Line data Source code
1 : /*
2 : * Copyright 2015 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : */
23 :
24 : #include "pp_debug.h"
25 : #include "smumgr.h"
26 : #include "smu7_dyn_defaults.h"
27 : #include "smu73.h"
28 : #include "smu_ucode_xfer_vi.h"
29 : #include "fiji_smumgr.h"
30 : #include "fiji_ppsmc.h"
31 : #include "smu73_discrete.h"
32 : #include "ppatomctrl.h"
33 : #include "smu/smu_7_1_3_d.h"
34 : #include "smu/smu_7_1_3_sh_mask.h"
35 : #include "gmc/gmc_8_1_d.h"
36 : #include "gmc/gmc_8_1_sh_mask.h"
37 : #include "oss/oss_3_0_d.h"
38 : #include "gca/gfx_8_0_d.h"
39 : #include "bif/bif_5_0_d.h"
40 : #include "bif/bif_5_0_sh_mask.h"
41 : #include "dce/dce_10_0_d.h"
42 : #include "dce/dce_10_0_sh_mask.h"
43 : #include "hardwaremanager.h"
44 : #include "cgs_common.h"
45 : #include "atombios.h"
46 : #include "pppcielanes.h"
47 : #include "hwmgr.h"
48 : #include "smu7_hwmgr.h"
49 :
50 :
51 : #define AVFS_EN_MSB 1568
52 : #define AVFS_EN_LSB 1568
53 :
54 : #define FIJI_SMC_SIZE 0x20000
55 :
56 : #define POWERTUNE_DEFAULT_SET_MAX 1
57 : #define VDDC_VDDCI_DELTA 300
58 : #define MC_CG_ARB_FREQ_F1 0x0b
59 :
60 : /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61 : * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62 : */
63 : static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 : {600, 1050, 3, 0}, {600, 1050, 6, 1} };
65 :
66 : /* [FF, SS] type, [] 4 voltage ranges, and
67 : * [Floor Freq, Boundary Freq, VID min , VID max]
68 : */
69 : static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 : { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 : { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72 :
73 : /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74 : * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75 : */
76 : static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 : {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78 :
79 : static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 : /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 : {1, 0xF, 0xFD,
82 : /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 : 0x19, 5, 45}
84 : };
85 :
86 : static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 : /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
88 : /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 : { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
90 : { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
91 : { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
92 : { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
93 : { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
94 : { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
95 : { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
96 : { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
97 : };
98 :
99 0 : static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 : {
101 0 : int result = 0;
102 :
103 : /* Wait for smc boot up */
104 : /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 : RCU_UC_EVENTS, boot_seq_done, 0); */
106 :
107 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 : SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109 :
110 0 : result = smu7_upload_smu_firmware_image(hwmgr);
111 0 : if (result)
112 : return result;
113 :
114 : /* Clear status */
115 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 : ixSMU_STATUS, 0);
117 :
118 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 : SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120 :
121 : /* De-assert reset */
122 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 : SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124 :
125 : /* Wait for ROM firmware to initialize interrupt hendler */
126 : /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 : SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128 :
129 : /* Set SMU Auto Start */
130 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 : SMU_INPUT_DATA, AUTO_START, 1);
132 :
133 : /* Clear firmware interrupt enable flag */
134 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 : ixFIRMWARE_FLAGS, 0);
136 :
137 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 : INTERRUPTS_ENABLED, 1);
139 :
140 0 : smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
141 :
142 : /* Wait for done bit to be set */
143 0 : PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
144 : SMU_STATUS, SMU_DONE, 0);
145 :
146 : /* Check pass/failed indicator */
147 0 : if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
148 : SMU_STATUS, SMU_PASS) != 1) {
149 0 : PP_ASSERT_WITH_CODE(false,
150 : "SMU Firmware start failed!", return -1);
151 : }
152 :
153 : /* Wait for firmware to initialize */
154 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
155 : FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156 :
157 0 : return result;
158 : }
159 :
160 0 : static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 : {
162 0 : int result = 0;
163 :
164 : /* wait for smc boot up */
165 0 : PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
166 : RCU_UC_EVENTS, boot_seq_done, 0);
167 :
168 : /* Clear firmware interrupt enable flag */
169 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 : ixFIRMWARE_FLAGS, 0);
171 :
172 : /* Assert reset */
173 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
174 : SMC_SYSCON_RESET_CNTL, rst_reg, 1);
175 :
176 0 : result = smu7_upload_smu_firmware_image(hwmgr);
177 0 : if (result)
178 : return result;
179 :
180 : /* Set smc instruct start point at 0x0 */
181 0 : smu7_program_jump_on_start(hwmgr);
182 :
183 : /* Enable clock */
184 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 : SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
186 :
187 : /* De-assert reset */
188 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
189 : SMC_SYSCON_RESET_CNTL, rst_reg, 0);
190 :
191 : /* Wait for firmware to initialize */
192 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
193 : FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
194 :
195 0 : return result;
196 : }
197 :
198 0 : static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
199 : {
200 0 : int result = 0;
201 0 : struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
202 :
203 0 : if (0 != smu_data->avfs_btc_param) {
204 0 : if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
205 : PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
206 : NULL)) {
207 0 : pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
208 0 : result = -EINVAL;
209 : }
210 : }
211 : /* Soft-Reset to reset the engine before loading uCode */
212 : /* halt */
213 0 : cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
214 : /* reset everything */
215 0 : cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
216 : /* clear reset */
217 0 : cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
218 :
219 0 : return result;
220 : }
221 :
222 0 : static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
223 : {
224 : int32_t vr_config;
225 : uint32_t table_start;
226 : uint32_t level_addr, vr_config_addr;
227 0 : uint32_t level_size = sizeof(avfs_graphics_level);
228 :
229 0 : PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
230 : SMU7_FIRMWARE_HEADER_LOCATION +
231 : offsetof(SMU73_Firmware_Header, DpmTable),
232 : &table_start, 0x40000),
233 : "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
234 : "communicate starting address of DPM table",
235 : return -1;);
236 :
237 : /* Default value for vr_config =
238 : * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
239 0 : vr_config = 0x01000500; /* Real value:0x50001 */
240 :
241 0 : vr_config_addr = table_start +
242 : offsetof(SMU73_Discrete_DpmTable, VRConfig);
243 :
244 0 : PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
245 : (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
246 : "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
247 : "vr_config value over to SMC",
248 : return -1;);
249 :
250 0 : level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
251 :
252 0 : PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
253 : (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
254 : "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
255 : return -1;);
256 :
257 : return 0;
258 : }
259 :
260 0 : static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
261 : {
262 0 : if (!hwmgr->avfs_supported)
263 : return 0;
264 :
265 0 : PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
266 : "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
267 : " table over to SMU",
268 : return -EINVAL);
269 0 : PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
270 : "[AVFS][fiji_avfs_event_mgr] Could not setup "
271 : "Pwr Virus for AVFS ",
272 : return -EINVAL);
273 0 : PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
274 : "[AVFS][fiji_avfs_event_mgr] Failure at "
275 : "fiji_start_avfs_btc. AVFS Disabled",
276 : return -EINVAL);
277 :
278 : return 0;
279 : }
280 :
281 0 : static int fiji_start_smu(struct pp_hwmgr *hwmgr)
282 : {
283 0 : int result = 0;
284 0 : struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
285 :
286 : /* Only start SMC if SMC RAM is not running */
287 0 : if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
288 : /* Check if SMU is running in protected mode */
289 0 : if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
290 : CGS_IND_REG__SMC,
291 : SMU_FIRMWARE, SMU_MODE)) {
292 0 : result = fiji_start_smu_in_non_protection_mode(hwmgr);
293 0 : if (result)
294 : return result;
295 : } else {
296 0 : result = fiji_start_smu_in_protection_mode(hwmgr);
297 0 : if (result)
298 : return result;
299 : }
300 0 : if (fiji_avfs_event_mgr(hwmgr))
301 0 : hwmgr->avfs_supported = false;
302 : }
303 :
304 : /* Setup SoftRegsStart here for register lookup in case
305 : * DummyBackEnd is used and ProcessFirmwareHeader is not executed
306 : */
307 0 : smu7_read_smc_sram_dword(hwmgr,
308 : SMU7_FIRMWARE_HEADER_LOCATION +
309 : offsetof(SMU73_Firmware_Header, SoftRegisters),
310 : &(priv->smu7_data.soft_regs_start), 0x40000);
311 :
312 0 : result = smu7_request_smu_load_fw(hwmgr);
313 :
314 0 : return result;
315 : }
316 :
317 0 : static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
318 : {
319 :
320 0 : uint32_t efuse = 0;
321 :
322 0 : if (!hwmgr->not_vf)
323 : return false;
324 :
325 0 : if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
326 : &efuse)) {
327 0 : if (efuse)
328 : return true;
329 : }
330 0 : return false;
331 : }
332 :
333 0 : static int fiji_smu_init(struct pp_hwmgr *hwmgr)
334 : {
335 0 : struct fiji_smumgr *fiji_priv = NULL;
336 :
337 0 : fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
338 :
339 0 : if (fiji_priv == NULL)
340 : return -ENOMEM;
341 :
342 0 : hwmgr->smu_backend = fiji_priv;
343 :
344 0 : if (smu7_init(hwmgr)) {
345 0 : kfree(fiji_priv);
346 0 : return -EINVAL;
347 : }
348 :
349 : return 0;
350 : }
351 :
352 0 : static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
353 : struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
354 : uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
355 : {
356 : uint32_t i;
357 : uint16_t vddci;
358 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
359 0 : *voltage = *mvdd = 0;
360 :
361 :
362 : /* clock - voltage dependency table is empty table */
363 0 : if (dep_table->count == 0)
364 : return -EINVAL;
365 :
366 0 : for (i = 0; i < dep_table->count; i++) {
367 : /* find first sclk bigger than request */
368 0 : if (dep_table->entries[i].clk >= clock) {
369 0 : *voltage |= (dep_table->entries[i].vddc *
370 0 : VOLTAGE_SCALE) << VDDC_SHIFT;
371 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
372 0 : *voltage |= (data->vbios_boot_state.vddci_bootup_value *
373 0 : VOLTAGE_SCALE) << VDDCI_SHIFT;
374 0 : else if (dep_table->entries[i].vddci)
375 0 : *voltage |= (dep_table->entries[i].vddci *
376 0 : VOLTAGE_SCALE) << VDDCI_SHIFT;
377 : else {
378 0 : vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
379 0 : (dep_table->entries[i].vddc -
380 : VDDC_VDDCI_DELTA));
381 0 : *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
382 : }
383 :
384 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
385 0 : *mvdd = data->vbios_boot_state.mvdd_bootup_value *
386 : VOLTAGE_SCALE;
387 0 : else if (dep_table->entries[i].mvdd)
388 0 : *mvdd = (uint32_t) dep_table->entries[i].mvdd *
389 : VOLTAGE_SCALE;
390 :
391 0 : *voltage |= 1 << PHASES_SHIFT;
392 : return 0;
393 : }
394 : }
395 :
396 : /* sclk is bigger than max sclk in the dependence table */
397 0 : *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
398 :
399 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
400 0 : *voltage |= (data->vbios_boot_state.vddci_bootup_value *
401 0 : VOLTAGE_SCALE) << VDDCI_SHIFT;
402 0 : else if (dep_table->entries[i-1].vddci) {
403 0 : vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
404 0 : (dep_table->entries[i].vddc -
405 : VDDC_VDDCI_DELTA));
406 0 : *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
407 : }
408 :
409 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
410 0 : *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
411 0 : else if (dep_table->entries[i].mvdd)
412 0 : *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
413 :
414 : return 0;
415 : }
416 :
417 :
418 : static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
419 : {
420 : uint32_t tmp;
421 0 : tmp = raw_setting * 4096 / 100;
422 0 : return (uint16_t)tmp;
423 : }
424 :
425 0 : static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
426 : {
427 0 : switch (line) {
428 : case SMU7_I2CLineID_DDC1:
429 0 : *scl = SMU7_I2C_DDC1CLK;
430 0 : *sda = SMU7_I2C_DDC1DATA;
431 0 : break;
432 : case SMU7_I2CLineID_DDC2:
433 0 : *scl = SMU7_I2C_DDC2CLK;
434 0 : *sda = SMU7_I2C_DDC2DATA;
435 0 : break;
436 : case SMU7_I2CLineID_DDC3:
437 0 : *scl = SMU7_I2C_DDC3CLK;
438 0 : *sda = SMU7_I2C_DDC3DATA;
439 0 : break;
440 : case SMU7_I2CLineID_DDC4:
441 0 : *scl = SMU7_I2C_DDC4CLK;
442 0 : *sda = SMU7_I2C_DDC4DATA;
443 0 : break;
444 : case SMU7_I2CLineID_DDC5:
445 0 : *scl = SMU7_I2C_DDC5CLK;
446 0 : *sda = SMU7_I2C_DDC5DATA;
447 0 : break;
448 : case SMU7_I2CLineID_DDC6:
449 0 : *scl = SMU7_I2C_DDC6CLK;
450 0 : *sda = SMU7_I2C_DDC6DATA;
451 0 : break;
452 : case SMU7_I2CLineID_SCLSDA:
453 0 : *scl = SMU7_I2C_SCL;
454 0 : *sda = SMU7_I2C_SDA;
455 0 : break;
456 : case SMU7_I2CLineID_DDCVGA:
457 0 : *scl = SMU7_I2C_DDCVGACLK;
458 0 : *sda = SMU7_I2C_DDCVGADATA;
459 0 : break;
460 : default:
461 0 : *scl = 0;
462 0 : *sda = 0;
463 0 : break;
464 : }
465 0 : }
466 :
467 : static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
468 : {
469 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
470 0 : struct phm_ppt_v1_information *table_info =
471 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
472 :
473 0 : if (table_info &&
474 0 : table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
475 : table_info->cac_dtp_table->usPowerTuneDataSetID)
476 0 : smu_data->power_tune_defaults =
477 0 : &fiji_power_tune_data_set_array
478 0 : [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
479 : else
480 0 : smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
481 :
482 : }
483 :
484 0 : static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
485 : {
486 :
487 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
488 0 : const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
489 :
490 0 : SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
491 :
492 0 : struct phm_ppt_v1_information *table_info =
493 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
494 0 : struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
495 0 : struct pp_advance_fan_control_parameters *fan_table =
496 : &hwmgr->thermal_controller.advanceFanControlParameters;
497 : uint8_t uc_scl, uc_sda;
498 :
499 : /* TDP number of fraction bits are changed from 8 to 7 for Fiji
500 : * as requested by SMC team
501 : */
502 0 : dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
503 : (uint16_t)(cac_dtp_table->usTDP * 128));
504 0 : dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
505 : (uint16_t)(cac_dtp_table->usTDP * 128));
506 :
507 0 : PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
508 : "Target Operating Temp is out of Range!",
509 : );
510 :
511 0 : dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
512 0 : dpm_table->GpuTjHyst = 8;
513 :
514 0 : dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
515 :
516 : /* The following are for new Fiji Multi-input fan/thermal control */
517 0 : dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
518 : cac_dtp_table->usTargetOperatingTemp * 256);
519 0 : dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
520 : cac_dtp_table->usTemperatureLimitHotspot * 256);
521 0 : dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
522 : cac_dtp_table->usTemperatureLimitLiquid1 * 256);
523 0 : dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
524 : cac_dtp_table->usTemperatureLimitLiquid2 * 256);
525 0 : dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
526 : cac_dtp_table->usTemperatureLimitVrVddc * 256);
527 0 : dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
528 : cac_dtp_table->usTemperatureLimitVrMvdd * 256);
529 0 : dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
530 : cac_dtp_table->usTemperatureLimitPlx * 256);
531 :
532 0 : dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
533 : scale_fan_gain_settings(fan_table->usFanGainEdge));
534 0 : dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
535 : scale_fan_gain_settings(fan_table->usFanGainHotspot));
536 0 : dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
537 : scale_fan_gain_settings(fan_table->usFanGainLiquid));
538 0 : dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
539 : scale_fan_gain_settings(fan_table->usFanGainVrVddc));
540 0 : dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
541 : scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
542 0 : dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
543 : scale_fan_gain_settings(fan_table->usFanGainPlx));
544 0 : dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
545 : scale_fan_gain_settings(fan_table->usFanGainHbm));
546 :
547 0 : dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
548 0 : dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
549 0 : dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
550 0 : dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
551 :
552 0 : get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
553 0 : dpm_table->Liquid_I2C_LineSCL = uc_scl;
554 0 : dpm_table->Liquid_I2C_LineSDA = uc_sda;
555 :
556 0 : get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
557 0 : dpm_table->Vr_I2C_LineSCL = uc_scl;
558 0 : dpm_table->Vr_I2C_LineSDA = uc_sda;
559 :
560 0 : get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
561 0 : dpm_table->Plx_I2C_LineSCL = uc_scl;
562 0 : dpm_table->Plx_I2C_LineSDA = uc_sda;
563 :
564 0 : return 0;
565 : }
566 :
567 :
568 : static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
569 : {
570 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
571 0 : const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
572 :
573 0 : smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
574 0 : smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
575 0 : smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
576 0 : smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
577 :
578 : return 0;
579 : }
580 :
581 :
582 : static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
583 : {
584 : uint16_t tdc_limit;
585 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
586 0 : struct phm_ppt_v1_information *table_info =
587 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
588 0 : const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
589 :
590 : /* TDC number of fraction bits are changed from 8 to 7
591 : * for Fiji as requested by SMC team
592 : */
593 0 : tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
594 0 : smu_data->power_tune_table.TDC_VDDC_PkgLimit =
595 0 : CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
596 0 : smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
597 0 : defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
598 0 : smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
599 :
600 : return 0;
601 : }
602 :
603 0 : static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
604 : {
605 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
606 0 : const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
607 : uint32_t temp;
608 :
609 0 : if (smu7_read_smc_sram_dword(hwmgr,
610 : fuse_table_offset +
611 : offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
612 : (uint32_t *)&temp, SMC_RAM_END))
613 0 : PP_ASSERT_WITH_CODE(false,
614 : "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
615 : return -EINVAL);
616 : else {
617 0 : smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
618 0 : smu_data->power_tune_table.LPMLTemperatureMin =
619 0 : (uint8_t)((temp >> 16) & 0xff);
620 0 : smu_data->power_tune_table.LPMLTemperatureMax =
621 0 : (uint8_t)((temp >> 8) & 0xff);
622 0 : smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
623 : }
624 0 : return 0;
625 : }
626 :
627 : static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
628 : {
629 : int i;
630 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
631 :
632 : /* Currently not used. Set all to zero. */
633 0 : for (i = 0; i < 16; i++)
634 0 : smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
635 :
636 : return 0;
637 : }
638 :
639 : static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
640 : {
641 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
642 :
643 0 : if ((hwmgr->thermal_controller.advanceFanControlParameters.
644 0 : usFanOutputSensitivity & (1 << 15)) ||
645 : 0 == hwmgr->thermal_controller.advanceFanControlParameters.
646 : usFanOutputSensitivity)
647 : hwmgr->thermal_controller.advanceFanControlParameters.
648 0 : usFanOutputSensitivity = hwmgr->thermal_controller.
649 0 : advanceFanControlParameters.usDefaultFanOutputSensitivity;
650 :
651 0 : smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
652 0 : PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
653 : advanceFanControlParameters.usFanOutputSensitivity);
654 : return 0;
655 : }
656 :
657 : static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
658 : {
659 : int i;
660 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
661 :
662 : /* Currently not used. Set all to zero. */
663 0 : for (i = 0; i < 16; i++)
664 0 : smu_data->power_tune_table.GnbLPML[i] = 0;
665 :
666 : return 0;
667 : }
668 :
669 : static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
670 : {
671 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
672 0 : struct phm_ppt_v1_information *table_info =
673 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
674 0 : uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
675 0 : uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
676 0 : struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
677 :
678 0 : HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
679 0 : LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
680 :
681 0 : smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
682 0 : CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
683 0 : smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
684 0 : CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
685 :
686 : return 0;
687 : }
688 :
689 0 : static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
690 : {
691 : uint32_t pm_fuse_table_offset;
692 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
693 :
694 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
695 : PHM_PlatformCaps_PowerContainment)) {
696 0 : if (smu7_read_smc_sram_dword(hwmgr,
697 : SMU7_FIRMWARE_HEADER_LOCATION +
698 : offsetof(SMU73_Firmware_Header, PmFuseTable),
699 : &pm_fuse_table_offset, SMC_RAM_END))
700 0 : PP_ASSERT_WITH_CODE(false,
701 : "Attempt to get pm_fuse_table_offset Failed!",
702 : return -EINVAL);
703 :
704 : /* DW6 */
705 0 : if (fiji_populate_svi_load_line(hwmgr))
706 : PP_ASSERT_WITH_CODE(false,
707 : "Attempt to populate SviLoadLine Failed!",
708 : return -EINVAL);
709 : /* DW7 */
710 0 : if (fiji_populate_tdc_limit(hwmgr))
711 : PP_ASSERT_WITH_CODE(false,
712 : "Attempt to populate TDCLimit Failed!", return -EINVAL);
713 : /* DW8 */
714 0 : if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
715 0 : PP_ASSERT_WITH_CODE(false,
716 : "Attempt to populate TdcWaterfallCtl, "
717 : "LPMLTemperature Min and Max Failed!",
718 : return -EINVAL);
719 :
720 : /* DW9-DW12 */
721 0 : if (0 != fiji_populate_temperature_scaler(hwmgr))
722 : PP_ASSERT_WITH_CODE(false,
723 : "Attempt to populate LPMLTemperatureScaler Failed!",
724 : return -EINVAL);
725 :
726 : /* DW13-DW14 */
727 0 : if (fiji_populate_fuzzy_fan(hwmgr))
728 : PP_ASSERT_WITH_CODE(false,
729 : "Attempt to populate Fuzzy Fan Control parameters Failed!",
730 : return -EINVAL);
731 :
732 : /* DW15-DW18 */
733 0 : if (fiji_populate_gnb_lpml(hwmgr))
734 : PP_ASSERT_WITH_CODE(false,
735 : "Attempt to populate GnbLPML Failed!",
736 : return -EINVAL);
737 :
738 : /* DW20 */
739 0 : if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
740 : PP_ASSERT_WITH_CODE(false,
741 : "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
742 : "Sidd Failed!", return -EINVAL);
743 :
744 0 : if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
745 0 : (uint8_t *)&smu_data->power_tune_table,
746 : sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
747 0 : PP_ASSERT_WITH_CODE(false,
748 : "Attempt to download PmFuseTable Failed!",
749 : return -EINVAL);
750 : }
751 : return 0;
752 : }
753 :
754 0 : static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
755 : struct SMU73_Discrete_DpmTable *table)
756 : {
757 : uint32_t count;
758 : uint8_t index;
759 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
760 0 : struct phm_ppt_v1_information *table_info =
761 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
762 0 : struct phm_ppt_v1_voltage_lookup_table *lookup_table =
763 : table_info->vddc_lookup_table;
764 : /* tables is already swapped, so in order to use the value from it,
765 : * we need to swap it back.
766 : * We are populating vddc CAC data to BapmVddc table
767 : * in split and merged mode
768 : */
769 :
770 0 : for (count = 0; count < lookup_table->count; count++) {
771 0 : index = phm_get_voltage_index(lookup_table,
772 0 : data->vddc_voltage_table.entries[count].value);
773 0 : table->BapmVddcVidLoSidd[count] =
774 0 : convert_to_vid(lookup_table->entries[index].us_cac_low);
775 0 : table->BapmVddcVidHiSidd[count] =
776 0 : convert_to_vid(lookup_table->entries[index].us_cac_high);
777 : }
778 :
779 0 : return 0;
780 : }
781 :
782 0 : static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
783 : struct SMU73_Discrete_DpmTable *table)
784 : {
785 : int result;
786 :
787 0 : result = fiji_populate_cac_table(hwmgr, table);
788 0 : PP_ASSERT_WITH_CODE(0 == result,
789 : "can not populate CAC voltage tables to SMC",
790 : return -EINVAL);
791 :
792 : return 0;
793 : }
794 :
795 : static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
796 : struct SMU73_Discrete_Ulv *state)
797 : {
798 0 : int result = 0;
799 :
800 0 : struct phm_ppt_v1_information *table_info =
801 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
802 :
803 0 : state->CcPwrDynRm = 0;
804 0 : state->CcPwrDynRm1 = 0;
805 :
806 0 : state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
807 0 : state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
808 0 : VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
809 :
810 0 : state->VddcPhase = 1;
811 :
812 : if (!result) {
813 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
814 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
815 0 : CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
816 : }
817 : return result;
818 : }
819 :
820 : static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
821 : struct SMU73_Discrete_DpmTable *table)
822 : {
823 0 : return fiji_populate_ulv_level(hwmgr, &table->Ulv);
824 : }
825 :
826 0 : static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
827 : struct SMU73_Discrete_DpmTable *table)
828 : {
829 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
830 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
831 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
832 : int i;
833 :
834 : /* Index (dpm_table->pcie_speed_table.count)
835 : * is reserved for PCIE boot level. */
836 0 : for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
837 0 : table->LinkLevel[i].PcieGenSpeed =
838 0 : (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
839 0 : table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
840 : dpm_table->pcie_speed_table.dpm_levels[i].param1);
841 0 : table->LinkLevel[i].EnabledForActivity = 1;
842 0 : table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
843 0 : table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
844 0 : table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
845 : }
846 :
847 0 : smu_data->smc_state_table.LinkLevelCount =
848 0 : (uint8_t)dpm_table->pcie_speed_table.count;
849 0 : data->dpm_level_enable_mask.pcie_dpm_enable_mask =
850 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
851 :
852 0 : return 0;
853 : }
854 :
855 0 : static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
856 : uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
857 : {
858 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
859 : struct pp_atomctrl_clock_dividers_vi dividers;
860 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
861 0 : uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
862 0 : uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
863 0 : uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
864 0 : uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
865 : uint32_t ref_clock;
866 : uint32_t ref_divider;
867 : uint32_t fbdiv;
868 : int result;
869 :
870 : /* get the engine clock dividers for this clock value */
871 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
872 :
873 0 : PP_ASSERT_WITH_CODE(result == 0,
874 : "Error retrieving Engine Clock dividers from VBIOS.",
875 : return result);
876 :
877 : /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
878 0 : ref_clock = atomctrl_get_reference_clock(hwmgr);
879 0 : ref_divider = 1 + dividers.uc_pll_ref_div;
880 :
881 : /* low 14 bits is fraction and high 12 bits is divider */
882 0 : fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
883 :
884 : /* SPLL_FUNC_CNTL setup */
885 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
886 : SPLL_REF_DIV, dividers.uc_pll_ref_div);
887 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
888 : SPLL_PDIV_A, dividers.uc_pll_post_div);
889 :
890 : /* SPLL_FUNC_CNTL_3 setup*/
891 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
892 : SPLL_FB_DIV, fbdiv);
893 :
894 : /* set to use fractional accumulation*/
895 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
896 : SPLL_DITHEN, 1);
897 :
898 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
899 : PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
900 : struct pp_atomctrl_internal_ss_info ssInfo;
901 :
902 0 : uint32_t vco_freq = clock * dividers.uc_pll_post_div;
903 0 : if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
904 : vco_freq, &ssInfo)) {
905 : /*
906 : * ss_info.speed_spectrum_percentage -- in unit of 0.01%
907 : * ss_info.speed_spectrum_rate -- in unit of khz
908 : *
909 : * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
910 : */
911 0 : uint32_t clk_s = ref_clock * 5 /
912 0 : (ref_divider * ssInfo.speed_spectrum_rate);
913 : /* clkv = 2 * D * fbdiv / NS */
914 0 : uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
915 0 : fbdiv / (clk_s * 10000);
916 :
917 0 : cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
918 : CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
919 0 : cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
920 : CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
921 0 : cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
922 : CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
923 : }
924 : }
925 :
926 0 : sclk->SclkFrequency = clock;
927 0 : sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
928 0 : sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
929 0 : sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
930 0 : sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
931 0 : sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
932 :
933 0 : return 0;
934 : }
935 :
936 0 : static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
937 : uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
938 : {
939 : int result;
940 : /* PP_Clocks minClocks; */
941 : uint32_t mvdd;
942 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
943 0 : struct phm_ppt_v1_information *table_info =
944 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
945 0 : phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
946 :
947 0 : result = fiji_calculate_sclk_params(hwmgr, clock, level);
948 :
949 0 : if (hwmgr->od_enabled)
950 0 : vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
951 : else
952 0 : vdd_dep_table = table_info->vdd_dep_on_sclk;
953 :
954 : /* populate graphics levels */
955 0 : result = fiji_get_dependency_volt_by_clk(hwmgr,
956 : vdd_dep_table, clock,
957 : (uint32_t *)(&level->MinVoltage), &mvdd);
958 0 : PP_ASSERT_WITH_CODE((0 == result),
959 : "can not find VDDC voltage value for "
960 : "VDDC engine clock dependency table",
961 : return result);
962 :
963 0 : level->SclkFrequency = clock;
964 0 : level->ActivityLevel = data->current_profile_setting.sclk_activity;
965 0 : level->CcPwrDynRm = 0;
966 0 : level->CcPwrDynRm1 = 0;
967 0 : level->EnabledForActivity = 0;
968 0 : level->EnabledForThrottle = 1;
969 0 : level->UpHyst = data->current_profile_setting.sclk_up_hyst;
970 0 : level->DownHyst = data->current_profile_setting.sclk_down_hyst;
971 0 : level->VoltageDownHyst = 0;
972 0 : level->PowerThrottle = 0;
973 :
974 0 : data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
975 :
976 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
977 0 : level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
978 0 : hwmgr->display_config->min_core_set_clock_in_sr);
979 :
980 :
981 : /* Default to slow, highest DPM level will be
982 : * set to PPSMC_DISPLAY_WATERMARK_LOW later.
983 : */
984 0 : level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
985 :
986 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
987 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
988 0 : CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
989 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
990 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
991 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
992 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
993 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
994 0 : CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
995 :
996 0 : return 0;
997 : }
998 :
999 0 : static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1000 : {
1001 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1002 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1003 :
1004 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
1005 0 : struct phm_ppt_v1_information *table_info =
1006 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1007 0 : struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1008 0 : uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1009 0 : int result = 0;
1010 0 : uint32_t array = smu_data->smu7_data.dpm_table_start +
1011 : offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1012 0 : uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1013 : SMU73_MAX_LEVELS_GRAPHICS;
1014 0 : struct SMU73_Discrete_GraphicsLevel *levels =
1015 : smu_data->smc_state_table.GraphicsLevel;
1016 : uint32_t i, max_entry;
1017 0 : uint8_t hightest_pcie_level_enabled = 0,
1018 0 : lowest_pcie_level_enabled = 0,
1019 0 : mid_pcie_level_enabled = 0,
1020 0 : count = 0;
1021 :
1022 0 : for (i = 0; i < dpm_table->sclk_table.count; i++) {
1023 0 : result = fiji_populate_single_graphic_level(hwmgr,
1024 : dpm_table->sclk_table.dpm_levels[i].value,
1025 0 : &levels[i]);
1026 0 : if (result)
1027 : return result;
1028 :
1029 : /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1030 0 : if (i > 1)
1031 0 : levels[i].DeepSleepDivId = 0;
1032 : }
1033 :
1034 : /* Only enable level 0 for now.*/
1035 0 : levels[0].EnabledForActivity = 1;
1036 :
1037 : /* set highest level watermark to high */
1038 0 : levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1039 : PPSMC_DISPLAY_WATERMARK_HIGH;
1040 :
1041 0 : smu_data->smc_state_table.GraphicsDpmLevelCount =
1042 0 : (uint8_t)dpm_table->sclk_table.count;
1043 0 : data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1044 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1045 :
1046 0 : if (pcie_table != NULL) {
1047 0 : PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1048 : "There must be 1 or more PCIE levels defined in PPTable.",
1049 : return -EINVAL);
1050 0 : max_entry = pcie_entry_cnt - 1;
1051 0 : for (i = 0; i < dpm_table->sclk_table.count; i++)
1052 0 : levels[i].pcieDpmLevel =
1053 0 : (uint8_t) ((i < max_entry) ? i : max_entry);
1054 : } else {
1055 0 : while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1056 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1057 0 : (1 << (hightest_pcie_level_enabled + 1))) != 0))
1058 0 : hightest_pcie_level_enabled++;
1059 :
1060 0 : while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1061 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1062 0 : (1 << lowest_pcie_level_enabled)) == 0))
1063 0 : lowest_pcie_level_enabled++;
1064 :
1065 0 : while ((count < hightest_pcie_level_enabled) &&
1066 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1067 0 : (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1068 0 : count++;
1069 :
1070 0 : mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1071 : hightest_pcie_level_enabled ?
1072 0 : (lowest_pcie_level_enabled + 1 + count) :
1073 : hightest_pcie_level_enabled;
1074 :
1075 : /* set pcieDpmLevel to hightest_pcie_level_enabled */
1076 0 : for (i = 2; i < dpm_table->sclk_table.count; i++)
1077 0 : levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1078 :
1079 : /* set pcieDpmLevel to lowest_pcie_level_enabled */
1080 0 : levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1081 :
1082 : /* set pcieDpmLevel to mid_pcie_level_enabled */
1083 0 : levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1084 : }
1085 : /* level count will send to smc once at init smc table and never change */
1086 0 : result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1087 : (uint32_t)array_size, SMC_RAM_END);
1088 :
1089 0 : return result;
1090 : }
1091 :
1092 :
1093 : /*
1094 : * MCLK Frequency Ratio
1095 : * SEQ_CG_RESP Bit[31:24] - 0x0
1096 : * Bit[27:24] \96 DDR3 Frequency ratio
1097 : * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
1098 : * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
1099 : * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
1100 : * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
1101 : * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
1102 : * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
1103 : * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
1104 : * 400 < 0x7 <= 450MHz, 800 < 0xF
1105 : */
1106 0 : static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1107 : {
1108 0 : if (mem_clock <= 10000)
1109 : return 0x0;
1110 0 : if (mem_clock <= 15000)
1111 : return 0x1;
1112 0 : if (mem_clock <= 20000)
1113 : return 0x2;
1114 0 : if (mem_clock <= 25000)
1115 : return 0x3;
1116 0 : if (mem_clock <= 30000)
1117 : return 0x4;
1118 0 : if (mem_clock <= 35000)
1119 : return 0x5;
1120 0 : if (mem_clock <= 40000)
1121 : return 0x6;
1122 0 : if (mem_clock <= 45000)
1123 : return 0x7;
1124 0 : if (mem_clock <= 50000)
1125 : return 0x8;
1126 0 : if (mem_clock <= 55000)
1127 : return 0x9;
1128 0 : if (mem_clock <= 60000)
1129 : return 0xa;
1130 0 : if (mem_clock <= 65000)
1131 : return 0xb;
1132 0 : if (mem_clock <= 70000)
1133 : return 0xc;
1134 0 : if (mem_clock <= 75000)
1135 : return 0xd;
1136 0 : if (mem_clock <= 80000)
1137 : return 0xe;
1138 : /* mem_clock > 800MHz */
1139 0 : return 0xf;
1140 : }
1141 :
1142 0 : static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1143 : uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1144 : {
1145 : struct pp_atomctrl_memory_clock_param mem_param;
1146 : int result;
1147 :
1148 0 : result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1149 0 : PP_ASSERT_WITH_CODE((0 == result),
1150 : "Failed to get Memory PLL Dividers.",
1151 : );
1152 :
1153 : /* Save the result data to outpupt memory level structure */
1154 0 : mclk->MclkFrequency = clock;
1155 0 : mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
1156 0 : mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
1157 :
1158 0 : return result;
1159 : }
1160 :
1161 0 : static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1162 : uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1163 : {
1164 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1165 0 : struct phm_ppt_v1_information *table_info =
1166 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1167 0 : int result = 0;
1168 0 : uint32_t mclk_stutter_mode_threshold = 60000;
1169 0 : phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1170 :
1171 0 : if (hwmgr->od_enabled)
1172 0 : vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1173 : else
1174 0 : vdd_dep_table = table_info->vdd_dep_on_mclk;
1175 :
1176 0 : if (vdd_dep_table) {
1177 0 : result = fiji_get_dependency_volt_by_clk(hwmgr,
1178 : vdd_dep_table, clock,
1179 : (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1180 0 : PP_ASSERT_WITH_CODE((0 == result),
1181 : "can not find MinVddc voltage value from memory "
1182 : "VDDC voltage dependency table", return result);
1183 : }
1184 :
1185 0 : mem_level->EnabledForThrottle = 1;
1186 0 : mem_level->EnabledForActivity = 0;
1187 0 : mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1188 0 : mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1189 0 : mem_level->VoltageDownHyst = 0;
1190 0 : mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1191 0 : mem_level->StutterEnable = false;
1192 :
1193 0 : mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1194 :
1195 : /* enable stutter mode if all the follow condition applied
1196 : * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1197 : * &(data->DisplayTiming.numExistingDisplays));
1198 : */
1199 0 : data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1200 0 : data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1201 :
1202 0 : if (mclk_stutter_mode_threshold &&
1203 0 : (clock <= mclk_stutter_mode_threshold) &&
1204 0 : (!data->is_uvd_enabled) &&
1205 0 : (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1206 0 : STUTTER_ENABLE) & 0x1))
1207 0 : mem_level->StutterEnable = true;
1208 :
1209 0 : result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1210 0 : if (!result) {
1211 0 : CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1212 0 : CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1213 0 : CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1214 0 : CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1215 : }
1216 : return result;
1217 : }
1218 :
1219 0 : static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1220 : {
1221 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1222 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1223 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
1224 : int result;
1225 : /* populate MCLK dpm table to SMU7 */
1226 0 : uint32_t array = smu_data->smu7_data.dpm_table_start +
1227 : offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1228 0 : uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1229 : SMU73_MAX_LEVELS_MEMORY;
1230 0 : struct SMU73_Discrete_MemoryLevel *levels =
1231 : smu_data->smc_state_table.MemoryLevel;
1232 : uint32_t i;
1233 :
1234 0 : for (i = 0; i < dpm_table->mclk_table.count; i++) {
1235 0 : PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1236 : "can not populate memory level as memory clock is zero",
1237 : return -EINVAL);
1238 0 : result = fiji_populate_single_memory_level(hwmgr,
1239 : dpm_table->mclk_table.dpm_levels[i].value,
1240 0 : &levels[i]);
1241 0 : if (result)
1242 : return result;
1243 : }
1244 :
1245 : /* Only enable level 0 for now. */
1246 0 : levels[0].EnabledForActivity = 1;
1247 :
1248 : /* in order to prevent MC activity from stutter mode to push DPM up.
1249 : * the UVD change complements this by putting the MCLK in
1250 : * a higher state by default such that we are not effected by
1251 : * up threshold or and MCLK DPM latency.
1252 : */
1253 0 : levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1254 0 : CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1255 :
1256 0 : smu_data->smc_state_table.MemoryDpmLevelCount =
1257 0 : (uint8_t)dpm_table->mclk_table.count;
1258 0 : data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1259 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1260 : /* set highest level watermark to high */
1261 0 : levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1262 : PPSMC_DISPLAY_WATERMARK_HIGH;
1263 :
1264 : /* level count will send to smc once at init smc table and never change */
1265 0 : result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1266 : (uint32_t)array_size, SMC_RAM_END);
1267 :
1268 0 : return result;
1269 : }
1270 :
1271 0 : static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1272 : uint32_t mclk, SMIO_Pattern *smio_pat)
1273 : {
1274 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1275 0 : struct phm_ppt_v1_information *table_info =
1276 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1277 0 : uint32_t i = 0;
1278 :
1279 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1280 : /* find mvdd value which clock is more than request */
1281 0 : for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1282 0 : if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1283 0 : smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1284 : break;
1285 : }
1286 : }
1287 0 : PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1288 : "MVDD Voltage is outside the supported range.",
1289 : return -EINVAL);
1290 : } else
1291 : return -EINVAL;
1292 :
1293 : return 0;
1294 : }
1295 :
1296 0 : static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1297 : SMU73_Discrete_DpmTable *table)
1298 : {
1299 0 : int result = 0;
1300 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1301 0 : struct phm_ppt_v1_information *table_info =
1302 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1303 : struct pp_atomctrl_clock_dividers_vi dividers;
1304 : SMIO_Pattern vol_level;
1305 : uint32_t mvdd;
1306 : uint16_t us_mvdd;
1307 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1308 0 : uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1309 :
1310 0 : table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1311 :
1312 0 : if (!data->sclk_dpm_key_disabled) {
1313 : /* Get MinVoltage and Frequency from DPM0,
1314 : * already converted to SMC_UL */
1315 0 : table->ACPILevel.SclkFrequency =
1316 0 : data->dpm_table.sclk_table.dpm_levels[0].value;
1317 0 : result = fiji_get_dependency_volt_by_clk(hwmgr,
1318 : table_info->vdd_dep_on_sclk,
1319 : table->ACPILevel.SclkFrequency,
1320 : (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1321 0 : PP_ASSERT_WITH_CODE((0 == result),
1322 : "Cannot find ACPI VDDC voltage value " \
1323 : "in Clock Dependency Table",
1324 : );
1325 : } else {
1326 0 : table->ACPILevel.SclkFrequency =
1327 0 : data->vbios_boot_state.sclk_bootup_value;
1328 0 : table->ACPILevel.MinVoltage =
1329 0 : data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1330 : }
1331 :
1332 : /* get the engine clock dividers for this clock value */
1333 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1334 : table->ACPILevel.SclkFrequency, ÷rs);
1335 0 : PP_ASSERT_WITH_CODE(result == 0,
1336 : "Error retrieving Engine Clock dividers from VBIOS.",
1337 : return result);
1338 :
1339 0 : table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1340 0 : table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1341 0 : table->ACPILevel.DeepSleepDivId = 0;
1342 :
1343 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1344 : SPLL_PWRON, 0);
1345 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1346 : SPLL_RESET, 1);
1347 0 : spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1348 : SCLK_MUX_SEL, 4);
1349 :
1350 0 : table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1351 0 : table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1352 0 : table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1353 0 : table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1354 0 : table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1355 0 : table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1356 0 : table->ACPILevel.CcPwrDynRm = 0;
1357 0 : table->ACPILevel.CcPwrDynRm1 = 0;
1358 :
1359 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1360 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1361 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1362 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1363 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1364 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1365 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1366 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1367 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1368 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1369 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1370 :
1371 0 : if (!data->mclk_dpm_key_disabled) {
1372 : /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1373 0 : table->MemoryACPILevel.MclkFrequency =
1374 0 : data->dpm_table.mclk_table.dpm_levels[0].value;
1375 0 : result = fiji_get_dependency_volt_by_clk(hwmgr,
1376 : table_info->vdd_dep_on_mclk,
1377 : table->MemoryACPILevel.MclkFrequency,
1378 : (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1379 0 : PP_ASSERT_WITH_CODE((0 == result),
1380 : "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1381 : );
1382 : } else {
1383 0 : table->MemoryACPILevel.MclkFrequency =
1384 0 : data->vbios_boot_state.mclk_bootup_value;
1385 0 : table->MemoryACPILevel.MinVoltage =
1386 0 : data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1387 : }
1388 :
1389 0 : us_mvdd = 0;
1390 0 : if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1391 0 : (data->mclk_dpm_key_disabled))
1392 0 : us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1393 : else {
1394 0 : if (!fiji_populate_mvdd_value(hwmgr,
1395 : data->dpm_table.mclk_table.dpm_levels[0].value,
1396 : &vol_level))
1397 0 : us_mvdd = vol_level.Voltage;
1398 : }
1399 :
1400 0 : table->MemoryACPILevel.MinMvdd =
1401 0 : PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1402 :
1403 0 : table->MemoryACPILevel.EnabledForThrottle = 0;
1404 0 : table->MemoryACPILevel.EnabledForActivity = 0;
1405 0 : table->MemoryACPILevel.UpHyst = 0;
1406 0 : table->MemoryACPILevel.DownHyst = 100;
1407 0 : table->MemoryACPILevel.VoltageDownHyst = 0;
1408 0 : table->MemoryACPILevel.ActivityLevel =
1409 0 : PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1410 :
1411 0 : table->MemoryACPILevel.StutterEnable = false;
1412 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1413 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1414 :
1415 0 : return result;
1416 : }
1417 :
1418 0 : static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1419 : SMU73_Discrete_DpmTable *table)
1420 : {
1421 0 : int result = -EINVAL;
1422 : uint8_t count;
1423 : struct pp_atomctrl_clock_dividers_vi dividers;
1424 0 : struct phm_ppt_v1_information *table_info =
1425 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1426 0 : struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1427 : table_info->mm_dep_table;
1428 :
1429 0 : table->VceLevelCount = (uint8_t)(mm_table->count);
1430 0 : table->VceBootLevel = 0;
1431 :
1432 0 : for (count = 0; count < table->VceLevelCount; count++) {
1433 0 : table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1434 0 : table->VceLevel[count].MinVoltage = 0;
1435 0 : table->VceLevel[count].MinVoltage |=
1436 0 : (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1437 0 : table->VceLevel[count].MinVoltage |=
1438 0 : ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1439 0 : VOLTAGE_SCALE) << VDDCI_SHIFT;
1440 0 : table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1441 :
1442 : /*retrieve divider value for VBIOS */
1443 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1444 : table->VceLevel[count].Frequency, ÷rs);
1445 0 : PP_ASSERT_WITH_CODE((0 == result),
1446 : "can not find divide id for VCE engine clock",
1447 : return result);
1448 :
1449 0 : table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450 :
1451 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1452 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1453 : }
1454 : return result;
1455 : }
1456 :
1457 0 : static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1458 : SMU73_Discrete_DpmTable *table)
1459 : {
1460 0 : int result = -EINVAL;
1461 : uint8_t count;
1462 : struct pp_atomctrl_clock_dividers_vi dividers;
1463 0 : struct phm_ppt_v1_information *table_info =
1464 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1465 0 : struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1466 : table_info->mm_dep_table;
1467 :
1468 0 : table->AcpLevelCount = (uint8_t)(mm_table->count);
1469 0 : table->AcpBootLevel = 0;
1470 :
1471 0 : for (count = 0; count < table->AcpLevelCount; count++) {
1472 0 : table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1473 0 : table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1474 0 : VOLTAGE_SCALE) << VDDC_SHIFT;
1475 0 : table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1476 0 : VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1477 0 : table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1478 :
1479 : /* retrieve divider value for VBIOS */
1480 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1481 : table->AcpLevel[count].Frequency, ÷rs);
1482 0 : PP_ASSERT_WITH_CODE((0 == result),
1483 : "can not find divide id for engine clock", return result);
1484 :
1485 0 : table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1486 :
1487 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1488 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1489 : }
1490 : return result;
1491 : }
1492 :
1493 0 : static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1494 : int32_t eng_clock, int32_t mem_clock,
1495 : struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1496 : {
1497 : uint32_t dram_timing;
1498 : uint32_t dram_timing2;
1499 : uint32_t burstTime;
1500 : ULONG trrds, trrdl;
1501 : int result;
1502 :
1503 0 : result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1504 : eng_clock, mem_clock);
1505 0 : PP_ASSERT_WITH_CODE(result == 0,
1506 : "Error calling VBIOS to set DRAM_TIMING.", return result);
1507 :
1508 0 : dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1509 0 : dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1510 0 : burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1511 :
1512 0 : trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1513 0 : trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1514 :
1515 0 : arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1516 0 : arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1517 0 : arb_regs->McArbBurstTime = (uint8_t)burstTime;
1518 0 : arb_regs->TRRDS = (uint8_t)trrds;
1519 0 : arb_regs->TRRDL = (uint8_t)trrdl;
1520 :
1521 0 : return 0;
1522 : }
1523 :
1524 0 : static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1525 : {
1526 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1528 : struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1529 : uint32_t i, j;
1530 0 : int result = 0;
1531 :
1532 0 : for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1533 0 : for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1534 0 : result = fiji_populate_memory_timing_parameters(hwmgr,
1535 0 : data->dpm_table.sclk_table.dpm_levels[i].value,
1536 0 : data->dpm_table.mclk_table.dpm_levels[j].value,
1537 0 : &arb_regs.entries[i][j]);
1538 0 : if (result)
1539 : break;
1540 : }
1541 : }
1542 :
1543 0 : if (!result)
1544 0 : result = smu7_copy_bytes_to_smc(
1545 : hwmgr,
1546 : smu_data->smu7_data.arb_table_start,
1547 : (uint8_t *)&arb_regs,
1548 : sizeof(SMU73_Discrete_MCArbDramTimingTable),
1549 : SMC_RAM_END);
1550 0 : return result;
1551 : }
1552 :
1553 0 : static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1554 : struct SMU73_Discrete_DpmTable *table)
1555 : {
1556 0 : int result = -EINVAL;
1557 : uint8_t count;
1558 : struct pp_atomctrl_clock_dividers_vi dividers;
1559 0 : struct phm_ppt_v1_information *table_info =
1560 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1561 0 : struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1562 : table_info->mm_dep_table;
1563 :
1564 0 : table->UvdLevelCount = (uint8_t)(mm_table->count);
1565 0 : table->UvdBootLevel = 0;
1566 :
1567 0 : for (count = 0; count < table->UvdLevelCount; count++) {
1568 0 : table->UvdLevel[count].MinVoltage = 0;
1569 0 : table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1570 0 : table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1571 0 : table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1572 0 : VOLTAGE_SCALE) << VDDC_SHIFT;
1573 0 : table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1574 0 : VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1575 0 : table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1576 :
1577 : /* retrieve divider value for VBIOS */
1578 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1579 : table->UvdLevel[count].VclkFrequency, ÷rs);
1580 0 : PP_ASSERT_WITH_CODE((0 == result),
1581 : "can not find divide id for Vclk clock", return result);
1582 :
1583 0 : table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1584 :
1585 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1586 : table->UvdLevel[count].DclkFrequency, ÷rs);
1587 0 : PP_ASSERT_WITH_CODE((0 == result),
1588 : "can not find divide id for Dclk clock", return result);
1589 :
1590 0 : table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1591 :
1592 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1593 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1594 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1595 :
1596 : }
1597 : return result;
1598 : }
1599 :
1600 0 : static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1601 : struct SMU73_Discrete_DpmTable *table)
1602 : {
1603 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1604 :
1605 0 : table->GraphicsBootLevel = 0;
1606 0 : table->MemoryBootLevel = 0;
1607 :
1608 : /* find boot level from dpm table */
1609 0 : phm_find_boot_level(&(data->dpm_table.sclk_table),
1610 : data->vbios_boot_state.sclk_bootup_value,
1611 0 : (uint32_t *)&(table->GraphicsBootLevel));
1612 :
1613 0 : phm_find_boot_level(&(data->dpm_table.mclk_table),
1614 : data->vbios_boot_state.mclk_bootup_value,
1615 0 : (uint32_t *)&(table->MemoryBootLevel));
1616 :
1617 0 : table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1618 : VOLTAGE_SCALE;
1619 0 : table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1620 : VOLTAGE_SCALE;
1621 0 : table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1622 : VOLTAGE_SCALE;
1623 :
1624 0 : CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1625 0 : CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1626 0 : CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1627 :
1628 0 : return 0;
1629 : }
1630 :
1631 0 : static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1632 : {
1633 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1634 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1635 0 : struct phm_ppt_v1_information *table_info =
1636 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1637 : uint8_t count, level;
1638 :
1639 0 : count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1640 0 : for (level = 0; level < count; level++) {
1641 0 : if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1642 0 : data->vbios_boot_state.sclk_bootup_value) {
1643 0 : smu_data->smc_state_table.GraphicsBootLevel = level;
1644 0 : break;
1645 : }
1646 : }
1647 :
1648 0 : count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1649 0 : for (level = 0; level < count; level++) {
1650 0 : if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1651 0 : data->vbios_boot_state.mclk_bootup_value) {
1652 0 : smu_data->smc_state_table.MemoryBootLevel = level;
1653 0 : break;
1654 : }
1655 : }
1656 :
1657 0 : return 0;
1658 : }
1659 :
1660 0 : static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1661 : {
1662 : uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1663 : volt_with_cks, value;
1664 : uint16_t clock_freq_u16;
1665 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1666 : uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1667 0 : volt_offset = 0;
1668 0 : struct phm_ppt_v1_information *table_info =
1669 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1670 0 : struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1671 : table_info->vdd_dep_on_sclk;
1672 :
1673 0 : stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1674 :
1675 : /* Read SMU_Eefuse to read and calculate RO and determine
1676 : * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1677 : */
1678 0 : efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1679 : ixSMU_EFUSE_0 + (146 * 4));
1680 0 : efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1681 : ixSMU_EFUSE_0 + (148 * 4));
1682 0 : efuse &= 0xFF000000;
1683 0 : efuse = efuse >> 24;
1684 0 : efuse2 &= 0xF;
1685 :
1686 0 : if (efuse2 == 1)
1687 0 : ro = (2300 - 1350) * efuse / 255 + 1350;
1688 : else
1689 0 : ro = (2500 - 1000) * efuse / 255 + 1000;
1690 :
1691 0 : if (ro >= 1660)
1692 : type = 0;
1693 : else
1694 0 : type = 1;
1695 :
1696 : /* Populate Stretch amount */
1697 0 : smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1698 :
1699 : /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1700 0 : for (i = 0; i < sclk_table->count; i++) {
1701 0 : smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1702 0 : sclk_table->entries[i].cks_enable << i;
1703 0 : volt_without_cks = (uint32_t)((14041 *
1704 0 : (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1705 0 : (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1706 0 : volt_with_cks = (uint32_t)((13946 *
1707 0 : (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1708 0 : (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1709 0 : if (volt_without_cks >= volt_with_cks)
1710 0 : volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1711 0 : sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1712 0 : smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1713 : }
1714 :
1715 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1716 : STRETCH_ENABLE, 0x0);
1717 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1718 : masterReset, 0x1);
1719 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1720 : staticEnable, 0x1);
1721 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722 : masterReset, 0x0);
1723 :
1724 : /* Populate CKS Lookup Table */
1725 0 : if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1726 : stretch_amount2 = 0;
1727 0 : else if (stretch_amount == 3 || stretch_amount == 4)
1728 : stretch_amount2 = 1;
1729 : else {
1730 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1731 : PHM_PlatformCaps_ClockStretcher);
1732 0 : PP_ASSERT_WITH_CODE(false,
1733 : "Stretch Amount in PPTable not supported",
1734 : return -EINVAL);
1735 : }
1736 :
1737 0 : value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738 : ixPWR_CKS_CNTL);
1739 0 : value &= 0xFFC2FF87;
1740 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1741 0 : fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1742 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1743 0 : fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1744 0 : clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1745 : GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1746 0 : SclkFrequency) / 100);
1747 0 : if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1748 0 : clock_freq_u16 &&
1749 : fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1750 : clock_freq_u16) {
1751 : /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1752 0 : value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1753 : /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1754 0 : value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1755 : /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1756 0 : value |= (fiji_clock_stretch_amount_conversion
1757 : [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1758 0 : [stretch_amount]) << 3;
1759 : }
1760 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1761 : CKS_LOOKUPTableEntry[0].minFreq);
1762 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1763 : CKS_LOOKUPTableEntry[0].maxFreq);
1764 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1765 0 : fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1766 0 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1767 0 : (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1768 :
1769 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1770 : ixPWR_CKS_CNTL, value);
1771 :
1772 : /* Populate DDT Lookup Table */
1773 0 : for (i = 0; i < 4; i++) {
1774 : /* Assign the minimum and maximum VID stored
1775 : * in the last row of Clock Stretcher Voltage Table.
1776 : */
1777 : smu_data->smc_state_table.ClockStretcherDataTable.
1778 0 : ClockStretcherDataTableEntry[i].minVID =
1779 0 : (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1780 : smu_data->smc_state_table.ClockStretcherDataTable.
1781 0 : ClockStretcherDataTableEntry[i].maxVID =
1782 0 : (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1783 : /* Loop through each SCLK and check the frequency
1784 : * to see if it lies within the frequency for clock stretcher.
1785 : */
1786 0 : for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1787 0 : cks_setting = 0;
1788 0 : clock_freq = PP_SMC_TO_HOST_UL(
1789 : smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1790 : /* Check the allowed frequency against the sclk level[j].
1791 : * Sclk's endianness has already been converted,
1792 : * and it's in 10Khz unit,
1793 : * as opposed to Data table, which is in Mhz unit.
1794 : */
1795 0 : if (clock_freq >=
1796 0 : (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1797 0 : cks_setting |= 0x2;
1798 0 : if (clock_freq <
1799 0 : (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1800 0 : cks_setting |= 0x1;
1801 : }
1802 : smu_data->smc_state_table.ClockStretcherDataTable.
1803 0 : ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1804 : }
1805 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1806 : ClockStretcherDataTable.
1807 : ClockStretcherDataTableEntry[i].setting);
1808 : }
1809 :
1810 0 : value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1811 0 : value &= 0xFFFFFFFE;
1812 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1813 :
1814 0 : return 0;
1815 : }
1816 :
1817 0 : static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1818 : struct SMU73_Discrete_DpmTable *table)
1819 : {
1820 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1821 : uint16_t config;
1822 :
1823 0 : config = VR_MERGED_WITH_VDDC;
1824 0 : table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1825 :
1826 : /* Set Vddc Voltage Controller */
1827 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1828 0 : config = VR_SVI2_PLANE_1;
1829 0 : table->VRConfig |= config;
1830 : } else {
1831 0 : PP_ASSERT_WITH_CODE(false,
1832 : "VDDC should be on SVI2 control in merged mode!",
1833 : );
1834 : }
1835 : /* Set Vddci Voltage Controller */
1836 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1837 0 : config = VR_SVI2_PLANE_2; /* only in merged mode */
1838 0 : table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1839 0 : } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1840 0 : config = VR_SMIO_PATTERN_1;
1841 0 : table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1842 : } else {
1843 0 : config = VR_STATIC_VOLTAGE;
1844 0 : table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1845 : }
1846 : /* Set Mvdd Voltage Controller */
1847 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1848 0 : config = VR_SVI2_PLANE_2;
1849 0 : table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1850 0 : } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1851 0 : config = VR_SMIO_PATTERN_2;
1852 0 : table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1853 : } else {
1854 0 : config = VR_STATIC_VOLTAGE;
1855 0 : table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1856 : }
1857 :
1858 0 : return 0;
1859 : }
1860 :
1861 0 : static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1862 : {
1863 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1864 : uint32_t tmp;
1865 : int result;
1866 :
1867 : /* This is a read-modify-write on the first byte of the ARB table.
1868 : * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1869 : * is the field 'current'.
1870 : * This solution is ugly, but we never write the whole table only
1871 : * individual fields in it.
1872 : * In reality this field should not be in that structure
1873 : * but in a soft register.
1874 : */
1875 0 : result = smu7_read_smc_sram_dword(hwmgr,
1876 : smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1877 :
1878 0 : if (result)
1879 : return result;
1880 :
1881 0 : tmp &= 0x00FFFFFF;
1882 0 : tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1883 :
1884 0 : return smu7_write_smc_sram_dword(hwmgr,
1885 : smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1886 : }
1887 :
1888 0 : static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1889 : {
1890 : pp_atomctrl_voltage_table param_led_dpm;
1891 0 : int result = 0;
1892 0 : u32 mask = 0;
1893 :
1894 0 : result = atomctrl_get_voltage_table_v3(hwmgr,
1895 : VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1896 : ¶m_led_dpm);
1897 0 : if (result == 0) {
1898 : int i, j;
1899 0 : u32 tmp = param_led_dpm.mask_low;
1900 :
1901 0 : for (i = 0, j = 0; i < 32; i++) {
1902 0 : if (tmp & 1) {
1903 0 : mask |= (i << (8 * j));
1904 0 : if (++j >= 3)
1905 : break;
1906 : }
1907 0 : tmp >>= 1;
1908 : }
1909 : }
1910 0 : if (mask)
1911 0 : smum_send_msg_to_smc_with_parameter(hwmgr,
1912 : PPSMC_MSG_LedConfig,
1913 : mask,
1914 : NULL);
1915 0 : return 0;
1916 : }
1917 :
1918 0 : static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1919 : {
1920 : int result;
1921 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1922 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1923 0 : struct phm_ppt_v1_information *table_info =
1924 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1925 0 : struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1926 : uint8_t i;
1927 : struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1928 :
1929 0 : fiji_initialize_power_tune_defaults(hwmgr);
1930 :
1931 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1932 0 : fiji_populate_smc_voltage_tables(hwmgr, table);
1933 :
1934 0 : table->SystemFlags = 0;
1935 :
1936 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1937 : PHM_PlatformCaps_AutomaticDCTransition))
1938 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1939 :
1940 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1941 : PHM_PlatformCaps_StepVddc))
1942 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1943 :
1944 0 : if (data->is_memory_gddr5)
1945 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1946 :
1947 0 : if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1948 0 : result = fiji_populate_ulv_state(hwmgr, table);
1949 : PP_ASSERT_WITH_CODE(0 == result,
1950 : "Failed to initialize ULV state!", return result);
1951 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1952 : ixCG_ULV_PARAMETER, 0x40035);
1953 : }
1954 :
1955 0 : result = fiji_populate_smc_link_level(hwmgr, table);
1956 0 : PP_ASSERT_WITH_CODE(0 == result,
1957 : "Failed to initialize Link Level!", return result);
1958 :
1959 0 : result = fiji_populate_all_graphic_levels(hwmgr);
1960 0 : PP_ASSERT_WITH_CODE(0 == result,
1961 : "Failed to initialize Graphics Level!", return result);
1962 :
1963 0 : result = fiji_populate_all_memory_levels(hwmgr);
1964 0 : PP_ASSERT_WITH_CODE(0 == result,
1965 : "Failed to initialize Memory Level!", return result);
1966 :
1967 0 : result = fiji_populate_smc_acpi_level(hwmgr, table);
1968 0 : PP_ASSERT_WITH_CODE(0 == result,
1969 : "Failed to initialize ACPI Level!", return result);
1970 :
1971 0 : result = fiji_populate_smc_vce_level(hwmgr, table);
1972 0 : PP_ASSERT_WITH_CODE(0 == result,
1973 : "Failed to initialize VCE Level!", return result);
1974 :
1975 0 : result = fiji_populate_smc_acp_level(hwmgr, table);
1976 0 : PP_ASSERT_WITH_CODE(0 == result,
1977 : "Failed to initialize ACP Level!", return result);
1978 :
1979 : /* Since only the initial state is completely set up at this point
1980 : * (the other states are just copies of the boot state) we only
1981 : * need to populate the ARB settings for the initial state.
1982 : */
1983 0 : result = fiji_program_memory_timing_parameters(hwmgr);
1984 0 : PP_ASSERT_WITH_CODE(0 == result,
1985 : "Failed to Write ARB settings for the initial state.", return result);
1986 :
1987 0 : result = fiji_populate_smc_uvd_level(hwmgr, table);
1988 0 : PP_ASSERT_WITH_CODE(0 == result,
1989 : "Failed to initialize UVD Level!", return result);
1990 :
1991 0 : result = fiji_populate_smc_boot_level(hwmgr, table);
1992 0 : PP_ASSERT_WITH_CODE(0 == result,
1993 : "Failed to initialize Boot Level!", return result);
1994 :
1995 0 : result = fiji_populate_smc_initailial_state(hwmgr);
1996 0 : PP_ASSERT_WITH_CODE(0 == result,
1997 : "Failed to initialize Boot State!", return result);
1998 :
1999 0 : result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2000 0 : PP_ASSERT_WITH_CODE(0 == result,
2001 : "Failed to populate BAPM Parameters!", return result);
2002 :
2003 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2004 : PHM_PlatformCaps_ClockStretcher)) {
2005 0 : result = fiji_populate_clock_stretcher_data_table(hwmgr);
2006 0 : PP_ASSERT_WITH_CODE(0 == result,
2007 : "Failed to populate Clock Stretcher Data Table!",
2008 : return result);
2009 : }
2010 :
2011 0 : table->GraphicsVoltageChangeEnable = 1;
2012 0 : table->GraphicsThermThrottleEnable = 1;
2013 0 : table->GraphicsInterval = 1;
2014 0 : table->VoltageInterval = 1;
2015 0 : table->ThermalInterval = 1;
2016 0 : table->TemperatureLimitHigh =
2017 0 : table_info->cac_dtp_table->usTargetOperatingTemp *
2018 : SMU7_Q88_FORMAT_CONVERSION_UNIT;
2019 0 : table->TemperatureLimitLow =
2020 0 : (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2021 : SMU7_Q88_FORMAT_CONVERSION_UNIT;
2022 0 : table->MemoryVoltageChangeEnable = 1;
2023 0 : table->MemoryInterval = 1;
2024 0 : table->VoltageResponseTime = 0;
2025 0 : table->PhaseResponseTime = 0;
2026 0 : table->MemoryThermThrottleEnable = 1;
2027 0 : table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
2028 0 : table->PCIeGenInterval = 1;
2029 0 : table->VRConfig = 0;
2030 :
2031 0 : result = fiji_populate_vr_config(hwmgr, table);
2032 0 : PP_ASSERT_WITH_CODE(0 == result,
2033 : "Failed to populate VRConfig setting!", return result);
2034 0 : data->vr_config = table->VRConfig;
2035 0 : table->ThermGpio = 17;
2036 0 : table->SclkStepSize = 0x4000;
2037 :
2038 0 : if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2039 0 : table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2040 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2041 : PHM_PlatformCaps_RegulatorHot);
2042 : } else {
2043 0 : table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2044 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2045 : PHM_PlatformCaps_RegulatorHot);
2046 : }
2047 :
2048 0 : if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2049 : &gpio_pin)) {
2050 0 : table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2051 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2052 : PHM_PlatformCaps_AutomaticDCTransition);
2053 : } else {
2054 0 : table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2055 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2056 : PHM_PlatformCaps_AutomaticDCTransition);
2057 : }
2058 :
2059 : /* Thermal Output GPIO */
2060 0 : if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2061 : &gpio_pin)) {
2062 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2063 : PHM_PlatformCaps_ThermalOutGPIO);
2064 :
2065 0 : table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066 :
2067 : /* For porlarity read GPIOPAD_A with assigned Gpio pin
2068 : * since VBIOS will program this register to set 'inactive state',
2069 : * driver can then determine 'active state' from this and
2070 : * program SMU with correct polarity
2071 : */
2072 0 : table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2073 0 : (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2074 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2075 :
2076 : /* if required, combine VRHot/PCC with thermal out GPIO */
2077 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2078 0 : PHM_PlatformCaps_RegulatorHot) &&
2079 0 : phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2080 : PHM_PlatformCaps_CombinePCCWithThermalSignal))
2081 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2082 : } else {
2083 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2084 : PHM_PlatformCaps_ThermalOutGPIO);
2085 0 : table->ThermOutGpio = 17;
2086 0 : table->ThermOutPolarity = 1;
2087 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2088 : }
2089 :
2090 0 : for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2091 0 : table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2092 :
2093 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2094 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2095 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2096 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2097 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2098 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2099 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2100 0 : CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2101 0 : CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2102 :
2103 : /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2104 0 : result = smu7_copy_bytes_to_smc(hwmgr,
2105 0 : smu_data->smu7_data.dpm_table_start +
2106 : offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2107 0 : (uint8_t *)&(table->SystemFlags),
2108 : sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2109 : SMC_RAM_END);
2110 0 : PP_ASSERT_WITH_CODE(0 == result,
2111 : "Failed to upload dpm data to SMC memory!", return result);
2112 :
2113 0 : result = fiji_init_arb_table_index(hwmgr);
2114 0 : PP_ASSERT_WITH_CODE(0 == result,
2115 : "Failed to upload arb data to SMC memory!", return result);
2116 :
2117 0 : result = fiji_populate_pm_fuses(hwmgr);
2118 0 : PP_ASSERT_WITH_CODE(0 == result,
2119 : "Failed to populate PM fuses to SMC memory!", return result);
2120 :
2121 0 : result = fiji_setup_dpm_led_config(hwmgr);
2122 0 : PP_ASSERT_WITH_CODE(0 == result,
2123 : "Failed to setup dpm led config", return result);
2124 :
2125 : return 0;
2126 : }
2127 :
2128 0 : static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2129 : {
2130 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2131 :
2132 0 : SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2133 : uint32_t duty100;
2134 : uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2135 : uint16_t fdo_min, slope1, slope2;
2136 : uint32_t reference_clock;
2137 : int res;
2138 : uint64_t tmp64;
2139 :
2140 0 : if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2141 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2142 : PHM_PlatformCaps_MicrocodeFanControl);
2143 0 : return 0;
2144 : }
2145 :
2146 0 : if (smu_data->smu7_data.fan_table_start == 0) {
2147 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2148 : PHM_PlatformCaps_MicrocodeFanControl);
2149 0 : return 0;
2150 : }
2151 :
2152 0 : duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2153 : CG_FDO_CTRL1, FMAX_DUTY100);
2154 :
2155 0 : if (duty100 == 0) {
2156 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2157 : PHM_PlatformCaps_MicrocodeFanControl);
2158 0 : return 0;
2159 : }
2160 :
2161 0 : tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2162 0 : usPWMMin * duty100;
2163 0 : do_div(tmp64, 10000);
2164 0 : fdo_min = (uint16_t)tmp64;
2165 :
2166 0 : t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2167 0 : hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2168 0 : t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2169 : hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2170 :
2171 0 : pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2172 0 : hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2173 0 : pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2174 : hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2175 :
2176 0 : slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2177 0 : slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2178 :
2179 0 : fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2180 : thermal_controller.advanceFanControlParameters.usTMin) / 100);
2181 0 : fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2182 : thermal_controller.advanceFanControlParameters.usTMed) / 100);
2183 0 : fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2184 : thermal_controller.advanceFanControlParameters.usTMax) / 100);
2185 :
2186 0 : fan_table.Slope1 = cpu_to_be16(slope1);
2187 0 : fan_table.Slope2 = cpu_to_be16(slope2);
2188 :
2189 0 : fan_table.FdoMin = cpu_to_be16(fdo_min);
2190 :
2191 0 : fan_table.HystDown = cpu_to_be16(hwmgr->
2192 : thermal_controller.advanceFanControlParameters.ucTHyst);
2193 :
2194 0 : fan_table.HystUp = cpu_to_be16(1);
2195 :
2196 0 : fan_table.HystSlope = cpu_to_be16(1);
2197 :
2198 0 : fan_table.TempRespLim = cpu_to_be16(5);
2199 :
2200 0 : reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2201 :
2202 0 : fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2203 : thermal_controller.advanceFanControlParameters.ulCycleDelay *
2204 : reference_clock) / 1600);
2205 :
2206 0 : fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2207 :
2208 0 : fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2209 : hwmgr->device, CGS_IND_REG__SMC,
2210 : CG_MULT_THERMAL_CTRL, TEMP_SEL);
2211 :
2212 0 : res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2213 : (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2214 : SMC_RAM_END);
2215 :
2216 0 : if (!res && hwmgr->thermal_controller.
2217 0 : advanceFanControlParameters.ucMinimumPWMLimit)
2218 0 : res = smum_send_msg_to_smc_with_parameter(hwmgr,
2219 : PPSMC_MSG_SetFanMinPwm,
2220 : hwmgr->thermal_controller.
2221 : advanceFanControlParameters.ucMinimumPWMLimit,
2222 : NULL);
2223 :
2224 0 : if (!res && hwmgr->thermal_controller.
2225 0 : advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2226 0 : res = smum_send_msg_to_smc_with_parameter(hwmgr,
2227 : PPSMC_MSG_SetFanSclkTarget,
2228 : hwmgr->thermal_controller.
2229 : advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
2230 : NULL);
2231 :
2232 0 : if (res)
2233 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2234 : PHM_PlatformCaps_MicrocodeFanControl);
2235 :
2236 : return 0;
2237 : }
2238 :
2239 :
2240 0 : static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2241 : {
2242 0 : if (!hwmgr->avfs_supported)
2243 : return 0;
2244 :
2245 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2246 :
2247 0 : return 0;
2248 : }
2249 :
2250 : static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2251 : {
2252 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253 :
2254 0 : if (data->need_update_smu7_dpm_table &
2255 : (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2256 0 : return fiji_program_memory_timing_parameters(hwmgr);
2257 :
2258 : return 0;
2259 : }
2260 :
2261 0 : static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2262 : {
2263 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2264 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2265 :
2266 0 : int result = 0;
2267 0 : uint32_t low_sclk_interrupt_threshold = 0;
2268 :
2269 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2270 : PHM_PlatformCaps_SclkThrottleLowNotification)
2271 0 : && (data->low_sclk_interrupt_threshold != 0)) {
2272 : low_sclk_interrupt_threshold =
2273 : data->low_sclk_interrupt_threshold;
2274 :
2275 0 : CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2276 :
2277 0 : result = smu7_copy_bytes_to_smc(
2278 : hwmgr,
2279 0 : smu_data->smu7_data.dpm_table_start +
2280 : offsetof(SMU73_Discrete_DpmTable,
2281 : LowSclkInterruptThreshold),
2282 : (uint8_t *)&low_sclk_interrupt_threshold,
2283 : sizeof(uint32_t),
2284 : SMC_RAM_END);
2285 : }
2286 0 : result = fiji_program_mem_timing_parameters(hwmgr);
2287 0 : PP_ASSERT_WITH_CODE((result == 0),
2288 : "Failed to program memory timing parameters!",
2289 : );
2290 0 : return result;
2291 : }
2292 :
2293 0 : static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2294 : {
2295 0 : switch (type) {
2296 : case SMU_SoftRegisters:
2297 0 : switch (member) {
2298 : case HandshakeDisables:
2299 : return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2300 : case VoltageChangeTimeout:
2301 0 : return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2302 : case AverageGraphicsActivity:
2303 0 : return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2304 : case AverageMemoryActivity:
2305 0 : return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2306 : case PreVBlankGap:
2307 0 : return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2308 : case VBlankTimeout:
2309 0 : return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2310 : case UcodeLoadStatus:
2311 0 : return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2312 : case DRAM_LOG_ADDR_H:
2313 0 : return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2314 : case DRAM_LOG_ADDR_L:
2315 0 : return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2316 : case DRAM_LOG_PHY_ADDR_H:
2317 0 : return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2318 : case DRAM_LOG_PHY_ADDR_L:
2319 0 : return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2320 : case DRAM_LOG_BUFF_SIZE:
2321 0 : return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2322 : }
2323 : break;
2324 : case SMU_Discrete_DpmTable:
2325 0 : switch (member) {
2326 : case UvdBootLevel:
2327 : return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2328 : case VceBootLevel:
2329 0 : return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2330 : case LowSclkInterruptThreshold:
2331 0 : return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2332 : }
2333 : break;
2334 : }
2335 0 : pr_warn("can't get the offset of type %x member %x\n", type, member);
2336 0 : return 0;
2337 : }
2338 :
2339 0 : static uint32_t fiji_get_mac_definition(uint32_t value)
2340 : {
2341 0 : switch (value) {
2342 : case SMU_MAX_LEVELS_GRAPHICS:
2343 : return SMU73_MAX_LEVELS_GRAPHICS;
2344 : case SMU_MAX_LEVELS_MEMORY:
2345 0 : return SMU73_MAX_LEVELS_MEMORY;
2346 : case SMU_MAX_LEVELS_LINK:
2347 : return SMU73_MAX_LEVELS_LINK;
2348 : case SMU_MAX_ENTRIES_SMIO:
2349 0 : return SMU73_MAX_ENTRIES_SMIO;
2350 : case SMU_MAX_LEVELS_VDDC:
2351 0 : return SMU73_MAX_LEVELS_VDDC;
2352 : case SMU_MAX_LEVELS_VDDGFX:
2353 0 : return SMU73_MAX_LEVELS_VDDGFX;
2354 : case SMU_MAX_LEVELS_VDDCI:
2355 : return SMU73_MAX_LEVELS_VDDCI;
2356 : case SMU_MAX_LEVELS_MVDD:
2357 0 : return SMU73_MAX_LEVELS_MVDD;
2358 : }
2359 :
2360 0 : pr_warn("can't get the mac of %x\n", value);
2361 0 : return 0;
2362 : }
2363 :
2364 :
2365 0 : static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2366 : {
2367 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2368 : uint32_t mm_boot_level_offset, mm_boot_level_value;
2369 0 : struct phm_ppt_v1_information *table_info =
2370 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2371 :
2372 0 : smu_data->smc_state_table.UvdBootLevel = 0;
2373 0 : if (table_info->mm_dep_table->count > 0)
2374 0 : smu_data->smc_state_table.UvdBootLevel =
2375 0 : (uint8_t) (table_info->mm_dep_table->count - 1);
2376 0 : mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2377 : UvdBootLevel);
2378 0 : mm_boot_level_offset /= 4;
2379 0 : mm_boot_level_offset *= 4;
2380 0 : mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2381 : CGS_IND_REG__SMC, mm_boot_level_offset);
2382 0 : mm_boot_level_value &= 0x00FFFFFF;
2383 0 : mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2384 0 : cgs_write_ind_register(hwmgr->device,
2385 : CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2386 :
2387 0 : if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2388 0 : PHM_PlatformCaps_UVDDPM) ||
2389 0 : phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2390 : PHM_PlatformCaps_StablePState))
2391 0 : smum_send_msg_to_smc_with_parameter(hwmgr,
2392 : PPSMC_MSG_UVDDPM_SetEnabledMask,
2393 0 : (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2394 : NULL);
2395 0 : return 0;
2396 : }
2397 :
2398 0 : static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2399 : {
2400 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2401 : uint32_t mm_boot_level_offset, mm_boot_level_value;
2402 0 : struct phm_ppt_v1_information *table_info =
2403 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2404 :
2405 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2406 : PHM_PlatformCaps_StablePState))
2407 0 : smu_data->smc_state_table.VceBootLevel =
2408 0 : (uint8_t) (table_info->mm_dep_table->count - 1);
2409 : else
2410 0 : smu_data->smc_state_table.VceBootLevel = 0;
2411 :
2412 0 : mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2413 : offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2414 0 : mm_boot_level_offset /= 4;
2415 0 : mm_boot_level_offset *= 4;
2416 0 : mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2417 : CGS_IND_REG__SMC, mm_boot_level_offset);
2418 0 : mm_boot_level_value &= 0xFF00FFFF;
2419 0 : mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2420 0 : cgs_write_ind_register(hwmgr->device,
2421 : CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2422 :
2423 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2424 0 : smum_send_msg_to_smc_with_parameter(hwmgr,
2425 : PPSMC_MSG_VCEDPM_SetEnabledMask,
2426 0 : (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2427 : NULL);
2428 0 : return 0;
2429 : }
2430 :
2431 0 : static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2432 : {
2433 0 : switch (type) {
2434 : case SMU_UVD_TABLE:
2435 0 : fiji_update_uvd_smc_table(hwmgr);
2436 0 : break;
2437 : case SMU_VCE_TABLE:
2438 0 : fiji_update_vce_smc_table(hwmgr);
2439 0 : break;
2440 : default:
2441 : break;
2442 : }
2443 0 : return 0;
2444 : }
2445 :
2446 0 : static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2447 : {
2448 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2449 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2450 : uint32_t tmp;
2451 : int result;
2452 0 : bool error = false;
2453 :
2454 0 : result = smu7_read_smc_sram_dword(hwmgr,
2455 : SMU7_FIRMWARE_HEADER_LOCATION +
2456 : offsetof(SMU73_Firmware_Header, DpmTable),
2457 : &tmp, SMC_RAM_END);
2458 :
2459 0 : if (0 == result)
2460 0 : smu_data->smu7_data.dpm_table_start = tmp;
2461 :
2462 0 : error |= (0 != result);
2463 :
2464 0 : result = smu7_read_smc_sram_dword(hwmgr,
2465 : SMU7_FIRMWARE_HEADER_LOCATION +
2466 : offsetof(SMU73_Firmware_Header, SoftRegisters),
2467 : &tmp, SMC_RAM_END);
2468 :
2469 0 : if (!result) {
2470 0 : data->soft_regs_start = tmp;
2471 0 : smu_data->smu7_data.soft_regs_start = tmp;
2472 : }
2473 :
2474 0 : error |= (0 != result);
2475 :
2476 0 : result = smu7_read_smc_sram_dword(hwmgr,
2477 : SMU7_FIRMWARE_HEADER_LOCATION +
2478 : offsetof(SMU73_Firmware_Header, mcRegisterTable),
2479 : &tmp, SMC_RAM_END);
2480 :
2481 0 : if (!result)
2482 0 : smu_data->smu7_data.mc_reg_table_start = tmp;
2483 :
2484 0 : result = smu7_read_smc_sram_dword(hwmgr,
2485 : SMU7_FIRMWARE_HEADER_LOCATION +
2486 : offsetof(SMU73_Firmware_Header, FanTable),
2487 : &tmp, SMC_RAM_END);
2488 :
2489 0 : if (!result)
2490 0 : smu_data->smu7_data.fan_table_start = tmp;
2491 :
2492 0 : error |= (0 != result);
2493 :
2494 0 : result = smu7_read_smc_sram_dword(hwmgr,
2495 : SMU7_FIRMWARE_HEADER_LOCATION +
2496 : offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2497 : &tmp, SMC_RAM_END);
2498 :
2499 0 : if (!result)
2500 0 : smu_data->smu7_data.arb_table_start = tmp;
2501 :
2502 0 : error |= (0 != result);
2503 :
2504 0 : result = smu7_read_smc_sram_dword(hwmgr,
2505 : SMU7_FIRMWARE_HEADER_LOCATION +
2506 : offsetof(SMU73_Firmware_Header, Version),
2507 : &tmp, SMC_RAM_END);
2508 :
2509 0 : if (!result)
2510 0 : hwmgr->microcode_version_info.SMC = tmp;
2511 :
2512 0 : error |= (0 != result);
2513 :
2514 0 : return error ? -1 : 0;
2515 : }
2516 :
2517 0 : static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2518 : {
2519 :
2520 : /* Program additional LP registers
2521 : * that are no longer programmed by VBIOS
2522 : */
2523 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2524 : cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2525 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2526 : cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2527 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2528 : cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2529 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2530 : cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2531 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2532 : cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2533 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2534 : cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2535 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2536 : cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2537 :
2538 0 : return 0;
2539 : }
2540 :
2541 0 : static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2542 : {
2543 0 : return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2544 : CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2545 0 : ? true : false;
2546 : }
2547 :
2548 0 : static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2549 : void *profile_setting)
2550 : {
2551 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2552 0 : struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2553 : (hwmgr->smu_backend);
2554 : struct profile_mode_setting *setting;
2555 0 : struct SMU73_Discrete_GraphicsLevel *levels =
2556 : smu_data->smc_state_table.GraphicsLevel;
2557 0 : uint32_t array = smu_data->smu7_data.dpm_table_start +
2558 : offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2559 :
2560 0 : uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2561 : offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2562 0 : struct SMU73_Discrete_MemoryLevel *mclk_levels =
2563 : smu_data->smc_state_table.MemoryLevel;
2564 : uint32_t i;
2565 : uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2566 :
2567 0 : if (profile_setting == NULL)
2568 : return -EINVAL;
2569 :
2570 0 : setting = (struct profile_mode_setting *)profile_setting;
2571 :
2572 0 : if (setting->bupdate_sclk) {
2573 0 : if (!data->sclk_dpm_key_disabled)
2574 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2575 0 : for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2576 0 : if (levels[i].ActivityLevel !=
2577 0 : cpu_to_be16(setting->sclk_activity)) {
2578 0 : levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2579 :
2580 0 : clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2581 : + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2582 0 : offset = clk_activity_offset & ~0x3;
2583 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2584 0 : tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2585 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2586 :
2587 : }
2588 0 : if (levels[i].UpHyst != setting->sclk_up_hyst ||
2589 0 : levels[i].DownHyst != setting->sclk_down_hyst) {
2590 0 : levels[i].UpHyst = setting->sclk_up_hyst;
2591 0 : levels[i].DownHyst = setting->sclk_down_hyst;
2592 0 : up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2593 : + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2594 0 : down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2595 : + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2596 0 : offset = up_hyst_offset & ~0x3;
2597 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2598 0 : tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2599 0 : tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2600 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2601 : }
2602 : }
2603 0 : if (!data->sclk_dpm_key_disabled)
2604 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2605 : }
2606 :
2607 0 : if (setting->bupdate_mclk) {
2608 0 : if (!data->mclk_dpm_key_disabled)
2609 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2610 0 : for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2611 0 : if (mclk_levels[i].ActivityLevel !=
2612 0 : cpu_to_be16(setting->mclk_activity)) {
2613 0 : mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2614 :
2615 0 : clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2616 : + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2617 0 : offset = clk_activity_offset & ~0x3;
2618 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2619 0 : tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2620 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2621 :
2622 : }
2623 0 : if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2624 0 : mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2625 0 : mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2626 0 : mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2627 0 : up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2628 : + offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2629 0 : down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2630 : + offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2631 0 : offset = up_hyst_offset & ~0x3;
2632 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2633 0 : tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2634 0 : tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2635 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2636 : }
2637 : }
2638 0 : if (!data->mclk_dpm_key_disabled)
2639 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2640 : }
2641 : return 0;
2642 : }
2643 :
2644 : const struct pp_smumgr_func fiji_smu_funcs = {
2645 : .name = "fiji_smu",
2646 : .smu_init = &fiji_smu_init,
2647 : .smu_fini = &smu7_smu_fini,
2648 : .start_smu = &fiji_start_smu,
2649 : .check_fw_load_finish = &smu7_check_fw_load_finish,
2650 : .request_smu_load_fw = &smu7_reload_firmware,
2651 : .request_smu_load_specific_fw = NULL,
2652 : .send_msg_to_smc = &smu7_send_msg_to_smc,
2653 : .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2654 : .get_argument = smu7_get_argument,
2655 : .download_pptable_settings = NULL,
2656 : .upload_pptable_settings = NULL,
2657 : .update_smc_table = fiji_update_smc_table,
2658 : .get_offsetof = fiji_get_offsetof,
2659 : .process_firmware_header = fiji_process_firmware_header,
2660 : .init_smc_table = fiji_init_smc_table,
2661 : .update_sclk_threshold = fiji_update_sclk_threshold,
2662 : .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2663 : .thermal_avfs_enable = fiji_thermal_avfs_enable,
2664 : .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2665 : .populate_all_memory_levels = fiji_populate_all_memory_levels,
2666 : .get_mac_definition = fiji_get_mac_definition,
2667 : .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2668 : .is_dpm_running = fiji_is_dpm_running,
2669 : .is_hw_avfs_present = fiji_is_hw_avfs_present,
2670 : .update_dpm_settings = fiji_update_dpm_settings,
2671 : };
|