  */
     103             : 
     104             : /* -------------------------------------------------------------------------------------
     105             :  * START OF CODE
     106             :  * -------------------------------------------------------------------------------------
     107             :  */
     108           0 : static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
     109             : {
     110             :         uint32_t i;
     111           0 :         bool bNegated = false;
     112             : 
     113           0 :         fInt fPositiveOne = ConvertToFraction(1);
     114           0 :         fInt fZERO = ConvertToFraction(0);
     115             : 
     116           0 :         fInt lower_bound = Divide(78, 10000);
     117           0 :         fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
     118             :         fInt error_term;
     119             : 
     120             :         static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
     121             :         static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
     122             : 
     123           0 :         if (GreaterThan(fZERO, exponent)) {
     124           0 :                 exponent = fNegate(exponent);
     125           0 :                 bNegated = true;
     126             :         }
     127             : 
     128           0 :         while (GreaterThan(exponent, lower_bound)) {
     129           0 :                 for (i = 0; i < 11; i++) {
     130           0 :                         if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
     131           0 :                                 exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
     132           0 :                                 solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
     133             :                         }
     134             :                 }
     135             :         }
     136             : 
     137             :         error_term = fAdd(fPositiveOne, exponent);
     138             : 
     139           0 :         solution = fMultiply(solution, error_term);
     140             : 
     141           0 :         if (bNegated)
     142             :                 solution = fDivide(fPositiveOne, solution);
     143             : 
     144           0 :         return solution;
     145             : }
     146             : 
     147           0 : static fInt fNaturalLog(fInt value)
     148             : {
     149             :         uint32_t i;
     150           0 :         fInt upper_bound = Divide(8, 1000);
     151           0 :         fInt fNegativeOne = ConvertToFraction(-1);
     152             :         fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
     153             :         fInt error_term;
     154             : 
     155             :         static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
     156             :         static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
     157             : 
     158           0 :         while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
     159           0 :                 for (i = 0; i < 10; i++) {
     160           0 :                         if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
     161           0 :                                 value = fDivide(value, GetScaledFraction(k_array[i], 10000));
     162           0 :                                 solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
     163             :                         }
     164             :                 }
     165             :         }
     166             : 
     167             :         error_term = fAdd(fNegativeOne, value);
     168             : 
     169           0 :         return (fAdd(solution, error_term));
     170             : }
     171             : 
     172           0 : static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
     173             : {
     174           0 :         fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
     175           0 :         fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
     176             : 
     177             :         fInt f_decoded_value;
     178             : 
     179           0 :         f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
     180           0 :         f_decoded_value = fMultiply(f_decoded_value, f_range);
     181             :         f_decoded_value = fAdd(f_decoded_value, f_min);
     182             : 
     183           0 :         return f_decoded_value;
     184             : }
     185             : 
     186             : 
     187           0 : static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
     188             : {
     189           0 :         fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
     190           0 :         fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
     191             : 
     192           0 :         fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
     193           0 :         fInt f_CONSTANT1 = ConvertToFraction(1);
     194             : 
     195             :         fInt f_decoded_value;
     196             : 
     197           0 :         f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
     198           0 :         f_decoded_value = fNaturalLog(f_decoded_value);
     199           0 :         f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
     200             :         f_decoded_value = fAdd(f_decoded_value, f_average);
     201             : 
     202           0 :         return f_decoded_value;
     203             : }
     204             : 
     205           0 : static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
     206             : {
     207             :         fInt fLeakage;
     208           0 :         fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
     209             : 
     210           0 :         fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
     211           0 :         fLeakage = fDivide(fLeakage, f_bit_max_value);
     212           0 :         fLeakage = fExponential(fLeakage);
     213           0 :         fLeakage = fMultiply(fLeakage, f_min);
     214             : 
     215           0 :         return fLeakage;
     216             : }
     217             : 
     218             : static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
     219             : {
     220             :         fInt temp;
     221             : 
     222           0 :         if (X <= MAX)
     223           0 :                 temp.full = (X << SHIFT_AMOUNT);
     224             :         else
     225             :                 temp.full = 0;
     226             : 
     227             :         return temp;
     228             : }
     229             : 
     230             : static fInt fNegate(fInt X)
     231             : {
     232           0 :         fInt CONSTANT_NEGONE = ConvertToFraction(-1);
     233           0 :         return (fMultiply(X, CONSTANT_NEGONE));
     234             : }
     235             : 
     236             : static fInt Convert_ULONG_ToFraction(uint32_t X)
     237             : {
     238             :         fInt temp;
     239             : 
     240           0 :         if (X <= MAX)
     241           0 :                 temp.full = (X << SHIFT_AMOUNT);
     242             :         else
     243             :                 temp.full = 0;
     244             : 
     245             :         return temp;
     246             : }
     247             : 
     248           0 : static fInt GetScaledFraction(int X, int factor)
     249             : {
     250             :         int times_shifted, factor_shifted;
     251             :         bool bNEGATED;
     252             :         fInt fValue;
     253             : 
     254           0 :         times_shifted = 0;
     255           0 :         factor_shifted = 0;
     256           0 :         bNEGATED = false;
     257             : 
     258           0 :         if (X < 0) {
     259           0 :                 X = -1*X;
     260           0 :                 bNEGATED = true;
     261             :         }
     262             : 
     263           0 :         if (factor < 0) {
     264           0 :                 factor = -1*factor;
     265           0 :                 bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
     266             :         }
     267             : 
     268           0 :         if ((X > MAX) || factor > MAX) {
     269           0 :                 if ((X/factor) <= MAX) {
     270           0 :                         while (X > MAX) {
     271           0 :                                 X = X >> 1;
     272           0 :                                 times_shifted++;
     273             :                         }
     274             : 
     275           0 :                         while (factor > MAX) {
     276           0 :                                 factor = factor >> 1;
     277           0 :                                 factor_shifted++;
     278             :                         }
     279             :                 } else {
     280           0 :                         fValue.full = 0;
     281           0 :                         return fValue;
     282             :                 }
     283             :         }
     284             : 
     285           0 :         if (factor == 1)
     286             :                 return ConvertToFraction(X);
     287             : 
     288           0 :         fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
     289             : 
     290           0 :         fValue.full = fValue.full << times_shifted;
     291           0 :         fValue.full = fValue.full >> factor_shifted;
     292             : 
     293           0 :         return fValue;
     294             : }
     295             : 
     296             : /* Addition using two fInts */
     297             : static fInt fAdd (fInt X, fInt Y)
     298             : {
     299             :         fInt Sum;
     300             : 
     301           0 :         Sum.full = X.full + Y.full;
     302             : 
     303             :         return Sum;
     304             : }
     305             : 
     306             : /* Addition using two fInts */
     307             : static fInt fSubtract (fInt X, fInt Y)
     308             : {
     309             :         fInt Difference;
     310             : 
     311           0 :         Difference.full = X.full - Y.full;
     312             : 
     313             :         return Difference;
     314             : }
     315             : 
     316             : static bool Equal(fInt A, fInt B)
     317             : {
     318           0 :         if (A.full == B.full)
     319             :                 return true;
     320             :         else
     321             :                 return false;
     322             : }
     323             : 
     324             : static bool GreaterThan(fInt A, fInt B)
     325             : {
     326           0 :         if (A.full > B.full)
     327             :                 return true;
     328             :         else
     329             :                 return false;
     330             : }
     331             : 
     332             : static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
     333             : {
     334             :         fInt Product;
     335             :         int64_t tempProduct;
     336             : 
     337             :         /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
     338             :         /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
     339             :         bool X_LessThanOne, Y_LessThanOne;
     340             : 
     341             :         X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
     342             :         Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
     343             : 
     344             :         if (X_LessThanOne && Y_LessThanOne) {
     345             :                 Product.full = X.full * Y.full;
     346             :                 return Product
     347             :         }*/
     348             : 
     349           0 :         tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
     350           0 :         tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
     351           0 :         Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
     352             : 
     353             :         return Product;
     354             : }
     355             : 
     356             : static fInt fDivide (fInt X, fInt Y)
     357             : {
     358             :         fInt fZERO, fQuotient;
     359             :         int64_t longlongX, longlongY;
     360             : 
     361           0 :         fZERO = ConvertToFraction(0);
     362             : 
     363           0 :         if (Equal(Y, fZERO))
     364             :                 return fZERO;
     365             : 
     366           0 :         longlongX = (int64_t)X.full;
     367           0 :         longlongY = (int64_t)Y.full;
     368             : 
     369           0 :         longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
     370             : 
     371           0 :         div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
     372             : 
     373           0 :         fQuotient.full = (int)longlongX;
     374             :         return fQuotient;
     375             : }
     376             : 
     377           0 : static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
     378             : {
     379             :         fInt fullNumber, scaledDecimal, scaledReal;
     380             : 
     381           0 :         scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
     382             : 
     383           0 :         scaledDecimal.full = uGetScaledDecimal(A);
     384             : 
     385             :         fullNumber = fAdd(scaledDecimal,scaledReal);
     386             : 
     387           0 :         return fullNumber.full;
     388             : }
     389             : 
     390             : static fInt fGetSquare(fInt A)
     391             : {
     392           0 :         return fMultiply(A,A);
     393             : }
     394             : 
     395             : /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
     396           0 : static fInt fSqrt(fInt num)
     397             : {
     398             :         fInt F_divide_Fprime, Fprime;
     399             :         fInt test;
     400             :         fInt twoShifted;
     401             :         int seed, counter, error;
     402             :         fInt x_new, x_old, C, y;
     403             : 
     404           0 :         fInt fZERO = ConvertToFraction(0);
     405             : 
     406             :         /* (0 > num) is the same as (num < 0), i.e., num is negative */
     407             : 
     408           0 :         if (GreaterThan(fZERO, num) || Equal(fZERO, num))
     409           0 :                 return fZERO;
     410             : 
     411           0 :         C = num;
     412             : 
     413           0 :         if (num.partial.real > 3000)
     414             :                 seed = 60;
     415           0 :         else if (num.partial.real > 1000)
     416             :                 seed = 30;
     417           0 :         else if (num.partial.real > 100)
     418             :                 seed = 10;
     419             :         else
     420           0 :                 seed = 2;
     421             : 
     422           0 :         counter = 0;
     423             : 
     424           0 :         if (Equal(num, fZERO)) /*Square Root of Zero is zero */
     425           0 :                 return fZERO;
     426             : 
     427           0 :         twoShifted = ConvertToFraction(2);
     428             :         x_new = ConvertToFraction(seed);
     429             : 
     430             :         do {
     431           0 :                 counter++;
     432             : 
     433           0 :                 x_old.full = x_new.full;
     434             : 
     435           0 :                 test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
     436             :                 y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
     437             : 
     438           0 :                 Fprime = fMultiply(twoShifted, x_old);
     439           0 :                 F_divide_Fprime = fDivide(y, Fprime);
     440             : 
     441             :                 x_new = fSubtract(x_old, F_divide_Fprime);
     442             : 
     443           0 :                 error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
     444             : 
     445           0 :                 if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
     446           0 :                         return x_new;
     447             : 
     448           0 :         } while (uAbs(error) > 0);
     449             : 
     450           0 :         return (x_new);
     451             : }
     452             : 
     453           0 : static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
     454             : {
     455           0 :         fInt *pRoots = &Roots[0];
     456             :         fInt temp, root_first, root_second;
     457             :         fInt f_CONSTANT10, f_CONSTANT100;
     458             : 
     459           0 :         f_CONSTANT100 = ConvertToFraction(100);
     460             :         f_CONSTANT10 = ConvertToFraction(10);
     461             : 
     462           0 :         while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
     463           0 :                 A = fDivide(A, f_CONSTANT10);
     464           0 :                 B = fDivide(B, f_CONSTANT10);
     465             :                 C = fDivide(C, f_CONSTANT10);
     466             :         }
     467             : 
     468           0 :         temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
     469           0 :         temp = fMultiply(temp, C); /* root = 4*A*C */
     470           0 :         temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
     471           0 :         temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
     472             : 
     473           0 :         root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
     474           0 :         root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
     475             : 
     476           0 :         root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
     477           0 :         root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
     478             : 
     479           0 :         root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
     480           0 :         root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
     481             : 
     482           0 :         *(pRoots + 0) = root_first;
     483           0 :         *(pRoots + 1) = root_second;
     484           0 : }
     485             : 
     486             : /* -----------------------------------------------------------------------------
     487             :  * SUPPORT FUNCTIONS
     488             :  * -----------------------------------------------------------------------------
     489             :  */
     490             : 
     491             : /* Conversion Functions */
     492             : static int GetReal (fInt A)
     493             : {
     494           0 :         return (A.full >> SHIFT_AMOUNT);
     495             : }
     496             : 
     497             : static fInt Divide (int X, int Y)
     498             : {
     499             :         fInt A, B, Quotient;
     500             : 
     501           0 :         A.full = X << SHIFT_AMOUNT;
     502           0 :         B.full = Y << SHIFT_AMOUNT;
     503             : 
     504           0 :         Quotient = fDivide(A, B);
     505             : 
     506             :         return Quotient;
     507             : }
     508             : 
     509           0 : static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
     510             : {
     511             :         int dec[PRECISION];
     512           0 :         int i, scaledDecimal = 0, tmp = A.partial.decimal;
     513             : 
     514           0 :         for (i = 0; i < PRECISION; i++) {
     515           0 :                 dec[i] = tmp / (1 << SHIFT_AMOUNT);
     516           0 :                 tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
     517           0 :                 tmp *= 10;
     518           0 :                 scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
     519             :         }
     520             : 
     521           0 :         return scaledDecimal;
     522             : }
     523             : 
     524           0 : static int uPow(int base, int power)
     525             : {
     526           0 :         if (power == 0)
     527             :                 return 1;
     528             :         else
     529           0 :                 return (base)*uPow(base, power - 1);
     530             : }
     531             : 
     532             : static int uAbs(int X)
     533             : {
     534           0 :         if (X < 0)
     535           0 :                 return (X * -1);
     536             :         else
     537             :                 return X;
     538             : }
     539             : 
     540             : static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
     541             : {
     542             :         fInt solution;
     543             : 
     544           0 :         solution = fDivide(A, fStepSize);
     545           0 :         solution.partial.decimal = 0; /*All fractional digits changes to 0 */
     546             : 
     547             :         if (error_term)
     548             :                 solution.partial.real += 1; /*Error term of 1 added */
     549             : 
     550           0 :         solution = fMultiply(solution, fStepSize);
     551             :         solution = fAdd(solution, fStepSize);
     552             : 
     553             :         return solution;
     554             : }
     555             : 

Generated by: LCOV version 1.14