Line data Source code
1 : /*
2 : * Copyright 2015 Advanced Micro Devices, Inc.
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice shall be included in
12 : * all copies or substantial portions of the Software.
13 : *
14 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 : * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 : * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 : * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 : * OTHER DEALINGS IN THE SOFTWARE.
21 : *
22 : */
23 : #include "pp_debug.h"
24 : #include <linux/types.h>
25 : #include <linux/kernel.h>
26 : #include <linux/pci.h>
27 : #include <linux/slab.h>
28 : #include <linux/gfp.h>
29 :
30 : #include "smumgr.h"
31 : #include "tonga_smumgr.h"
32 : #include "smu_ucode_xfer_vi.h"
33 : #include "tonga_ppsmc.h"
34 : #include "smu/smu_7_1_2_d.h"
35 : #include "smu/smu_7_1_2_sh_mask.h"
36 : #include "cgs_common.h"
37 : #include "smu7_smumgr.h"
38 :
39 : #include "smu7_dyn_defaults.h"
40 :
41 : #include "smu7_hwmgr.h"
42 : #include "hardwaremanager.h"
43 : #include "ppatomctrl.h"
44 :
45 : #include "atombios.h"
46 :
47 : #include "pppcielanes.h"
48 : #include "pp_endian.h"
49 :
50 : #include "gmc/gmc_8_1_d.h"
51 : #include "gmc/gmc_8_1_sh_mask.h"
52 :
53 : #include "bif/bif_5_0_d.h"
54 : #include "bif/bif_5_0_sh_mask.h"
55 :
56 : #include "dce/dce_10_0_d.h"
57 : #include "dce/dce_10_0_sh_mask.h"
58 :
59 : #define POWERTUNE_DEFAULT_SET_MAX 1
60 : #define MC_CG_ARB_FREQ_F1 0x0b
61 : #define VDDC_VDDCI_DELTA 200
62 :
63 :
64 : static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65 : /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
66 : * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
67 : */
68 : {1, 0xF, 0xFD, 0x19,
69 : 5, 45, 0, 0xB0000,
70 : {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
71 : 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
72 : {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
73 : 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
74 : },
75 : };
76 :
77 : /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
78 : static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
79 : {600, 1050, 3, 0},
80 : {600, 1050, 6, 1}
81 : };
82 :
83 : /* [FF, SS] type, [] 4 voltage ranges,
84 : * and [Floor Freq, Boundary Freq, VID min , VID max]
85 : */
86 : static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
87 : { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
88 : { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
89 : };
90 :
91 : /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
92 : static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
93 : {0, 1, 3, 2, 4, 5},
94 : {0, 2, 4, 5, 6, 5}
95 : };
96 :
97 0 : static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr)
98 : {
99 : int result;
100 :
101 : /* Assert reset */
102 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
103 : SMC_SYSCON_RESET_CNTL, rst_reg, 1);
104 :
105 0 : result = smu7_upload_smu_firmware_image(hwmgr);
106 0 : if (result)
107 : return result;
108 :
109 : /* Clear status */
110 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
111 : ixSMU_STATUS, 0);
112 :
113 : /* Enable clock */
114 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
115 : SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
116 :
117 : /* De-assert reset */
118 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 : SMC_SYSCON_RESET_CNTL, rst_reg, 0);
120 :
121 : /* Set SMU Auto Start */
122 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 : SMU_INPUT_DATA, AUTO_START, 1);
124 :
125 : /* Clear firmware interrupt enable flag */
126 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
127 : ixFIRMWARE_FLAGS, 0);
128 :
129 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
130 : RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
131 :
132 : /**
133 : * Call Test SMU message with 0x20000 offset to trigger SMU start
134 : */
135 0 : smu7_send_msg_to_smc_offset(hwmgr);
136 :
137 : /* Wait for done bit to be set */
138 0 : PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
139 : SMU_STATUS, SMU_DONE, 0);
140 :
141 : /* Check pass/failed indicator */
142 0 : if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
143 : CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
144 0 : pr_err("SMU Firmware start failed\n");
145 0 : return -EINVAL;
146 : }
147 :
148 : /* Wait for firmware to initialize */
149 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
150 : FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151 :
152 0 : return 0;
153 : }
154 :
155 0 : static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 : {
157 0 : int result = 0;
158 :
159 : /* wait for smc boot up */
160 0 : PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
161 : RCU_UC_EVENTS, boot_seq_done, 0);
162 :
163 : /*Clear firmware interrupt enable flag*/
164 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165 : ixFIRMWARE_FLAGS, 0);
166 :
167 :
168 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
169 : SMC_SYSCON_RESET_CNTL, rst_reg, 1);
170 :
171 0 : result = smu7_upload_smu_firmware_image(hwmgr);
172 :
173 0 : if (result != 0)
174 : return result;
175 :
176 : /* Set smc instruct start point at 0x0 */
177 0 : smu7_program_jump_on_start(hwmgr);
178 :
179 :
180 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
181 : SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
182 :
183 : /*De-assert reset*/
184 0 : PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 : SMC_SYSCON_RESET_CNTL, rst_reg, 0);
186 :
187 : /* Wait for firmware to initialize */
188 0 : PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
189 : FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
190 :
191 0 : return result;
192 : }
193 :
194 0 : static int tonga_start_smu(struct pp_hwmgr *hwmgr)
195 : {
196 0 : struct tonga_smumgr *priv = hwmgr->smu_backend;
197 : int result;
198 :
199 : /* Only start SMC if SMC RAM is not running */
200 0 : if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
201 : /*Check if SMU is running in protected mode*/
202 0 : if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
203 : SMU_FIRMWARE, SMU_MODE)) {
204 0 : result = tonga_start_in_non_protection_mode(hwmgr);
205 0 : if (result)
206 : return result;
207 : } else {
208 0 : result = tonga_start_in_protection_mode(hwmgr);
209 0 : if (result)
210 : return result;
211 : }
212 : }
213 :
214 : /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
215 : * to check fw loading state
216 : */
217 0 : smu7_read_smc_sram_dword(hwmgr,
218 : SMU72_FIRMWARE_HEADER_LOCATION +
219 : offsetof(SMU72_Firmware_Header, SoftRegisters),
220 : &(priv->smu7_data.soft_regs_start), 0x40000);
221 :
222 0 : result = smu7_request_smu_load_fw(hwmgr);
223 :
224 0 : return result;
225 : }
226 :
227 0 : static int tonga_smu_init(struct pp_hwmgr *hwmgr)
228 : {
229 0 : struct tonga_smumgr *tonga_priv = NULL;
230 :
231 0 : tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
232 0 : if (tonga_priv == NULL)
233 : return -ENOMEM;
234 :
235 0 : hwmgr->smu_backend = tonga_priv;
236 :
237 0 : if (smu7_init(hwmgr)) {
238 0 : kfree(tonga_priv);
239 0 : return -EINVAL;
240 : }
241 :
242 : return 0;
243 : }
244 :
245 :
246 0 : static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
247 : phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
248 : uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
249 : {
250 0 : uint32_t i = 0;
251 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
252 0 : struct phm_ppt_v1_information *pptable_info =
253 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
254 :
255 : /* clock - voltage dependency table is empty table */
256 0 : if (allowed_clock_voltage_table->count == 0)
257 : return -EINVAL;
258 :
259 0 : for (i = 0; i < allowed_clock_voltage_table->count; i++) {
260 : /* find first sclk bigger than request */
261 0 : if (allowed_clock_voltage_table->entries[i].clk >= clock) {
262 0 : voltage->VddGfx = phm_get_voltage_index(
263 : pptable_info->vddgfx_lookup_table,
264 0 : allowed_clock_voltage_table->entries[i].vddgfx);
265 0 : voltage->Vddc = phm_get_voltage_index(
266 : pptable_info->vddc_lookup_table,
267 0 : allowed_clock_voltage_table->entries[i].vddc);
268 :
269 0 : if (allowed_clock_voltage_table->entries[i].vddci)
270 0 : voltage->Vddci =
271 0 : phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
272 : else
273 0 : voltage->Vddci =
274 0 : phm_get_voltage_id(&data->vddci_voltage_table,
275 0 : allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
276 :
277 :
278 0 : if (allowed_clock_voltage_table->entries[i].mvdd)
279 0 : *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
280 :
281 0 : voltage->Phases = 1;
282 : return 0;
283 : }
284 : }
285 :
286 : /* sclk is bigger than max sclk in the dependence table */
287 0 : voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
288 0 : allowed_clock_voltage_table->entries[i-1].vddgfx);
289 0 : voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
290 0 : allowed_clock_voltage_table->entries[i-1].vddc);
291 :
292 0 : if (allowed_clock_voltage_table->entries[i-1].vddci)
293 0 : voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
294 : allowed_clock_voltage_table->entries[i-1].vddci);
295 :
296 0 : if (allowed_clock_voltage_table->entries[i-1].mvdd)
297 0 : *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
298 :
299 : return 0;
300 : }
301 :
302 0 : static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
303 : SMU72_Discrete_DpmTable *table)
304 : {
305 : unsigned int count;
306 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
307 :
308 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
309 0 : table->VddcLevelCount = data->vddc_voltage_table.count;
310 0 : for (count = 0; count < table->VddcLevelCount; count++) {
311 0 : table->VddcTable[count] =
312 0 : PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
313 : }
314 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
315 : }
316 0 : return 0;
317 : }
318 :
319 0 : static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
320 : SMU72_Discrete_DpmTable *table)
321 : {
322 : unsigned int count;
323 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
324 :
325 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
326 0 : table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
327 0 : for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
328 0 : table->VddGfxTable[count] =
329 0 : PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
330 : }
331 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
332 : }
333 0 : return 0;
334 : }
335 :
336 0 : static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
337 : SMU72_Discrete_DpmTable *table)
338 : {
339 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
340 : uint32_t count;
341 :
342 0 : table->VddciLevelCount = data->vddci_voltage_table.count;
343 0 : for (count = 0; count < table->VddciLevelCount; count++) {
344 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
345 0 : table->VddciTable[count] =
346 0 : PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
347 0 : } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
348 0 : table->SmioTable1.Pattern[count].Voltage =
349 0 : PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
350 : /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
351 0 : table->SmioTable1.Pattern[count].Smio =
352 0 : (uint8_t) count;
353 0 : table->Smio[count] |=
354 0 : data->vddci_voltage_table.entries[count].smio_low;
355 0 : table->VddciTable[count] =
356 0 : PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
357 : }
358 : }
359 :
360 0 : table->SmioMask1 = data->vddci_voltage_table.mask_low;
361 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
362 :
363 0 : return 0;
364 : }
365 :
366 0 : static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
367 : SMU72_Discrete_DpmTable *table)
368 : {
369 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
370 : uint32_t count;
371 :
372 0 : if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
373 0 : table->MvddLevelCount = data->mvdd_voltage_table.count;
374 0 : for (count = 0; count < table->MvddLevelCount; count++) {
375 0 : table->SmioTable2.Pattern[count].Voltage =
376 0 : PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
377 : /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
378 0 : table->SmioTable2.Pattern[count].Smio =
379 0 : (uint8_t) count;
380 0 : table->Smio[count] |=
381 0 : data->mvdd_voltage_table.entries[count].smio_low;
382 : }
383 0 : table->SmioMask2 = data->mvdd_voltage_table.mask_low;
384 :
385 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
386 : }
387 :
388 0 : return 0;
389 : }
390 :
391 0 : static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
392 : SMU72_Discrete_DpmTable *table)
393 : {
394 : uint32_t count;
395 0 : uint8_t index = 0;
396 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
397 0 : struct phm_ppt_v1_information *pptable_info =
398 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
399 0 : struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
400 : pptable_info->vddgfx_lookup_table;
401 0 : struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
402 : pptable_info->vddc_lookup_table;
403 :
404 : /* table is already swapped, so in order to use the value from it
405 : * we need to swap it back.
406 : */
407 0 : uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
408 0 : uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
409 :
410 0 : for (count = 0; count < vddc_level_count; count++) {
411 : /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
412 0 : index = phm_get_voltage_index(vddc_lookup_table,
413 0 : data->vddc_voltage_table.entries[count].value);
414 0 : table->BapmVddcVidLoSidd[count] =
415 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
416 0 : table->BapmVddcVidHiSidd[count] =
417 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
418 0 : table->BapmVddcVidHiSidd2[count] =
419 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
420 : }
421 :
422 0 : if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
423 : /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
424 0 : for (count = 0; count < vddgfx_level_count; count++) {
425 0 : index = phm_get_voltage_index(vddgfx_lookup_table,
426 0 : convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
427 0 : table->BapmVddGfxVidHiSidd2[count] =
428 0 : convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
429 : }
430 : } else {
431 0 : for (count = 0; count < vddc_level_count; count++) {
432 0 : index = phm_get_voltage_index(vddc_lookup_table,
433 0 : data->vddc_voltage_table.entries[count].value);
434 0 : table->BapmVddGfxVidLoSidd[count] =
435 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
436 0 : table->BapmVddGfxVidHiSidd[count] =
437 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
438 0 : table->BapmVddGfxVidHiSidd2[count] =
439 0 : convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
440 : }
441 : }
442 :
443 0 : return 0;
444 : }
445 :
446 0 : static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
447 : SMU72_Discrete_DpmTable *table)
448 : {
449 : int result;
450 :
451 0 : result = tonga_populate_smc_vddc_table(hwmgr, table);
452 0 : PP_ASSERT_WITH_CODE(!result,
453 : "can not populate VDDC voltage table to SMC",
454 : return -EINVAL);
455 :
456 0 : result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
457 0 : PP_ASSERT_WITH_CODE(!result,
458 : "can not populate VDDCI voltage table to SMC",
459 : return -EINVAL);
460 :
461 0 : result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
462 0 : PP_ASSERT_WITH_CODE(!result,
463 : "can not populate VDDGFX voltage table to SMC",
464 : return -EINVAL);
465 :
466 0 : result = tonga_populate_smc_mvdd_table(hwmgr, table);
467 0 : PP_ASSERT_WITH_CODE(!result,
468 : "can not populate MVDD voltage table to SMC",
469 : return -EINVAL);
470 :
471 0 : result = tonga_populate_cac_tables(hwmgr, table);
472 0 : PP_ASSERT_WITH_CODE(!result,
473 : "can not populate CAC voltage tables to SMC",
474 : return -EINVAL);
475 :
476 : return 0;
477 : }
478 :
479 : static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
480 : struct SMU72_Discrete_Ulv *state)
481 : {
482 0 : struct phm_ppt_v1_information *table_info =
483 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
484 :
485 0 : state->CcPwrDynRm = 0;
486 0 : state->CcPwrDynRm1 = 0;
487 :
488 0 : state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
489 0 : state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
490 0 : VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
491 :
492 0 : state->VddcPhase = 1;
493 :
494 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
495 : CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
496 0 : CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
497 :
498 : return 0;
499 : }
500 :
501 : static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
502 : struct SMU72_Discrete_DpmTable *table)
503 : {
504 0 : return tonga_populate_ulv_level(hwmgr, &table->Ulv);
505 : }
506 :
507 0 : static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
508 : {
509 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
510 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
511 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
512 : uint32_t i;
513 :
514 : /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
515 0 : for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
516 0 : table->LinkLevel[i].PcieGenSpeed =
517 0 : (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
518 0 : table->LinkLevel[i].PcieLaneCount =
519 0 : (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
520 0 : table->LinkLevel[i].EnabledForActivity =
521 : 1;
522 0 : table->LinkLevel[i].SPC =
523 0 : (uint8_t)(data->pcie_spc_cap & 0xff);
524 0 : table->LinkLevel[i].DownThreshold =
525 : PP_HOST_TO_SMC_UL(5);
526 0 : table->LinkLevel[i].UpThreshold =
527 : PP_HOST_TO_SMC_UL(30);
528 : }
529 :
530 0 : smu_data->smc_state_table.LinkLevelCount =
531 0 : (uint8_t)dpm_table->pcie_speed_table.count;
532 0 : data->dpm_level_enable_mask.pcie_dpm_enable_mask =
533 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
534 :
535 0 : return 0;
536 : }
537 :
538 0 : static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
539 : uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
540 : {
541 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542 : pp_atomctrl_clock_dividers_vi dividers;
543 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
544 0 : uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
545 0 : uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
546 0 : uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
547 0 : uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
548 : uint32_t reference_clock;
549 : uint32_t reference_divider;
550 : uint32_t fbdiv;
551 : int result;
552 :
553 : /* get the engine clock dividers for this clock value*/
554 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs);
555 :
556 0 : PP_ASSERT_WITH_CODE(result == 0,
557 : "Error retrieving Engine Clock dividers from VBIOS.", return result);
558 :
559 : /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
560 0 : reference_clock = atomctrl_get_reference_clock(hwmgr);
561 :
562 0 : reference_divider = 1 + dividers.uc_pll_ref_div;
563 :
564 : /* low 14 bits is fraction and high 12 bits is divider*/
565 0 : fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
566 :
567 : /* SPLL_FUNC_CNTL setup*/
568 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
569 : CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
570 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
571 : CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
572 :
573 : /* SPLL_FUNC_CNTL_3 setup*/
574 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
575 : CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
576 :
577 : /* set to use fractional accumulation*/
578 0 : spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
579 : CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
580 :
581 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
582 : PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
583 : pp_atomctrl_internal_ss_info ss_info;
584 :
585 0 : uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
586 0 : if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
587 : /*
588 : * ss_info.speed_spectrum_percentage -- in unit of 0.01%
589 : * ss_info.speed_spectrum_rate -- in unit of khz
590 : */
591 : /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
592 0 : uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
593 :
594 : /* clkv = 2 * D * fbdiv / NS */
595 0 : uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
596 :
597 0 : cg_spll_spread_spectrum =
598 0 : PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
599 0 : cg_spll_spread_spectrum =
600 : PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
601 0 : cg_spll_spread_spectrum_2 =
602 0 : PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
603 : }
604 : }
605 :
606 0 : sclk->SclkFrequency = engine_clock;
607 0 : sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
608 0 : sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
609 0 : sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
610 0 : sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
611 0 : sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
612 :
613 0 : return 0;
614 : }
615 :
616 0 : static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
617 : uint32_t engine_clock,
618 : SMU72_Discrete_GraphicsLevel *graphic_level)
619 : {
620 : int result;
621 : uint32_t mvdd;
622 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623 0 : struct phm_ppt_v1_information *pptable_info =
624 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
625 0 : phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
626 :
627 0 : result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
628 :
629 0 : if (hwmgr->od_enabled)
630 0 : vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
631 : else
632 0 : vdd_dep_table = pptable_info->vdd_dep_on_sclk;
633 :
634 : /* populate graphics levels*/
635 0 : result = tonga_get_dependency_volt_by_clk(hwmgr,
636 : vdd_dep_table, engine_clock,
637 : &graphic_level->MinVoltage, &mvdd);
638 0 : PP_ASSERT_WITH_CODE((!result),
639 : "can not find VDDC voltage value for VDDC "
640 : "engine clock dependency table", return result);
641 :
642 : /* SCLK frequency in units of 10KHz*/
643 0 : graphic_level->SclkFrequency = engine_clock;
644 : /* Indicates maximum activity level for this performance level. 50% for now*/
645 0 : graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
646 :
647 0 : graphic_level->CcPwrDynRm = 0;
648 0 : graphic_level->CcPwrDynRm1 = 0;
649 : /* this level can be used if activity is high enough.*/
650 0 : graphic_level->EnabledForActivity = 0;
651 : /* this level can be used for throttling.*/
652 0 : graphic_level->EnabledForThrottle = 1;
653 0 : graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
654 0 : graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
655 0 : graphic_level->VoltageDownHyst = 0;
656 0 : graphic_level->PowerThrottle = 0;
657 :
658 0 : data->display_timing.min_clock_in_sr =
659 0 : hwmgr->display_config->min_core_set_clock_in_sr;
660 :
661 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
662 : PHM_PlatformCaps_SclkDeepSleep))
663 0 : graphic_level->DeepSleepDivId =
664 0 : smu7_get_sleep_divider_id_from_clock(engine_clock,
665 : data->display_timing.min_clock_in_sr);
666 :
667 : /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
668 0 : graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
669 :
670 : if (!result) {
671 : /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
672 : /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
673 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
674 0 : CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
675 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
676 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
677 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
678 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
679 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
680 0 : CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
681 : }
682 :
683 0 : return result;
684 : }
685 :
686 0 : static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
687 : {
688 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
689 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
690 0 : struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
691 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
692 0 : struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
693 0 : uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
694 0 : uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
695 : offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
696 :
697 0 : uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
698 : SMU72_MAX_LEVELS_GRAPHICS;
699 :
700 0 : SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
701 :
702 : uint32_t i, max_entry;
703 0 : uint8_t highest_pcie_level_enabled = 0;
704 0 : uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
705 0 : uint8_t count = 0;
706 0 : int result = 0;
707 :
708 0 : memset(levels, 0x00, level_array_size);
709 :
710 0 : for (i = 0; i < dpm_table->sclk_table.count; i++) {
711 0 : result = tonga_populate_single_graphic_level(hwmgr,
712 : dpm_table->sclk_table.dpm_levels[i].value,
713 : &(smu_data->smc_state_table.GraphicsLevel[i]));
714 0 : if (result != 0)
715 : return result;
716 :
717 : /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
718 0 : if (i > 1)
719 0 : smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
720 : }
721 :
722 : /* Only enable level 0 for now. */
723 0 : smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
724 :
725 : /* set highest level watermark to high */
726 0 : if (dpm_table->sclk_table.count > 1)
727 0 : smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
728 : PPSMC_DISPLAY_WATERMARK_HIGH;
729 :
730 0 : smu_data->smc_state_table.GraphicsDpmLevelCount =
731 0 : (uint8_t)dpm_table->sclk_table.count;
732 0 : data->dpm_level_enable_mask.sclk_dpm_enable_mask =
733 0 : phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
734 :
735 0 : if (pcie_table != NULL) {
736 0 : PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
737 : "There must be 1 or more PCIE levels defined in PPTable.",
738 : return -EINVAL);
739 0 : max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
740 0 : for (i = 0; i < dpm_table->sclk_table.count; i++) {
741 0 : smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
742 0 : (uint8_t) ((i < max_entry) ? i : max_entry);
743 : }
744 : } else {
745 0 : if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
746 0 : pr_err("Pcie Dpm Enablemask is 0 !");
747 :
748 0 : while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
749 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
750 0 : (1<<(highest_pcie_level_enabled+1))) != 0)) {
751 0 : highest_pcie_level_enabled++;
752 : }
753 :
754 0 : while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
755 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
756 0 : (1<<lowest_pcie_level_enabled)) == 0)) {
757 0 : lowest_pcie_level_enabled++;
758 : }
759 :
760 0 : while ((count < highest_pcie_level_enabled) &&
761 0 : ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
762 0 : (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
763 0 : count++;
764 : }
765 0 : mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
766 0 : (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
767 :
768 :
769 : /* set pcieDpmLevel to highest_pcie_level_enabled*/
770 0 : for (i = 2; i < dpm_table->sclk_table.count; i++)
771 0 : smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
772 :
773 : /* set pcieDpmLevel to lowest_pcie_level_enabled*/
774 0 : smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
775 :
776 : /* set pcieDpmLevel to mid_pcie_level_enabled*/
777 0 : smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
778 : }
779 : /* level count will send to smc once at init smc table and never change*/
780 0 : result = smu7_copy_bytes_to_smc(hwmgr, level_array_address,
781 : (uint8_t *)levels, (uint32_t)level_array_size,
782 : SMC_RAM_END);
783 :
784 0 : return result;
785 : }
786 :
787 0 : static int tonga_calculate_mclk_params(
788 : struct pp_hwmgr *hwmgr,
789 : uint32_t memory_clock,
790 : SMU72_Discrete_MemoryLevel *mclk,
791 : bool strobe_mode,
792 : bool dllStateOn
793 : )
794 : {
795 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
796 :
797 0 : uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
798 0 : uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
799 0 : uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
800 0 : uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
801 0 : uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
802 0 : uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
803 0 : uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
804 0 : uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
805 0 : uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
806 :
807 : pp_atomctrl_memory_clock_param mpll_param;
808 : int result;
809 :
810 0 : result = atomctrl_get_memory_pll_dividers_si(hwmgr,
811 : memory_clock, &mpll_param, strobe_mode);
812 0 : PP_ASSERT_WITH_CODE(
813 : !result,
814 : "Error retrieving Memory Clock Parameters from VBIOS.",
815 : return result);
816 :
817 : /* MPLL_FUNC_CNTL setup*/
818 0 : mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
819 : mpll_param.bw_ctrl);
820 :
821 : /* MPLL_FUNC_CNTL_1 setup*/
822 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
823 : MPLL_FUNC_CNTL_1, CLKF,
824 : mpll_param.mpll_fb_divider.cl_kf);
825 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
826 : MPLL_FUNC_CNTL_1, CLKFRAC,
827 : mpll_param.mpll_fb_divider.clk_frac);
828 0 : mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
829 : MPLL_FUNC_CNTL_1, VCO_MODE,
830 : mpll_param.vco_mode);
831 :
832 : /* MPLL_AD_FUNC_CNTL setup*/
833 0 : mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
834 : MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
835 : mpll_param.mpll_post_divider);
836 :
837 0 : if (data->is_memory_gddr5) {
838 : /* MPLL_DQ_FUNC_CNTL setup*/
839 0 : mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
840 : MPLL_DQ_FUNC_CNTL, YCLK_SEL,
841 : mpll_param.yclk_sel);
842 0 : mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
843 : MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
844 : mpll_param.mpll_post_divider);
845 : }
846 :
847 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
848 : PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
849 : /*
850 : ************************************
851 : Fref = Reference Frequency
852 : NF = Feedback divider ratio
853 : NR = Reference divider ratio
854 : Fnom = Nominal VCO output frequency = Fref * NF / NR
855 : Fs = Spreading Rate
856 : D = Percentage down-spread / 2
857 : Fint = Reference input frequency to PFD = Fref / NR
858 : NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
859 : CLKS = NS - 1 = ISS_STEP_NUM[11:0]
860 : NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
861 : CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
862 : *************************************
863 : */
864 : pp_atomctrl_internal_ss_info ss_info;
865 : uint32_t freq_nom;
866 : uint32_t tmp;
867 0 : uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
868 :
869 : /* for GDDR5 for all modes and DDR3 */
870 0 : if (1 == mpll_param.qdr)
871 0 : freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
872 : else
873 0 : freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
874 :
875 : /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
876 0 : tmp = (freq_nom / reference_clock);
877 0 : tmp = tmp * tmp;
878 :
879 0 : if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
880 : /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
881 : /* ss.Info.speed_spectrum_rate -- in unit of khz */
882 : /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
883 : /* = reference_clock * 5 / speed_spectrum_rate */
884 0 : uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
885 :
886 : /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
887 : /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
888 0 : uint32_t clkv =
889 0 : (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
890 0 : ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
891 :
892 0 : mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
893 0 : mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
894 : }
895 : }
896 :
897 : /* MCLK_PWRMGT_CNTL setup */
898 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
899 : MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
900 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
901 : MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
902 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
903 : MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
904 :
905 : /* Save the result data to outpupt memory level structure */
906 0 : mclk->MclkFrequency = memory_clock;
907 0 : mclk->MpllFuncCntl = mpll_func_cntl;
908 0 : mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
909 0 : mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
910 0 : mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
911 0 : mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
912 0 : mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
913 0 : mclk->DllCntl = dll_cntl;
914 0 : mclk->MpllSs1 = mpll_ss1;
915 0 : mclk->MpllSs2 = mpll_ss2;
916 :
917 0 : return 0;
918 : }
919 :
920 : static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
921 : bool strobe_mode)
922 : {
923 : uint8_t mc_para_index;
924 :
925 0 : if (strobe_mode) {
926 0 : if (memory_clock < 12500)
927 : mc_para_index = 0x00;
928 0 : else if (memory_clock > 47500)
929 : mc_para_index = 0x0f;
930 : else
931 0 : mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
932 : } else {
933 0 : if (memory_clock < 65000)
934 : mc_para_index = 0x00;
935 0 : else if (memory_clock > 135000)
936 : mc_para_index = 0x0f;
937 : else
938 0 : mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
939 : }
940 :
941 : return mc_para_index;
942 : }
943 :
944 : static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
945 : {
946 : uint8_t mc_para_index;
947 :
948 0 : if (memory_clock < 10000)
949 : mc_para_index = 0;
950 0 : else if (memory_clock >= 80000)
951 : mc_para_index = 0x0f;
952 : else
953 0 : mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
954 :
955 : return mc_para_index;
956 : }
957 :
958 :
959 0 : static int tonga_populate_single_memory_level(
960 : struct pp_hwmgr *hwmgr,
961 : uint32_t memory_clock,
962 : SMU72_Discrete_MemoryLevel *memory_level
963 : )
964 : {
965 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
966 0 : struct phm_ppt_v1_information *pptable_info =
967 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
968 0 : uint32_t mclk_edc_wr_enable_threshold = 40000;
969 0 : uint32_t mclk_stutter_mode_threshold = 30000;
970 0 : uint32_t mclk_edc_enable_threshold = 40000;
971 0 : uint32_t mclk_strobe_mode_threshold = 40000;
972 0 : phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
973 0 : int result = 0;
974 : bool dll_state_on;
975 0 : uint32_t mvdd = 0;
976 :
977 0 : if (hwmgr->od_enabled)
978 0 : vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
979 : else
980 0 : vdd_dep_table = pptable_info->vdd_dep_on_mclk;
981 :
982 0 : if (NULL != vdd_dep_table) {
983 0 : result = tonga_get_dependency_volt_by_clk(hwmgr,
984 : vdd_dep_table,
985 : memory_clock,
986 : &memory_level->MinVoltage, &mvdd);
987 0 : PP_ASSERT_WITH_CODE(
988 : !result,
989 : "can not find MinVddc voltage value from memory VDDC "
990 : "voltage dependency table",
991 : return result);
992 : }
993 :
994 0 : if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
995 0 : memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
996 : else
997 0 : memory_level->MinMvdd = mvdd;
998 :
999 0 : memory_level->EnabledForThrottle = 1;
1000 0 : memory_level->EnabledForActivity = 0;
1001 0 : memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1002 0 : memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1003 0 : memory_level->VoltageDownHyst = 0;
1004 :
1005 : /* Indicates maximum activity level for this performance level.*/
1006 0 : memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1007 0 : memory_level->StutterEnable = 0;
1008 0 : memory_level->StrobeEnable = 0;
1009 0 : memory_level->EdcReadEnable = 0;
1010 0 : memory_level->EdcWriteEnable = 0;
1011 0 : memory_level->RttEnable = 0;
1012 :
1013 : /* default set to low watermark. Highest level will be set to high later.*/
1014 0 : memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1015 :
1016 0 : data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1017 0 : data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1018 :
1019 0 : if ((mclk_stutter_mode_threshold != 0) &&
1020 0 : (memory_clock <= mclk_stutter_mode_threshold) &&
1021 0 : (!data->is_uvd_enabled)
1022 0 : && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1023 0 : && (data->display_timing.num_existing_displays <= 2)
1024 0 : && (data->display_timing.num_existing_displays != 0))
1025 0 : memory_level->StutterEnable = 1;
1026 :
1027 : /* decide strobe mode*/
1028 0 : memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1029 0 : (memory_clock <= mclk_strobe_mode_threshold);
1030 :
1031 : /* decide EDC mode and memory clock ratio*/
1032 0 : if (data->is_memory_gddr5) {
1033 0 : memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
1034 : memory_level->StrobeEnable);
1035 :
1036 0 : if ((mclk_edc_enable_threshold != 0) &&
1037 : (memory_clock > mclk_edc_enable_threshold)) {
1038 0 : memory_level->EdcReadEnable = 1;
1039 : }
1040 :
1041 0 : if ((mclk_edc_wr_enable_threshold != 0) &&
1042 : (memory_clock > mclk_edc_wr_enable_threshold)) {
1043 0 : memory_level->EdcWriteEnable = 1;
1044 : }
1045 :
1046 0 : if (memory_level->StrobeEnable) {
1047 0 : if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
1048 0 : ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
1049 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1050 : } else {
1051 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1052 : }
1053 :
1054 : } else {
1055 0 : dll_state_on = data->dll_default_on;
1056 : }
1057 : } else {
1058 0 : memory_level->StrobeRatio =
1059 0 : tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
1060 0 : dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1061 : }
1062 :
1063 0 : result = tonga_calculate_mclk_params(hwmgr,
1064 0 : memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1065 :
1066 0 : if (!result) {
1067 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
1068 : /* MCLK frequency in units of 10KHz*/
1069 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1070 : /* Indicates maximum activity level for this performance level.*/
1071 0 : CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1072 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1073 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1074 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1075 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1076 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1077 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1078 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1079 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1080 0 : CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1081 : }
1082 :
1083 : return result;
1084 : }
1085 :
1086 0 : static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1087 : {
1088 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1089 0 : struct tonga_smumgr *smu_data =
1090 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1091 0 : struct smu7_dpm_table *dpm_table = &data->dpm_table;
1092 : int result;
1093 :
1094 : /* populate MCLK dpm table to SMU7 */
1095 0 : uint32_t level_array_address =
1096 0 : smu_data->smu7_data.dpm_table_start +
1097 : offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
1098 0 : uint32_t level_array_size =
1099 : sizeof(SMU72_Discrete_MemoryLevel) *
1100 : SMU72_MAX_LEVELS_MEMORY;
1101 0 : SMU72_Discrete_MemoryLevel *levels =
1102 : smu_data->smc_state_table.MemoryLevel;
1103 : uint32_t i;
1104 :
1105 0 : memset(levels, 0x00, level_array_size);
1106 :
1107 0 : for (i = 0; i < dpm_table->mclk_table.count; i++) {
1108 0 : PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1109 : "can not populate memory level as memory clock is zero",
1110 : return -EINVAL);
1111 0 : result = tonga_populate_single_memory_level(
1112 : hwmgr,
1113 : dpm_table->mclk_table.dpm_levels[i].value,
1114 : &(smu_data->smc_state_table.MemoryLevel[i]));
1115 0 : if (result)
1116 : return result;
1117 : }
1118 :
1119 : /* Only enable level 0 for now.*/
1120 0 : smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1121 :
1122 : /*
1123 : * in order to prevent MC activity from stutter mode to push DPM up.
1124 : * the UVD change complements this by putting the MCLK in a higher state
1125 : * by default such that we are not effected by up threshold or and MCLK DPM latency.
1126 : */
1127 : smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1128 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1129 :
1130 0 : smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1131 0 : data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1132 : /* set highest level watermark to high*/
1133 0 : smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1134 :
1135 : /* level count will send to smc once at init smc table and never change*/
1136 0 : result = smu7_copy_bytes_to_smc(hwmgr,
1137 : level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1138 : SMC_RAM_END);
1139 :
1140 0 : return result;
1141 : }
1142 :
1143 0 : static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1144 : uint32_t mclk, SMIO_Pattern *smio_pattern)
1145 : {
1146 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1147 0 : struct phm_ppt_v1_information *table_info =
1148 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1149 0 : uint32_t i = 0;
1150 :
1151 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1152 : /* find mvdd value which clock is more than request */
1153 0 : for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1154 0 : if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1155 : /* Always round to higher voltage. */
1156 0 : smio_pattern->Voltage =
1157 0 : data->mvdd_voltage_table.entries[i].value;
1158 : break;
1159 : }
1160 : }
1161 :
1162 0 : PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1163 : "MVDD Voltage is outside the supported range.",
1164 : return -EINVAL);
1165 : } else {
1166 : return -EINVAL;
1167 : }
1168 :
1169 : return 0;
1170 : }
1171 :
1172 :
1173 0 : static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1174 : SMU72_Discrete_DpmTable *table)
1175 : {
1176 0 : int result = 0;
1177 0 : struct tonga_smumgr *smu_data =
1178 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1179 0 : const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1180 : struct pp_atomctrl_clock_dividers_vi dividers;
1181 :
1182 : SMIO_Pattern voltage_level;
1183 0 : uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1184 0 : uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1185 0 : uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1186 0 : uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1187 :
1188 : /* The ACPI state should not do DPM on DC (or ever).*/
1189 0 : table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1190 :
1191 0 : table->ACPILevel.MinVoltage =
1192 : smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
1193 :
1194 : /* assign zero for now*/
1195 0 : table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1196 :
1197 : /* get the engine clock dividers for this clock value*/
1198 0 : result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1199 : table->ACPILevel.SclkFrequency, ÷rs);
1200 :
1201 0 : PP_ASSERT_WITH_CODE(result == 0,
1202 : "Error retrieving Engine Clock dividers from VBIOS.",
1203 : return result);
1204 :
1205 : /* divider ID for required SCLK*/
1206 0 : table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1207 0 : table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1208 0 : table->ACPILevel.DeepSleepDivId = 0;
1209 :
1210 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1211 : SPLL_PWRON, 0);
1212 0 : spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1213 : SPLL_RESET, 1);
1214 0 : spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1215 : SCLK_MUX_SEL, 4);
1216 :
1217 0 : table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1218 0 : table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1219 0 : table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1220 0 : table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1221 0 : table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1222 0 : table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1223 0 : table->ACPILevel.CcPwrDynRm = 0;
1224 0 : table->ACPILevel.CcPwrDynRm1 = 0;
1225 :
1226 :
1227 : /* For various features to be enabled/disabled while this level is active.*/
1228 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1229 : /* SCLK frequency in units of 10KHz*/
1230 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1231 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1232 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1233 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1234 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1235 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1236 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1237 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1238 : CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1239 :
1240 : /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1241 0 : table->MemoryACPILevel.MinVoltage =
1242 : smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
1243 :
1244 : /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
1245 :
1246 0 : if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
1247 0 : table->MemoryACPILevel.MinMvdd =
1248 0 : PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1249 : else
1250 0 : table->MemoryACPILevel.MinMvdd = 0;
1251 :
1252 : /* Force reset on DLL*/
1253 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1254 : MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1255 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1256 : MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1257 :
1258 : /* Disable DLL in ACPIState*/
1259 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1260 : MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1261 0 : mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1262 : MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1263 :
1264 : /* Enable DLL bypass signal*/
1265 0 : dll_cntl = PHM_SET_FIELD(dll_cntl,
1266 : DLL_CNTL, MRDCK0_BYPASS, 0);
1267 0 : dll_cntl = PHM_SET_FIELD(dll_cntl,
1268 : DLL_CNTL, MRDCK1_BYPASS, 0);
1269 :
1270 0 : table->MemoryACPILevel.DllCntl =
1271 0 : PP_HOST_TO_SMC_UL(dll_cntl);
1272 0 : table->MemoryACPILevel.MclkPwrmgtCntl =
1273 0 : PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1274 0 : table->MemoryACPILevel.MpllAdFuncCntl =
1275 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1276 0 : table->MemoryACPILevel.MpllDqFuncCntl =
1277 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1278 0 : table->MemoryACPILevel.MpllFuncCntl =
1279 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1280 0 : table->MemoryACPILevel.MpllFuncCntl_1 =
1281 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1282 0 : table->MemoryACPILevel.MpllFuncCntl_2 =
1283 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1284 0 : table->MemoryACPILevel.MpllSs1 =
1285 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1286 0 : table->MemoryACPILevel.MpllSs2 =
1287 0 : PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1288 :
1289 0 : table->MemoryACPILevel.EnabledForThrottle = 0;
1290 0 : table->MemoryACPILevel.EnabledForActivity = 0;
1291 0 : table->MemoryACPILevel.UpHyst = 0;
1292 0 : table->MemoryACPILevel.DownHyst = 100;
1293 0 : table->MemoryACPILevel.VoltageDownHyst = 0;
1294 : /* Indicates maximum activity level for this performance level.*/
1295 0 : table->MemoryACPILevel.ActivityLevel =
1296 0 : PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1297 :
1298 0 : table->MemoryACPILevel.StutterEnable = 0;
1299 0 : table->MemoryACPILevel.StrobeEnable = 0;
1300 0 : table->MemoryACPILevel.EdcReadEnable = 0;
1301 0 : table->MemoryACPILevel.EdcWriteEnable = 0;
1302 0 : table->MemoryACPILevel.RttEnable = 0;
1303 :
1304 0 : return result;
1305 : }
1306 :
1307 0 : static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1308 : SMU72_Discrete_DpmTable *table)
1309 : {
1310 0 : int result = 0;
1311 :
1312 : uint8_t count;
1313 : pp_atomctrl_clock_dividers_vi dividers;
1314 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1315 0 : struct phm_ppt_v1_information *pptable_info =
1316 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1317 0 : phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1318 : pptable_info->mm_dep_table;
1319 :
1320 0 : table->UvdLevelCount = (uint8_t) (mm_table->count);
1321 0 : table->UvdBootLevel = 0;
1322 :
1323 0 : for (count = 0; count < table->UvdLevelCount; count++) {
1324 0 : table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1325 0 : table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1326 0 : table->UvdLevel[count].MinVoltage.Vddc =
1327 0 : phm_get_voltage_index(pptable_info->vddc_lookup_table,
1328 0 : mm_table->entries[count].vddc);
1329 0 : table->UvdLevel[count].MinVoltage.VddGfx =
1330 0 : (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1331 0 : phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1332 0 : mm_table->entries[count].vddgfx) : 0;
1333 0 : table->UvdLevel[count].MinVoltage.Vddci =
1334 0 : phm_get_voltage_id(&data->vddci_voltage_table,
1335 0 : mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1336 0 : table->UvdLevel[count].MinVoltage.Phases = 1;
1337 :
1338 : /* retrieve divider value for VBIOS */
1339 0 : result = atomctrl_get_dfs_pll_dividers_vi(
1340 : hwmgr,
1341 : table->UvdLevel[count].VclkFrequency,
1342 : ÷rs);
1343 :
1344 0 : PP_ASSERT_WITH_CODE((!result),
1345 : "can not find divide id for Vclk clock",
1346 : return result);
1347 :
1348 0 : table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1349 :
1350 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1351 : table->UvdLevel[count].DclkFrequency, ÷rs);
1352 0 : PP_ASSERT_WITH_CODE((!result),
1353 : "can not find divide id for Dclk clock",
1354 : return result);
1355 :
1356 0 : table->UvdLevel[count].DclkDivider =
1357 0 : (uint8_t)dividers.pll_post_divider;
1358 :
1359 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1360 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1361 : }
1362 :
1363 : return result;
1364 :
1365 : }
1366 :
1367 0 : static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1368 : SMU72_Discrete_DpmTable *table)
1369 : {
1370 0 : int result = 0;
1371 :
1372 : uint8_t count;
1373 : pp_atomctrl_clock_dividers_vi dividers;
1374 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1375 0 : struct phm_ppt_v1_information *pptable_info =
1376 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1377 0 : phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1378 : pptable_info->mm_dep_table;
1379 :
1380 0 : table->VceLevelCount = (uint8_t) (mm_table->count);
1381 0 : table->VceBootLevel = 0;
1382 :
1383 0 : for (count = 0; count < table->VceLevelCount; count++) {
1384 0 : table->VceLevel[count].Frequency =
1385 0 : mm_table->entries[count].eclk;
1386 0 : table->VceLevel[count].MinVoltage.Vddc =
1387 0 : phm_get_voltage_index(pptable_info->vddc_lookup_table,
1388 0 : mm_table->entries[count].vddc);
1389 0 : table->VceLevel[count].MinVoltage.VddGfx =
1390 0 : (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1391 0 : phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1392 0 : mm_table->entries[count].vddgfx) : 0;
1393 0 : table->VceLevel[count].MinVoltage.Vddci =
1394 0 : phm_get_voltage_id(&data->vddci_voltage_table,
1395 0 : mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1396 0 : table->VceLevel[count].MinVoltage.Phases = 1;
1397 :
1398 : /* retrieve divider value for VBIOS */
1399 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1400 : table->VceLevel[count].Frequency, ÷rs);
1401 0 : PP_ASSERT_WITH_CODE((!result),
1402 : "can not find divide id for VCE engine clock",
1403 : return result);
1404 :
1405 0 : table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1406 :
1407 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1408 : }
1409 :
1410 : return result;
1411 : }
1412 :
1413 0 : static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1414 : SMU72_Discrete_DpmTable *table)
1415 : {
1416 0 : int result = 0;
1417 : uint8_t count;
1418 : pp_atomctrl_clock_dividers_vi dividers;
1419 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1420 0 : struct phm_ppt_v1_information *pptable_info =
1421 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1422 0 : phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1423 : pptable_info->mm_dep_table;
1424 :
1425 0 : table->AcpLevelCount = (uint8_t) (mm_table->count);
1426 0 : table->AcpBootLevel = 0;
1427 :
1428 0 : for (count = 0; count < table->AcpLevelCount; count++) {
1429 0 : table->AcpLevel[count].Frequency =
1430 0 : pptable_info->mm_dep_table->entries[count].aclk;
1431 0 : table->AcpLevel[count].MinVoltage.Vddc =
1432 0 : phm_get_voltage_index(pptable_info->vddc_lookup_table,
1433 0 : mm_table->entries[count].vddc);
1434 0 : table->AcpLevel[count].MinVoltage.VddGfx =
1435 0 : (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1436 0 : phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1437 0 : mm_table->entries[count].vddgfx) : 0;
1438 0 : table->AcpLevel[count].MinVoltage.Vddci =
1439 0 : phm_get_voltage_id(&data->vddci_voltage_table,
1440 0 : mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1441 0 : table->AcpLevel[count].MinVoltage.Phases = 1;
1442 :
1443 : /* retrieve divider value for VBIOS */
1444 0 : result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1445 : table->AcpLevel[count].Frequency, ÷rs);
1446 0 : PP_ASSERT_WITH_CODE((!result),
1447 : "can not find divide id for engine clock", return result);
1448 :
1449 0 : table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450 :
1451 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1452 : }
1453 :
1454 : return result;
1455 : }
1456 :
1457 0 : static int tonga_populate_memory_timing_parameters(
1458 : struct pp_hwmgr *hwmgr,
1459 : uint32_t engine_clock,
1460 : uint32_t memory_clock,
1461 : struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1462 : )
1463 : {
1464 : uint32_t dramTiming;
1465 : uint32_t dramTiming2;
1466 : uint32_t burstTime;
1467 : int result;
1468 :
1469 0 : result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1470 : engine_clock, memory_clock);
1471 :
1472 0 : PP_ASSERT_WITH_CODE(result == 0,
1473 : "Error calling VBIOS to set DRAM_TIMING.", return result);
1474 :
1475 0 : dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1476 0 : dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1477 0 : burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1478 :
1479 0 : arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1480 0 : arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1481 0 : arb_regs->McArbBurstTime = (uint8_t)burstTime;
1482 :
1483 0 : return 0;
1484 : }
1485 :
1486 0 : static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1487 : {
1488 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1489 0 : struct tonga_smumgr *smu_data =
1490 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1491 0 : int result = 0;
1492 : SMU72_Discrete_MCArbDramTimingTable arb_regs;
1493 : uint32_t i, j;
1494 :
1495 0 : memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1496 :
1497 0 : for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1498 0 : for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1499 0 : result = tonga_populate_memory_timing_parameters
1500 : (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1501 : data->dpm_table.mclk_table.dpm_levels[j].value,
1502 0 : &arb_regs.entries[i][j]);
1503 :
1504 0 : if (result)
1505 : break;
1506 : }
1507 : }
1508 :
1509 0 : if (!result) {
1510 0 : result = smu7_copy_bytes_to_smc(
1511 : hwmgr,
1512 : smu_data->smu7_data.arb_table_start,
1513 : (uint8_t *)&arb_regs,
1514 : sizeof(SMU72_Discrete_MCArbDramTimingTable),
1515 : SMC_RAM_END
1516 : );
1517 : }
1518 :
1519 0 : return result;
1520 : }
1521 :
1522 0 : static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1523 : SMU72_Discrete_DpmTable *table)
1524 : {
1525 0 : int result = 0;
1526 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527 0 : struct tonga_smumgr *smu_data =
1528 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1529 0 : table->GraphicsBootLevel = 0;
1530 0 : table->MemoryBootLevel = 0;
1531 :
1532 : /* find boot level from dpm table*/
1533 0 : result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1534 : data->vbios_boot_state.sclk_bootup_value,
1535 0 : (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1536 :
1537 0 : if (result != 0) {
1538 0 : smu_data->smc_state_table.GraphicsBootLevel = 0;
1539 0 : pr_err("[powerplay] VBIOS did not find boot engine "
1540 : "clock value in dependency table. "
1541 : "Using Graphics DPM level 0 !");
1542 0 : result = 0;
1543 : }
1544 :
1545 0 : result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1546 : data->vbios_boot_state.mclk_bootup_value,
1547 0 : (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1548 :
1549 0 : if (result != 0) {
1550 0 : smu_data->smc_state_table.MemoryBootLevel = 0;
1551 0 : pr_err("[powerplay] VBIOS did not find boot "
1552 : "engine clock value in dependency table."
1553 : "Using Memory DPM level 0 !");
1554 0 : result = 0;
1555 : }
1556 :
1557 0 : table->BootVoltage.Vddc =
1558 0 : phm_get_voltage_id(&(data->vddc_voltage_table),
1559 0 : data->vbios_boot_state.vddc_bootup_value);
1560 0 : table->BootVoltage.VddGfx =
1561 0 : phm_get_voltage_id(&(data->vddgfx_voltage_table),
1562 0 : data->vbios_boot_state.vddgfx_bootup_value);
1563 0 : table->BootVoltage.Vddci =
1564 0 : phm_get_voltage_id(&(data->vddci_voltage_table),
1565 0 : data->vbios_boot_state.vddci_bootup_value);
1566 0 : table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1567 :
1568 0 : CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1569 :
1570 0 : return result;
1571 : }
1572 :
1573 0 : static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1574 : {
1575 : uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1576 : volt_with_cks, value;
1577 : uint16_t clock_freq_u16;
1578 0 : struct tonga_smumgr *smu_data =
1579 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1580 : uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1581 0 : volt_offset = 0;
1582 0 : struct phm_ppt_v1_information *table_info =
1583 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1584 0 : struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1585 : table_info->vdd_dep_on_sclk;
1586 : uint32_t hw_revision, dev_id;
1587 0 : struct amdgpu_device *adev = hwmgr->adev;
1588 :
1589 0 : stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1590 :
1591 0 : hw_revision = adev->pdev->revision;
1592 0 : dev_id = adev->pdev->device;
1593 :
1594 : /* Read SMU_Eefuse to read and calculate RO and determine
1595 : * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1596 : */
1597 0 : efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1598 : ixSMU_EFUSE_0 + (146 * 4));
1599 0 : efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1600 : ixSMU_EFUSE_0 + (148 * 4));
1601 0 : efuse &= 0xFF000000;
1602 0 : efuse = efuse >> 24;
1603 0 : efuse2 &= 0xF;
1604 :
1605 0 : if (efuse2 == 1)
1606 0 : ro = (2300 - 1350) * efuse / 255 + 1350;
1607 : else
1608 0 : ro = (2500 - 1000) * efuse / 255 + 1000;
1609 :
1610 0 : if (ro >= 1660)
1611 : type = 0;
1612 : else
1613 0 : type = 1;
1614 :
1615 : /* Populate Stretch amount */
1616 0 : smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1617 :
1618 :
1619 : /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1620 0 : for (i = 0; i < sclk_table->count; i++) {
1621 0 : smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1622 0 : sclk_table->entries[i].cks_enable << i;
1623 0 : if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
1624 0 : volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
1625 0 : (sclk_table->entries[i].clk/100) / 10000) * 1000 /
1626 0 : (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
1627 0 : volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
1628 0 : (sclk_table->entries[i].clk/100) / 100000) * 1000 /
1629 0 : (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
1630 : } else {
1631 0 : volt_without_cks = (uint32_t)((14041 *
1632 0 : (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1633 0 : (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1634 0 : volt_with_cks = (uint32_t)((13946 *
1635 0 : (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1636 0 : (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1637 : }
1638 0 : if (volt_without_cks >= volt_with_cks)
1639 0 : volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1640 0 : sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1641 0 : smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1642 : }
1643 :
1644 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1645 : STRETCH_ENABLE, 0x0);
1646 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1647 : masterReset, 0x1);
1648 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1649 : staticEnable, 0x1);
1650 0 : PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1651 : masterReset, 0x0);
1652 :
1653 : /* Populate CKS Lookup Table */
1654 0 : if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1655 : stretch_amount2 = 0;
1656 0 : else if (stretch_amount == 3 || stretch_amount == 4)
1657 : stretch_amount2 = 1;
1658 : else {
1659 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1660 : PHM_PlatformCaps_ClockStretcher);
1661 0 : PP_ASSERT_WITH_CODE(false,
1662 : "Stretch Amount in PPTable not supported",
1663 : return -EINVAL);
1664 : }
1665 :
1666 0 : value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1667 : ixPWR_CKS_CNTL);
1668 0 : value &= 0xFFC2FF87;
1669 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1670 0 : tonga_clock_stretcher_lookup_table[stretch_amount2][0];
1671 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1672 0 : tonga_clock_stretcher_lookup_table[stretch_amount2][1];
1673 0 : clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1674 : GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1675 0 : SclkFrequency) / 100);
1676 0 : if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
1677 0 : clock_freq_u16 &&
1678 : tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
1679 : clock_freq_u16) {
1680 : /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1681 0 : value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1682 : /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1683 0 : value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1684 : /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1685 0 : value |= (tonga_clock_stretch_amount_conversion
1686 : [tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
1687 0 : [stretch_amount]) << 3;
1688 : }
1689 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1690 : CKS_LOOKUPTableEntry[0].minFreq);
1691 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1692 : CKS_LOOKUPTableEntry[0].maxFreq);
1693 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1694 0 : tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1695 0 : smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1696 0 : (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1697 :
1698 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1699 : ixPWR_CKS_CNTL, value);
1700 :
1701 : /* Populate DDT Lookup Table */
1702 0 : for (i = 0; i < 4; i++) {
1703 : /* Assign the minimum and maximum VID stored
1704 : * in the last row of Clock Stretcher Voltage Table.
1705 : */
1706 : smu_data->smc_state_table.ClockStretcherDataTable.
1707 0 : ClockStretcherDataTableEntry[i].minVID =
1708 0 : (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
1709 : smu_data->smc_state_table.ClockStretcherDataTable.
1710 0 : ClockStretcherDataTableEntry[i].maxVID =
1711 0 : (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
1712 : /* Loop through each SCLK and check the frequency
1713 : * to see if it lies within the frequency for clock stretcher.
1714 : */
1715 0 : for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1716 0 : cks_setting = 0;
1717 0 : clock_freq = PP_SMC_TO_HOST_UL(
1718 : smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1719 : /* Check the allowed frequency against the sclk level[j].
1720 : * Sclk's endianness has already been converted,
1721 : * and it's in 10Khz unit,
1722 : * as opposed to Data table, which is in Mhz unit.
1723 : */
1724 0 : if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
1725 0 : cks_setting |= 0x2;
1726 0 : if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
1727 0 : cks_setting |= 0x1;
1728 : }
1729 : smu_data->smc_state_table.ClockStretcherDataTable.
1730 0 : ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1731 : }
1732 0 : CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1733 : ClockStretcherDataTable.
1734 : ClockStretcherDataTableEntry[i].setting);
1735 : }
1736 :
1737 0 : value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738 : ixPWR_CKS_CNTL);
1739 0 : value &= 0xFFFFFFFE;
1740 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1741 : ixPWR_CKS_CNTL, value);
1742 :
1743 0 : return 0;
1744 : }
1745 :
1746 0 : static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1747 : SMU72_Discrete_DpmTable *table)
1748 : {
1749 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1750 : uint16_t config;
1751 :
1752 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1753 : /* Splitted mode */
1754 0 : config = VR_SVI2_PLANE_1;
1755 0 : table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1756 :
1757 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1758 0 : config = VR_SVI2_PLANE_2;
1759 0 : table->VRConfig |= config;
1760 : } else {
1761 0 : pr_err("VDDC and VDDGFX should "
1762 : "be both on SVI2 control in splitted mode !\n");
1763 : }
1764 : } else {
1765 : /* Merged mode */
1766 0 : config = VR_MERGED_WITH_VDDC;
1767 0 : table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1768 :
1769 : /* Set Vddc Voltage Controller */
1770 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1771 0 : config = VR_SVI2_PLANE_1;
1772 0 : table->VRConfig |= config;
1773 : } else {
1774 0 : pr_err("VDDC should be on "
1775 : "SVI2 control in merged mode !\n");
1776 : }
1777 : }
1778 :
1779 : /* Set Vddci Voltage Controller */
1780 0 : if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1781 0 : config = VR_SVI2_PLANE_2; /* only in merged mode */
1782 0 : table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1783 0 : } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1784 0 : config = VR_SMIO_PATTERN_1;
1785 0 : table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1786 : }
1787 :
1788 : /* Set Mvdd Voltage Controller */
1789 0 : if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1790 0 : config = VR_SMIO_PATTERN_2;
1791 0 : table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1792 : }
1793 :
1794 0 : return 0;
1795 : }
1796 :
1797 0 : static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
1798 : {
1799 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1800 : uint32_t tmp;
1801 : int result;
1802 :
1803 : /*
1804 : * This is a read-modify-write on the first byte of the ARB table.
1805 : * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
1806 : * is the field 'current'.
1807 : * This solution is ugly, but we never write the whole table only
1808 : * individual fields in it.
1809 : * In reality this field should not be in that structure
1810 : * but in a soft register.
1811 : */
1812 0 : result = smu7_read_smc_sram_dword(hwmgr,
1813 : smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1814 :
1815 0 : if (result != 0)
1816 : return result;
1817 :
1818 0 : tmp &= 0x00FFFFFF;
1819 0 : tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1820 :
1821 0 : return smu7_write_smc_sram_dword(hwmgr,
1822 : smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1823 : }
1824 :
1825 :
1826 0 : static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1827 : {
1828 0 : struct tonga_smumgr *smu_data =
1829 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1830 0 : const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1831 0 : SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
1832 0 : struct phm_ppt_v1_information *table_info =
1833 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1834 0 : struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1835 : int i, j, k;
1836 : const uint16_t *pdef1, *pdef2;
1837 :
1838 0 : dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
1839 : (uint16_t)(cac_dtp_table->usTDP * 256));
1840 0 : dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
1841 : (uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1842 :
1843 0 : PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1844 : "Target Operating Temp is out of Range !",
1845 : );
1846 :
1847 0 : dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
1848 0 : dpm_table->GpuTjHyst = 8;
1849 :
1850 0 : dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1851 :
1852 0 : dpm_table->BAPM_TEMP_GRADIENT =
1853 0 : PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1854 0 : pdef1 = defaults->bapmti_r;
1855 0 : pdef2 = defaults->bapmti_rc;
1856 :
1857 0 : for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
1858 0 : for (j = 0; j < SMU72_DTE_SOURCES; j++) {
1859 0 : for (k = 0; k < SMU72_DTE_SINKS; k++) {
1860 0 : dpm_table->BAPMTI_R[i][j][k] =
1861 0 : PP_HOST_TO_SMC_US(*pdef1);
1862 0 : dpm_table->BAPMTI_RC[i][j][k] =
1863 0 : PP_HOST_TO_SMC_US(*pdef2);
1864 0 : pdef1++;
1865 0 : pdef2++;
1866 : }
1867 : }
1868 : }
1869 :
1870 0 : return 0;
1871 : }
1872 :
1873 : static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1874 : {
1875 0 : struct tonga_smumgr *smu_data =
1876 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1877 0 : const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1878 :
1879 0 : smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
1880 0 : smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
1881 0 : smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1882 0 : smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1883 :
1884 : return 0;
1885 : }
1886 :
1887 : static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1888 : {
1889 : uint16_t tdc_limit;
1890 0 : struct tonga_smumgr *smu_data =
1891 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1892 0 : const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1893 0 : struct phm_ppt_v1_information *table_info =
1894 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1895 :
1896 : /* TDC number of fraction bits are changed from 8 to 7
1897 : * for Fiji as requested by SMC team
1898 : */
1899 0 : tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
1900 0 : smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1901 0 : CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1902 0 : smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1903 0 : defaults->tdc_vddc_throttle_release_limit_perc;
1904 0 : smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
1905 :
1906 : return 0;
1907 : }
1908 :
1909 0 : static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1910 : {
1911 0 : struct tonga_smumgr *smu_data =
1912 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1913 0 : const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1914 : uint32_t temp;
1915 :
1916 0 : if (smu7_read_smc_sram_dword(hwmgr,
1917 : fuse_table_offset +
1918 : offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
1919 : (uint32_t *)&temp, SMC_RAM_END))
1920 0 : PP_ASSERT_WITH_CODE(false,
1921 : "Attempt to read PmFuses.DW6 "
1922 : "(SviLoadLineEn) from SMC Failed !",
1923 : return -EINVAL);
1924 : else
1925 0 : smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
1926 :
1927 0 : return 0;
1928 : }
1929 :
1930 : static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1931 : {
1932 : int i;
1933 0 : struct tonga_smumgr *smu_data =
1934 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1935 :
1936 : /* Currently not used. Set all to zero. */
1937 0 : for (i = 0; i < 16; i++)
1938 0 : smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1939 :
1940 : return 0;
1941 : }
1942 :
1943 : static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1944 : {
1945 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1946 :
1947 0 : if ((hwmgr->thermal_controller.advanceFanControlParameters.
1948 0 : usFanOutputSensitivity & (1 << 15)) ||
1949 : (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
1950 : hwmgr->thermal_controller.advanceFanControlParameters.
1951 0 : usFanOutputSensitivity = hwmgr->thermal_controller.
1952 0 : advanceFanControlParameters.usDefaultFanOutputSensitivity;
1953 :
1954 0 : smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
1955 0 : PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
1956 : advanceFanControlParameters.usFanOutputSensitivity);
1957 : return 0;
1958 : }
1959 :
1960 : static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1961 : {
1962 : int i;
1963 0 : struct tonga_smumgr *smu_data =
1964 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1965 :
1966 : /* Currently not used. Set all to zero. */
1967 0 : for (i = 0; i < 16; i++)
1968 0 : smu_data->power_tune_table.GnbLPML[i] = 0;
1969 :
1970 : return 0;
1971 : }
1972 :
1973 : static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1974 : {
1975 0 : struct tonga_smumgr *smu_data =
1976 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1977 0 : struct phm_ppt_v1_information *table_info =
1978 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
1979 0 : uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1980 0 : uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1981 0 : struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1982 :
1983 0 : hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1984 0 : lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1985 :
1986 0 : smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1987 0 : CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1988 0 : smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1989 0 : CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1990 :
1991 : return 0;
1992 : }
1993 :
1994 0 : static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1995 : {
1996 0 : struct tonga_smumgr *smu_data =
1997 : (struct tonga_smumgr *)(hwmgr->smu_backend);
1998 : uint32_t pm_fuse_table_offset;
1999 :
2000 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2001 : PHM_PlatformCaps_PowerContainment)) {
2002 0 : if (smu7_read_smc_sram_dword(hwmgr,
2003 : SMU72_FIRMWARE_HEADER_LOCATION +
2004 : offsetof(SMU72_Firmware_Header, PmFuseTable),
2005 : &pm_fuse_table_offset, SMC_RAM_END))
2006 0 : PP_ASSERT_WITH_CODE(false,
2007 : "Attempt to get pm_fuse_table_offset Failed !",
2008 : return -EINVAL);
2009 :
2010 : /* DW6 */
2011 0 : if (tonga_populate_svi_load_line(hwmgr))
2012 : PP_ASSERT_WITH_CODE(false,
2013 : "Attempt to populate SviLoadLine Failed !",
2014 : return -EINVAL);
2015 : /* DW7 */
2016 0 : if (tonga_populate_tdc_limit(hwmgr))
2017 : PP_ASSERT_WITH_CODE(false,
2018 : "Attempt to populate TDCLimit Failed !",
2019 : return -EINVAL);
2020 : /* DW8 */
2021 0 : if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
2022 0 : PP_ASSERT_WITH_CODE(false,
2023 : "Attempt to populate TdcWaterfallCtl Failed !",
2024 : return -EINVAL);
2025 :
2026 : /* DW9-DW12 */
2027 0 : if (tonga_populate_temperature_scaler(hwmgr) != 0)
2028 : PP_ASSERT_WITH_CODE(false,
2029 : "Attempt to populate LPMLTemperatureScaler Failed !",
2030 : return -EINVAL);
2031 :
2032 : /* DW13-DW14 */
2033 0 : if (tonga_populate_fuzzy_fan(hwmgr))
2034 : PP_ASSERT_WITH_CODE(false,
2035 : "Attempt to populate Fuzzy Fan "
2036 : "Control parameters Failed !",
2037 : return -EINVAL);
2038 :
2039 : /* DW15-DW18 */
2040 0 : if (tonga_populate_gnb_lpml(hwmgr))
2041 : PP_ASSERT_WITH_CODE(false,
2042 : "Attempt to populate GnbLPML Failed !",
2043 : return -EINVAL);
2044 :
2045 : /* DW20 */
2046 0 : if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
2047 : PP_ASSERT_WITH_CODE(
2048 : false,
2049 : "Attempt to populate BapmVddCBaseLeakage "
2050 : "Hi and Lo Sidd Failed !",
2051 : return -EINVAL);
2052 :
2053 0 : if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
2054 0 : (uint8_t *)&smu_data->power_tune_table,
2055 : sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
2056 0 : PP_ASSERT_WITH_CODE(false,
2057 : "Attempt to download PmFuseTable Failed !",
2058 : return -EINVAL);
2059 : }
2060 : return 0;
2061 : }
2062 :
2063 0 : static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
2064 : SMU72_Discrete_MCRegisters *mc_reg_table)
2065 : {
2066 0 : const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend;
2067 :
2068 : uint32_t i, j;
2069 :
2070 0 : for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
2071 0 : if (smu_data->mc_reg_table.validflag & 1<<j) {
2072 0 : PP_ASSERT_WITH_CODE(
2073 : i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
2074 : "Index of mc_reg_table->address[] array "
2075 : "out of boundary",
2076 : return -EINVAL);
2077 0 : mc_reg_table->address[i].s0 =
2078 0 : PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
2079 0 : mc_reg_table->address[i].s1 =
2080 0 : PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
2081 0 : i++;
2082 : }
2083 : }
2084 :
2085 0 : mc_reg_table->last = (uint8_t)i;
2086 :
2087 : return 0;
2088 : }
2089 :
2090 : /*convert register values from driver to SMC format */
2091 : static void tonga_convert_mc_registers(
2092 : const struct tonga_mc_reg_entry *entry,
2093 : SMU72_Discrete_MCRegisterSet *data,
2094 : uint32_t num_entries, uint32_t valid_flag)
2095 : {
2096 : uint32_t i, j;
2097 :
2098 0 : for (i = 0, j = 0; j < num_entries; j++) {
2099 0 : if (valid_flag & 1<<j) {
2100 0 : data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
2101 0 : i++;
2102 : }
2103 : }
2104 : }
2105 :
2106 0 : static int tonga_convert_mc_reg_table_entry_to_smc(
2107 : struct pp_hwmgr *hwmgr,
2108 : const uint32_t memory_clock,
2109 : SMU72_Discrete_MCRegisterSet *mc_reg_table_data
2110 : )
2111 : {
2112 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2113 0 : uint32_t i = 0;
2114 :
2115 0 : for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
2116 0 : if (memory_clock <=
2117 0 : smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
2118 : break;
2119 : }
2120 : }
2121 :
2122 0 : if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
2123 0 : --i;
2124 :
2125 0 : tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
2126 0 : mc_reg_table_data, smu_data->mc_reg_table.last,
2127 0 : smu_data->mc_reg_table.validflag);
2128 :
2129 0 : return 0;
2130 : }
2131 :
2132 0 : static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
2133 : SMU72_Discrete_MCRegisters *mc_regs)
2134 : {
2135 0 : int result = 0;
2136 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2137 : int res;
2138 : uint32_t i;
2139 :
2140 0 : for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
2141 0 : res = tonga_convert_mc_reg_table_entry_to_smc(
2142 : hwmgr,
2143 : data->dpm_table.mclk_table.dpm_levels[i].value,
2144 : &mc_regs->data[i]
2145 : );
2146 :
2147 0 : if (0 != res)
2148 0 : result = res;
2149 : }
2150 :
2151 0 : return result;
2152 : }
2153 :
2154 0 : static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
2155 : {
2156 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2157 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2158 : uint32_t address;
2159 : int32_t result;
2160 :
2161 0 : if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
2162 : return 0;
2163 :
2164 :
2165 0 : memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
2166 :
2167 0 : result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
2168 :
2169 0 : if (result != 0)
2170 : return result;
2171 :
2172 :
2173 0 : address = smu_data->smu7_data.mc_reg_table_start +
2174 : (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
2175 :
2176 0 : return smu7_copy_bytes_to_smc(
2177 : hwmgr, address,
2178 0 : (uint8_t *)&smu_data->mc_regs.data[0],
2179 : sizeof(SMU72_Discrete_MCRegisterSet) *
2180 0 : data->dpm_table.mclk_table.count,
2181 : SMC_RAM_END);
2182 : }
2183 :
2184 0 : static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
2185 : {
2186 : int result;
2187 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2188 :
2189 0 : memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
2190 0 : result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
2191 0 : PP_ASSERT_WITH_CODE(!result,
2192 : "Failed to initialize MCRegTable for the MC register addresses !",
2193 : return result;);
2194 :
2195 0 : result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
2196 0 : PP_ASSERT_WITH_CODE(!result,
2197 : "Failed to initialize MCRegTable for driver state !",
2198 : return result;);
2199 :
2200 0 : return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
2201 : (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
2202 : }
2203 :
2204 : static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
2205 : {
2206 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2207 0 : struct phm_ppt_v1_information *table_info =
2208 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2209 :
2210 0 : if (table_info &&
2211 0 : table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
2212 : table_info->cac_dtp_table->usPowerTuneDataSetID)
2213 0 : smu_data->power_tune_defaults =
2214 0 : &tonga_power_tune_data_set_array
2215 0 : [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
2216 : else
2217 0 : smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
2218 : }
2219 :
2220 0 : static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2221 : {
2222 : int result;
2223 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2224 0 : struct tonga_smumgr *smu_data =
2225 : (struct tonga_smumgr *)(hwmgr->smu_backend);
2226 0 : SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
2227 0 : struct phm_ppt_v1_information *table_info =
2228 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2229 :
2230 : uint8_t i;
2231 : pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2232 :
2233 :
2234 0 : memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
2235 :
2236 0 : tonga_initialize_power_tune_defaults(hwmgr);
2237 :
2238 0 : if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
2239 0 : tonga_populate_smc_voltage_tables(hwmgr, table);
2240 :
2241 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2242 : PHM_PlatformCaps_AutomaticDCTransition))
2243 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2244 :
2245 :
2246 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2247 : PHM_PlatformCaps_StepVddc))
2248 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2249 :
2250 0 : if (data->is_memory_gddr5)
2251 0 : table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2252 :
2253 0 : i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2254 :
2255 0 : if (i == 1 || i == 0)
2256 0 : table->SystemFlags |= 0x40;
2257 :
2258 0 : if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
2259 0 : result = tonga_populate_ulv_state(hwmgr, table);
2260 : PP_ASSERT_WITH_CODE(!result,
2261 : "Failed to initialize ULV state !",
2262 : return result;);
2263 :
2264 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2265 : ixCG_ULV_PARAMETER, 0x40035);
2266 : }
2267 :
2268 0 : result = tonga_populate_smc_link_level(hwmgr, table);
2269 0 : PP_ASSERT_WITH_CODE(!result,
2270 : "Failed to initialize Link Level !", return result);
2271 :
2272 0 : result = tonga_populate_all_graphic_levels(hwmgr);
2273 0 : PP_ASSERT_WITH_CODE(!result,
2274 : "Failed to initialize Graphics Level !", return result);
2275 :
2276 0 : result = tonga_populate_all_memory_levels(hwmgr);
2277 0 : PP_ASSERT_WITH_CODE(!result,
2278 : "Failed to initialize Memory Level !", return result);
2279 :
2280 0 : result = tonga_populate_smc_acpi_level(hwmgr, table);
2281 0 : PP_ASSERT_WITH_CODE(!result,
2282 : "Failed to initialize ACPI Level !", return result);
2283 :
2284 0 : result = tonga_populate_smc_vce_level(hwmgr, table);
2285 0 : PP_ASSERT_WITH_CODE(!result,
2286 : "Failed to initialize VCE Level !", return result);
2287 :
2288 0 : result = tonga_populate_smc_acp_level(hwmgr, table);
2289 0 : PP_ASSERT_WITH_CODE(!result,
2290 : "Failed to initialize ACP Level !", return result);
2291 :
2292 : /* Since only the initial state is completely set up at this
2293 : * point (the other states are just copies of the boot state) we only
2294 : * need to populate the ARB settings for the initial state.
2295 : */
2296 0 : result = tonga_program_memory_timing_parameters(hwmgr);
2297 0 : PP_ASSERT_WITH_CODE(!result,
2298 : "Failed to Write ARB settings for the initial state.",
2299 : return result;);
2300 :
2301 0 : result = tonga_populate_smc_uvd_level(hwmgr, table);
2302 0 : PP_ASSERT_WITH_CODE(!result,
2303 : "Failed to initialize UVD Level !", return result);
2304 :
2305 0 : result = tonga_populate_smc_boot_level(hwmgr, table);
2306 0 : PP_ASSERT_WITH_CODE(!result,
2307 : "Failed to initialize Boot Level !", return result);
2308 :
2309 0 : tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
2310 : PP_ASSERT_WITH_CODE(!result,
2311 : "Failed to populate BAPM Parameters !", return result);
2312 :
2313 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2314 : PHM_PlatformCaps_ClockStretcher)) {
2315 0 : result = tonga_populate_clock_stretcher_data_table(hwmgr);
2316 0 : PP_ASSERT_WITH_CODE(!result,
2317 : "Failed to populate Clock Stretcher Data Table !",
2318 : return result;);
2319 : }
2320 0 : table->GraphicsVoltageChangeEnable = 1;
2321 0 : table->GraphicsThermThrottleEnable = 1;
2322 0 : table->GraphicsInterval = 1;
2323 0 : table->VoltageInterval = 1;
2324 0 : table->ThermalInterval = 1;
2325 0 : table->TemperatureLimitHigh =
2326 0 : table_info->cac_dtp_table->usTargetOperatingTemp *
2327 : SMU7_Q88_FORMAT_CONVERSION_UNIT;
2328 0 : table->TemperatureLimitLow =
2329 0 : (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2330 : SMU7_Q88_FORMAT_CONVERSION_UNIT;
2331 0 : table->MemoryVoltageChangeEnable = 1;
2332 0 : table->MemoryInterval = 1;
2333 0 : table->VoltageResponseTime = 0;
2334 0 : table->PhaseResponseTime = 0;
2335 0 : table->MemoryThermThrottleEnable = 1;
2336 :
2337 : /*
2338 : * Cail reads current link status and reports it as cap (we cannot
2339 : * change this due to some previous issues we had)
2340 : * SMC drops the link status to lowest level after enabling
2341 : * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
2342 : * but this time Cail reads current link status which was set to low by
2343 : * SMC and reports it as cap to powerplay
2344 : * To avoid it, we set PCIeBootLinkLevel to highest dpm level
2345 : */
2346 0 : PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2347 : "There must be 1 or more PCIE levels defined in PPTable.",
2348 : return -EINVAL);
2349 :
2350 0 : table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
2351 :
2352 0 : table->PCIeGenInterval = 1;
2353 :
2354 0 : result = tonga_populate_vr_config(hwmgr, table);
2355 0 : PP_ASSERT_WITH_CODE(!result,
2356 : "Failed to populate VRConfig setting !", return result);
2357 0 : data->vr_config = table->VRConfig;
2358 0 : table->ThermGpio = 17;
2359 0 : table->SclkStepSize = 0x4000;
2360 :
2361 0 : if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
2362 : &gpio_pin_assignment)) {
2363 0 : table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2364 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2365 : PHM_PlatformCaps_RegulatorHot);
2366 : } else {
2367 0 : table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2368 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2369 : PHM_PlatformCaps_RegulatorHot);
2370 : }
2371 :
2372 0 : if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2373 : &gpio_pin_assignment)) {
2374 0 : table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2375 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2376 : PHM_PlatformCaps_AutomaticDCTransition);
2377 : } else {
2378 0 : table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2379 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2380 : PHM_PlatformCaps_AutomaticDCTransition);
2381 : }
2382 :
2383 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2384 : PHM_PlatformCaps_Falcon_QuickTransition);
2385 :
2386 : if (0) {
2387 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2388 : PHM_PlatformCaps_AutomaticDCTransition);
2389 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2390 : PHM_PlatformCaps_Falcon_QuickTransition);
2391 : }
2392 :
2393 0 : if (atomctrl_get_pp_assign_pin(hwmgr,
2394 : THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
2395 0 : phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2396 : PHM_PlatformCaps_ThermalOutGPIO);
2397 :
2398 0 : table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2399 :
2400 0 : table->ThermOutPolarity =
2401 0 : (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2402 0 : (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
2403 :
2404 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2405 :
2406 : /* if required, combine VRHot/PCC with thermal out GPIO*/
2407 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408 0 : PHM_PlatformCaps_RegulatorHot) &&
2409 0 : phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2410 : PHM_PlatformCaps_CombinePCCWithThermalSignal)){
2411 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2412 : }
2413 : } else {
2414 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2415 : PHM_PlatformCaps_ThermalOutGPIO);
2416 :
2417 0 : table->ThermOutGpio = 17;
2418 0 : table->ThermOutPolarity = 1;
2419 0 : table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2420 : }
2421 :
2422 0 : for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
2423 0 : table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2424 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2425 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2426 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2427 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2428 0 : CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2429 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2430 0 : CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2431 0 : CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2432 0 : CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2433 :
2434 : /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2435 0 : result = smu7_copy_bytes_to_smc(
2436 : hwmgr,
2437 0 : smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
2438 0 : (uint8_t *)&(table->SystemFlags),
2439 : sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
2440 : SMC_RAM_END);
2441 :
2442 0 : PP_ASSERT_WITH_CODE(!result,
2443 : "Failed to upload dpm data to SMC memory !", return result;);
2444 :
2445 0 : result = tonga_init_arb_table_index(hwmgr);
2446 0 : PP_ASSERT_WITH_CODE(!result,
2447 : "Failed to upload arb data to SMC memory !", return result);
2448 :
2449 0 : tonga_populate_pm_fuses(hwmgr);
2450 : PP_ASSERT_WITH_CODE((!result),
2451 : "Failed to populate initialize pm fuses !", return result);
2452 :
2453 0 : result = tonga_populate_initial_mc_reg_table(hwmgr);
2454 0 : PP_ASSERT_WITH_CODE((!result),
2455 : "Failed to populate initialize MC Reg table !", return result);
2456 :
2457 : return 0;
2458 : }
2459 :
2460 0 : static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2461 : {
2462 0 : struct tonga_smumgr *smu_data =
2463 : (struct tonga_smumgr *)(hwmgr->smu_backend);
2464 0 : SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2465 : uint32_t duty100;
2466 : uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2467 : uint16_t fdo_min, slope1, slope2;
2468 : uint32_t reference_clock;
2469 : int res;
2470 : uint64_t tmp64;
2471 :
2472 0 : if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2473 : PHM_PlatformCaps_MicrocodeFanControl))
2474 : return 0;
2475 :
2476 0 : if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2477 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2478 : PHM_PlatformCaps_MicrocodeFanControl);
2479 0 : return 0;
2480 : }
2481 :
2482 0 : if (0 == smu_data->smu7_data.fan_table_start) {
2483 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2484 : PHM_PlatformCaps_MicrocodeFanControl);
2485 0 : return 0;
2486 : }
2487 :
2488 0 : duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
2489 : CGS_IND_REG__SMC,
2490 : CG_FDO_CTRL1, FMAX_DUTY100);
2491 :
2492 0 : if (0 == duty100) {
2493 0 : phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2494 : PHM_PlatformCaps_MicrocodeFanControl);
2495 0 : return 0;
2496 : }
2497 :
2498 0 : tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2499 0 : do_div(tmp64, 10000);
2500 0 : fdo_min = (uint16_t)tmp64;
2501 :
2502 0 : t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2503 0 : hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2504 0 : t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2505 : hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2506 :
2507 0 : pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2508 0 : hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2509 0 : pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2510 : hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2511 :
2512 0 : slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2513 0 : slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2514 :
2515 0 : fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2516 0 : fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2517 0 : fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2518 :
2519 0 : fan_table.Slope1 = cpu_to_be16(slope1);
2520 0 : fan_table.Slope2 = cpu_to_be16(slope2);
2521 :
2522 0 : fan_table.FdoMin = cpu_to_be16(fdo_min);
2523 :
2524 0 : fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2525 :
2526 0 : fan_table.HystUp = cpu_to_be16(1);
2527 :
2528 0 : fan_table.HystSlope = cpu_to_be16(1);
2529 :
2530 0 : fan_table.TempRespLim = cpu_to_be16(5);
2531 :
2532 0 : reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2533 :
2534 0 : fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2535 :
2536 0 : fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2537 :
2538 0 : fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2539 :
2540 0 : fan_table.FanControl_GL_Flag = 1;
2541 :
2542 0 : res = smu7_copy_bytes_to_smc(hwmgr,
2543 : smu_data->smu7_data.fan_table_start,
2544 : (uint8_t *)&fan_table,
2545 : (uint32_t)sizeof(fan_table),
2546 : SMC_RAM_END);
2547 :
2548 0 : return res;
2549 : }
2550 :
2551 :
2552 : static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2553 : {
2554 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2555 :
2556 0 : if (data->need_update_smu7_dpm_table &
2557 : (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2558 0 : return tonga_program_memory_timing_parameters(hwmgr);
2559 :
2560 : return 0;
2561 : }
2562 :
2563 0 : static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2564 : {
2565 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2566 0 : struct tonga_smumgr *smu_data =
2567 : (struct tonga_smumgr *)(hwmgr->smu_backend);
2568 :
2569 0 : int result = 0;
2570 0 : uint32_t low_sclk_interrupt_threshold = 0;
2571 :
2572 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2573 : PHM_PlatformCaps_SclkThrottleLowNotification)
2574 0 : && (data->low_sclk_interrupt_threshold != 0)) {
2575 : low_sclk_interrupt_threshold =
2576 : data->low_sclk_interrupt_threshold;
2577 :
2578 0 : CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2579 :
2580 0 : result = smu7_copy_bytes_to_smc(
2581 : hwmgr,
2582 0 : smu_data->smu7_data.dpm_table_start +
2583 : offsetof(SMU72_Discrete_DpmTable,
2584 : LowSclkInterruptThreshold),
2585 : (uint8_t *)&low_sclk_interrupt_threshold,
2586 : sizeof(uint32_t),
2587 : SMC_RAM_END);
2588 : }
2589 :
2590 0 : result = tonga_update_and_upload_mc_reg_table(hwmgr);
2591 :
2592 0 : PP_ASSERT_WITH_CODE((!result),
2593 : "Failed to upload MC reg table !",
2594 : return result);
2595 :
2596 0 : result = tonga_program_mem_timing_parameters(hwmgr);
2597 0 : PP_ASSERT_WITH_CODE((result == 0),
2598 : "Failed to program memory timing parameters !",
2599 : );
2600 :
2601 : return result;
2602 : }
2603 :
2604 0 : static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
2605 : {
2606 0 : switch (type) {
2607 : case SMU_SoftRegisters:
2608 0 : switch (member) {
2609 : case HandshakeDisables:
2610 : return offsetof(SMU72_SoftRegisters, HandshakeDisables);
2611 : case VoltageChangeTimeout:
2612 0 : return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
2613 : case AverageGraphicsActivity:
2614 0 : return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
2615 : case AverageMemoryActivity:
2616 0 : return offsetof(SMU72_SoftRegisters, AverageMemoryActivity);
2617 : case PreVBlankGap:
2618 0 : return offsetof(SMU72_SoftRegisters, PreVBlankGap);
2619 : case VBlankTimeout:
2620 0 : return offsetof(SMU72_SoftRegisters, VBlankTimeout);
2621 : case UcodeLoadStatus:
2622 0 : return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
2623 : case DRAM_LOG_ADDR_H:
2624 0 : return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H);
2625 : case DRAM_LOG_ADDR_L:
2626 0 : return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L);
2627 : case DRAM_LOG_PHY_ADDR_H:
2628 0 : return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2629 : case DRAM_LOG_PHY_ADDR_L:
2630 0 : return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2631 : case DRAM_LOG_BUFF_SIZE:
2632 0 : return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2633 : }
2634 : break;
2635 : case SMU_Discrete_DpmTable:
2636 0 : switch (member) {
2637 : case UvdBootLevel:
2638 : return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2639 : case VceBootLevel:
2640 0 : return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2641 : case LowSclkInterruptThreshold:
2642 0 : return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
2643 : }
2644 : break;
2645 : }
2646 0 : pr_warn("can't get the offset of type %x member %x\n", type, member);
2647 0 : return 0;
2648 : }
2649 :
2650 0 : static uint32_t tonga_get_mac_definition(uint32_t value)
2651 : {
2652 0 : switch (value) {
2653 : case SMU_MAX_LEVELS_GRAPHICS:
2654 : return SMU72_MAX_LEVELS_GRAPHICS;
2655 : case SMU_MAX_LEVELS_MEMORY:
2656 0 : return SMU72_MAX_LEVELS_MEMORY;
2657 : case SMU_MAX_LEVELS_LINK:
2658 : return SMU72_MAX_LEVELS_LINK;
2659 : case SMU_MAX_ENTRIES_SMIO:
2660 0 : return SMU72_MAX_ENTRIES_SMIO;
2661 : case SMU_MAX_LEVELS_VDDC:
2662 0 : return SMU72_MAX_LEVELS_VDDC;
2663 : case SMU_MAX_LEVELS_VDDGFX:
2664 0 : return SMU72_MAX_LEVELS_VDDGFX;
2665 : case SMU_MAX_LEVELS_VDDCI:
2666 : return SMU72_MAX_LEVELS_VDDCI;
2667 : case SMU_MAX_LEVELS_MVDD:
2668 0 : return SMU72_MAX_LEVELS_MVDD;
2669 : }
2670 0 : pr_warn("can't get the mac value %x\n", value);
2671 :
2672 0 : return 0;
2673 : }
2674 :
2675 0 : static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2676 : {
2677 0 : struct tonga_smumgr *smu_data =
2678 : (struct tonga_smumgr *)(hwmgr->smu_backend);
2679 : uint32_t mm_boot_level_offset, mm_boot_level_value;
2680 0 : struct phm_ppt_v1_information *table_info =
2681 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2682 :
2683 0 : smu_data->smc_state_table.UvdBootLevel = 0;
2684 0 : if (table_info->mm_dep_table->count > 0)
2685 0 : smu_data->smc_state_table.UvdBootLevel =
2686 0 : (uint8_t) (table_info->mm_dep_table->count - 1);
2687 0 : mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2688 : offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2689 0 : mm_boot_level_offset /= 4;
2690 0 : mm_boot_level_offset *= 4;
2691 0 : mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2692 : CGS_IND_REG__SMC, mm_boot_level_offset);
2693 0 : mm_boot_level_value &= 0x00FFFFFF;
2694 0 : mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2695 0 : cgs_write_ind_register(hwmgr->device,
2696 : CGS_IND_REG__SMC,
2697 : mm_boot_level_offset, mm_boot_level_value);
2698 :
2699 0 : if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2700 0 : PHM_PlatformCaps_UVDDPM) ||
2701 0 : phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2702 : PHM_PlatformCaps_StablePState))
2703 0 : smum_send_msg_to_smc_with_parameter(hwmgr,
2704 : PPSMC_MSG_UVDDPM_SetEnabledMask,
2705 0 : (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2706 : NULL);
2707 0 : return 0;
2708 : }
2709 :
2710 0 : static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2711 : {
2712 0 : struct tonga_smumgr *smu_data =
2713 : (struct tonga_smumgr *)(hwmgr->smu_backend);
2714 : uint32_t mm_boot_level_offset, mm_boot_level_value;
2715 0 : struct phm_ppt_v1_information *table_info =
2716 : (struct phm_ppt_v1_information *)(hwmgr->pptable);
2717 :
2718 :
2719 0 : smu_data->smc_state_table.VceBootLevel =
2720 0 : (uint8_t) (table_info->mm_dep_table->count - 1);
2721 :
2722 0 : mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2723 : offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2724 0 : mm_boot_level_offset /= 4;
2725 0 : mm_boot_level_offset *= 4;
2726 0 : mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2727 : CGS_IND_REG__SMC, mm_boot_level_offset);
2728 0 : mm_boot_level_value &= 0xFF00FFFF;
2729 0 : mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2730 0 : cgs_write_ind_register(hwmgr->device,
2731 : CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2732 :
2733 0 : if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2734 : PHM_PlatformCaps_StablePState))
2735 0 : smum_send_msg_to_smc_with_parameter(hwmgr,
2736 : PPSMC_MSG_VCEDPM_SetEnabledMask,
2737 0 : (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2738 : NULL);
2739 0 : return 0;
2740 : }
2741 :
2742 0 : static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2743 : {
2744 0 : switch (type) {
2745 : case SMU_UVD_TABLE:
2746 0 : tonga_update_uvd_smc_table(hwmgr);
2747 0 : break;
2748 : case SMU_VCE_TABLE:
2749 0 : tonga_update_vce_smc_table(hwmgr);
2750 0 : break;
2751 : default:
2752 : break;
2753 : }
2754 0 : return 0;
2755 : }
2756 :
2757 0 : static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
2758 : {
2759 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2760 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2761 :
2762 : uint32_t tmp;
2763 : int result;
2764 0 : bool error = false;
2765 :
2766 0 : result = smu7_read_smc_sram_dword(hwmgr,
2767 : SMU72_FIRMWARE_HEADER_LOCATION +
2768 : offsetof(SMU72_Firmware_Header, DpmTable),
2769 : &tmp, SMC_RAM_END);
2770 :
2771 0 : if (!result)
2772 0 : smu_data->smu7_data.dpm_table_start = tmp;
2773 :
2774 0 : error |= (result != 0);
2775 :
2776 0 : result = smu7_read_smc_sram_dword(hwmgr,
2777 : SMU72_FIRMWARE_HEADER_LOCATION +
2778 : offsetof(SMU72_Firmware_Header, SoftRegisters),
2779 : &tmp, SMC_RAM_END);
2780 :
2781 0 : if (!result) {
2782 0 : data->soft_regs_start = tmp;
2783 0 : smu_data->smu7_data.soft_regs_start = tmp;
2784 : }
2785 :
2786 0 : error |= (result != 0);
2787 :
2788 :
2789 0 : result = smu7_read_smc_sram_dword(hwmgr,
2790 : SMU72_FIRMWARE_HEADER_LOCATION +
2791 : offsetof(SMU72_Firmware_Header, mcRegisterTable),
2792 : &tmp, SMC_RAM_END);
2793 :
2794 0 : if (!result)
2795 0 : smu_data->smu7_data.mc_reg_table_start = tmp;
2796 :
2797 0 : result = smu7_read_smc_sram_dword(hwmgr,
2798 : SMU72_FIRMWARE_HEADER_LOCATION +
2799 : offsetof(SMU72_Firmware_Header, FanTable),
2800 : &tmp, SMC_RAM_END);
2801 :
2802 0 : if (!result)
2803 0 : smu_data->smu7_data.fan_table_start = tmp;
2804 :
2805 0 : error |= (result != 0);
2806 :
2807 0 : result = smu7_read_smc_sram_dword(hwmgr,
2808 : SMU72_FIRMWARE_HEADER_LOCATION +
2809 : offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
2810 : &tmp, SMC_RAM_END);
2811 :
2812 0 : if (!result)
2813 0 : smu_data->smu7_data.arb_table_start = tmp;
2814 :
2815 0 : error |= (result != 0);
2816 :
2817 0 : result = smu7_read_smc_sram_dword(hwmgr,
2818 : SMU72_FIRMWARE_HEADER_LOCATION +
2819 : offsetof(SMU72_Firmware_Header, Version),
2820 : &tmp, SMC_RAM_END);
2821 :
2822 0 : if (!result)
2823 0 : hwmgr->microcode_version_info.SMC = tmp;
2824 :
2825 0 : error |= (result != 0);
2826 :
2827 0 : return error ? 1 : 0;
2828 : }
2829 :
2830 : /*---------------------------MC----------------------------*/
2831 :
2832 : static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2833 : {
2834 0 : return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2835 : }
2836 :
2837 0 : static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2838 : {
2839 0 : bool result = true;
2840 :
2841 0 : switch (in_reg) {
2842 : case mmMC_SEQ_RAS_TIMING:
2843 0 : *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2844 0 : break;
2845 :
2846 : case mmMC_SEQ_DLL_STBY:
2847 0 : *out_reg = mmMC_SEQ_DLL_STBY_LP;
2848 0 : break;
2849 :
2850 : case mmMC_SEQ_G5PDX_CMD0:
2851 0 : *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2852 0 : break;
2853 :
2854 : case mmMC_SEQ_G5PDX_CMD1:
2855 0 : *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2856 0 : break;
2857 :
2858 : case mmMC_SEQ_G5PDX_CTRL:
2859 0 : *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2860 0 : break;
2861 :
2862 : case mmMC_SEQ_CAS_TIMING:
2863 0 : *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2864 0 : break;
2865 :
2866 : case mmMC_SEQ_MISC_TIMING:
2867 0 : *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2868 0 : break;
2869 :
2870 : case mmMC_SEQ_MISC_TIMING2:
2871 0 : *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2872 0 : break;
2873 :
2874 : case mmMC_SEQ_PMG_DVS_CMD:
2875 0 : *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2876 0 : break;
2877 :
2878 : case mmMC_SEQ_PMG_DVS_CTL:
2879 0 : *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2880 0 : break;
2881 :
2882 : case mmMC_SEQ_RD_CTL_D0:
2883 0 : *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2884 0 : break;
2885 :
2886 : case mmMC_SEQ_RD_CTL_D1:
2887 0 : *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2888 0 : break;
2889 :
2890 : case mmMC_SEQ_WR_CTL_D0:
2891 0 : *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2892 0 : break;
2893 :
2894 : case mmMC_SEQ_WR_CTL_D1:
2895 0 : *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2896 0 : break;
2897 :
2898 : case mmMC_PMG_CMD_EMRS:
2899 0 : *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2900 0 : break;
2901 :
2902 : case mmMC_PMG_CMD_MRS:
2903 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2904 0 : break;
2905 :
2906 : case mmMC_PMG_CMD_MRS1:
2907 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2908 0 : break;
2909 :
2910 : case mmMC_SEQ_PMG_TIMING:
2911 0 : *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2912 0 : break;
2913 :
2914 : case mmMC_PMG_CMD_MRS2:
2915 0 : *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2916 0 : break;
2917 :
2918 : case mmMC_SEQ_WR_CTL_2:
2919 0 : *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2920 0 : break;
2921 :
2922 : default:
2923 : result = false;
2924 : break;
2925 : }
2926 :
2927 0 : return result;
2928 : }
2929 :
2930 0 : static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
2931 : {
2932 : uint32_t i;
2933 : uint16_t address;
2934 :
2935 0 : for (i = 0; i < table->last; i++) {
2936 0 : table->mc_reg_address[i].s0 =
2937 0 : tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
2938 : &address) ?
2939 : address :
2940 : table->mc_reg_address[i].s1;
2941 : }
2942 0 : return 0;
2943 : }
2944 :
2945 0 : static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2946 : struct tonga_mc_reg_table *ni_table)
2947 : {
2948 : uint8_t i, j;
2949 :
2950 0 : PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2951 : "Invalid VramInfo table.", return -EINVAL);
2952 0 : PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2953 : "Invalid VramInfo table.", return -EINVAL);
2954 :
2955 0 : for (i = 0; i < table->last; i++)
2956 0 : ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2957 :
2958 0 : ni_table->last = table->last;
2959 :
2960 0 : for (i = 0; i < table->num_entries; i++) {
2961 0 : ni_table->mc_reg_table_entry[i].mclk_max =
2962 0 : table->mc_reg_table_entry[i].mclk_max;
2963 0 : for (j = 0; j < table->last; j++) {
2964 0 : ni_table->mc_reg_table_entry[i].mc_data[j] =
2965 0 : table->mc_reg_table_entry[i].mc_data[j];
2966 : }
2967 : }
2968 :
2969 0 : ni_table->num_entries = table->num_entries;
2970 :
2971 0 : return 0;
2972 : }
2973 :
2974 0 : static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2975 : struct tonga_mc_reg_table *table)
2976 : {
2977 : uint8_t i, j, k;
2978 : uint32_t temp_reg;
2979 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2980 :
2981 0 : for (i = 0, j = table->last; i < table->last; i++) {
2982 0 : PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2983 : "Invalid VramInfo table.", return -EINVAL);
2984 :
2985 0 : switch (table->mc_reg_address[i].s1) {
2986 :
2987 : case mmMC_SEQ_MISC1:
2988 0 : temp_reg = cgs_read_register(hwmgr->device,
2989 : mmMC_PMG_CMD_EMRS);
2990 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2991 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2992 0 : for (k = 0; k < table->num_entries; k++) {
2993 0 : table->mc_reg_table_entry[k].mc_data[j] =
2994 0 : ((temp_reg & 0xffff0000)) |
2995 0 : ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2996 : }
2997 0 : j++;
2998 :
2999 0 : PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3000 : "Invalid VramInfo table.", return -EINVAL);
3001 0 : temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3002 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3003 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3004 0 : for (k = 0; k < table->num_entries; k++) {
3005 0 : table->mc_reg_table_entry[k].mc_data[j] =
3006 0 : (temp_reg & 0xffff0000) |
3007 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3008 :
3009 0 : if (!data->is_memory_gddr5)
3010 0 : table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3011 : }
3012 0 : j++;
3013 :
3014 0 : if (!data->is_memory_gddr5) {
3015 0 : PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3016 : "Invalid VramInfo table.", return -EINVAL);
3017 0 : table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3018 0 : table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3019 0 : for (k = 0; k < table->num_entries; k++)
3020 0 : table->mc_reg_table_entry[k].mc_data[j] =
3021 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3022 0 : j++;
3023 : }
3024 :
3025 : break;
3026 :
3027 : case mmMC_SEQ_RESERVE_M:
3028 0 : temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3029 0 : table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3030 0 : table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3031 0 : for (k = 0; k < table->num_entries; k++) {
3032 0 : table->mc_reg_table_entry[k].mc_data[j] =
3033 0 : (temp_reg & 0xffff0000) |
3034 0 : (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3035 : }
3036 0 : j++;
3037 : break;
3038 :
3039 : default:
3040 : break;
3041 : }
3042 :
3043 : }
3044 :
3045 0 : table->last = j;
3046 :
3047 : return 0;
3048 : }
3049 :
3050 : static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
3051 : {
3052 : uint8_t i, j;
3053 :
3054 0 : for (i = 0; i < table->last; i++) {
3055 0 : for (j = 1; j < table->num_entries; j++) {
3056 0 : if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3057 0 : table->mc_reg_table_entry[j].mc_data[i]) {
3058 0 : table->validflag |= (1<<i);
3059 : break;
3060 : }
3061 : }
3062 : }
3063 :
3064 : return 0;
3065 : }
3066 :
3067 0 : static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3068 : {
3069 : int result;
3070 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
3071 : pp_atomctrl_mc_reg_table *table;
3072 0 : struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
3073 0 : uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3074 :
3075 0 : table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3076 :
3077 0 : if (table == NULL)
3078 : return -ENOMEM;
3079 :
3080 : /* Program additional LP registers that are no longer programmed by VBIOS */
3081 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
3082 : cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
3083 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
3084 : cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
3085 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
3086 : cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
3087 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
3088 : cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
3089 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
3090 : cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
3091 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
3092 : cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
3093 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
3094 : cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
3095 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
3096 : cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
3097 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
3098 : cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
3099 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
3100 : cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
3101 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
3102 : cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
3103 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
3104 : cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
3105 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
3106 : cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
3107 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
3108 : cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
3109 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
3110 : cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
3111 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
3112 : cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
3113 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
3114 : cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
3115 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
3116 : cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
3117 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
3118 : cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
3119 0 : cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
3120 : cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
3121 :
3122 0 : result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
3123 :
3124 0 : if (!result)
3125 0 : result = tonga_copy_vbios_smc_reg_table(table, ni_table);
3126 :
3127 0 : if (!result) {
3128 0 : tonga_set_s0_mc_reg_index(ni_table);
3129 0 : result = tonga_set_mc_special_registers(hwmgr, ni_table);
3130 : }
3131 :
3132 0 : if (!result)
3133 : tonga_set_valid_flag(ni_table);
3134 :
3135 0 : kfree(table);
3136 :
3137 0 : return result;
3138 : }
3139 :
3140 0 : static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
3141 : {
3142 0 : return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
3143 : CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
3144 0 : ? true : false;
3145 : }
3146 :
3147 0 : static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr,
3148 : void *profile_setting)
3149 : {
3150 0 : struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3151 0 : struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
3152 : (hwmgr->smu_backend);
3153 : struct profile_mode_setting *setting;
3154 0 : struct SMU72_Discrete_GraphicsLevel *levels =
3155 : smu_data->smc_state_table.GraphicsLevel;
3156 0 : uint32_t array = smu_data->smu7_data.dpm_table_start +
3157 : offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
3158 :
3159 0 : uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
3160 : offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
3161 0 : struct SMU72_Discrete_MemoryLevel *mclk_levels =
3162 : smu_data->smc_state_table.MemoryLevel;
3163 : uint32_t i;
3164 : uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
3165 :
3166 0 : if (profile_setting == NULL)
3167 : return -EINVAL;
3168 :
3169 0 : setting = (struct profile_mode_setting *)profile_setting;
3170 :
3171 0 : if (setting->bupdate_sclk) {
3172 0 : if (!data->sclk_dpm_key_disabled)
3173 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
3174 0 : for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
3175 0 : if (levels[i].ActivityLevel !=
3176 0 : cpu_to_be16(setting->sclk_activity)) {
3177 0 : levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
3178 :
3179 0 : clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3180 : + offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel);
3181 0 : offset = clk_activity_offset & ~0x3;
3182 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3183 0 : tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
3184 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3185 :
3186 : }
3187 0 : if (levels[i].UpHyst != setting->sclk_up_hyst ||
3188 0 : levels[i].DownHyst != setting->sclk_down_hyst) {
3189 0 : levels[i].UpHyst = setting->sclk_up_hyst;
3190 0 : levels[i].DownHyst = setting->sclk_down_hyst;
3191 0 : up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3192 : + offsetof(SMU72_Discrete_GraphicsLevel, UpHyst);
3193 0 : down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3194 : + offsetof(SMU72_Discrete_GraphicsLevel, DownHyst);
3195 0 : offset = up_hyst_offset & ~0x3;
3196 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3197 0 : tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
3198 0 : tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
3199 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3200 : }
3201 : }
3202 0 : if (!data->sclk_dpm_key_disabled)
3203 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
3204 : }
3205 :
3206 0 : if (setting->bupdate_mclk) {
3207 0 : if (!data->mclk_dpm_key_disabled)
3208 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
3209 0 : for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
3210 0 : if (mclk_levels[i].ActivityLevel !=
3211 0 : cpu_to_be16(setting->mclk_activity)) {
3212 0 : mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
3213 :
3214 0 : clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3215 : + offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel);
3216 0 : offset = clk_activity_offset & ~0x3;
3217 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3218 0 : tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
3219 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3220 :
3221 : }
3222 0 : if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
3223 0 : mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
3224 0 : mclk_levels[i].UpHyst = setting->mclk_up_hyst;
3225 0 : mclk_levels[i].DownHyst = setting->mclk_down_hyst;
3226 0 : up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3227 : + offsetof(SMU72_Discrete_MemoryLevel, UpHyst);
3228 0 : down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3229 : + offsetof(SMU72_Discrete_MemoryLevel, DownHyst);
3230 0 : offset = up_hyst_offset & ~0x3;
3231 0 : tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3232 0 : tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
3233 0 : tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
3234 0 : cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3235 : }
3236 : }
3237 0 : if (!data->mclk_dpm_key_disabled)
3238 0 : smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
3239 : }
3240 : return 0;
3241 : }
3242 :
3243 : const struct pp_smumgr_func tonga_smu_funcs = {
3244 : .name = "tonga_smu",
3245 : .smu_init = &tonga_smu_init,
3246 : .smu_fini = &smu7_smu_fini,
3247 : .start_smu = &tonga_start_smu,
3248 : .check_fw_load_finish = &smu7_check_fw_load_finish,
3249 : .request_smu_load_fw = &smu7_request_smu_load_fw,
3250 : .request_smu_load_specific_fw = NULL,
3251 : .send_msg_to_smc = &smu7_send_msg_to_smc,
3252 : .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
3253 : .get_argument = smu7_get_argument,
3254 : .download_pptable_settings = NULL,
3255 : .upload_pptable_settings = NULL,
3256 : .update_smc_table = tonga_update_smc_table,
3257 : .get_offsetof = tonga_get_offsetof,
3258 : .process_firmware_header = tonga_process_firmware_header,
3259 : .init_smc_table = tonga_init_smc_table,
3260 : .update_sclk_threshold = tonga_update_sclk_threshold,
3261 : .thermal_setup_fan_table = tonga_thermal_setup_fan_table,
3262 : .populate_all_graphic_levels = tonga_populate_all_graphic_levels,
3263 : .populate_all_memory_levels = tonga_populate_all_memory_levels,
3264 : .get_mac_definition = tonga_get_mac_definition,
3265 : .initialize_mc_reg_table = tonga_initialize_mc_reg_table,
3266 : .is_dpm_running = tonga_is_dpm_running,
3267 : .update_dpm_settings = tonga_update_dpm_settings,
3268 : };
|