Line data Source code
1 : /*
2 : * Copyright 2016 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : * Author: Huang Rui <ray.huang@amd.com>
23 : *
24 : */
25 : #include "pp_debug.h"
26 : #include <linux/types.h>
27 : #include <linux/kernel.h>
28 : #include <linux/pci.h>
29 : #include <linux/slab.h>
30 : #include <linux/gfp.h>
31 :
32 : #include "smumgr.h"
33 : #include "iceland_smumgr.h"
34 :
35 : #include "ppsmc.h"
36 :
37 : #include "cgs_common.h"
38 :
39 : #include "smu7_dyn_defaults.h"
40 : #include "smu7_hwmgr.h"
41 : #include "hardwaremanager.h"
42 : #include "ppatomctrl.h"
43 : #include "atombios.h"
44 : #include "pppcielanes.h"
45 : #include "pp_endian.h"
46 : #include "processpptables.h"
47 :
48 :
49 : #include "smu/smu_7_1_1_d.h"
50 : #include "smu/smu_7_1_1_sh_mask.h"
51 : #include "smu71_discrete.h"
52 :
53 : #include "smu_ucode_xfer_vi.h"
54 : #include "gmc/gmc_8_1_d.h"
55 : #include "gmc/gmc_8_1_sh_mask.h"
56 : #include "bif/bif_5_0_d.h"
57 : #include "bif/bif_5_0_sh_mask.h"
58 : #include "dce/dce_10_0_d.h"
59 : #include "dce/dce_10_0_sh_mask.h"
60 :
61 :
62 : #define ICELAND_SMC_SIZE 0x20000
63 :
64 : #define POWERTUNE_DEFAULT_SET_MAX 1
65 : #define MC_CG_ARB_FREQ_F1 0x0b
66 : #define VDDC_VDDCI_DELTA 200
67 :
68 : #define DEVICE_ID_VI_ICELAND_M_6900 0x6900
69 : #define DEVICE_ID_VI_ICELAND_M_6901 0x6901
70 : #define DEVICE_ID_VI_ICELAND_M_6902 0x6902
71 : #define DEVICE_ID_VI_ICELAND_M_6903 0x6903
72 :
73 : static const struct iceland_pt_defaults defaults_iceland = {
74 : /*
75 : * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
76 : * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
77 : */
78 : 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
79 : { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
80 : { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
81 : };
82 :
83 : /* 35W - XT, XTL */
84 : static const struct iceland_pt_defaults defaults_icelandxt = {
85 : /*
86 : * sviLoadLIneEn, SviLoadLineVddC,
87 : * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
88 : * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
89 : * BAPM_TEMP_GRADIENT
90 : */
91 : 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
92 : { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0},
93 : { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
94 : };
95 :
96 : /* 25W - PRO, LE */
97 : static const struct iceland_pt_defaults defaults_icelandpro = {
98 : /*
99 : * sviLoadLIneEn, SviLoadLineVddC,
100 : * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
101 : * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
102 : * BAPM_TEMP_GRADIENT
103 : */
104 : 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
105 : { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0},
106 : { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
107 : };
108 :
109 0 : static int iceland_start_smc(struct pp_hwmgr *hwmgr)
110 : {
111 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
112 : SMC_SYSCON_RESET_CNTL, rst_reg, 0);
113 :
114 0 : return 0;
115 : }
116 :
117 0 : static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
118 : {
119 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
120 : SMC_SYSCON_RESET_CNTL,
121 : rst_reg, 1);
122 0 : }
123 :
124 :
125 0 : static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
126 : {
127 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128 : SMC_SYSCON_CLOCK_CNTL_0,
129 : ck_disable, 1);
130 0 : }
131 :
132 0 : static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
133 : {
134 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
135 : SMC_SYSCON_CLOCK_CNTL_0,
136 : ck_disable, 0);
137 0 : }
138 :
139 0 : static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
140 : {
141 : /* set smc instruct start point at 0x0 */
142 0 : smu7_program_jump_on_start(hwmgr);
143 :
144 : /* enable smc clock */
145 0 : iceland_start_smc_clock(hwmgr);
146 :
147 : /* de-assert reset */
148 0 : iceland_start_smc(hwmgr);
149 :
150 0 : PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
151 : INTERRUPTS_ENABLED, 1);
152 :
153 0 : return 0;
154 : }
155 :
156 :
157 0 : static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
158 : uint32_t length, const uint8_t *src,
159 : uint32_t limit, uint32_t start_addr)
160 : {
161 0 : uint32_t byte_count = length;
162 : uint32_t data;
163 :
164 0 : PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
165 :
166 0 : cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
167 0 : PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
168 :
169 0 : while (byte_count >= 4) {
170 0 : data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
171 0 : cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172 0 : src += 4;
173 0 : byte_count -= 4;
174 : }
175 :
176 0 : PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
177 :
178 0 : PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
179 :
180 : return 0;
181 : }
182 :
183 :
184 0 : static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
185 : {
186 : uint32_t val;
187 0 : struct cgs_firmware_info info = {0};
188 :
189 0 : if (hwmgr == NULL || hwmgr->device == NULL)
190 : return -EINVAL;
191 :
192 : /* load SMC firmware */
193 0 : cgs_get_firmware_info(hwmgr->device,
194 : smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
195 :
196 0 : if (info.image_size & 3) {
197 0 : pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
198 0 : return -EINVAL;
199 : }
200 :
201 0 : if (info.image_size > ICELAND_SMC_SIZE) {
202 0 : pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
203 0 : return -EINVAL;
204 : }
205 0 : hwmgr->smu_version = info.version;
206 : /* wait for smc boot up */
207 0 : PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
208 : RCU_UC_EVENTS, boot_seq_done, 0);
209 :
210 : /* clear firmware interrupt enable flag */
211 0 : val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
212 : ixSMC_SYSCON_MISC_CNTL);
213 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
214 : ixSMC_SYSCON_MISC_CNTL, val | 1);
215 :
216 : /* stop smc clock */
217 0 : iceland_stop_smc_clock(hwmgr);
218 :
219 : /* reset smc */
220 0 : iceland_reset_smc(hwmgr);
221 0 : iceland_upload_smc_firmware_data(hwmgr, info.image_size,
222 0 : (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
223 : info.ucode_start_address);
224 :
225 0 : return 0;
226 : }
227 :
228 0 : static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
229 : uint32_t firmwareType)
230 : {
231 0 : return 0;
232 : }
233 :
234 0 : static int iceland_start_smu(struct pp_hwmgr *hwmgr)
235 : {
236 0 : struct iceland_smumgr *priv = hwmgr->smu_backend;
237 : int result;
238 :
239 0 : if (!smu7_is_smc_ram_running(hwmgr)) {
240 0 : result = iceland_smu_upload_firmware_image(hwmgr);
241 0 : if (result)
242 : return result;
243 :
244 0 : iceland_smu_start_smc(hwmgr);
245 : }
246 :
247 : /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
248 : * to check fw loading state
249 : */
250 0 : smu7_read_smc_sram_dword(hwmgr,
251 : SMU71_FIRMWARE_HEADER_LOCATION +
252 : offsetof(SMU71_Firmware_Header, SoftRegisters),
253 : &(priv->smu7_data.soft_regs_start), 0x40000);
254 :
255 0 : result = smu7_request_smu_load_fw(hwmgr);
256 :
257 0 : return result;
258 : }
259 :
260 0 : static int iceland_smu_init(struct pp_hwmgr *hwmgr)
261 : {
262 0 : struct iceland_smumgr *iceland_priv = NULL;
263 :
264 0 : iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
265 :
266 0 : if (iceland_priv == NULL)
267 : return -ENOMEM;
268 :
269 0 : hwmgr->smu_backend = iceland_priv;
270 :
271 0 : if (smu7_init(hwmgr)) {
272 0 : kfree(iceland_priv);
273 0 : return -EINVAL;
274 : }
275 :
276 : return 0;
277 : }
278 :
279 :
280 0 : static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
281 : {
282 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
283 0 : struct amdgpu_device *adev = hwmgr->adev;
284 : uint32_t dev_id;
285 :
286 0 : dev_id = adev->pdev->device;
287 :
288 0 : switch (dev_id) {
289 : case DEVICE_ID_VI_ICELAND_M_6900:
290 : case DEVICE_ID_VI_ICELAND_M_6903:
291 0 : smu_data->power_tune_defaults = &defaults_icelandxt;
292 : break;
293 :
294 : case DEVICE_ID_VI_ICELAND_M_6901:
295 : case DEVICE_ID_VI_ICELAND_M_6902:
296 0 : smu_data->power_tune_defaults = &defaults_icelandpro;
297 : break;
298 : default:
299 0 : smu_data->power_tune_defaults = &defaults_iceland;
300 0 : pr_warn("Unknown V.I. Device ID.\n");
301 : break;
302 : }
303 0 : return;
304 : }
305 :
306 : static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
307 : {
308 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
309 0 : const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
310 :
311 0 : smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
312 0 : smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
313 0 : smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
314 0 : smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
315 :
316 : return 0;
317 : }
318 :
319 : static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
320 : {
321 : uint16_t tdc_limit;
322 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
323 0 : const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
324 :
325 0 : tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
326 0 : smu_data->power_tune_table.TDC_VDDC_PkgLimit =
327 0 : CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
328 0 : smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
329 0 : defaults->tdc_vddc_throttle_release_limit_perc;
330 0 : smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
331 :
332 : return 0;
333 : }
334 :
335 0 : static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
336 : {
337 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
338 0 : const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
339 : uint32_t temp;
340 :
341 0 : if (smu7_read_smc_sram_dword(hwmgr,
342 : fuse_table_offset +
343 : offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
344 : (uint32_t *)&temp, SMC_RAM_END))
345 0 : PP_ASSERT_WITH_CODE(false,
346 : "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
347 : return -EINVAL);
348 : else
349 0 : smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
350 :
351 0 : return 0;
352 : }
353 :
354 : static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
355 : {
356 : return 0;
357 : }
358 :
359 : static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
360 : {
361 : int i;
362 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
363 :
364 : /* Currently not used. Set all to zero. */
365 0 : for (i = 0; i < 8; i++)
366 0 : smu_data->power_tune_table.GnbLPML[i] = 0;
367 :
368 : return 0;
369 : }
370 :
371 : static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
372 : {
373 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
374 0 : uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
375 0 : uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
376 0 : struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
377 :
378 0 : HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
379 0 : LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
380 :
381 0 : smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
382 0 : CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
383 0 : smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
384 0 : CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
385 :
386 : return 0;
387 : }
388 :
389 0 : static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
390 : {
391 : int i;
392 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
393 0 : uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
394 0 : uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
395 :
396 0 : PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
397 : "The CAC Leakage table does not exist!", return -EINVAL);
398 0 : PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
399 : "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
400 0 : PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
401 : "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
402 :
403 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
404 0 : for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
405 0 : lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
406 0 : hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
407 : }
408 : } else {
409 0 : PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
410 : }
411 :
412 : return 0;
413 : }
414 :
415 0 : static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
416 : {
417 : int i;
418 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
419 0 : uint8_t *vid = smu_data->power_tune_table.VddCVid;
420 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
421 :
422 0 : PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
423 : "There should never be more than 8 entries for VddcVid!!!",
424 : return -EINVAL);
425 :
426 0 : for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
427 0 : vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
428 : }
429 :
430 : return 0;
431 : }
432 :
433 :
434 :
435 0 : static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
436 : {
437 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
438 : uint32_t pm_fuse_table_offset;
439 :
440 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
441 : PHM_PlatformCaps_PowerContainment)) {
442 0 : if (smu7_read_smc_sram_dword(hwmgr,
443 : SMU71_FIRMWARE_HEADER_LOCATION +
444 : offsetof(SMU71_Firmware_Header, PmFuseTable),
445 : &pm_fuse_table_offset, SMC_RAM_END))
446 0 : PP_ASSERT_WITH_CODE(false,
447 : "Attempt to get pm_fuse_table_offset Failed!",
448 : return -EINVAL);
449 :
450 : /* DW0 - DW3 */
451 0 : if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
452 0 : PP_ASSERT_WITH_CODE(false,
453 : "Attempt to populate bapm vddc vid Failed!",
454 : return -EINVAL);
455 :
456 : /* DW4 - DW5 */
457 0 : if (iceland_populate_vddc_vid(hwmgr))
458 0 : PP_ASSERT_WITH_CODE(false,
459 : "Attempt to populate vddc vid Failed!",
460 : return -EINVAL);
461 :
462 : /* DW6 */
463 0 : if (iceland_populate_svi_load_line(hwmgr))
464 : PP_ASSERT_WITH_CODE(false,
465 : "Attempt to populate SviLoadLine Failed!",
466 : return -EINVAL);
467 : /* DW7 */
468 0 : if (iceland_populate_tdc_limit(hwmgr))
469 : PP_ASSERT_WITH_CODE(false,
470 : "Attempt to populate TDCLimit Failed!", return -EINVAL);
471 : /* DW8 */
472 0 : if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
473 0 : PP_ASSERT_WITH_CODE(false,
474 : "Attempt to populate TdcWaterfallCtl, "
475 : "LPMLTemperature Min and Max Failed!",
476 : return -EINVAL);
477 :
478 : /* DW9-DW12 */
479 0 : if (0 != iceland_populate_temperature_scaler(hwmgr))
480 : PP_ASSERT_WITH_CODE(false,
481 : "Attempt to populate LPMLTemperatureScaler Failed!",
482 : return -EINVAL);
483 :
484 : /* DW13-DW16 */
485 0 : if (iceland_populate_gnb_lpml(hwmgr))
486 : PP_ASSERT_WITH_CODE(false,
487 : "Attempt to populate GnbLPML Failed!",
488 : return -EINVAL);
489 :
490 : /* DW18 */
491 0 : if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
492 : PP_ASSERT_WITH_CODE(false,
493 : "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
494 : return -EINVAL);
495 :
496 0 : if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
497 0 : (uint8_t *)&smu_data->power_tune_table,
498 : sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
499 0 : PP_ASSERT_WITH_CODE(false,
500 : "Attempt to download PmFuseTable Failed!",
501 : return -EINVAL);
502 : }
503 : return 0;
504 : }
505 :
506 : static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
507 : struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
508 : uint32_t clock, uint32_t *vol)
509 : {
510 0 : uint32_t i = 0;
511 :
512 : /* clock - voltage dependency table is empty table */
513 0 : if (allowed_clock_voltage_table->count == 0)
514 : return -EINVAL;
515 :
516 0 : for (i = 0; i < allowed_clock_voltage_table->count; i++) {
517 : /* find first sclk bigger than request */
518 0 : if (allowed_clock_voltage_table->entries[i].clk >= clock) {
519 0 : *vol = allowed_clock_voltage_table->entries[i].v;
520 : return 0;
521 : }
522 : }
523 :
524 : /* sclk is bigger than max sclk in the dependence table */
525 0 : *vol = allowed_clock_voltage_table->entries[i - 1].v;
526 :
527 : return 0;
528 : }
529 :
530 0 : static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
531 : pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
532 : uint16_t *lo)
533 : {
534 : uint16_t v_index;
535 0 : bool vol_found = false;
536 0 : *hi = tab->value * VOLTAGE_SCALE;
537 0 : *lo = tab->value * VOLTAGE_SCALE;
538 :
539 : /* SCLK/VDDC Dependency Table has to exist. */
540 0 : PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
541 : "The SCLK/VDDC Dependency Table does not exist.",
542 : return -EINVAL);
543 :
544 0 : if (NULL == hwmgr->dyn_state.cac_leakage_table) {
545 0 : pr_warn("CAC Leakage Table does not exist, using vddc.\n");
546 : return 0;
547 : }
548 :
549 : /*
550 : * Since voltage in the sclk/vddc dependency table is not
551 : * necessarily in ascending order because of ELB voltage
552 : * patching, loop through entire list to find exact voltage.
553 : */
554 0 : for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
555 0 : if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
556 0 : vol_found = true;
557 0 : if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
558 0 : *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
559 0 : *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
560 : } else {
561 0 : pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
562 0 : *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
563 0 : *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
564 : }
565 : break;
566 : }
567 : }
568 :
569 : /*
570 : * If voltage is not found in the first pass, loop again to
571 : * find the best match, equal or higher value.
572 : */
573 0 : if (!vol_found) {
574 0 : for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
575 0 : if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
576 0 : vol_found = true;
577 0 : if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
578 0 : *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
579 0 : *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
580 : } else {
581 0 : pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
582 0 : *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
583 0 : *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
584 : }
585 : break;
586 : }
587 : }
588 :
589 0 : if (!vol_found)
590 0 : pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
591 : }
592 :
593 : return 0;
594 : }
595 :
596 0 : static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
597 : pp_atomctrl_voltage_table_entry *tab,
598 : SMU71_Discrete_VoltageLevel *smc_voltage_tab)
599 : {
600 : int result;
601 :
602 0 : result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
603 : &smc_voltage_tab->StdVoltageHiSidd,
604 : &smc_voltage_tab->StdVoltageLoSidd);
605 0 : if (0 != result) {
606 0 : smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
607 0 : smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
608 : }
609 :
610 0 : smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
611 0 : CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
612 0 : CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
613 :
614 0 : return 0;
615 : }
616 :
617 0 : static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
618 : SMU71_Discrete_DpmTable *table)
619 : {
620 : unsigned int count;
621 : int result;
622 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623 :
624 0 : table->VddcLevelCount = data->vddc_voltage_table.count;
625 0 : for (count = 0; count < table->VddcLevelCount; count++) {
626 0 : result = iceland_populate_smc_voltage_table(hwmgr,
627 : &(data->vddc_voltage_table.entries[count]),
628 : &(table->VddcLevel[count]));
629 0 : PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
630 :
631 : /* GPIO voltage control */
632 0 : if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
633 0 : table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
634 0 : else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
635 0 : table->VddcLevel[count].Smio = 0;
636 : }
637 :
638 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
639 :
640 0 : return 0;
641 : }
642 :
643 0 : static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
644 : SMU71_Discrete_DpmTable *table)
645 : {
646 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
647 : uint32_t count;
648 : int result;
649 :
650 0 : table->VddciLevelCount = data->vddci_voltage_table.count;
651 :
652 0 : for (count = 0; count < table->VddciLevelCount; count++) {
653 0 : result = iceland_populate_smc_voltage_table(hwmgr,
654 : &(data->vddci_voltage_table.entries[count]),
655 : &(table->VddciLevel[count]));
656 0 : PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
657 0 : if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
658 0 : table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
659 : else
660 : table->VddciLevel[count].Smio |= 0;
661 : }
662 :
663 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
664 :
665 0 : return 0;
666 : }
667 :
668 0 : static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
669 : SMU71_Discrete_DpmTable *table)
670 : {
671 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
672 : uint32_t count;
673 : int result;
674 :
675 0 : table->MvddLevelCount = data->mvdd_voltage_table.count;
676 :
677 0 : for (count = 0; count < table->VddciLevelCount; count++) {
678 0 : result = iceland_populate_smc_voltage_table(hwmgr,
679 : &(data->mvdd_voltage_table.entries[count]),
680 : &table->MvddLevel[count]);
681 0 : PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
682 0 : if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
683 0 : table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
684 : else
685 : table->MvddLevel[count].Smio |= 0;
686 : }
687 :
688 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
689 :
690 0 : return 0;
691 : }
692 :
693 :
694 0 : static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
695 : SMU71_Discrete_DpmTable *table)
696 : {
697 : int result;
698 :
699 0 : result = iceland_populate_smc_vddc_table(hwmgr, table);
700 0 : PP_ASSERT_WITH_CODE(0 == result,
701 : "can not populate VDDC voltage table to SMC", return -EINVAL);
702 :
703 0 : result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
704 0 : PP_ASSERT_WITH_CODE(0 == result,
705 : "can not populate VDDCI voltage table to SMC", return -EINVAL);
706 :
707 0 : result = iceland_populate_smc_mvdd_table(hwmgr, table);
708 0 : PP_ASSERT_WITH_CODE(0 == result,
709 : "can not populate MVDD voltage table to SMC", return -EINVAL);
710 :
711 : return 0;
712 : }
713 :
714 0 : static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
715 : struct SMU71_Discrete_Ulv *state)
716 : {
717 : uint32_t voltage_response_time, ulv_voltage;
718 : int result;
719 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
720 :
721 0 : state->CcPwrDynRm = 0;
722 0 : state->CcPwrDynRm1 = 0;
723 :
724 0 : result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
725 0 : PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
726 :
727 0 : if (ulv_voltage == 0) {
728 0 : data->ulv_supported = false;
729 0 : return 0;
730 : }
731 :
732 0 : if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
733 : /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
734 0 : if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
735 0 : state->VddcOffset = 0;
736 : else
737 : /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
738 0 : state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
739 : } else {
740 : /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
741 0 : if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
742 0 : state->VddcOffsetVid = 0;
743 : else /* used in SVI2 Mode */
744 0 : state->VddcOffsetVid = (uint8_t)(
745 0 : (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
746 0 : * VOLTAGE_VID_OFFSET_SCALE2
747 0 : / VOLTAGE_VID_OFFSET_SCALE1);
748 : }
749 0 : state->VddcPhase = 1;
750 :
751 0 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
752 0 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
753 0 : CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
754 :
755 0 : return 0;
756 : }
757 :
758 : static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
759 : SMU71_Discrete_Ulv *ulv_level)
760 : {
761 0 : return iceland_populate_ulv_level(hwmgr, ulv_level);
762 : }
763 :
764 0 : static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
765 : {
766 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
767 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
768 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
769 : uint32_t i;
770 :
771 : /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
772 0 : for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
773 0 : table->LinkLevel[i].PcieGenSpeed =
774 0 : (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
775 0 : table->LinkLevel[i].PcieLaneCount =
776 0 : (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
777 0 : table->LinkLevel[i].EnabledForActivity =
778 : 1;
779 0 : table->LinkLevel[i].SPC =
780 0 : (uint8_t)(data->pcie_spc_cap & 0xff);
781 0 : table->LinkLevel[i].DownThreshold =
782 : PP_HOST_TO_SMC_UL(5);
783 0 : table->LinkLevel[i].UpThreshold =
784 : PP_HOST_TO_SMC_UL(30);
785 : }
786 :
787 0 : smu_data->smc_state_table.LinkLevelCount =
788 0 : (uint8_t)dpm_table->pcie_speed_table.count;
789 0 : data->dpm_level_enable_mask.pcie_dpm_enable_mask =
790 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
791 :
792 0 : return 0;
793 : }
794 :
795 0 : static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
796 : uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
797 : {
798 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
799 : pp_atomctrl_clock_dividers_vi dividers;
800 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
801 0 : uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
802 0 : uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
803 0 : uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
804 0 : uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
805 : uint32_t reference_clock;
806 : uint32_t reference_divider;
807 : uint32_t fbdiv;
808 : int result;
809 :
810 : /* get the engine clock dividers for this clock value*/
811 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs);
812 :
813 0 : PP_ASSERT_WITH_CODE(result == 0,
814 : "Error retrieving Engine Clock dividers from VBIOS.", return result);
815 :
816 : /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
817 0 : reference_clock = atomctrl_get_reference_clock(hwmgr);
818 :
819 0 : reference_divider = 1 + dividers.uc_pll_ref_div;
820 :
821 : /* low 14 bits is fraction and high 12 bits is divider*/
822 0 : fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
823 :
824 : /* SPLL_FUNC_CNTL setup*/
825 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
826 : CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
827 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
828 : CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
829 :
830 : /* SPLL_FUNC_CNTL_3 setup*/
831 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
832 : CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
833 :
834 : /* set to use fractional accumulation*/
835 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
836 : CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
837 :
838 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
839 : PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
840 : pp_atomctrl_internal_ss_info ss_info;
841 :
842 0 : uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
843 0 : if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
844 : /*
845 : * ss_info.speed_spectrum_percentage -- in unit of 0.01%
846 : * ss_info.speed_spectrum_rate -- in unit of khz
847 : */
848 : /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
849 0 : uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
850 :
851 : /* clkv = 2 * D * fbdiv / NS */
852 0 : uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
853 :
854 0 : cg_spll_spread_spectrum =
855 0 : PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
856 0 : cg_spll_spread_spectrum =
857 : PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
858 0 : cg_spll_spread_spectrum_2 =
859 0 : PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
860 : }
861 : }
862 :
863 0 : sclk->SclkFrequency = engine_clock;
864 0 : sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
865 0 : sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
866 0 : sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
867 0 : sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
868 0 : sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
869 :
870 0 : return 0;
871 : }
872 :
873 : static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
874 : const struct phm_phase_shedding_limits_table *pl,
875 : uint32_t sclk, uint32_t *p_shed)
876 : {
877 : unsigned int i;
878 :
879 : /* use the minimum phase shedding */
880 : *p_shed = 1;
881 :
882 0 : for (i = 0; i < pl->count; i++) {
883 0 : if (sclk < pl->entries[i].Sclk) {
884 0 : *p_shed = i;
885 : break;
886 : }
887 : }
888 : return 0;
889 : }
890 :
891 0 : static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
892 : uint32_t engine_clock,
893 : SMU71_Discrete_GraphicsLevel *graphic_level)
894 : {
895 : int result;
896 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
897 :
898 0 : result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
899 :
900 : /* populate graphics levels*/
901 0 : result = iceland_get_dependency_volt_by_clk(hwmgr,
902 : hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
903 : &graphic_level->MinVddc);
904 0 : PP_ASSERT_WITH_CODE((0 == result),
905 : "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
906 :
907 : /* SCLK frequency in units of 10KHz*/
908 0 : graphic_level->SclkFrequency = engine_clock;
909 0 : graphic_level->MinVddcPhases = 1;
910 :
911 0 : if (data->vddc_phase_shed_control)
912 0 : iceland_populate_phase_value_based_on_sclk(hwmgr,
913 0 : hwmgr->dyn_state.vddc_phase_shed_limits_table,
914 : engine_clock,
915 : &graphic_level->MinVddcPhases);
916 :
917 : /* Indicates maximum activity level for this performance level. 50% for now*/
918 0 : graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
919 :
920 0 : graphic_level->CcPwrDynRm = 0;
921 0 : graphic_level->CcPwrDynRm1 = 0;
922 : /* this level can be used if activity is high enough.*/
923 0 : graphic_level->EnabledForActivity = 0;
924 : /* this level can be used for throttling.*/
925 0 : graphic_level->EnabledForThrottle = 1;
926 0 : graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
927 0 : graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
928 0 : graphic_level->VoltageDownHyst = 0;
929 0 : graphic_level->PowerThrottle = 0;
930 :
931 0 : data->display_timing.min_clock_in_sr =
932 0 : hwmgr->display_config->min_core_set_clock_in_sr;
933 :
934 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
935 : PHM_PlatformCaps_SclkDeepSleep))
936 0 : graphic_level->DeepSleepDivId =
937 0 : smu7_get_sleep_divider_id_from_clock(engine_clock,
938 : data->display_timing.min_clock_in_sr);
939 :
940 : /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
941 0 : graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
942 :
943 : if (0 == result) {
944 0 : graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
945 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
946 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
947 0 : CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
948 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
949 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
950 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
951 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
952 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
953 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
954 : }
955 :
956 0 : return result;
957 : }
958 :
959 0 : static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
960 : {
961 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
962 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
963 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
964 0 : uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
965 : offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
966 :
967 0 : uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
968 : SMU71_MAX_LEVELS_GRAPHICS;
969 :
970 0 : SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
971 :
972 : uint32_t i;
973 0 : uint8_t highest_pcie_level_enabled = 0;
974 0 : uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
975 0 : uint8_t count = 0;
976 0 : int result = 0;
977 :
978 0 : memset(levels, 0x00, level_array_size);
979 :
980 0 : for (i = 0; i < dpm_table->sclk_table.count; i++) {
981 0 : result = iceland_populate_single_graphic_level(hwmgr,
982 : dpm_table->sclk_table.dpm_levels[i].value,
983 : &(smu_data->smc_state_table.GraphicsLevel[i]));
984 0 : if (result != 0)
985 : return result;
986 :
987 : /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
988 0 : if (i > 1)
989 0 : smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
990 : }
991 :
992 : /* Only enable level 0 for now. */
993 0 : smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
994 :
995 : /* set highest level watermark to high */
996 0 : if (dpm_table->sclk_table.count > 1)
997 0 : smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
998 : PPSMC_DISPLAY_WATERMARK_HIGH;
999 :
1000 0 : smu_data->smc_state_table.GraphicsDpmLevelCount =
1001 0 : (uint8_t)dpm_table->sclk_table.count;
1002 0 : data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1003 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1004 :
1005 0 : while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1006 0 : (1 << (highest_pcie_level_enabled + 1))) != 0) {
1007 0 : highest_pcie_level_enabled++;
1008 : }
1009 :
1010 0 : while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011 0 : (1 << lowest_pcie_level_enabled)) == 0) {
1012 0 : lowest_pcie_level_enabled++;
1013 : }
1014 :
1015 0 : while ((count < highest_pcie_level_enabled) &&
1016 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1017 0 : (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1018 0 : count++;
1019 : }
1020 :
1021 0 : mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1022 0 : (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1023 :
1024 :
1025 : /* set pcieDpmLevel to highest_pcie_level_enabled*/
1026 0 : for (i = 2; i < dpm_table->sclk_table.count; i++) {
1027 0 : smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1028 : }
1029 :
1030 : /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1031 0 : smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1032 :
1033 : /* set pcieDpmLevel to mid_pcie_level_enabled*/
1034 0 : smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1035 :
1036 : /* level count will send to smc once at init smc table and never change*/
1037 0 : result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1038 : (uint8_t *)levels, (uint32_t)level_array_size,
1039 : SMC_RAM_END);
1040 :
1041 0 : return result;
1042 : }
1043 :
1044 0 : static int iceland_calculate_mclk_params(
1045 : struct pp_hwmgr *hwmgr,
1046 : uint32_t memory_clock,
1047 : SMU71_Discrete_MemoryLevel *mclk,
1048 : bool strobe_mode,
1049 : bool dllStateOn
1050 : )
1051 : {
1052 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1053 :
1054 0 : uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1055 0 : uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1056 0 : uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1057 0 : uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1058 0 : uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1059 0 : uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1060 0 : uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1061 0 : uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1062 0 : uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1063 :
1064 : pp_atomctrl_memory_clock_param mpll_param;
1065 : int result;
1066 :
1067 0 : result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1068 : memory_clock, &mpll_param, strobe_mode);
1069 0 : PP_ASSERT_WITH_CODE(0 == result,
1070 : "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1071 :
1072 : /* MPLL_FUNC_CNTL setup*/
1073 0 : mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1074 :
1075 : /* MPLL_FUNC_CNTL_1 setup*/
1076 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1077 : MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1078 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1079 : MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1080 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1081 : MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1082 :
1083 : /* MPLL_AD_FUNC_CNTL setup*/
1084 0 : mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1085 : MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1086 :
1087 0 : if (data->is_memory_gddr5) {
1088 : /* MPLL_DQ_FUNC_CNTL setup*/
1089 0 : mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1090 : MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1091 0 : mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1092 : MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1093 : }
1094 :
1095 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1096 : PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1097 : /*
1098 : ************************************
1099 : Fref = Reference Frequency
1100 : NF = Feedback divider ratio
1101 : NR = Reference divider ratio
1102 : Fnom = Nominal VCO output frequency = Fref * NF / NR
1103 : Fs = Spreading Rate
1104 : D = Percentage down-spread / 2
1105 : Fint = Reference input frequency to PFD = Fref / NR
1106 : NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1107 : CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1108 : NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1109 : CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1110 : *************************************
1111 : */
1112 : pp_atomctrl_internal_ss_info ss_info;
1113 : uint32_t freq_nom;
1114 : uint32_t tmp;
1115 0 : uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1116 :
1117 : /* for GDDR5 for all modes and DDR3 */
1118 0 : if (1 == mpll_param.qdr)
1119 0 : freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1120 : else
1121 0 : freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1122 :
1123 : /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1124 0 : tmp = (freq_nom / reference_clock);
1125 0 : tmp = tmp * tmp;
1126 :
1127 0 : if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1128 : /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1129 : /* ss.Info.speed_spectrum_rate -- in unit of khz */
1130 : /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1131 : /* = reference_clock * 5 / speed_spectrum_rate */
1132 0 : uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1133 :
1134 : /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1135 : /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1136 0 : uint32_t clkv =
1137 0 : (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1138 0 : ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1139 :
1140 0 : mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1141 0 : mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1142 : }
1143 : }
1144 :
1145 : /* MCLK_PWRMGT_CNTL setup */
1146 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1147 : MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1148 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1149 : MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1150 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1151 : MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1152 :
1153 :
1154 : /* Save the result data to outpupt memory level structure */
1155 0 : mclk->MclkFrequency = memory_clock;
1156 0 : mclk->MpllFuncCntl = mpll_func_cntl;
1157 0 : mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1158 0 : mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1159 0 : mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1160 0 : mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1161 0 : mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1162 0 : mclk->DllCntl = dll_cntl;
1163 0 : mclk->MpllSs1 = mpll_ss1;
1164 0 : mclk->MpllSs2 = mpll_ss2;
1165 :
1166 0 : return 0;
1167 : }
1168 :
1169 : static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1170 : bool strobe_mode)
1171 : {
1172 : uint8_t mc_para_index;
1173 :
1174 0 : if (strobe_mode) {
1175 0 : if (memory_clock < 12500) {
1176 : mc_para_index = 0x00;
1177 0 : } else if (memory_clock > 47500) {
1178 : mc_para_index = 0x0f;
1179 : } else {
1180 0 : mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1181 : }
1182 : } else {
1183 0 : if (memory_clock < 65000) {
1184 : mc_para_index = 0x00;
1185 0 : } else if (memory_clock > 135000) {
1186 : mc_para_index = 0x0f;
1187 : } else {
1188 0 : mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1189 : }
1190 : }
1191 :
1192 : return mc_para_index;
1193 : }
1194 :
1195 : static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1196 : {
1197 : uint8_t mc_para_index;
1198 :
1199 0 : if (memory_clock < 10000) {
1200 : mc_para_index = 0;
1201 0 : } else if (memory_clock >= 80000) {
1202 : mc_para_index = 0x0f;
1203 : } else {
1204 0 : mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1205 : }
1206 :
1207 : return mc_para_index;
1208 : }
1209 :
1210 : static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1211 : uint32_t memory_clock, uint32_t *p_shed)
1212 : {
1213 : unsigned int i;
1214 :
1215 : *p_shed = 1;
1216 :
1217 0 : for (i = 0; i < pl->count; i++) {
1218 0 : if (memory_clock < pl->entries[i].Mclk) {
1219 0 : *p_shed = i;
1220 : break;
1221 : }
1222 : }
1223 :
1224 : return 0;
1225 : }
1226 :
1227 0 : static int iceland_populate_single_memory_level(
1228 : struct pp_hwmgr *hwmgr,
1229 : uint32_t memory_clock,
1230 : SMU71_Discrete_MemoryLevel *memory_level
1231 : )
1232 : {
1233 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1234 0 : int result = 0;
1235 : bool dll_state_on;
1236 0 : uint32_t mclk_edc_wr_enable_threshold = 40000;
1237 0 : uint32_t mclk_edc_enable_threshold = 40000;
1238 0 : uint32_t mclk_strobe_mode_threshold = 40000;
1239 :
1240 0 : if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1241 0 : result = iceland_get_dependency_volt_by_clk(hwmgr,
1242 : hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1243 0 : PP_ASSERT_WITH_CODE((0 == result),
1244 : "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1245 : }
1246 :
1247 0 : if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1248 0 : memory_level->MinVddci = memory_level->MinVddc;
1249 0 : } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1250 0 : result = iceland_get_dependency_volt_by_clk(hwmgr,
1251 : hwmgr->dyn_state.vddci_dependency_on_mclk,
1252 : memory_clock,
1253 : &memory_level->MinVddci);
1254 0 : PP_ASSERT_WITH_CODE((0 == result),
1255 : "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1256 : }
1257 :
1258 0 : memory_level->MinVddcPhases = 1;
1259 :
1260 0 : if (data->vddc_phase_shed_control) {
1261 0 : iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1262 : memory_clock, &memory_level->MinVddcPhases);
1263 : }
1264 :
1265 0 : memory_level->EnabledForThrottle = 1;
1266 0 : memory_level->EnabledForActivity = 0;
1267 0 : memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1268 0 : memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1269 0 : memory_level->VoltageDownHyst = 0;
1270 :
1271 : /* Indicates maximum activity level for this performance level.*/
1272 0 : memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1273 0 : memory_level->StutterEnable = 0;
1274 0 : memory_level->StrobeEnable = 0;
1275 0 : memory_level->EdcReadEnable = 0;
1276 0 : memory_level->EdcWriteEnable = 0;
1277 0 : memory_level->RttEnable = 0;
1278 :
1279 : /* default set to low watermark. Highest level will be set to high later.*/
1280 0 : memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1281 :
1282 0 : data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1283 0 : data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1284 :
1285 : /* stutter mode not support on iceland */
1286 :
1287 : /* decide strobe mode*/
1288 0 : memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1289 0 : (memory_clock <= mclk_strobe_mode_threshold);
1290 :
1291 : /* decide EDC mode and memory clock ratio*/
1292 0 : if (data->is_memory_gddr5) {
1293 0 : memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1294 : memory_level->StrobeEnable);
1295 :
1296 0 : if ((mclk_edc_enable_threshold != 0) &&
1297 : (memory_clock > mclk_edc_enable_threshold)) {
1298 0 : memory_level->EdcReadEnable = 1;
1299 : }
1300 :
1301 0 : if ((mclk_edc_wr_enable_threshold != 0) &&
1302 : (memory_clock > mclk_edc_wr_enable_threshold)) {
1303 0 : memory_level->EdcWriteEnable = 1;
1304 : }
1305 :
1306 0 : if (memory_level->StrobeEnable) {
1307 0 : if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1308 0 : ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1309 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1310 : else
1311 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1312 : } else
1313 0 : dll_state_on = data->dll_default_on;
1314 : } else {
1315 0 : memory_level->StrobeRatio =
1316 0 : iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1317 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1318 : }
1319 :
1320 0 : result = iceland_calculate_mclk_params(hwmgr,
1321 0 : memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1322 :
1323 0 : if (0 == result) {
1324 0 : memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1325 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1326 0 : memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1327 0 : memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1328 : /* MCLK frequency in units of 10KHz*/
1329 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1330 : /* Indicates maximum activity level for this performance level.*/
1331 0 : CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1332 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1333 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1334 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1335 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1336 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1337 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1338 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1339 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1340 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1341 : }
1342 :
1343 : return result;
1344 : }
1345 :
1346 0 : static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1347 : {
1348 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1349 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1350 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
1351 : int result;
1352 :
1353 : /* populate MCLK dpm table to SMU7 */
1354 0 : uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1355 0 : uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1356 0 : SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1357 : uint32_t i;
1358 :
1359 0 : memset(levels, 0x00, level_array_size);
1360 :
1361 0 : for (i = 0; i < dpm_table->mclk_table.count; i++) {
1362 0 : PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1363 : "can not populate memory level as memory clock is zero", return -EINVAL);
1364 0 : result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1365 : &(smu_data->smc_state_table.MemoryLevel[i]));
1366 0 : if (0 != result) {
1367 : return result;
1368 : }
1369 : }
1370 :
1371 : /* Only enable level 0 for now.*/
1372 0 : smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1373 :
1374 : /*
1375 : * in order to prevent MC activity from stutter mode to push DPM up.
1376 : * the UVD change complements this by putting the MCLK in a higher state
1377 : * by default such that we are not effected by up threshold or and MCLK DPM latency.
1378 : */
1379 : smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1380 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1381 :
1382 0 : smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1383 0 : data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1384 : /* set highest level watermark to high*/
1385 0 : smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1386 :
1387 : /* level count will send to smc once at init smc table and never change*/
1388 0 : result = smu7_copy_bytes_to_smc(hwmgr,
1389 : level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1390 : SMC_RAM_END);
1391 :
1392 0 : return result;
1393 : }
1394 :
1395 0 : static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1396 : SMU71_Discrete_VoltageLevel *voltage)
1397 : {
1398 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1399 :
1400 0 : uint32_t i = 0;
1401 :
1402 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1403 : /* find mvdd value which clock is more than request */
1404 0 : for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1405 0 : if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1406 : /* Always round to higher voltage. */
1407 0 : voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1408 : break;
1409 : }
1410 : }
1411 :
1412 0 : PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1413 : "MVDD Voltage is outside the supported range.", return -EINVAL);
1414 :
1415 : } else {
1416 : return -EINVAL;
1417 : }
1418 :
1419 : return 0;
1420 : }
1421 :
1422 0 : static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1423 : SMU71_Discrete_DpmTable *table)
1424 : {
1425 0 : int result = 0;
1426 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1427 : struct pp_atomctrl_clock_dividers_vi dividers;
1428 0 : uint32_t vddc_phase_shed_control = 0;
1429 :
1430 : SMU71_Discrete_VoltageLevel voltage_level;
1431 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1432 0 : uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1433 0 : uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1434 0 : uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1435 :
1436 :
1437 : /* The ACPI state should not do DPM on DC (or ever).*/
1438 0 : table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1439 :
1440 0 : if (data->acpi_vddc)
1441 0 : table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1442 : else
1443 0 : table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1444 :
1445 0 : table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1446 : /* assign zero for now*/
1447 0 : table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1448 :
1449 : /* get the engine clock dividers for this clock value*/
1450 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1451 : table->ACPILevel.SclkFrequency, ÷rs);
1452 :
1453 0 : PP_ASSERT_WITH_CODE(result == 0,
1454 : "Error retrieving Engine Clock dividers from VBIOS.", return result);
1455 :
1456 : /* divider ID for required SCLK*/
1457 0 : table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1458 0 : table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1459 0 : table->ACPILevel.DeepSleepDivId = 0;
1460 :
1461 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1462 : CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1463 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1464 : CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1465 0 : spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1466 : CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1467 :
1468 0 : table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1469 0 : table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1470 0 : table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1471 0 : table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1472 0 : table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1473 0 : table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1474 0 : table->ACPILevel.CcPwrDynRm = 0;
1475 0 : table->ACPILevel.CcPwrDynRm1 = 0;
1476 :
1477 :
1478 : /* For various features to be enabled/disabled while this level is active.*/
1479 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1480 : /* SCLK frequency in units of 10KHz*/
1481 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1482 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1483 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1484 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1485 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1486 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1487 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1488 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1489 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1490 :
1491 : /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1492 0 : table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1493 0 : table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1494 :
1495 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1496 0 : table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1497 : else {
1498 0 : if (data->acpi_vddci != 0)
1499 0 : table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1500 : else
1501 0 : table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1502 : }
1503 :
1504 0 : if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1505 0 : table->MemoryACPILevel.MinMvdd =
1506 0 : PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1507 : else
1508 0 : table->MemoryACPILevel.MinMvdd = 0;
1509 :
1510 : /* Force reset on DLL*/
1511 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1512 : MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1513 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1514 : MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1515 :
1516 : /* Disable DLL in ACPIState*/
1517 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1518 : MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1519 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1520 : MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1521 :
1522 : /* Enable DLL bypass signal*/
1523 0 : dll_cntl = PHM_SET_FIELD(dll_cntl,
1524 : DLL_CNTL, MRDCK0_BYPASS, 0);
1525 0 : dll_cntl = PHM_SET_FIELD(dll_cntl,
1526 : DLL_CNTL, MRDCK1_BYPASS, 0);
1527 :
1528 0 : table->MemoryACPILevel.DllCntl =
1529 0 : PP_HOST_TO_SMC_UL(dll_cntl);
1530 0 : table->MemoryACPILevel.MclkPwrmgtCntl =
1531 0 : PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1532 0 : table->MemoryACPILevel.MpllAdFuncCntl =
1533 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1534 0 : table->MemoryACPILevel.MpllDqFuncCntl =
1535 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1536 0 : table->MemoryACPILevel.MpllFuncCntl =
1537 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1538 0 : table->MemoryACPILevel.MpllFuncCntl_1 =
1539 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1540 0 : table->MemoryACPILevel.MpllFuncCntl_2 =
1541 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1542 0 : table->MemoryACPILevel.MpllSs1 =
1543 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1544 0 : table->MemoryACPILevel.MpllSs2 =
1545 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1546 :
1547 0 : table->MemoryACPILevel.EnabledForThrottle = 0;
1548 0 : table->MemoryACPILevel.EnabledForActivity = 0;
1549 0 : table->MemoryACPILevel.UpHyst = 0;
1550 0 : table->MemoryACPILevel.DownHyst = 100;
1551 0 : table->MemoryACPILevel.VoltageDownHyst = 0;
1552 : /* Indicates maximum activity level for this performance level.*/
1553 0 : table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1554 :
1555 0 : table->MemoryACPILevel.StutterEnable = 0;
1556 0 : table->MemoryACPILevel.StrobeEnable = 0;
1557 0 : table->MemoryACPILevel.EdcReadEnable = 0;
1558 0 : table->MemoryACPILevel.EdcWriteEnable = 0;
1559 0 : table->MemoryACPILevel.RttEnable = 0;
1560 :
1561 0 : return result;
1562 : }
1563 :
1564 : static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1565 : SMU71_Discrete_DpmTable *table)
1566 : {
1567 : return 0;
1568 : }
1569 :
1570 : static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1571 : SMU71_Discrete_DpmTable *table)
1572 : {
1573 : return 0;
1574 : }
1575 :
1576 : static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1577 : SMU71_Discrete_DpmTable *table)
1578 : {
1579 : return 0;
1580 : }
1581 :
1582 0 : static int iceland_populate_memory_timing_parameters(
1583 : struct pp_hwmgr *hwmgr,
1584 : uint32_t engine_clock,
1585 : uint32_t memory_clock,
1586 : struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1587 : )
1588 : {
1589 : uint32_t dramTiming;
1590 : uint32_t dramTiming2;
1591 : uint32_t burstTime;
1592 : int result;
1593 :
1594 0 : result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1595 : engine_clock, memory_clock);
1596 :
1597 0 : PP_ASSERT_WITH_CODE(result == 0,
1598 : "Error calling VBIOS to set DRAM_TIMING.", return result);
1599 :
1600 0 : dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1601 0 : dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1602 0 : burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1603 :
1604 0 : arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1605 0 : arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1606 0 : arb_regs->McArbBurstTime = (uint8_t)burstTime;
1607 :
1608 0 : return 0;
1609 : }
1610 :
1611 0 : static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1612 : {
1613 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1614 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1615 0 : int result = 0;
1616 : SMU71_Discrete_MCArbDramTimingTable arb_regs;
1617 : uint32_t i, j;
1618 :
1619 0 : memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1620 :
1621 0 : for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1622 0 : for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1623 0 : result = iceland_populate_memory_timing_parameters
1624 : (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1625 : data->dpm_table.mclk_table.dpm_levels[j].value,
1626 0 : &arb_regs.entries[i][j]);
1627 :
1628 0 : if (0 != result) {
1629 : break;
1630 : }
1631 : }
1632 : }
1633 :
1634 0 : if (0 == result) {
1635 0 : result = smu7_copy_bytes_to_smc(
1636 : hwmgr,
1637 : smu_data->smu7_data.arb_table_start,
1638 : (uint8_t *)&arb_regs,
1639 : sizeof(SMU71_Discrete_MCArbDramTimingTable),
1640 : SMC_RAM_END
1641 : );
1642 : }
1643 :
1644 0 : return result;
1645 : }
1646 :
1647 0 : static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1648 : SMU71_Discrete_DpmTable *table)
1649 : {
1650 0 : int result = 0;
1651 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1653 0 : table->GraphicsBootLevel = 0;
1654 0 : table->MemoryBootLevel = 0;
1655 :
1656 : /* find boot level from dpm table*/
1657 0 : result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1658 : data->vbios_boot_state.sclk_bootup_value,
1659 0 : (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1660 :
1661 0 : if (0 != result) {
1662 0 : smu_data->smc_state_table.GraphicsBootLevel = 0;
1663 0 : pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1664 0 : result = 0;
1665 : }
1666 :
1667 0 : result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1668 : data->vbios_boot_state.mclk_bootup_value,
1669 0 : (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1670 :
1671 0 : if (0 != result) {
1672 0 : smu_data->smc_state_table.MemoryBootLevel = 0;
1673 0 : pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1674 0 : result = 0;
1675 : }
1676 :
1677 0 : table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1678 0 : if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1679 0 : table->BootVddci = table->BootVddc;
1680 : else
1681 0 : table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1682 :
1683 0 : table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1684 :
1685 0 : return result;
1686 : }
1687 :
1688 0 : static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1689 : SMU71_Discrete_MCRegisters *mc_reg_table)
1690 : {
1691 0 : const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1692 :
1693 : uint32_t i, j;
1694 :
1695 0 : for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1696 0 : if (smu_data->mc_reg_table.validflag & 1<<j) {
1697 0 : PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1698 : "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1699 0 : mc_reg_table->address[i].s0 =
1700 0 : PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1701 0 : mc_reg_table->address[i].s1 =
1702 0 : PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1703 0 : i++;
1704 : }
1705 : }
1706 :
1707 0 : mc_reg_table->last = (uint8_t)i;
1708 :
1709 : return 0;
1710 : }
1711 :
1712 : /*convert register values from driver to SMC format */
1713 : static void iceland_convert_mc_registers(
1714 : const struct iceland_mc_reg_entry *entry,
1715 : SMU71_Discrete_MCRegisterSet *data,
1716 : uint32_t num_entries, uint32_t valid_flag)
1717 : {
1718 : uint32_t i, j;
1719 :
1720 0 : for (i = 0, j = 0; j < num_entries; j++) {
1721 0 : if (valid_flag & 1<<j) {
1722 0 : data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1723 0 : i++;
1724 : }
1725 : }
1726 : }
1727 :
1728 0 : static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1729 : const uint32_t memory_clock,
1730 : SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1731 : )
1732 : {
1733 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1734 0 : uint32_t i = 0;
1735 :
1736 0 : for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1737 0 : if (memory_clock <=
1738 0 : smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1739 : break;
1740 : }
1741 : }
1742 :
1743 0 : if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1744 0 : --i;
1745 :
1746 0 : iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1747 0 : mc_reg_table_data, smu_data->mc_reg_table.last,
1748 0 : smu_data->mc_reg_table.validflag);
1749 :
1750 0 : return 0;
1751 : }
1752 :
1753 0 : static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1754 : SMU71_Discrete_MCRegisters *mc_regs)
1755 : {
1756 0 : int result = 0;
1757 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1758 : int res;
1759 : uint32_t i;
1760 :
1761 0 : for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1762 0 : res = iceland_convert_mc_reg_table_entry_to_smc(
1763 : hwmgr,
1764 : data->dpm_table.mclk_table.dpm_levels[i].value,
1765 : &mc_regs->data[i]
1766 : );
1767 :
1768 0 : if (0 != res)
1769 0 : result = res;
1770 : }
1771 :
1772 0 : return result;
1773 : }
1774 :
1775 0 : static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1776 : {
1777 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1778 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1779 : uint32_t address;
1780 : int32_t result;
1781 :
1782 0 : if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1783 : return 0;
1784 :
1785 :
1786 0 : memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1787 :
1788 0 : result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1789 :
1790 0 : if (result != 0)
1791 : return result;
1792 :
1793 :
1794 0 : address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1795 :
1796 0 : return smu7_copy_bytes_to_smc(hwmgr, address,
1797 0 : (uint8_t *)&smu_data->mc_regs.data[0],
1798 0 : sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1799 : SMC_RAM_END);
1800 : }
1801 :
1802 0 : static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1803 : {
1804 : int result;
1805 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1806 :
1807 0 : memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1808 0 : result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1809 0 : PP_ASSERT_WITH_CODE(0 == result,
1810 : "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1811 :
1812 0 : result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1813 0 : PP_ASSERT_WITH_CODE(0 == result,
1814 : "Failed to initialize MCRegTable for driver state!", return result;);
1815 :
1816 0 : return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1817 : (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1818 : }
1819 :
1820 0 : static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1821 : {
1822 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1824 : uint8_t count, level;
1825 :
1826 0 : count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1827 :
1828 0 : for (level = 0; level < count; level++) {
1829 0 : if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1830 0 : >= data->vbios_boot_state.sclk_bootup_value) {
1831 0 : smu_data->smc_state_table.GraphicsBootLevel = level;
1832 0 : break;
1833 : }
1834 : }
1835 :
1836 0 : count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1837 :
1838 0 : for (level = 0; level < count; level++) {
1839 0 : if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1840 0 : >= data->vbios_boot_state.mclk_bootup_value) {
1841 0 : smu_data->smc_state_table.MemoryBootLevel = level;
1842 0 : break;
1843 : }
1844 : }
1845 :
1846 0 : return 0;
1847 : }
1848 :
1849 0 : static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1850 : {
1851 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1852 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1853 0 : const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1854 0 : SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
1855 0 : struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1856 0 : struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1857 : const uint16_t *def1, *def2;
1858 : int i, j, k;
1859 :
1860 :
1861 : /*
1862 : * TDP number of fraction bits are changed from 8 to 7 for Iceland
1863 : * as requested by SMC team
1864 : */
1865 :
1866 0 : dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1867 0 : dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1868 :
1869 :
1870 0 : dpm_table->DTETjOffset = 0;
1871 :
1872 0 : dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1873 0 : dpm_table->GpuTjHyst = 8;
1874 :
1875 0 : dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1876 :
1877 : /* The following are for new Iceland Multi-input fan/thermal control */
1878 0 : if (NULL != ppm) {
1879 0 : dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1880 0 : dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1881 : } else {
1882 0 : dpm_table->PPM_PkgPwrLimit = 0;
1883 0 : dpm_table->PPM_TemperatureLimit = 0;
1884 : }
1885 :
1886 0 : CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1887 0 : CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1888 :
1889 0 : dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1890 0 : def1 = defaults->bapmti_r;
1891 0 : def2 = defaults->bapmti_rc;
1892 :
1893 0 : for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1894 0 : for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1895 0 : for (k = 0; k < SMU71_DTE_SINKS; k++) {
1896 0 : dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1897 0 : dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1898 0 : def1++;
1899 0 : def2++;
1900 : }
1901 : }
1902 : }
1903 :
1904 0 : return 0;
1905 : }
1906 :
1907 0 : static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1908 : SMU71_Discrete_DpmTable *tab)
1909 : {
1910 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1911 :
1912 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1913 0 : tab->SVI2Enable |= VDDC_ON_SVI2;
1914 :
1915 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1916 0 : tab->SVI2Enable |= VDDCI_ON_SVI2;
1917 : else
1918 0 : tab->MergedVddci = 1;
1919 :
1920 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1921 0 : tab->SVI2Enable |= MVDD_ON_SVI2;
1922 :
1923 0 : PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1924 : (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1925 :
1926 : return 0;
1927 : }
1928 :
1929 0 : static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1930 : {
1931 : int result;
1932 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1933 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1934 0 : SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1935 :
1936 :
1937 0 : iceland_initialize_power_tune_defaults(hwmgr);
1938 0 : memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1939 :
1940 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1941 0 : iceland_populate_smc_voltage_tables(hwmgr, table);
1942 : }
1943 :
1944 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1945 : PHM_PlatformCaps_AutomaticDCTransition))
1946 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1947 :
1948 :
1949 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950 : PHM_PlatformCaps_StepVddc))
1951 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1952 :
1953 0 : if (data->is_memory_gddr5)
1954 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1955 :
1956 :
1957 0 : if (data->ulv_supported) {
1958 0 : result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1959 0 : PP_ASSERT_WITH_CODE(0 == result,
1960 : "Failed to initialize ULV state!", return result;);
1961 :
1962 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963 : ixCG_ULV_PARAMETER, 0x40035);
1964 : }
1965 :
1966 0 : result = iceland_populate_smc_link_level(hwmgr, table);
1967 0 : PP_ASSERT_WITH_CODE(0 == result,
1968 : "Failed to initialize Link Level!", return result;);
1969 :
1970 0 : result = iceland_populate_all_graphic_levels(hwmgr);
1971 0 : PP_ASSERT_WITH_CODE(0 == result,
1972 : "Failed to initialize Graphics Level!", return result;);
1973 :
1974 0 : result = iceland_populate_all_memory_levels(hwmgr);
1975 0 : PP_ASSERT_WITH_CODE(0 == result,
1976 : "Failed to initialize Memory Level!", return result;);
1977 :
1978 0 : result = iceland_populate_smc_acpi_level(hwmgr, table);
1979 0 : PP_ASSERT_WITH_CODE(0 == result,
1980 : "Failed to initialize ACPI Level!", return result;);
1981 :
1982 0 : result = iceland_populate_smc_vce_level(hwmgr, table);
1983 : PP_ASSERT_WITH_CODE(0 == result,
1984 : "Failed to initialize VCE Level!", return result;);
1985 :
1986 0 : result = iceland_populate_smc_acp_level(hwmgr, table);
1987 : PP_ASSERT_WITH_CODE(0 == result,
1988 : "Failed to initialize ACP Level!", return result;);
1989 :
1990 : /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1991 : /* need to populate the ARB settings for the initial state. */
1992 0 : result = iceland_program_memory_timing_parameters(hwmgr);
1993 0 : PP_ASSERT_WITH_CODE(0 == result,
1994 : "Failed to Write ARB settings for the initial state.", return result;);
1995 :
1996 0 : result = iceland_populate_smc_uvd_level(hwmgr, table);
1997 : PP_ASSERT_WITH_CODE(0 == result,
1998 : "Failed to initialize UVD Level!", return result;);
1999 :
2000 0 : table->GraphicsBootLevel = 0;
2001 0 : table->MemoryBootLevel = 0;
2002 :
2003 0 : result = iceland_populate_smc_boot_level(hwmgr, table);
2004 0 : PP_ASSERT_WITH_CODE(0 == result,
2005 : "Failed to initialize Boot Level!", return result;);
2006 :
2007 0 : result = iceland_populate_smc_initial_state(hwmgr);
2008 0 : PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2009 :
2010 0 : result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2011 0 : PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2012 :
2013 0 : table->GraphicsVoltageChangeEnable = 1;
2014 0 : table->GraphicsThermThrottleEnable = 1;
2015 0 : table->GraphicsInterval = 1;
2016 0 : table->VoltageInterval = 1;
2017 0 : table->ThermalInterval = 1;
2018 :
2019 0 : table->TemperatureLimitHigh =
2020 0 : (data->thermal_temp_setting.temperature_high *
2021 0 : SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2022 0 : table->TemperatureLimitLow =
2023 0 : (data->thermal_temp_setting.temperature_low *
2024 0 : SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2025 :
2026 0 : table->MemoryVoltageChangeEnable = 1;
2027 0 : table->MemoryInterval = 1;
2028 0 : table->VoltageResponseTime = 0;
2029 0 : table->PhaseResponseTime = 0;
2030 0 : table->MemoryThermThrottleEnable = 1;
2031 0 : table->PCIeBootLinkLevel = 0;
2032 0 : table->PCIeGenInterval = 1;
2033 :
2034 0 : result = iceland_populate_smc_svi2_config(hwmgr, table);
2035 0 : PP_ASSERT_WITH_CODE(0 == result,
2036 : "Failed to populate SVI2 setting!", return result);
2037 :
2038 0 : table->ThermGpio = 17;
2039 : table->SclkStepSize = 0x4000;
2040 :
2041 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2042 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2043 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2044 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2045 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2046 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2047 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2048 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2049 0 : CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2050 0 : CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2051 :
2052 0 : table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2053 0 : table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2054 0 : table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2055 :
2056 : /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2057 0 : result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2058 : offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2059 0 : (uint8_t *)&(table->SystemFlags),
2060 : sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2061 : SMC_RAM_END);
2062 :
2063 0 : PP_ASSERT_WITH_CODE(0 == result,
2064 : "Failed to upload dpm data to SMC memory!", return result;);
2065 :
2066 : /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2067 0 : result = smu7_copy_bytes_to_smc(hwmgr,
2068 : smu_data->smu7_data.ulv_setting_starts,
2069 0 : (uint8_t *)&(smu_data->ulv_setting),
2070 : sizeof(SMU71_Discrete_Ulv),
2071 : SMC_RAM_END);
2072 :
2073 :
2074 0 : result = iceland_populate_initial_mc_reg_table(hwmgr);
2075 0 : PP_ASSERT_WITH_CODE((0 == result),
2076 : "Failed to populate initialize MC Reg table!", return result);
2077 :
2078 0 : result = iceland_populate_pm_fuses(hwmgr);
2079 0 : PP_ASSERT_WITH_CODE(0 == result,
2080 : "Failed to populate PM fuses to SMC memory!", return result);
2081 :
2082 : return 0;
2083 : }
2084 :
2085 0 : static int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2086 : {
2087 0 : struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2088 0 : SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2089 : uint32_t duty100;
2090 : uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2091 : uint16_t fdo_min, slope1, slope2;
2092 : uint32_t reference_clock;
2093 : int res;
2094 : uint64_t tmp64;
2095 :
2096 0 : if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2097 : return 0;
2098 :
2099 0 : if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2100 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2101 : PHM_PlatformCaps_MicrocodeFanControl);
2102 0 : return 0;
2103 : }
2104 :
2105 0 : if (0 == smu7_data->fan_table_start) {
2106 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2107 0 : return 0;
2108 : }
2109 :
2110 0 : duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2111 :
2112 0 : if (0 == duty100) {
2113 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2114 0 : return 0;
2115 : }
2116 :
2117 0 : tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2118 0 : do_div(tmp64, 10000);
2119 0 : fdo_min = (uint16_t)tmp64;
2120 :
2121 0 : t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2122 0 : t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2123 :
2124 0 : pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2125 0 : pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2126 :
2127 0 : slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2128 0 : slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2129 :
2130 0 : fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2131 0 : fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2132 0 : fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2133 :
2134 0 : fan_table.Slope1 = cpu_to_be16(slope1);
2135 0 : fan_table.Slope2 = cpu_to_be16(slope2);
2136 :
2137 0 : fan_table.FdoMin = cpu_to_be16(fdo_min);
2138 :
2139 0 : fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2140 :
2141 0 : fan_table.HystUp = cpu_to_be16(1);
2142 :
2143 0 : fan_table.HystSlope = cpu_to_be16(1);
2144 :
2145 0 : fan_table.TempRespLim = cpu_to_be16(5);
2146 :
2147 0 : reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2148 :
2149 0 : fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2150 :
2151 0 : fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2152 :
2153 0 : fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2154 :
2155 : /* fan_table.FanControl_GL_Flag = 1; */
2156 :
2157 0 : res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2158 :
2159 0 : return res;
2160 : }
2161 :
2162 :
2163 : static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2164 : {
2165 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2166 :
2167 0 : if (data->need_update_smu7_dpm_table &
2168 : (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2169 0 : return iceland_program_memory_timing_parameters(hwmgr);
2170 :
2171 : return 0;
2172 : }
2173 :
2174 0 : static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2175 : {
2176 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2177 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2178 :
2179 0 : int result = 0;
2180 0 : uint32_t low_sclk_interrupt_threshold = 0;
2181 :
2182 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2183 : PHM_PlatformCaps_SclkThrottleLowNotification)
2184 0 : && (data->low_sclk_interrupt_threshold != 0)) {
2185 : low_sclk_interrupt_threshold =
2186 : data->low_sclk_interrupt_threshold;
2187 :
2188 0 : CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2189 :
2190 0 : result = smu7_copy_bytes_to_smc(
2191 : hwmgr,
2192 0 : smu_data->smu7_data.dpm_table_start +
2193 : offsetof(SMU71_Discrete_DpmTable,
2194 : LowSclkInterruptThreshold),
2195 : (uint8_t *)&low_sclk_interrupt_threshold,
2196 : sizeof(uint32_t),
2197 : SMC_RAM_END);
2198 : }
2199 :
2200 0 : result = iceland_update_and_upload_mc_reg_table(hwmgr);
2201 :
2202 0 : PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2203 :
2204 0 : result = iceland_program_mem_timing_parameters(hwmgr);
2205 0 : PP_ASSERT_WITH_CODE((result == 0),
2206 : "Failed to program memory timing parameters!",
2207 : );
2208 :
2209 : return result;
2210 : }
2211 :
2212 0 : static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2213 : {
2214 0 : switch (type) {
2215 : case SMU_SoftRegisters:
2216 0 : switch (member) {
2217 : case HandshakeDisables:
2218 : return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2219 : case VoltageChangeTimeout:
2220 0 : return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2221 : case AverageGraphicsActivity:
2222 0 : return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2223 : case AverageMemoryActivity:
2224 0 : return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2225 : case PreVBlankGap:
2226 0 : return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2227 : case VBlankTimeout:
2228 0 : return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2229 : case UcodeLoadStatus:
2230 0 : return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2231 : case DRAM_LOG_ADDR_H:
2232 0 : return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2233 : case DRAM_LOG_ADDR_L:
2234 0 : return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2235 : case DRAM_LOG_PHY_ADDR_H:
2236 0 : return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2237 : case DRAM_LOG_PHY_ADDR_L:
2238 0 : return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2239 : case DRAM_LOG_BUFF_SIZE:
2240 0 : return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2241 : }
2242 : break;
2243 : case SMU_Discrete_DpmTable:
2244 0 : switch (member) {
2245 : case LowSclkInterruptThreshold:
2246 : return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2247 : }
2248 : break;
2249 : }
2250 0 : pr_warn("can't get the offset of type %x member %x\n", type, member);
2251 0 : return 0;
2252 : }
2253 :
2254 0 : static uint32_t iceland_get_mac_definition(uint32_t value)
2255 : {
2256 0 : switch (value) {
2257 : case SMU_MAX_LEVELS_GRAPHICS:
2258 : return SMU71_MAX_LEVELS_GRAPHICS;
2259 : case SMU_MAX_LEVELS_MEMORY:
2260 0 : return SMU71_MAX_LEVELS_MEMORY;
2261 : case SMU_MAX_LEVELS_LINK:
2262 : return SMU71_MAX_LEVELS_LINK;
2263 : case SMU_MAX_ENTRIES_SMIO:
2264 0 : return SMU71_MAX_ENTRIES_SMIO;
2265 : case SMU_MAX_LEVELS_VDDC:
2266 : return SMU71_MAX_LEVELS_VDDC;
2267 : case SMU_MAX_LEVELS_VDDCI:
2268 0 : return SMU71_MAX_LEVELS_VDDCI;
2269 : case SMU_MAX_LEVELS_MVDD:
2270 0 : return SMU71_MAX_LEVELS_MVDD;
2271 : }
2272 :
2273 0 : pr_warn("can't get the mac of %x\n", value);
2274 0 : return 0;
2275 : }
2276 :
2277 0 : static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2278 : {
2279 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2280 0 : struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2281 :
2282 : uint32_t tmp;
2283 : int result;
2284 0 : bool error = false;
2285 :
2286 0 : result = smu7_read_smc_sram_dword(hwmgr,
2287 : SMU71_FIRMWARE_HEADER_LOCATION +
2288 : offsetof(SMU71_Firmware_Header, DpmTable),
2289 : &tmp, SMC_RAM_END);
2290 :
2291 0 : if (0 == result) {
2292 0 : smu7_data->dpm_table_start = tmp;
2293 : }
2294 :
2295 0 : error |= (0 != result);
2296 :
2297 0 : result = smu7_read_smc_sram_dword(hwmgr,
2298 : SMU71_FIRMWARE_HEADER_LOCATION +
2299 : offsetof(SMU71_Firmware_Header, SoftRegisters),
2300 : &tmp, SMC_RAM_END);
2301 :
2302 0 : if (0 == result) {
2303 0 : data->soft_regs_start = tmp;
2304 0 : smu7_data->soft_regs_start = tmp;
2305 : }
2306 :
2307 0 : error |= (0 != result);
2308 :
2309 :
2310 0 : result = smu7_read_smc_sram_dword(hwmgr,
2311 : SMU71_FIRMWARE_HEADER_LOCATION +
2312 : offsetof(SMU71_Firmware_Header, mcRegisterTable),
2313 : &tmp, SMC_RAM_END);
2314 :
2315 0 : if (0 == result) {
2316 0 : smu7_data->mc_reg_table_start = tmp;
2317 : }
2318 :
2319 0 : result = smu7_read_smc_sram_dword(hwmgr,
2320 : SMU71_FIRMWARE_HEADER_LOCATION +
2321 : offsetof(SMU71_Firmware_Header, FanTable),
2322 : &tmp, SMC_RAM_END);
2323 :
2324 0 : if (0 == result) {
2325 0 : smu7_data->fan_table_start = tmp;
2326 : }
2327 :
2328 0 : error |= (0 != result);
2329 :
2330 0 : result = smu7_read_smc_sram_dword(hwmgr,
2331 : SMU71_FIRMWARE_HEADER_LOCATION +
2332 : offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2333 : &tmp, SMC_RAM_END);
2334 :
2335 0 : if (0 == result) {
2336 0 : smu7_data->arb_table_start = tmp;
2337 : }
2338 :
2339 0 : error |= (0 != result);
2340 :
2341 :
2342 0 : result = smu7_read_smc_sram_dword(hwmgr,
2343 : SMU71_FIRMWARE_HEADER_LOCATION +
2344 : offsetof(SMU71_Firmware_Header, Version),
2345 : &tmp, SMC_RAM_END);
2346 :
2347 0 : if (0 == result) {
2348 0 : hwmgr->microcode_version_info.SMC = tmp;
2349 : }
2350 :
2351 0 : error |= (0 != result);
2352 :
2353 0 : result = smu7_read_smc_sram_dword(hwmgr,
2354 : SMU71_FIRMWARE_HEADER_LOCATION +
2355 : offsetof(SMU71_Firmware_Header, UlvSettings),
2356 : &tmp, SMC_RAM_END);
2357 :
2358 0 : if (0 == result) {
2359 0 : smu7_data->ulv_setting_starts = tmp;
2360 : }
2361 :
2362 0 : error |= (0 != result);
2363 :
2364 0 : return error ? 1 : 0;
2365 : }
2366 :
2367 : /*---------------------------MC----------------------------*/
2368 :
2369 : static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2370 : {
2371 0 : return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2372 : }
2373 :
2374 0 : static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2375 : {
2376 0 : bool result = true;
2377 :
2378 0 : switch (in_reg) {
2379 : case mmMC_SEQ_RAS_TIMING:
2380 0 : *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2381 0 : break;
2382 :
2383 : case mmMC_SEQ_DLL_STBY:
2384 0 : *out_reg = mmMC_SEQ_DLL_STBY_LP;
2385 0 : break;
2386 :
2387 : case mmMC_SEQ_G5PDX_CMD0:
2388 0 : *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2389 0 : break;
2390 :
2391 : case mmMC_SEQ_G5PDX_CMD1:
2392 0 : *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2393 0 : break;
2394 :
2395 : case mmMC_SEQ_G5PDX_CTRL:
2396 0 : *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2397 0 : break;
2398 :
2399 : case mmMC_SEQ_CAS_TIMING:
2400 0 : *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2401 0 : break;
2402 :
2403 : case mmMC_SEQ_MISC_TIMING:
2404 0 : *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2405 0 : break;
2406 :
2407 : case mmMC_SEQ_MISC_TIMING2:
2408 0 : *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2409 0 : break;
2410 :
2411 : case mmMC_SEQ_PMG_DVS_CMD:
2412 0 : *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2413 0 : break;
2414 :
2415 : case mmMC_SEQ_PMG_DVS_CTL:
2416 0 : *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2417 0 : break;
2418 :
2419 : case mmMC_SEQ_RD_CTL_D0:
2420 0 : *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2421 0 : break;
2422 :
2423 : case mmMC_SEQ_RD_CTL_D1:
2424 0 : *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2425 0 : break;
2426 :
2427 : case mmMC_SEQ_WR_CTL_D0:
2428 0 : *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2429 0 : break;
2430 :
2431 : case mmMC_SEQ_WR_CTL_D1:
2432 0 : *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2433 0 : break;
2434 :
2435 : case mmMC_PMG_CMD_EMRS:
2436 0 : *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2437 0 : break;
2438 :
2439 : case mmMC_PMG_CMD_MRS:
2440 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2441 0 : break;
2442 :
2443 : case mmMC_PMG_CMD_MRS1:
2444 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2445 0 : break;
2446 :
2447 : case mmMC_SEQ_PMG_TIMING:
2448 0 : *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2449 0 : break;
2450 :
2451 : case mmMC_PMG_CMD_MRS2:
2452 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2453 0 : break;
2454 :
2455 : case mmMC_SEQ_WR_CTL_2:
2456 0 : *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2457 0 : break;
2458 :
2459 : default:
2460 : result = false;
2461 : break;
2462 : }
2463 :
2464 0 : return result;
2465 : }
2466 :
2467 0 : static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2468 : {
2469 : uint32_t i;
2470 : uint16_t address;
2471 :
2472 0 : for (i = 0; i < table->last; i++) {
2473 0 : table->mc_reg_address[i].s0 =
2474 0 : iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2475 : ? address : table->mc_reg_address[i].s1;
2476 : }
2477 0 : return 0;
2478 : }
2479 :
2480 0 : static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2481 : struct iceland_mc_reg_table *ni_table)
2482 : {
2483 : uint8_t i, j;
2484 :
2485 0 : PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2486 : "Invalid VramInfo table.", return -EINVAL);
2487 0 : PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2488 : "Invalid VramInfo table.", return -EINVAL);
2489 :
2490 0 : for (i = 0; i < table->last; i++) {
2491 0 : ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2492 : }
2493 0 : ni_table->last = table->last;
2494 :
2495 0 : for (i = 0; i < table->num_entries; i++) {
2496 0 : ni_table->mc_reg_table_entry[i].mclk_max =
2497 0 : table->mc_reg_table_entry[i].mclk_max;
2498 0 : for (j = 0; j < table->last; j++) {
2499 0 : ni_table->mc_reg_table_entry[i].mc_data[j] =
2500 0 : table->mc_reg_table_entry[i].mc_data[j];
2501 : }
2502 : }
2503 :
2504 0 : ni_table->num_entries = table->num_entries;
2505 :
2506 0 : return 0;
2507 : }
2508 :
2509 0 : static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2510 : struct iceland_mc_reg_table *table)
2511 : {
2512 : uint8_t i, j, k;
2513 : uint32_t temp_reg;
2514 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2515 :
2516 0 : for (i = 0, j = table->last; i < table->last; i++) {
2517 0 : PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2518 : "Invalid VramInfo table.", return -EINVAL);
2519 :
2520 0 : switch (table->mc_reg_address[i].s1) {
2521 :
2522 : case mmMC_SEQ_MISC1:
2523 0 : temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2524 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2525 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2526 0 : for (k = 0; k < table->num_entries; k++) {
2527 0 : table->mc_reg_table_entry[k].mc_data[j] =
2528 0 : ((temp_reg & 0xffff0000)) |
2529 0 : ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2530 : }
2531 0 : j++;
2532 :
2533 0 : PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2534 : "Invalid VramInfo table.", return -EINVAL);
2535 0 : temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2536 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2537 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2538 0 : for (k = 0; k < table->num_entries; k++) {
2539 0 : table->mc_reg_table_entry[k].mc_data[j] =
2540 0 : (temp_reg & 0xffff0000) |
2541 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2542 :
2543 0 : if (!data->is_memory_gddr5) {
2544 0 : table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2545 : }
2546 : }
2547 0 : j++;
2548 :
2549 0 : if (!data->is_memory_gddr5) {
2550 0 : PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551 : "Invalid VramInfo table.", return -EINVAL);
2552 0 : table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2553 0 : table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2554 0 : for (k = 0; k < table->num_entries; k++) {
2555 0 : table->mc_reg_table_entry[k].mc_data[j] =
2556 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2557 : }
2558 0 : j++;
2559 : }
2560 :
2561 : break;
2562 :
2563 : case mmMC_SEQ_RESERVE_M:
2564 0 : temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2565 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2566 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2567 0 : for (k = 0; k < table->num_entries; k++) {
2568 0 : table->mc_reg_table_entry[k].mc_data[j] =
2569 0 : (temp_reg & 0xffff0000) |
2570 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2571 : }
2572 0 : j++;
2573 : break;
2574 :
2575 : default:
2576 : break;
2577 : }
2578 :
2579 : }
2580 :
2581 0 : table->last = j;
2582 :
2583 : return 0;
2584 : }
2585 :
2586 : static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2587 : {
2588 : uint8_t i, j;
2589 0 : for (i = 0; i < table->last; i++) {
2590 0 : for (j = 1; j < table->num_entries; j++) {
2591 0 : if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2592 0 : table->mc_reg_table_entry[j].mc_data[i]) {
2593 0 : table->validflag |= (1<<i);
2594 : break;
2595 : }
2596 : }
2597 : }
2598 :
2599 : return 0;
2600 : }
2601 :
2602 0 : static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2603 : {
2604 : int result;
2605 0 : struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2606 : pp_atomctrl_mc_reg_table *table;
2607 0 : struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2608 0 : uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2609 :
2610 0 : table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2611 :
2612 0 : if (NULL == table)
2613 : return -ENOMEM;
2614 :
2615 : /* Program additional LP registers that are no longer programmed by VBIOS */
2616 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2617 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2618 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2619 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2620 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2621 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2622 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2623 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2624 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2625 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2626 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2627 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2628 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2629 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2630 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2631 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2632 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2633 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2634 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2635 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2636 :
2637 0 : result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2638 :
2639 0 : if (0 == result)
2640 0 : result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2641 :
2642 0 : if (0 == result) {
2643 0 : iceland_set_s0_mc_reg_index(ni_table);
2644 0 : result = iceland_set_mc_special_registers(hwmgr, ni_table);
2645 : }
2646 :
2647 0 : if (0 == result)
2648 : iceland_set_valid_flag(ni_table);
2649 :
2650 0 : kfree(table);
2651 :
2652 0 : return result;
2653 : }
2654 :
2655 0 : static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2656 : {
2657 0 : return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2658 : CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2659 0 : ? true : false;
2660 : }
2661 :
2662 : const struct pp_smumgr_func iceland_smu_funcs = {
2663 : .name = "iceland_smu",
2664 : .smu_init = &iceland_smu_init,
2665 : .smu_fini = &smu7_smu_fini,
2666 : .start_smu = &iceland_start_smu,
2667 : .check_fw_load_finish = &smu7_check_fw_load_finish,
2668 : .request_smu_load_fw = &smu7_request_smu_load_fw,
2669 : .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2670 : .send_msg_to_smc = &smu7_send_msg_to_smc,
2671 : .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2672 : .get_argument = smu7_get_argument,
2673 : .download_pptable_settings = NULL,
2674 : .upload_pptable_settings = NULL,
2675 : .get_offsetof = iceland_get_offsetof,
2676 : .process_firmware_header = iceland_process_firmware_header,
2677 : .init_smc_table = iceland_init_smc_table,
2678 : .update_sclk_threshold = iceland_update_sclk_threshold,
2679 : .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2680 : .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2681 : .populate_all_memory_levels = iceland_populate_all_memory_levels,
2682 : .get_mac_definition = iceland_get_mac_definition,
2683 : .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2684 : .is_dpm_running = iceland_is_dpm_running,
2685 : };
2686 :
|