Line data Source code
1 : /*
2 : * Copyright © 2009 Keith Packard
3 : *
4 : * Permission to use, copy, modify, distribute, and sell this software and its
5 : * documentation for any purpose is hereby granted without fee, provided that
6 : * the above copyright notice appear in all copies and that both that copyright
7 : * notice and this permission notice appear in supporting documentation, and
8 : * that the name of the copyright holders not be used in advertising or
9 : * publicity pertaining to distribution of the software without specific,
10 : * written prior permission. The copyright holders make no representations
11 : * about the suitability of this software for any purpose. It is provided "as
12 : * is" without express or implied warranty.
13 : *
14 : * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 : * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 : * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 : * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 : * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 : * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 : * OF THIS SOFTWARE.
21 : */
22 :
23 : #include <linux/delay.h>
24 : #include <linux/errno.h>
25 : #include <linux/i2c.h>
26 : #include <linux/init.h>
27 : #include <linux/kernel.h>
28 : #include <linux/module.h>
29 : #include <linux/sched.h>
30 : #include <linux/seq_file.h>
31 : #include <linux/string_helpers.h>
32 :
33 : #include <drm/display/drm_dp_helper.h>
34 : #include <drm/display/drm_dp_mst_helper.h>
35 : #include <drm/drm_print.h>
36 : #include <drm/drm_vblank.h>
37 : #include <drm/drm_panel.h>
38 :
39 : #include "drm_dp_helper_internal.h"
40 :
41 : struct dp_aux_backlight {
42 : struct backlight_device *base;
43 : struct drm_dp_aux *aux;
44 : struct drm_edp_backlight_info info;
45 : bool enabled;
46 : };
47 :
48 : /**
49 : * DOC: dp helpers
50 : *
51 : * These functions contain some common logic and helpers at various abstraction
52 : * levels to deal with Display Port sink devices and related things like DP aux
53 : * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
54 : * blocks, ...
55 : */
56 :
57 : /* Helpers for DP link training */
58 : static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
59 : {
60 0 : return link_status[r - DP_LANE0_1_STATUS];
61 : }
62 :
63 : static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
64 : int lane)
65 : {
66 0 : int i = DP_LANE0_1_STATUS + (lane >> 1);
67 0 : int s = (lane & 1) * 4;
68 0 : u8 l = dp_link_status(link_status, i);
69 :
70 0 : return (l >> s) & 0xf;
71 : }
72 :
73 0 : bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
74 : int lane_count)
75 : {
76 : u8 lane_align;
77 : u8 lane_status;
78 : int lane;
79 :
80 0 : lane_align = dp_link_status(link_status,
81 : DP_LANE_ALIGN_STATUS_UPDATED);
82 0 : if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
83 : return false;
84 0 : for (lane = 0; lane < lane_count; lane++) {
85 0 : lane_status = dp_get_lane_status(link_status, lane);
86 0 : if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
87 : return false;
88 : }
89 : return true;
90 : }
91 : EXPORT_SYMBOL(drm_dp_channel_eq_ok);
92 :
93 0 : bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
94 : int lane_count)
95 : {
96 : int lane;
97 : u8 lane_status;
98 :
99 0 : for (lane = 0; lane < lane_count; lane++) {
100 0 : lane_status = dp_get_lane_status(link_status, lane);
101 0 : if ((lane_status & DP_LANE_CR_DONE) == 0)
102 : return false;
103 : }
104 : return true;
105 : }
106 : EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
107 :
108 0 : u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
109 : int lane)
110 : {
111 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
112 0 : int s = ((lane & 1) ?
113 0 : DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
114 : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
115 0 : u8 l = dp_link_status(link_status, i);
116 :
117 0 : return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
118 : }
119 : EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
120 :
121 0 : u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
122 : int lane)
123 : {
124 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
125 0 : int s = ((lane & 1) ?
126 0 : DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
127 : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
128 0 : u8 l = dp_link_status(link_status, i);
129 :
130 0 : return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
131 : }
132 : EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
133 :
134 : /* DP 2.0 128b/132b */
135 0 : u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
136 : int lane)
137 : {
138 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
139 0 : int s = ((lane & 1) ?
140 0 : DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
141 : DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
142 0 : u8 l = dp_link_status(link_status, i);
143 :
144 0 : return (l >> s) & 0xf;
145 : }
146 : EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
147 :
148 : /* DP 2.0 errata for 128b/132b */
149 0 : bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
150 : int lane_count)
151 : {
152 : u8 lane_align, lane_status;
153 : int lane;
154 :
155 0 : lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
156 0 : if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
157 : return false;
158 :
159 0 : for (lane = 0; lane < lane_count; lane++) {
160 0 : lane_status = dp_get_lane_status(link_status, lane);
161 0 : if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
162 : return false;
163 : }
164 : return true;
165 : }
166 : EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
167 :
168 : /* DP 2.0 errata for 128b/132b */
169 0 : bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
170 : int lane_count)
171 : {
172 : u8 lane_status;
173 : int lane;
174 :
175 0 : for (lane = 0; lane < lane_count; lane++) {
176 0 : lane_status = dp_get_lane_status(link_status, lane);
177 0 : if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
178 : return false;
179 : }
180 : return true;
181 : }
182 : EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
183 :
184 : /* DP 2.0 errata for 128b/132b */
185 0 : bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
186 : {
187 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
188 :
189 0 : return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
190 : }
191 : EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
192 :
193 : /* DP 2.0 errata for 128b/132b */
194 0 : bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
195 : {
196 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
197 :
198 0 : return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
199 : }
200 : EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
201 :
202 : /* DP 2.0 errata for 128b/132b */
203 0 : bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
204 : {
205 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
206 :
207 0 : return status & DP_128B132B_LT_FAILED;
208 : }
209 : EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
210 :
211 0 : static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
212 : {
213 0 : if (rd_interval > 4)
214 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
215 : aux->name, rd_interval);
216 :
217 0 : if (rd_interval == 0)
218 : return 100;
219 :
220 0 : return rd_interval * 4 * USEC_PER_MSEC;
221 : }
222 :
223 0 : static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
224 : {
225 0 : if (rd_interval > 4)
226 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
227 : aux->name, rd_interval);
228 :
229 0 : if (rd_interval == 0)
230 : return 400;
231 :
232 0 : return rd_interval * 4 * USEC_PER_MSEC;
233 : }
234 :
235 0 : static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
236 : {
237 0 : switch (rd_interval) {
238 : default:
239 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
240 : aux->name, rd_interval);
241 : fallthrough;
242 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
243 : return 400;
244 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
245 : return 4000;
246 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
247 0 : return 8000;
248 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
249 0 : return 12000;
250 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
251 0 : return 16000;
252 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
253 0 : return 32000;
254 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
255 0 : return 64000;
256 : }
257 : }
258 :
259 : /*
260 : * The link training delays are different for:
261 : *
262 : * - Clock recovery vs. channel equalization
263 : * - DPRX vs. LTTPR
264 : * - 128b/132b vs. 8b/10b
265 : * - DPCD rev 1.3 vs. later
266 : *
267 : * Get the correct delay in us, reading DPCD if necessary.
268 : */
269 0 : static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
270 : enum drm_dp_phy dp_phy, bool uhbr, bool cr)
271 : {
272 : int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
273 : unsigned int offset;
274 : u8 rd_interval, mask;
275 :
276 0 : if (dp_phy == DP_PHY_DPRX) {
277 0 : if (uhbr) {
278 0 : if (cr)
279 : return 100;
280 :
281 : offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
282 : mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
283 : parse = __128b132b_channel_eq_delay_us;
284 : } else {
285 0 : if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
286 : return 100;
287 :
288 0 : offset = DP_TRAINING_AUX_RD_INTERVAL;
289 0 : mask = DP_TRAINING_AUX_RD_MASK;
290 0 : if (cr)
291 : parse = __8b10b_clock_recovery_delay_us;
292 : else
293 0 : parse = __8b10b_channel_eq_delay_us;
294 : }
295 : } else {
296 0 : if (uhbr) {
297 0 : offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
298 0 : mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
299 0 : parse = __128b132b_channel_eq_delay_us;
300 : } else {
301 0 : if (cr)
302 : return 100;
303 :
304 0 : offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
305 0 : mask = DP_TRAINING_AUX_RD_MASK;
306 0 : parse = __8b10b_channel_eq_delay_us;
307 : }
308 : }
309 :
310 0 : if (offset < DP_RECEIVER_CAP_SIZE) {
311 0 : rd_interval = dpcd[offset];
312 : } else {
313 0 : if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
314 0 : drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
315 : aux->name);
316 : /* arbitrary default delay */
317 0 : return 400;
318 : }
319 : }
320 :
321 0 : return parse(aux, rd_interval & mask);
322 : }
323 :
324 0 : int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
325 : enum drm_dp_phy dp_phy, bool uhbr)
326 : {
327 0 : return __read_delay(aux, dpcd, dp_phy, uhbr, true);
328 : }
329 : EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
330 :
331 0 : int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
332 : enum drm_dp_phy dp_phy, bool uhbr)
333 : {
334 0 : return __read_delay(aux, dpcd, dp_phy, uhbr, false);
335 : }
336 : EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
337 :
338 : /* Per DP 2.0 Errata */
339 0 : int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
340 : {
341 : int unit;
342 : u8 val;
343 :
344 0 : if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
345 0 : drm_err(aux->drm_dev, "%s: failed rd interval read\n",
346 : aux->name);
347 : /* default to max */
348 0 : val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
349 : }
350 :
351 0 : unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
352 0 : val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
353 :
354 0 : return (val + 1) * unit * 1000;
355 : }
356 : EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
357 :
358 0 : void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
359 : const u8 dpcd[DP_RECEIVER_CAP_SIZE])
360 : {
361 0 : u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
362 : DP_TRAINING_AUX_RD_MASK;
363 : int delay_us;
364 :
365 0 : if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
366 : delay_us = 100;
367 : else
368 0 : delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
369 :
370 0 : usleep_range(delay_us, delay_us * 2);
371 0 : }
372 : EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
373 :
374 0 : static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
375 : u8 rd_interval)
376 : {
377 0 : int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
378 :
379 0 : usleep_range(delay_us, delay_us * 2);
380 0 : }
381 :
382 0 : void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
383 : const u8 dpcd[DP_RECEIVER_CAP_SIZE])
384 : {
385 0 : __drm_dp_link_train_channel_eq_delay(aux,
386 0 : dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
387 : DP_TRAINING_AUX_RD_MASK);
388 0 : }
389 : EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
390 :
391 0 : void drm_dp_lttpr_link_train_clock_recovery_delay(void)
392 : {
393 0 : usleep_range(100, 200);
394 0 : }
395 : EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
396 :
397 : static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
398 : {
399 0 : return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
400 : }
401 :
402 0 : void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
403 : const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
404 : {
405 0 : u8 interval = dp_lttpr_phy_cap(phy_cap,
406 : DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
407 : DP_TRAINING_AUX_RD_MASK;
408 :
409 0 : __drm_dp_link_train_channel_eq_delay(aux, interval);
410 0 : }
411 : EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
412 :
413 0 : u8 drm_dp_link_rate_to_bw_code(int link_rate)
414 : {
415 0 : switch (link_rate) {
416 : case 1000000:
417 : return DP_LINK_BW_10;
418 : case 1350000:
419 0 : return DP_LINK_BW_13_5;
420 : case 2000000:
421 0 : return DP_LINK_BW_20;
422 : default:
423 : /* Spec says link_bw = link_rate / 0.27Gbps */
424 0 : return link_rate / 27000;
425 : }
426 : }
427 : EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
428 :
429 0 : int drm_dp_bw_code_to_link_rate(u8 link_bw)
430 : {
431 0 : switch (link_bw) {
432 : case DP_LINK_BW_10:
433 : return 1000000;
434 : case DP_LINK_BW_13_5:
435 0 : return 1350000;
436 : case DP_LINK_BW_20:
437 0 : return 2000000;
438 : default:
439 : /* Spec says link_rate = link_bw * 0.27Gbps */
440 0 : return link_bw * 27000;
441 : }
442 : }
443 : EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
444 :
445 : #define AUX_RETRY_INTERVAL 500 /* us */
446 :
447 : static inline void
448 0 : drm_dp_dump_access(const struct drm_dp_aux *aux,
449 : u8 request, uint offset, void *buffer, int ret)
450 : {
451 0 : const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
452 :
453 0 : if (ret > 0)
454 0 : drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
455 : aux->name, offset, arrow, ret, min(ret, 20), buffer);
456 : else
457 0 : drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
458 : aux->name, offset, arrow, ret);
459 0 : }
460 :
461 : /**
462 : * DOC: dp helpers
463 : *
464 : * The DisplayPort AUX channel is an abstraction to allow generic, driver-
465 : * independent access to AUX functionality. Drivers can take advantage of
466 : * this by filling in the fields of the drm_dp_aux structure.
467 : *
468 : * Transactions are described using a hardware-independent drm_dp_aux_msg
469 : * structure, which is passed into a driver's .transfer() implementation.
470 : * Both native and I2C-over-AUX transactions are supported.
471 : */
472 :
473 0 : static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
474 : unsigned int offset, void *buffer, size_t size)
475 : {
476 : struct drm_dp_aux_msg msg;
477 : unsigned int retry, native_reply;
478 0 : int err = 0, ret = 0;
479 :
480 0 : memset(&msg, 0, sizeof(msg));
481 0 : msg.address = offset;
482 0 : msg.request = request;
483 0 : msg.buffer = buffer;
484 0 : msg.size = size;
485 :
486 0 : mutex_lock(&aux->hw_mutex);
487 :
488 : /*
489 : * The specification doesn't give any recommendation on how often to
490 : * retry native transactions. We used to retry 7 times like for
491 : * aux i2c transactions but real world devices this wasn't
492 : * sufficient, bump to 32 which makes Dell 4k monitors happier.
493 : */
494 0 : for (retry = 0; retry < 32; retry++) {
495 0 : if (ret != 0 && ret != -ETIMEDOUT) {
496 : usleep_range(AUX_RETRY_INTERVAL,
497 : AUX_RETRY_INTERVAL + 100);
498 : }
499 :
500 0 : ret = aux->transfer(aux, &msg);
501 0 : if (ret >= 0) {
502 0 : native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
503 0 : if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
504 0 : if (ret == size)
505 : goto unlock;
506 :
507 : ret = -EPROTO;
508 : } else
509 : ret = -EIO;
510 : }
511 :
512 : /*
513 : * We want the error we return to be the error we received on
514 : * the first transaction, since we may get a different error the
515 : * next time we retry
516 : */
517 0 : if (!err)
518 0 : err = ret;
519 : }
520 :
521 0 : drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
522 : aux->name, err);
523 0 : ret = err;
524 :
525 : unlock:
526 0 : mutex_unlock(&aux->hw_mutex);
527 0 : return ret;
528 : }
529 :
530 : /**
531 : * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
532 : * @aux: DisplayPort AUX channel (SST)
533 : * @offset: address of the register to probe
534 : *
535 : * Probe the provided DPCD address by reading 1 byte from it. The function can
536 : * be used to trigger some side-effect the read access has, like waking up the
537 : * sink, without the need for the read-out value.
538 : *
539 : * Returns 0 if the read access suceeded, or a negative error code on failure.
540 : */
541 0 : int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
542 : {
543 : u8 buffer;
544 : int ret;
545 :
546 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
547 0 : WARN_ON(ret == 0);
548 :
549 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
550 :
551 0 : return ret < 0 ? ret : 0;
552 : }
553 : EXPORT_SYMBOL(drm_dp_dpcd_probe);
554 :
555 : /**
556 : * drm_dp_dpcd_read() - read a series of bytes from the DPCD
557 : * @aux: DisplayPort AUX channel (SST or MST)
558 : * @offset: address of the (first) register to read
559 : * @buffer: buffer to store the register values
560 : * @size: number of bytes in @buffer
561 : *
562 : * Returns the number of bytes transferred on success, or a negative error
563 : * code on failure. -EIO is returned if the request was NAKed by the sink or
564 : * if the retry count was exceeded. If not all bytes were transferred, this
565 : * function returns -EPROTO. Errors from the underlying AUX channel transfer
566 : * function, with the exception of -EBUSY (which causes the transaction to
567 : * be retried), are propagated to the caller.
568 : */
569 0 : ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
570 : void *buffer, size_t size)
571 : {
572 : int ret;
573 :
574 : /*
575 : * HP ZR24w corrupts the first DPCD access after entering power save
576 : * mode. Eg. on a read, the entire buffer will be filled with the same
577 : * byte. Do a throw away read to avoid corrupting anything we care
578 : * about. Afterwards things will work correctly until the monitor
579 : * gets woken up and subsequently re-enters power save mode.
580 : *
581 : * The user pressing any button on the monitor is enough to wake it
582 : * up, so there is no particularly good place to do the workaround.
583 : * We just have to do it before any DPCD access and hope that the
584 : * monitor doesn't power down exactly after the throw away read.
585 : */
586 0 : if (!aux->is_remote) {
587 0 : ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
588 0 : if (ret < 0)
589 0 : return ret;
590 : }
591 :
592 0 : if (aux->is_remote)
593 0 : ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
594 : else
595 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
596 : buffer, size);
597 :
598 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
599 0 : return ret;
600 : }
601 : EXPORT_SYMBOL(drm_dp_dpcd_read);
602 :
603 : /**
604 : * drm_dp_dpcd_write() - write a series of bytes to the DPCD
605 : * @aux: DisplayPort AUX channel (SST or MST)
606 : * @offset: address of the (first) register to write
607 : * @buffer: buffer containing the values to write
608 : * @size: number of bytes in @buffer
609 : *
610 : * Returns the number of bytes transferred on success, or a negative error
611 : * code on failure. -EIO is returned if the request was NAKed by the sink or
612 : * if the retry count was exceeded. If not all bytes were transferred, this
613 : * function returns -EPROTO. Errors from the underlying AUX channel transfer
614 : * function, with the exception of -EBUSY (which causes the transaction to
615 : * be retried), are propagated to the caller.
616 : */
617 0 : ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
618 : void *buffer, size_t size)
619 : {
620 : int ret;
621 :
622 0 : if (aux->is_remote)
623 0 : ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
624 : else
625 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
626 : buffer, size);
627 :
628 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
629 0 : return ret;
630 : }
631 : EXPORT_SYMBOL(drm_dp_dpcd_write);
632 :
633 : /**
634 : * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
635 : * @aux: DisplayPort AUX channel
636 : * @status: buffer to store the link status in (must be at least 6 bytes)
637 : *
638 : * Returns the number of bytes transferred on success or a negative error
639 : * code on failure.
640 : */
641 0 : int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
642 : u8 status[DP_LINK_STATUS_SIZE])
643 : {
644 0 : return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
645 : DP_LINK_STATUS_SIZE);
646 : }
647 : EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
648 :
649 : /**
650 : * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
651 : * @aux: DisplayPort AUX channel
652 : * @dp_phy: the DP PHY to get the link status for
653 : * @link_status: buffer to return the status in
654 : *
655 : * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
656 : * layout of the returned @link_status matches the DPCD register layout of the
657 : * DPRX PHY link status.
658 : *
659 : * Returns 0 if the information was read successfully or a negative error code
660 : * on failure.
661 : */
662 0 : int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
663 : enum drm_dp_phy dp_phy,
664 : u8 link_status[DP_LINK_STATUS_SIZE])
665 : {
666 : int ret;
667 :
668 0 : if (dp_phy == DP_PHY_DPRX) {
669 0 : ret = drm_dp_dpcd_read(aux,
670 : DP_LANE0_1_STATUS,
671 : link_status,
672 : DP_LINK_STATUS_SIZE);
673 :
674 0 : if (ret < 0)
675 : return ret;
676 :
677 0 : WARN_ON(ret != DP_LINK_STATUS_SIZE);
678 :
679 : return 0;
680 : }
681 :
682 0 : ret = drm_dp_dpcd_read(aux,
683 : DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
684 : link_status,
685 : DP_LINK_STATUS_SIZE - 1);
686 :
687 0 : if (ret < 0)
688 : return ret;
689 :
690 0 : WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
691 :
692 : /* Convert the LTTPR to the sink PHY link status layout */
693 0 : memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
694 0 : &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
695 : DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
696 0 : link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
697 :
698 0 : return 0;
699 : }
700 : EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
701 :
702 : static bool is_edid_digital_input_dp(const struct edid *edid)
703 : {
704 0 : return edid && edid->revision >= 4 &&
705 0 : edid->input & DRM_EDID_INPUT_DIGITAL &&
706 : (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
707 : }
708 :
709 : /**
710 : * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
711 : * @dpcd: DisplayPort configuration data
712 : * @port_cap: port capabilities
713 : * @type: port type to be checked. Can be:
714 : * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
715 : * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
716 : * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
717 : *
718 : * Caveat: Only works with DPCD 1.1+ port caps.
719 : *
720 : * Returns: whether the downstream facing port matches the type.
721 : */
722 0 : bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
723 : const u8 port_cap[4], u8 type)
724 : {
725 0 : return drm_dp_is_branch(dpcd) &&
726 0 : dpcd[DP_DPCD_REV] >= 0x11 &&
727 0 : (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
728 : }
729 : EXPORT_SYMBOL(drm_dp_downstream_is_type);
730 :
731 : /**
732 : * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
733 : * @dpcd: DisplayPort configuration data
734 : * @port_cap: port capabilities
735 : * @edid: EDID
736 : *
737 : * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
738 : */
739 0 : bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
740 : const u8 port_cap[4],
741 : const struct edid *edid)
742 : {
743 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
744 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
745 : case DP_DWN_STRM_PORT_TYPE_TMDS:
746 : return true;
747 : default:
748 0 : return false;
749 : }
750 : }
751 :
752 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
753 : case DP_DS_PORT_TYPE_DP_DUALMODE:
754 0 : if (is_edid_digital_input_dp(edid))
755 : return false;
756 : fallthrough;
757 : case DP_DS_PORT_TYPE_DVI:
758 : case DP_DS_PORT_TYPE_HDMI:
759 : return true;
760 : default:
761 : return false;
762 : }
763 : }
764 : EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
765 :
766 : /**
767 : * drm_dp_send_real_edid_checksum() - send back real edid checksum value
768 : * @aux: DisplayPort AUX channel
769 : * @real_edid_checksum: real edid checksum for the last block
770 : *
771 : * Returns:
772 : * True on success
773 : */
774 0 : bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
775 : u8 real_edid_checksum)
776 : {
777 0 : u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
778 :
779 0 : if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
780 : &auto_test_req, 1) < 1) {
781 0 : drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
782 : aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
783 0 : return false;
784 : }
785 0 : auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
786 :
787 0 : if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
788 0 : drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
789 : aux->name, DP_TEST_REQUEST);
790 0 : return false;
791 : }
792 0 : link_edid_read &= DP_TEST_LINK_EDID_READ;
793 :
794 0 : if (!auto_test_req || !link_edid_read) {
795 0 : drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
796 : aux->name);
797 0 : return false;
798 : }
799 :
800 0 : if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
801 : &auto_test_req, 1) < 1) {
802 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
803 : aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
804 0 : return false;
805 : }
806 :
807 : /* send back checksum for the last edid extension block data */
808 0 : if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
809 : &real_edid_checksum, 1) < 1) {
810 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
811 : aux->name, DP_TEST_EDID_CHECKSUM);
812 0 : return false;
813 : }
814 :
815 0 : test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
816 0 : if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
817 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
818 : aux->name, DP_TEST_RESPONSE);
819 0 : return false;
820 : }
821 :
822 : return true;
823 : }
824 : EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
825 :
826 : static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
827 : {
828 0 : u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
829 :
830 0 : if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
831 0 : port_count = 4;
832 :
833 : return port_count;
834 : }
835 :
836 0 : static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
837 : u8 dpcd[DP_RECEIVER_CAP_SIZE])
838 : {
839 : u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
840 : int ret;
841 :
842 : /*
843 : * Prior to DP1.3 the bit represented by
844 : * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
845 : * If it is set DP_DPCD_REV at 0000h could be at a value less than
846 : * the true capability of the panel. The only way to check is to
847 : * then compare 0000h and 2200h.
848 : */
849 0 : if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
850 : DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
851 : return 0;
852 :
853 0 : ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
854 : sizeof(dpcd_ext));
855 0 : if (ret < 0)
856 : return ret;
857 0 : if (ret != sizeof(dpcd_ext))
858 : return -EIO;
859 :
860 0 : if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
861 0 : drm_dbg_kms(aux->drm_dev,
862 : "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
863 : aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
864 0 : return 0;
865 : }
866 :
867 0 : if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
868 : return 0;
869 :
870 0 : drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
871 :
872 0 : memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
873 :
874 0 : return 0;
875 : }
876 :
877 : /**
878 : * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
879 : * available
880 : * @aux: DisplayPort AUX channel
881 : * @dpcd: Buffer to store the resulting DPCD in
882 : *
883 : * Attempts to read the base DPCD caps for @aux. Additionally, this function
884 : * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
885 : * present.
886 : *
887 : * Returns: %0 if the DPCD was read successfully, negative error code
888 : * otherwise.
889 : */
890 0 : int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
891 : u8 dpcd[DP_RECEIVER_CAP_SIZE])
892 : {
893 : int ret;
894 :
895 0 : ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
896 0 : if (ret < 0)
897 : return ret;
898 0 : if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
899 : return -EIO;
900 :
901 0 : ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
902 0 : if (ret < 0)
903 : return ret;
904 :
905 0 : drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
906 :
907 0 : return ret;
908 : }
909 : EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
910 :
911 : /**
912 : * drm_dp_read_downstream_info() - read DPCD downstream port info if available
913 : * @aux: DisplayPort AUX channel
914 : * @dpcd: A cached copy of the port's DPCD
915 : * @downstream_ports: buffer to store the downstream port info in
916 : *
917 : * See also:
918 : * drm_dp_downstream_max_clock()
919 : * drm_dp_downstream_max_bpc()
920 : *
921 : * Returns: 0 if either the downstream port info was read successfully or
922 : * there was no downstream info to read, or a negative error code otherwise.
923 : */
924 0 : int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
925 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
926 : u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
927 : {
928 : int ret;
929 : u8 len;
930 :
931 0 : memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
932 :
933 : /* No downstream info to read */
934 0 : if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
935 : return 0;
936 :
937 : /* Some branches advertise having 0 downstream ports, despite also advertising they have a
938 : * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
939 : * some branches do it we need to handle it regardless.
940 : */
941 0 : len = drm_dp_downstream_port_count(dpcd);
942 0 : if (!len)
943 : return 0;
944 :
945 0 : if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
946 0 : len *= 4;
947 :
948 0 : ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
949 0 : if (ret < 0)
950 : return ret;
951 0 : if (ret != len)
952 : return -EIO;
953 :
954 0 : drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
955 :
956 0 : return 0;
957 : }
958 : EXPORT_SYMBOL(drm_dp_read_downstream_info);
959 :
960 : /**
961 : * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
962 : * @dpcd: DisplayPort configuration data
963 : * @port_cap: port capabilities
964 : *
965 : * Returns: Downstream facing port max dot clock in kHz on success,
966 : * or 0 if max clock not defined
967 : */
968 0 : int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
969 : const u8 port_cap[4])
970 : {
971 0 : if (!drm_dp_is_branch(dpcd))
972 : return 0;
973 :
974 0 : if (dpcd[DP_DPCD_REV] < 0x11)
975 : return 0;
976 :
977 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
978 : case DP_DS_PORT_TYPE_VGA:
979 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
980 : return 0;
981 0 : return port_cap[1] * 8000;
982 : default:
983 : return 0;
984 : }
985 : }
986 : EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
987 :
988 : /**
989 : * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
990 : * @dpcd: DisplayPort configuration data
991 : * @port_cap: port capabilities
992 : * @edid: EDID
993 : *
994 : * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
995 : * or 0 if max TMDS clock not defined
996 : */
997 0 : int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
998 : const u8 port_cap[4],
999 : const struct edid *edid)
1000 : {
1001 0 : if (!drm_dp_is_branch(dpcd))
1002 : return 0;
1003 :
1004 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1005 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1006 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1007 : return 165000;
1008 : default:
1009 0 : return 0;
1010 : }
1011 : }
1012 :
1013 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1014 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1015 0 : if (is_edid_digital_input_dp(edid))
1016 : return 0;
1017 : /*
1018 : * It's left up to the driver to check the
1019 : * DP dual mode adapter's max TMDS clock.
1020 : *
1021 : * Unfortunately it looks like branch devices
1022 : * may not fordward that the DP dual mode i2c
1023 : * access so we just usually get i2c nak :(
1024 : */
1025 : fallthrough;
1026 : case DP_DS_PORT_TYPE_HDMI:
1027 : /*
1028 : * We should perhaps assume 165 MHz when detailed cap
1029 : * info is not available. But looks like many typical
1030 : * branch devices fall into that category and so we'd
1031 : * probably end up with users complaining that they can't
1032 : * get high resolution modes with their favorite dongle.
1033 : *
1034 : * So let's limit to 300 MHz instead since DPCD 1.4
1035 : * HDMI 2.0 DFPs are required to have the detailed cap
1036 : * info. So it's more likely we're dealing with a HDMI 1.4
1037 : * compatible* device here.
1038 : */
1039 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1040 : return 300000;
1041 0 : return port_cap[1] * 2500;
1042 : case DP_DS_PORT_TYPE_DVI:
1043 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1044 : return 165000;
1045 : /* FIXME what to do about DVI dual link? */
1046 0 : return port_cap[1] * 2500;
1047 : default:
1048 : return 0;
1049 : }
1050 : }
1051 : EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1052 :
1053 : /**
1054 : * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1055 : * @dpcd: DisplayPort configuration data
1056 : * @port_cap: port capabilities
1057 : * @edid: EDID
1058 : *
1059 : * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1060 : * or 0 if max TMDS clock not defined
1061 : */
1062 0 : int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1063 : const u8 port_cap[4],
1064 : const struct edid *edid)
1065 : {
1066 0 : if (!drm_dp_is_branch(dpcd))
1067 : return 0;
1068 :
1069 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1070 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1071 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1072 : return 25000;
1073 : default:
1074 0 : return 0;
1075 : }
1076 : }
1077 :
1078 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1079 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1080 0 : if (is_edid_digital_input_dp(edid))
1081 : return 0;
1082 : fallthrough;
1083 : case DP_DS_PORT_TYPE_DVI:
1084 : case DP_DS_PORT_TYPE_HDMI:
1085 : /*
1086 : * Unclear whether the protocol converter could
1087 : * utilize pixel replication. Assume it won't.
1088 : */
1089 : return 25000;
1090 : default:
1091 : return 0;
1092 : }
1093 : }
1094 : EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1095 :
1096 : /**
1097 : * drm_dp_downstream_max_bpc() - extract downstream facing port max
1098 : * bits per component
1099 : * @dpcd: DisplayPort configuration data
1100 : * @port_cap: downstream facing port capabilities
1101 : * @edid: EDID
1102 : *
1103 : * Returns: Max bpc on success or 0 if max bpc not defined
1104 : */
1105 0 : int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1106 : const u8 port_cap[4],
1107 : const struct edid *edid)
1108 : {
1109 0 : if (!drm_dp_is_branch(dpcd))
1110 : return 0;
1111 :
1112 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1113 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1114 : case DP_DWN_STRM_PORT_TYPE_DP:
1115 : return 0;
1116 : default:
1117 0 : return 8;
1118 : }
1119 : }
1120 :
1121 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1122 : case DP_DS_PORT_TYPE_DP:
1123 : return 0;
1124 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1125 0 : if (is_edid_digital_input_dp(edid))
1126 : return 0;
1127 : fallthrough;
1128 : case DP_DS_PORT_TYPE_HDMI:
1129 : case DP_DS_PORT_TYPE_DVI:
1130 : case DP_DS_PORT_TYPE_VGA:
1131 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1132 : return 8;
1133 :
1134 0 : switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1135 : case DP_DS_8BPC:
1136 : return 8;
1137 : case DP_DS_10BPC:
1138 : return 10;
1139 : case DP_DS_12BPC:
1140 : return 12;
1141 : case DP_DS_16BPC:
1142 : return 16;
1143 : default:
1144 : return 8;
1145 : }
1146 : break;
1147 : default:
1148 0 : return 8;
1149 : }
1150 : }
1151 : EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1152 :
1153 : /**
1154 : * drm_dp_downstream_420_passthrough() - determine downstream facing port
1155 : * YCbCr 4:2:0 pass-through capability
1156 : * @dpcd: DisplayPort configuration data
1157 : * @port_cap: downstream facing port capabilities
1158 : *
1159 : * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1160 : */
1161 0 : bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1162 : const u8 port_cap[4])
1163 : {
1164 0 : if (!drm_dp_is_branch(dpcd))
1165 : return false;
1166 :
1167 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1168 : return false;
1169 :
1170 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1171 : case DP_DS_PORT_TYPE_DP:
1172 : return true;
1173 : case DP_DS_PORT_TYPE_HDMI:
1174 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1175 : return false;
1176 :
1177 0 : return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1178 : default:
1179 0 : return false;
1180 : }
1181 : }
1182 : EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1183 :
1184 : /**
1185 : * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1186 : * YCbCr 4:4:4->4:2:0 conversion capability
1187 : * @dpcd: DisplayPort configuration data
1188 : * @port_cap: downstream facing port capabilities
1189 : *
1190 : * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1191 : */
1192 0 : bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1193 : const u8 port_cap[4])
1194 : {
1195 0 : if (!drm_dp_is_branch(dpcd))
1196 : return false;
1197 :
1198 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1199 : return false;
1200 :
1201 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1202 : case DP_DS_PORT_TYPE_HDMI:
1203 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1204 : return false;
1205 :
1206 0 : return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1207 : default:
1208 : return false;
1209 : }
1210 : }
1211 : EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1212 :
1213 : /**
1214 : * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1215 : * RGB->YCbCr conversion capability
1216 : * @dpcd: DisplayPort configuration data
1217 : * @port_cap: downstream facing port capabilities
1218 : * @color_spc: Colorspace for which conversion cap is sought
1219 : *
1220 : * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1221 : * colorspace.
1222 : */
1223 0 : bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1224 : const u8 port_cap[4],
1225 : u8 color_spc)
1226 : {
1227 0 : if (!drm_dp_is_branch(dpcd))
1228 : return false;
1229 :
1230 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1231 : return false;
1232 :
1233 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1234 : case DP_DS_PORT_TYPE_HDMI:
1235 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1236 : return false;
1237 :
1238 0 : return port_cap[3] & color_spc;
1239 : default:
1240 : return false;
1241 : }
1242 : }
1243 : EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1244 :
1245 : /**
1246 : * drm_dp_downstream_mode() - return a mode for downstream facing port
1247 : * @dev: DRM device
1248 : * @dpcd: DisplayPort configuration data
1249 : * @port_cap: port capabilities
1250 : *
1251 : * Provides a suitable mode for downstream facing ports without EDID.
1252 : *
1253 : * Returns: A new drm_display_mode on success or NULL on failure
1254 : */
1255 : struct drm_display_mode *
1256 0 : drm_dp_downstream_mode(struct drm_device *dev,
1257 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1258 : const u8 port_cap[4])
1259 :
1260 : {
1261 : u8 vic;
1262 :
1263 0 : if (!drm_dp_is_branch(dpcd))
1264 : return NULL;
1265 :
1266 0 : if (dpcd[DP_DPCD_REV] < 0x11)
1267 : return NULL;
1268 :
1269 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1270 : case DP_DS_PORT_TYPE_NON_EDID:
1271 0 : switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1272 : case DP_DS_NON_EDID_720x480i_60:
1273 : vic = 6;
1274 : break;
1275 : case DP_DS_NON_EDID_720x480i_50:
1276 0 : vic = 21;
1277 0 : break;
1278 : case DP_DS_NON_EDID_1920x1080i_60:
1279 0 : vic = 5;
1280 0 : break;
1281 : case DP_DS_NON_EDID_1920x1080i_50:
1282 0 : vic = 20;
1283 0 : break;
1284 : case DP_DS_NON_EDID_1280x720_60:
1285 0 : vic = 4;
1286 0 : break;
1287 : case DP_DS_NON_EDID_1280x720_50:
1288 0 : vic = 19;
1289 0 : break;
1290 : default:
1291 : return NULL;
1292 : }
1293 0 : return drm_display_mode_from_cea_vic(dev, vic);
1294 : default:
1295 : return NULL;
1296 : }
1297 : }
1298 : EXPORT_SYMBOL(drm_dp_downstream_mode);
1299 :
1300 : /**
1301 : * drm_dp_downstream_id() - identify branch device
1302 : * @aux: DisplayPort AUX channel
1303 : * @id: DisplayPort branch device id
1304 : *
1305 : * Returns branch device id on success or NULL on failure
1306 : */
1307 0 : int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1308 : {
1309 0 : return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1310 : }
1311 : EXPORT_SYMBOL(drm_dp_downstream_id);
1312 :
1313 : /**
1314 : * drm_dp_downstream_debug() - debug DP branch devices
1315 : * @m: pointer for debugfs file
1316 : * @dpcd: DisplayPort configuration data
1317 : * @port_cap: port capabilities
1318 : * @edid: EDID
1319 : * @aux: DisplayPort AUX channel
1320 : *
1321 : */
1322 0 : void drm_dp_downstream_debug(struct seq_file *m,
1323 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1324 : const u8 port_cap[4],
1325 : const struct edid *edid,
1326 : struct drm_dp_aux *aux)
1327 : {
1328 0 : bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1329 : DP_DETAILED_CAP_INFO_AVAILABLE;
1330 : int clk;
1331 : int bpc;
1332 : char id[7];
1333 : int len;
1334 : uint8_t rev[2];
1335 0 : int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1336 0 : bool branch_device = drm_dp_is_branch(dpcd);
1337 :
1338 0 : seq_printf(m, "\tDP branch device present: %s\n",
1339 : str_yes_no(branch_device));
1340 :
1341 0 : if (!branch_device)
1342 0 : return;
1343 :
1344 0 : switch (type) {
1345 : case DP_DS_PORT_TYPE_DP:
1346 0 : seq_puts(m, "\t\tType: DisplayPort\n");
1347 0 : break;
1348 : case DP_DS_PORT_TYPE_VGA:
1349 0 : seq_puts(m, "\t\tType: VGA\n");
1350 0 : break;
1351 : case DP_DS_PORT_TYPE_DVI:
1352 0 : seq_puts(m, "\t\tType: DVI\n");
1353 0 : break;
1354 : case DP_DS_PORT_TYPE_HDMI:
1355 0 : seq_puts(m, "\t\tType: HDMI\n");
1356 0 : break;
1357 : case DP_DS_PORT_TYPE_NON_EDID:
1358 0 : seq_puts(m, "\t\tType: others without EDID support\n");
1359 0 : break;
1360 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1361 0 : seq_puts(m, "\t\tType: DP++\n");
1362 0 : break;
1363 : case DP_DS_PORT_TYPE_WIRELESS:
1364 0 : seq_puts(m, "\t\tType: Wireless\n");
1365 0 : break;
1366 : default:
1367 0 : seq_puts(m, "\t\tType: N/A\n");
1368 : }
1369 :
1370 0 : memset(id, 0, sizeof(id));
1371 0 : drm_dp_downstream_id(aux, id);
1372 0 : seq_printf(m, "\t\tID: %s\n", id);
1373 :
1374 0 : len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1375 0 : if (len > 0)
1376 0 : seq_printf(m, "\t\tHW: %d.%d\n",
1377 0 : (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1378 :
1379 0 : len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1380 0 : if (len > 0)
1381 0 : seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1382 :
1383 0 : if (detailed_cap_info) {
1384 0 : clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1385 0 : if (clk > 0)
1386 0 : seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1387 :
1388 0 : clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1389 0 : if (clk > 0)
1390 0 : seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1391 :
1392 0 : clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1393 0 : if (clk > 0)
1394 0 : seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1395 :
1396 0 : bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1397 :
1398 0 : if (bpc > 0)
1399 0 : seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1400 : }
1401 : }
1402 : EXPORT_SYMBOL(drm_dp_downstream_debug);
1403 :
1404 : /**
1405 : * drm_dp_subconnector_type() - get DP branch device type
1406 : * @dpcd: DisplayPort configuration data
1407 : * @port_cap: port capabilities
1408 : */
1409 : enum drm_mode_subconnector
1410 0 : drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1411 : const u8 port_cap[4])
1412 : {
1413 : int type;
1414 0 : if (!drm_dp_is_branch(dpcd))
1415 : return DRM_MODE_SUBCONNECTOR_Native;
1416 : /* DP 1.0 approach */
1417 0 : if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1418 0 : type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1419 : DP_DWN_STRM_PORT_TYPE_MASK;
1420 :
1421 : switch (type) {
1422 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1423 : /* Can be HDMI or DVI-D, DVI-D is a safer option */
1424 : return DRM_MODE_SUBCONNECTOR_DVID;
1425 : case DP_DWN_STRM_PORT_TYPE_ANALOG:
1426 : /* Can be VGA or DVI-A, VGA is more popular */
1427 : return DRM_MODE_SUBCONNECTOR_VGA;
1428 : case DP_DWN_STRM_PORT_TYPE_DP:
1429 : return DRM_MODE_SUBCONNECTOR_DisplayPort;
1430 : case DP_DWN_STRM_PORT_TYPE_OTHER:
1431 : default:
1432 : return DRM_MODE_SUBCONNECTOR_Unknown;
1433 : }
1434 : }
1435 0 : type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1436 :
1437 : switch (type) {
1438 : case DP_DS_PORT_TYPE_DP:
1439 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1440 : return DRM_MODE_SUBCONNECTOR_DisplayPort;
1441 : case DP_DS_PORT_TYPE_VGA:
1442 : return DRM_MODE_SUBCONNECTOR_VGA;
1443 : case DP_DS_PORT_TYPE_DVI:
1444 : return DRM_MODE_SUBCONNECTOR_DVID;
1445 : case DP_DS_PORT_TYPE_HDMI:
1446 : return DRM_MODE_SUBCONNECTOR_HDMIA;
1447 : case DP_DS_PORT_TYPE_WIRELESS:
1448 : return DRM_MODE_SUBCONNECTOR_Wireless;
1449 : case DP_DS_PORT_TYPE_NON_EDID:
1450 : default:
1451 : return DRM_MODE_SUBCONNECTOR_Unknown;
1452 : }
1453 : }
1454 : EXPORT_SYMBOL(drm_dp_subconnector_type);
1455 :
1456 : /**
1457 : * drm_dp_set_subconnector_property - set subconnector for DP connector
1458 : * @connector: connector to set property on
1459 : * @status: connector status
1460 : * @dpcd: DisplayPort configuration data
1461 : * @port_cap: port capabilities
1462 : *
1463 : * Called by a driver on every detect event.
1464 : */
1465 0 : void drm_dp_set_subconnector_property(struct drm_connector *connector,
1466 : enum drm_connector_status status,
1467 : const u8 *dpcd,
1468 : const u8 port_cap[4])
1469 : {
1470 0 : enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1471 :
1472 0 : if (status == connector_status_connected)
1473 : subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1474 0 : drm_object_property_set_value(&connector->base,
1475 0 : connector->dev->mode_config.dp_subconnector_property,
1476 : subconnector);
1477 0 : }
1478 : EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1479 :
1480 : /**
1481 : * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1482 : * count
1483 : * @connector: The DRM connector to check
1484 : * @dpcd: A cached copy of the connector's DPCD RX capabilities
1485 : * @desc: A cached copy of the connector's DP descriptor
1486 : *
1487 : * See also: drm_dp_read_sink_count()
1488 : *
1489 : * Returns: %True if the (e)DP connector has a valid sink count that should
1490 : * be probed, %false otherwise.
1491 : */
1492 0 : bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1493 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1494 : const struct drm_dp_desc *desc)
1495 : {
1496 : /* Some eDP panels don't set a valid value for the sink count */
1497 0 : return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1498 0 : dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1499 0 : dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1500 0 : !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1501 : }
1502 : EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1503 :
1504 : /**
1505 : * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1506 : * @aux: The DP AUX channel to use
1507 : *
1508 : * See also: drm_dp_read_sink_count_cap()
1509 : *
1510 : * Returns: The current sink count reported by @aux, or a negative error code
1511 : * otherwise.
1512 : */
1513 0 : int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1514 : {
1515 : u8 count;
1516 : int ret;
1517 :
1518 0 : ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1519 0 : if (ret < 0)
1520 : return ret;
1521 0 : if (ret != 1)
1522 : return -EIO;
1523 :
1524 0 : return DP_GET_SINK_COUNT(count);
1525 : }
1526 : EXPORT_SYMBOL(drm_dp_read_sink_count);
1527 :
1528 : /*
1529 : * I2C-over-AUX implementation
1530 : */
1531 :
1532 0 : static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1533 : {
1534 0 : return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1535 : I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1536 : I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1537 : I2C_FUNC_10BIT_ADDR;
1538 : }
1539 :
1540 : static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1541 : {
1542 : /*
1543 : * In case of i2c defer or short i2c ack reply to a write,
1544 : * we need to switch to WRITE_STATUS_UPDATE to drain the
1545 : * rest of the message
1546 : */
1547 0 : if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1548 0 : msg->request &= DP_AUX_I2C_MOT;
1549 0 : msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1550 : }
1551 : }
1552 :
1553 : #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1554 : #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1555 : #define AUX_STOP_LEN 4
1556 : #define AUX_CMD_LEN 4
1557 : #define AUX_ADDRESS_LEN 20
1558 : #define AUX_REPLY_PAD_LEN 4
1559 : #define AUX_LENGTH_LEN 8
1560 :
1561 : /*
1562 : * Calculate the duration of the AUX request/reply in usec. Gives the
1563 : * "best" case estimate, ie. successful while as short as possible.
1564 : */
1565 : static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1566 : {
1567 0 : int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1568 : AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1569 :
1570 0 : if ((msg->request & DP_AUX_I2C_READ) == 0)
1571 0 : len += msg->size * 8;
1572 :
1573 : return len;
1574 : }
1575 :
1576 : static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1577 : {
1578 0 : int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1579 : AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1580 :
1581 : /*
1582 : * For read we expect what was asked. For writes there will
1583 : * be 0 or 1 data bytes. Assume 0 for the "best" case.
1584 : */
1585 0 : if (msg->request & DP_AUX_I2C_READ)
1586 0 : len += msg->size * 8;
1587 :
1588 : return len;
1589 : }
1590 :
1591 : #define I2C_START_LEN 1
1592 : #define I2C_STOP_LEN 1
1593 : #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1594 : #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1595 :
1596 : /*
1597 : * Calculate the length of the i2c transfer in usec, assuming
1598 : * the i2c bus speed is as specified. Gives the the "worst"
1599 : * case estimate, ie. successful while as long as possible.
1600 : * Doesn't account the the "MOT" bit, and instead assumes each
1601 : * message includes a START, ADDRESS and STOP. Neither does it
1602 : * account for additional random variables such as clock stretching.
1603 : */
1604 : static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1605 : int i2c_speed_khz)
1606 : {
1607 : /* AUX bitrate is 1MHz, i2c bitrate as specified */
1608 0 : return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1609 : msg->size * I2C_DATA_LEN +
1610 : I2C_STOP_LEN) * 1000, i2c_speed_khz);
1611 : }
1612 :
1613 : /*
1614 : * Determine how many retries should be attempted to successfully transfer
1615 : * the specified message, based on the estimated durations of the
1616 : * i2c and AUX transfers.
1617 : */
1618 0 : static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1619 : int i2c_speed_khz)
1620 : {
1621 0 : int aux_time_us = drm_dp_aux_req_duration(msg) +
1622 0 : drm_dp_aux_reply_duration(msg);
1623 0 : int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1624 :
1625 0 : return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1626 : }
1627 :
1628 : /*
1629 : * FIXME currently assumes 10 kHz as some real world devices seem
1630 : * to require it. We should query/set the speed via DPCD if supported.
1631 : */
1632 : static int dp_aux_i2c_speed_khz __read_mostly = 10;
1633 : module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1634 : MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1635 : "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1636 :
1637 : /*
1638 : * Transfer a single I2C-over-AUX message and handle various error conditions,
1639 : * retrying the transaction as appropriate. It is assumed that the
1640 : * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1641 : * reply field.
1642 : *
1643 : * Returns bytes transferred on success, or a negative error code on failure.
1644 : */
1645 0 : static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1646 : {
1647 : unsigned int retry, defer_i2c;
1648 : int ret;
1649 : /*
1650 : * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1651 : * is required to retry at least seven times upon receiving AUX_DEFER
1652 : * before giving up the AUX transaction.
1653 : *
1654 : * We also try to account for the i2c bus speed.
1655 : */
1656 0 : int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1657 :
1658 0 : for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1659 0 : ret = aux->transfer(aux, msg);
1660 0 : if (ret < 0) {
1661 0 : if (ret == -EBUSY)
1662 0 : continue;
1663 :
1664 : /*
1665 : * While timeouts can be errors, they're usually normal
1666 : * behavior (for instance, when a driver tries to
1667 : * communicate with a non-existent DisplayPort device).
1668 : * Avoid spamming the kernel log with timeout errors.
1669 : */
1670 0 : if (ret == -ETIMEDOUT)
1671 0 : drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1672 : aux->name);
1673 : else
1674 0 : drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1675 : aux->name, ret);
1676 : return ret;
1677 : }
1678 :
1679 :
1680 0 : switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1681 : case DP_AUX_NATIVE_REPLY_ACK:
1682 : /*
1683 : * For I2C-over-AUX transactions this isn't enough, we
1684 : * need to check for the I2C ACK reply.
1685 : */
1686 : break;
1687 :
1688 : case DP_AUX_NATIVE_REPLY_NACK:
1689 0 : drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1690 : aux->name, ret, msg->size);
1691 0 : return -EREMOTEIO;
1692 :
1693 : case DP_AUX_NATIVE_REPLY_DEFER:
1694 0 : drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1695 : /*
1696 : * We could check for I2C bit rate capabilities and if
1697 : * available adjust this interval. We could also be
1698 : * more careful with DP-to-legacy adapters where a
1699 : * long legacy cable may force very low I2C bit rates.
1700 : *
1701 : * For now just defer for long enough to hopefully be
1702 : * safe for all use-cases.
1703 : */
1704 0 : usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1705 0 : continue;
1706 :
1707 : default:
1708 0 : drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1709 : aux->name, msg->reply);
1710 0 : return -EREMOTEIO;
1711 : }
1712 :
1713 0 : switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1714 : case DP_AUX_I2C_REPLY_ACK:
1715 : /*
1716 : * Both native ACK and I2C ACK replies received. We
1717 : * can assume the transfer was successful.
1718 : */
1719 0 : if (ret != msg->size)
1720 0 : drm_dp_i2c_msg_write_status_update(msg);
1721 : return ret;
1722 :
1723 : case DP_AUX_I2C_REPLY_NACK:
1724 0 : drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1725 : aux->name, ret, msg->size);
1726 0 : aux->i2c_nack_count++;
1727 0 : return -EREMOTEIO;
1728 :
1729 : case DP_AUX_I2C_REPLY_DEFER:
1730 0 : drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1731 : /* DP Compliance Test 4.2.2.5 Requirement:
1732 : * Must have at least 7 retries for I2C defers on the
1733 : * transaction to pass this test
1734 : */
1735 0 : aux->i2c_defer_count++;
1736 0 : if (defer_i2c < 7)
1737 0 : defer_i2c++;
1738 0 : usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1739 0 : drm_dp_i2c_msg_write_status_update(msg);
1740 :
1741 0 : continue;
1742 :
1743 : default:
1744 0 : drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1745 : aux->name, msg->reply);
1746 0 : return -EREMOTEIO;
1747 : }
1748 : }
1749 :
1750 0 : drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1751 0 : return -EREMOTEIO;
1752 : }
1753 :
1754 : static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1755 : const struct i2c_msg *i2c_msg)
1756 : {
1757 0 : msg->request = (i2c_msg->flags & I2C_M_RD) ?
1758 0 : DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1759 0 : if (!(i2c_msg->flags & I2C_M_STOP))
1760 0 : msg->request |= DP_AUX_I2C_MOT;
1761 : }
1762 :
1763 : /*
1764 : * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1765 : *
1766 : * Returns an error code on failure, or a recommended transfer size on success.
1767 : */
1768 0 : static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1769 : {
1770 0 : int err, ret = orig_msg->size;
1771 0 : struct drm_dp_aux_msg msg = *orig_msg;
1772 :
1773 0 : while (msg.size > 0) {
1774 0 : err = drm_dp_i2c_do_msg(aux, &msg);
1775 0 : if (err <= 0)
1776 0 : return err == 0 ? -EPROTO : err;
1777 :
1778 0 : if (err < msg.size && err < ret) {
1779 0 : drm_dbg_kms(aux->drm_dev,
1780 : "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1781 : aux->name, msg.size, err);
1782 0 : ret = err;
1783 : }
1784 :
1785 0 : msg.size -= err;
1786 0 : msg.buffer += err;
1787 : }
1788 :
1789 : return ret;
1790 : }
1791 :
1792 : /*
1793 : * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1794 : * packets to be as large as possible. If not, the I2C transactions never
1795 : * succeed. Hence the default is maximum.
1796 : */
1797 : static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1798 : module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1799 : MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1800 : "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1801 :
1802 0 : static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1803 : int num)
1804 : {
1805 0 : struct drm_dp_aux *aux = adapter->algo_data;
1806 : unsigned int i, j;
1807 : unsigned transfer_size;
1808 : struct drm_dp_aux_msg msg;
1809 0 : int err = 0;
1810 :
1811 0 : dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1812 :
1813 0 : memset(&msg, 0, sizeof(msg));
1814 :
1815 0 : for (i = 0; i < num; i++) {
1816 0 : msg.address = msgs[i].addr;
1817 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1818 : /* Send a bare address packet to start the transaction.
1819 : * Zero sized messages specify an address only (bare
1820 : * address) transaction.
1821 : */
1822 0 : msg.buffer = NULL;
1823 0 : msg.size = 0;
1824 0 : err = drm_dp_i2c_do_msg(aux, &msg);
1825 :
1826 : /*
1827 : * Reset msg.request in case in case it got
1828 : * changed into a WRITE_STATUS_UPDATE.
1829 : */
1830 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1831 :
1832 0 : if (err < 0)
1833 : break;
1834 : /* We want each transaction to be as large as possible, but
1835 : * we'll go to smaller sizes if the hardware gives us a
1836 : * short reply.
1837 : */
1838 0 : transfer_size = dp_aux_i2c_transfer_size;
1839 0 : for (j = 0; j < msgs[i].len; j += msg.size) {
1840 0 : msg.buffer = msgs[i].buf + j;
1841 0 : msg.size = min(transfer_size, msgs[i].len - j);
1842 :
1843 0 : err = drm_dp_i2c_drain_msg(aux, &msg);
1844 :
1845 : /*
1846 : * Reset msg.request in case in case it got
1847 : * changed into a WRITE_STATUS_UPDATE.
1848 : */
1849 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1850 :
1851 0 : if (err < 0)
1852 : break;
1853 0 : transfer_size = err;
1854 : }
1855 0 : if (err < 0)
1856 : break;
1857 : }
1858 0 : if (err >= 0)
1859 0 : err = num;
1860 : /* Send a bare address packet to close out the transaction.
1861 : * Zero sized messages specify an address only (bare
1862 : * address) transaction.
1863 : */
1864 0 : msg.request &= ~DP_AUX_I2C_MOT;
1865 0 : msg.buffer = NULL;
1866 0 : msg.size = 0;
1867 0 : (void)drm_dp_i2c_do_msg(aux, &msg);
1868 :
1869 0 : return err;
1870 : }
1871 :
1872 : static const struct i2c_algorithm drm_dp_i2c_algo = {
1873 : .functionality = drm_dp_i2c_functionality,
1874 : .master_xfer = drm_dp_i2c_xfer,
1875 : };
1876 :
1877 : static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1878 : {
1879 0 : return container_of(i2c, struct drm_dp_aux, ddc);
1880 : }
1881 :
1882 0 : static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1883 : {
1884 0 : mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1885 0 : }
1886 :
1887 0 : static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1888 : {
1889 0 : return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1890 : }
1891 :
1892 0 : static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1893 : {
1894 0 : mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1895 0 : }
1896 :
1897 : static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1898 : .lock_bus = lock_bus,
1899 : .trylock_bus = trylock_bus,
1900 : .unlock_bus = unlock_bus,
1901 : };
1902 :
1903 0 : static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1904 : {
1905 : u8 buf, count;
1906 : int ret;
1907 :
1908 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1909 0 : if (ret < 0)
1910 : return ret;
1911 :
1912 0 : WARN_ON(!(buf & DP_TEST_SINK_START));
1913 :
1914 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1915 0 : if (ret < 0)
1916 : return ret;
1917 :
1918 0 : count = buf & DP_TEST_COUNT_MASK;
1919 0 : if (count == aux->crc_count)
1920 : return -EAGAIN; /* No CRC yet */
1921 :
1922 0 : aux->crc_count = count;
1923 :
1924 : /*
1925 : * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1926 : * per component (RGB or CrYCb).
1927 : */
1928 0 : ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1929 0 : if (ret < 0)
1930 : return ret;
1931 :
1932 0 : return 0;
1933 : }
1934 :
1935 0 : static void drm_dp_aux_crc_work(struct work_struct *work)
1936 : {
1937 0 : struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1938 : crc_work);
1939 : struct drm_crtc *crtc;
1940 : u8 crc_bytes[6];
1941 : uint32_t crcs[3];
1942 : int ret;
1943 :
1944 0 : if (WARN_ON(!aux->crtc))
1945 0 : return;
1946 :
1947 0 : crtc = aux->crtc;
1948 0 : while (crtc->crc.opened) {
1949 0 : drm_crtc_wait_one_vblank(crtc);
1950 0 : if (!crtc->crc.opened)
1951 : break;
1952 :
1953 0 : ret = drm_dp_aux_get_crc(aux, crc_bytes);
1954 0 : if (ret == -EAGAIN) {
1955 0 : usleep_range(1000, 2000);
1956 0 : ret = drm_dp_aux_get_crc(aux, crc_bytes);
1957 : }
1958 :
1959 0 : if (ret == -EAGAIN) {
1960 0 : drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
1961 : aux->name, ret);
1962 0 : continue;
1963 0 : } else if (ret) {
1964 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
1965 0 : continue;
1966 : }
1967 :
1968 : crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1969 : crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1970 : crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1971 : drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1972 : }
1973 : }
1974 :
1975 : /**
1976 : * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1977 : * @aux: DisplayPort AUX channel
1978 : *
1979 : * Used for remote aux channel in general. Merely initialize the crc work
1980 : * struct.
1981 : */
1982 0 : void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1983 : {
1984 0 : INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1985 0 : }
1986 : EXPORT_SYMBOL(drm_dp_remote_aux_init);
1987 :
1988 : /**
1989 : * drm_dp_aux_init() - minimally initialise an aux channel
1990 : * @aux: DisplayPort AUX channel
1991 : *
1992 : * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
1993 : * the outside world, call drm_dp_aux_init() first. For drivers which are
1994 : * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
1995 : * &drm_connector), you must still call drm_dp_aux_register() once the connector
1996 : * has been registered to allow userspace access to the auxiliary DP channel.
1997 : * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
1998 : * early as possible so that the &drm_device that corresponds to the AUX adapter
1999 : * may be mentioned in debugging output from the DRM DP helpers.
2000 : *
2001 : * For devices which use a separate platform device for their AUX adapters, this
2002 : * may be called as early as required by the driver.
2003 : *
2004 : */
2005 0 : void drm_dp_aux_init(struct drm_dp_aux *aux)
2006 : {
2007 0 : mutex_init(&aux->hw_mutex);
2008 0 : mutex_init(&aux->cec.lock);
2009 0 : INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2010 :
2011 0 : aux->ddc.algo = &drm_dp_i2c_algo;
2012 0 : aux->ddc.algo_data = aux;
2013 0 : aux->ddc.retries = 3;
2014 :
2015 0 : aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2016 0 : }
2017 : EXPORT_SYMBOL(drm_dp_aux_init);
2018 :
2019 : /**
2020 : * drm_dp_aux_register() - initialise and register aux channel
2021 : * @aux: DisplayPort AUX channel
2022 : *
2023 : * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2024 : * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2025 : * initialized. For devices which are grandparents of their AUX channels,
2026 : * &drm_dp_aux.dev will typically be the &drm_connector &device which
2027 : * corresponds to @aux. For these devices, it's advised to call
2028 : * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2029 : * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2030 : * Functions which don't follow this will likely Oops when
2031 : * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2032 : *
2033 : * For devices where the AUX channel is a device that exists independently of
2034 : * the &drm_device that uses it, such as SoCs and bridge devices, it is
2035 : * recommended to call drm_dp_aux_register() after a &drm_device has been
2036 : * assigned to &drm_dp_aux.drm_dev, and likewise to call
2037 : * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2038 : * with the AUX channel (e.g. on bridge detach).
2039 : *
2040 : * Drivers which need to use the aux channel before either of the two points
2041 : * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2042 : * channel before registration.
2043 : *
2044 : * Returns 0 on success or a negative error code on failure.
2045 : */
2046 0 : int drm_dp_aux_register(struct drm_dp_aux *aux)
2047 : {
2048 : int ret;
2049 :
2050 0 : WARN_ON_ONCE(!aux->drm_dev);
2051 :
2052 0 : if (!aux->ddc.algo)
2053 0 : drm_dp_aux_init(aux);
2054 :
2055 0 : aux->ddc.class = I2C_CLASS_DDC;
2056 0 : aux->ddc.owner = THIS_MODULE;
2057 0 : aux->ddc.dev.parent = aux->dev;
2058 :
2059 0 : strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2060 : sizeof(aux->ddc.name));
2061 :
2062 0 : ret = drm_dp_aux_register_devnode(aux);
2063 : if (ret)
2064 : return ret;
2065 :
2066 0 : ret = i2c_add_adapter(&aux->ddc);
2067 0 : if (ret) {
2068 : drm_dp_aux_unregister_devnode(aux);
2069 : return ret;
2070 : }
2071 :
2072 0 : return 0;
2073 : }
2074 : EXPORT_SYMBOL(drm_dp_aux_register);
2075 :
2076 : /**
2077 : * drm_dp_aux_unregister() - unregister an AUX adapter
2078 : * @aux: DisplayPort AUX channel
2079 : */
2080 0 : void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2081 : {
2082 0 : drm_dp_aux_unregister_devnode(aux);
2083 0 : i2c_del_adapter(&aux->ddc);
2084 0 : }
2085 : EXPORT_SYMBOL(drm_dp_aux_unregister);
2086 :
2087 : #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2088 :
2089 : /**
2090 : * drm_dp_psr_setup_time() - PSR setup in time usec
2091 : * @psr_cap: PSR capabilities from DPCD
2092 : *
2093 : * Returns:
2094 : * PSR setup time for the panel in microseconds, negative
2095 : * error code on failure.
2096 : */
2097 0 : int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2098 : {
2099 : static const u16 psr_setup_time_us[] = {
2100 : PSR_SETUP_TIME(330),
2101 : PSR_SETUP_TIME(275),
2102 : PSR_SETUP_TIME(220),
2103 : PSR_SETUP_TIME(165),
2104 : PSR_SETUP_TIME(110),
2105 : PSR_SETUP_TIME(55),
2106 : PSR_SETUP_TIME(0),
2107 : };
2108 : int i;
2109 :
2110 0 : i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2111 0 : if (i >= ARRAY_SIZE(psr_setup_time_us))
2112 : return -EINVAL;
2113 :
2114 0 : return psr_setup_time_us[i];
2115 : }
2116 : EXPORT_SYMBOL(drm_dp_psr_setup_time);
2117 :
2118 : #undef PSR_SETUP_TIME
2119 :
2120 : /**
2121 : * drm_dp_start_crc() - start capture of frame CRCs
2122 : * @aux: DisplayPort AUX channel
2123 : * @crtc: CRTC displaying the frames whose CRCs are to be captured
2124 : *
2125 : * Returns 0 on success or a negative error code on failure.
2126 : */
2127 0 : int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2128 : {
2129 : u8 buf;
2130 : int ret;
2131 :
2132 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2133 0 : if (ret < 0)
2134 : return ret;
2135 :
2136 0 : ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2137 0 : if (ret < 0)
2138 : return ret;
2139 :
2140 0 : aux->crc_count = 0;
2141 0 : aux->crtc = crtc;
2142 0 : schedule_work(&aux->crc_work);
2143 :
2144 0 : return 0;
2145 : }
2146 : EXPORT_SYMBOL(drm_dp_start_crc);
2147 :
2148 : /**
2149 : * drm_dp_stop_crc() - stop capture of frame CRCs
2150 : * @aux: DisplayPort AUX channel
2151 : *
2152 : * Returns 0 on success or a negative error code on failure.
2153 : */
2154 0 : int drm_dp_stop_crc(struct drm_dp_aux *aux)
2155 : {
2156 : u8 buf;
2157 : int ret;
2158 :
2159 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2160 0 : if (ret < 0)
2161 : return ret;
2162 :
2163 0 : ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2164 0 : if (ret < 0)
2165 : return ret;
2166 :
2167 0 : flush_work(&aux->crc_work);
2168 0 : aux->crtc = NULL;
2169 :
2170 0 : return 0;
2171 : }
2172 : EXPORT_SYMBOL(drm_dp_stop_crc);
2173 :
2174 : struct dpcd_quirk {
2175 : u8 oui[3];
2176 : u8 device_id[6];
2177 : bool is_branch;
2178 : u32 quirks;
2179 : };
2180 :
2181 : #define OUI(first, second, third) { (first), (second), (third) }
2182 : #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2183 : { (first), (second), (third), (fourth), (fifth), (sixth) }
2184 :
2185 : #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2186 :
2187 : static const struct dpcd_quirk dpcd_quirk_list[] = {
2188 : /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2189 : { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2190 : /* LG LP140WF6-SPM1 eDP panel */
2191 : { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2192 : /* Apple panels need some additional handling to support PSR */
2193 : { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2194 : /* CH7511 seems to leave SINK_COUNT zeroed */
2195 : { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2196 : /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2197 : { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2198 : /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2199 : { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2200 : };
2201 :
2202 : #undef OUI
2203 :
2204 : /*
2205 : * Get a bit mask of DPCD quirks for the sink/branch device identified by
2206 : * ident. The quirk data is shared but it's up to the drivers to act on the
2207 : * data.
2208 : *
2209 : * For now, only the OUI (first three bytes) is used, but this may be extended
2210 : * to device identification string and hardware/firmware revisions later.
2211 : */
2212 : static u32
2213 0 : drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2214 : {
2215 : const struct dpcd_quirk *quirk;
2216 0 : u32 quirks = 0;
2217 : int i;
2218 0 : u8 any_device[] = DEVICE_ID_ANY;
2219 :
2220 0 : for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2221 0 : quirk = &dpcd_quirk_list[i];
2222 :
2223 0 : if (quirk->is_branch != is_branch)
2224 0 : continue;
2225 :
2226 0 : if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2227 0 : continue;
2228 :
2229 0 : if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2230 0 : memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2231 0 : continue;
2232 :
2233 0 : quirks |= quirk->quirks;
2234 : }
2235 :
2236 0 : return quirks;
2237 : }
2238 :
2239 : #undef DEVICE_ID_ANY
2240 : #undef DEVICE_ID
2241 :
2242 : /**
2243 : * drm_dp_read_desc - read sink/branch descriptor from DPCD
2244 : * @aux: DisplayPort AUX channel
2245 : * @desc: Device descriptor to fill from DPCD
2246 : * @is_branch: true for branch devices, false for sink devices
2247 : *
2248 : * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2249 : * identification.
2250 : *
2251 : * Returns 0 on success or a negative error code on failure.
2252 : */
2253 0 : int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2254 : bool is_branch)
2255 : {
2256 0 : struct drm_dp_dpcd_ident *ident = &desc->ident;
2257 0 : unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2258 : int ret, dev_id_len;
2259 :
2260 0 : ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2261 0 : if (ret < 0)
2262 : return ret;
2263 :
2264 0 : desc->quirks = drm_dp_get_quirks(ident, is_branch);
2265 :
2266 0 : dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2267 :
2268 0 : drm_dbg_kms(aux->drm_dev,
2269 : "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2270 : aux->name, is_branch ? "branch" : "sink",
2271 : (int)sizeof(ident->oui), ident->oui, dev_id_len,
2272 : ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2273 : ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2274 :
2275 0 : return 0;
2276 : }
2277 : EXPORT_SYMBOL(drm_dp_read_desc);
2278 :
2279 : /**
2280 : * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2281 : * supported by the DSC sink.
2282 : * @dsc_dpcd: DSC capabilities from DPCD
2283 : * @is_edp: true if its eDP, false for DP
2284 : *
2285 : * Read the slice capabilities DPCD register from DSC sink to get
2286 : * the maximum slice count supported. This is used to populate
2287 : * the DSC parameters in the &struct drm_dsc_config by the driver.
2288 : * Driver creates an infoframe using these parameters to populate
2289 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2290 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2291 : *
2292 : * Returns:
2293 : * Maximum slice count supported by DSC sink or 0 its invalid
2294 : */
2295 0 : u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2296 : bool is_edp)
2297 : {
2298 0 : u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2299 :
2300 0 : if (is_edp) {
2301 : /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2302 0 : if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2303 : return 4;
2304 0 : if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2305 : return 2;
2306 0 : if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2307 : return 1;
2308 : } else {
2309 : /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2310 0 : u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2311 :
2312 0 : if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2313 : return 24;
2314 0 : if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2315 : return 20;
2316 0 : if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2317 : return 16;
2318 0 : if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2319 : return 12;
2320 0 : if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2321 : return 10;
2322 0 : if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2323 : return 8;
2324 0 : if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2325 : return 6;
2326 0 : if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2327 : return 4;
2328 0 : if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2329 : return 2;
2330 0 : if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2331 : return 1;
2332 : }
2333 :
2334 0 : return 0;
2335 : }
2336 : EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2337 :
2338 : /**
2339 : * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2340 : * @dsc_dpcd: DSC capabilities from DPCD
2341 : *
2342 : * Read the DSC DPCD register to parse the line buffer depth in bits which is
2343 : * number of bits of precision within the decoder line buffer supported by
2344 : * the DSC sink. This is used to populate the DSC parameters in the
2345 : * &struct drm_dsc_config by the driver.
2346 : * Driver creates an infoframe using these parameters to populate
2347 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2348 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2349 : *
2350 : * Returns:
2351 : * Line buffer depth supported by DSC panel or 0 its invalid
2352 : */
2353 0 : u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2354 : {
2355 0 : u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2356 :
2357 : switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2358 : case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2359 : return 9;
2360 : case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2361 : return 10;
2362 : case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2363 : return 11;
2364 : case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2365 : return 12;
2366 : case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2367 : return 13;
2368 : case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2369 : return 14;
2370 : case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2371 : return 15;
2372 : case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2373 : return 16;
2374 : case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2375 : return 8;
2376 : }
2377 :
2378 : return 0;
2379 : }
2380 : EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2381 :
2382 : /**
2383 : * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2384 : * values supported by the DSC sink.
2385 : * @dsc_dpcd: DSC capabilities from DPCD
2386 : * @dsc_bpc: An array to be filled by this helper with supported
2387 : * input bpcs.
2388 : *
2389 : * Read the DSC DPCD from the sink device to parse the supported bits per
2390 : * component values. This is used to populate the DSC parameters
2391 : * in the &struct drm_dsc_config by the driver.
2392 : * Driver creates an infoframe using these parameters to populate
2393 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2394 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2395 : *
2396 : * Returns:
2397 : * Number of input BPC values parsed from the DPCD
2398 : */
2399 0 : int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2400 : u8 dsc_bpc[3])
2401 : {
2402 0 : int num_bpc = 0;
2403 0 : u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2404 :
2405 0 : if (color_depth & DP_DSC_12_BPC)
2406 0 : dsc_bpc[num_bpc++] = 12;
2407 0 : if (color_depth & DP_DSC_10_BPC)
2408 0 : dsc_bpc[num_bpc++] = 10;
2409 0 : if (color_depth & DP_DSC_8_BPC)
2410 0 : dsc_bpc[num_bpc++] = 8;
2411 :
2412 0 : return num_bpc;
2413 : }
2414 : EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2415 :
2416 0 : static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2417 : const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2418 : u8 *buf, int buf_size)
2419 : {
2420 : /*
2421 : * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2422 : * corrupted values when reading from the 0xF0000- range with a block
2423 : * size bigger than 1.
2424 : */
2425 0 : int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2426 : int offset;
2427 : int ret;
2428 :
2429 0 : for (offset = 0; offset < buf_size; offset += block_size) {
2430 0 : ret = drm_dp_dpcd_read(aux,
2431 0 : address + offset,
2432 0 : &buf[offset], block_size);
2433 0 : if (ret < 0)
2434 : return ret;
2435 :
2436 0 : WARN_ON(ret != block_size);
2437 : }
2438 :
2439 : return 0;
2440 : }
2441 :
2442 : /**
2443 : * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2444 : * @aux: DisplayPort AUX channel
2445 : * @dpcd: DisplayPort configuration data
2446 : * @caps: buffer to return the capability info in
2447 : *
2448 : * Read capabilities common to all LTTPRs.
2449 : *
2450 : * Returns 0 on success or a negative error code on failure.
2451 : */
2452 0 : int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2453 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2454 : u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2455 : {
2456 0 : return drm_dp_read_lttpr_regs(aux, dpcd,
2457 : DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2458 : caps, DP_LTTPR_COMMON_CAP_SIZE);
2459 : }
2460 : EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2461 :
2462 : /**
2463 : * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2464 : * @aux: DisplayPort AUX channel
2465 : * @dpcd: DisplayPort configuration data
2466 : * @dp_phy: LTTPR PHY to read the capabilities for
2467 : * @caps: buffer to return the capability info in
2468 : *
2469 : * Read the capabilities for the given LTTPR PHY.
2470 : *
2471 : * Returns 0 on success or a negative error code on failure.
2472 : */
2473 0 : int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2474 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2475 : enum drm_dp_phy dp_phy,
2476 : u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2477 : {
2478 0 : return drm_dp_read_lttpr_regs(aux, dpcd,
2479 0 : DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2480 : caps, DP_LTTPR_PHY_CAP_SIZE);
2481 : }
2482 : EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2483 :
2484 : static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2485 : {
2486 0 : return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2487 : }
2488 :
2489 : /**
2490 : * drm_dp_lttpr_count - get the number of detected LTTPRs
2491 : * @caps: LTTPR common capabilities
2492 : *
2493 : * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2494 : *
2495 : * Returns:
2496 : * -ERANGE if more than supported number (8) of LTTPRs are detected
2497 : * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2498 : * otherwise the number of detected LTTPRs
2499 : */
2500 0 : int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2501 : {
2502 0 : u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2503 :
2504 0 : switch (hweight8(count)) {
2505 : case 0:
2506 : return 0;
2507 : case 1:
2508 0 : return 8 - ilog2(count);
2509 : case 8:
2510 0 : return -ERANGE;
2511 : default:
2512 0 : return -EINVAL;
2513 : }
2514 : }
2515 : EXPORT_SYMBOL(drm_dp_lttpr_count);
2516 :
2517 : /**
2518 : * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2519 : * @caps: LTTPR common capabilities
2520 : *
2521 : * Returns the maximum link rate supported by all detected LTTPRs.
2522 : */
2523 0 : int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2524 : {
2525 0 : u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2526 :
2527 0 : return drm_dp_bw_code_to_link_rate(rate);
2528 : }
2529 : EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2530 :
2531 : /**
2532 : * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2533 : * @caps: LTTPR common capabilities
2534 : *
2535 : * Returns the maximum lane count supported by all detected LTTPRs.
2536 : */
2537 0 : int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2538 : {
2539 0 : u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2540 :
2541 0 : return max_lanes & DP_MAX_LANE_COUNT_MASK;
2542 : }
2543 : EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2544 :
2545 : /**
2546 : * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2547 : * @caps: LTTPR PHY capabilities
2548 : *
2549 : * Returns true if the @caps for an LTTPR TX PHY indicate support for
2550 : * voltage swing level 3.
2551 : */
2552 : bool
2553 0 : drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2554 : {
2555 0 : u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2556 :
2557 0 : return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2558 : }
2559 : EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2560 :
2561 : /**
2562 : * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2563 : * @caps: LTTPR PHY capabilities
2564 : *
2565 : * Returns true if the @caps for an LTTPR TX PHY indicate support for
2566 : * pre-emphasis level 3.
2567 : */
2568 : bool
2569 0 : drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2570 : {
2571 0 : u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2572 :
2573 0 : return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2574 : }
2575 : EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2576 :
2577 : /**
2578 : * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2579 : * @aux: DisplayPort AUX channel
2580 : * @data: DP phy compliance test parameters.
2581 : *
2582 : * Returns 0 on success or a negative error code on failure.
2583 : */
2584 0 : int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2585 : struct drm_dp_phy_test_params *data)
2586 : {
2587 : int err;
2588 : u8 rate, lanes;
2589 :
2590 0 : err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2591 0 : if (err < 0)
2592 : return err;
2593 0 : data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2594 :
2595 0 : err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2596 0 : if (err < 0)
2597 : return err;
2598 0 : data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2599 :
2600 0 : if (lanes & DP_ENHANCED_FRAME_CAP)
2601 0 : data->enhanced_frame_cap = true;
2602 :
2603 0 : err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2604 0 : if (err < 0)
2605 : return err;
2606 :
2607 0 : switch (data->phy_pattern) {
2608 : case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2609 0 : err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2610 0 : &data->custom80, sizeof(data->custom80));
2611 0 : if (err < 0)
2612 : return err;
2613 :
2614 : break;
2615 : case DP_PHY_TEST_PATTERN_CP2520:
2616 0 : err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2617 0 : &data->hbr2_reset,
2618 : sizeof(data->hbr2_reset));
2619 0 : if (err < 0)
2620 : return err;
2621 : }
2622 :
2623 : return 0;
2624 : }
2625 : EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2626 :
2627 : /**
2628 : * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2629 : * @aux: DisplayPort AUX channel
2630 : * @data: DP phy compliance test parameters.
2631 : * @dp_rev: DP revision to use for compliance testing
2632 : *
2633 : * Returns 0 on success or a negative error code on failure.
2634 : */
2635 0 : int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2636 : struct drm_dp_phy_test_params *data, u8 dp_rev)
2637 : {
2638 : int err, i;
2639 : u8 link_config[2];
2640 : u8 test_pattern;
2641 :
2642 0 : link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
2643 0 : link_config[1] = data->num_lanes;
2644 0 : if (data->enhanced_frame_cap)
2645 0 : link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2646 0 : err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
2647 0 : if (err < 0)
2648 : return err;
2649 :
2650 0 : test_pattern = data->phy_pattern;
2651 0 : if (dp_rev < 0x12) {
2652 0 : test_pattern = (test_pattern << 2) &
2653 : DP_LINK_QUAL_PATTERN_11_MASK;
2654 0 : err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2655 : test_pattern);
2656 0 : if (err < 0)
2657 : return err;
2658 : } else {
2659 0 : for (i = 0; i < data->num_lanes; i++) {
2660 0 : err = drm_dp_dpcd_writeb(aux,
2661 0 : DP_LINK_QUAL_LANE0_SET + i,
2662 : test_pattern);
2663 0 : if (err < 0)
2664 : return err;
2665 : }
2666 : }
2667 :
2668 : return 0;
2669 : }
2670 : EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2671 :
2672 : static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2673 : {
2674 0 : if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2675 : return "Invalid";
2676 :
2677 : switch (pixelformat) {
2678 : case DP_PIXELFORMAT_RGB:
2679 : return "RGB";
2680 : case DP_PIXELFORMAT_YUV444:
2681 : return "YUV444";
2682 : case DP_PIXELFORMAT_YUV422:
2683 : return "YUV422";
2684 : case DP_PIXELFORMAT_YUV420:
2685 : return "YUV420";
2686 : case DP_PIXELFORMAT_Y_ONLY:
2687 : return "Y_ONLY";
2688 : case DP_PIXELFORMAT_RAW:
2689 : return "RAW";
2690 : default:
2691 : return "Reserved";
2692 : }
2693 : }
2694 :
2695 0 : static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2696 : enum dp_colorimetry colorimetry)
2697 : {
2698 0 : if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2699 : return "Invalid";
2700 :
2701 0 : switch (colorimetry) {
2702 : case DP_COLORIMETRY_DEFAULT:
2703 : switch (pixelformat) {
2704 : case DP_PIXELFORMAT_RGB:
2705 : return "sRGB";
2706 : case DP_PIXELFORMAT_YUV444:
2707 : case DP_PIXELFORMAT_YUV422:
2708 : case DP_PIXELFORMAT_YUV420:
2709 : return "BT.601";
2710 : case DP_PIXELFORMAT_Y_ONLY:
2711 : return "DICOM PS3.14";
2712 : case DP_PIXELFORMAT_RAW:
2713 : return "Custom Color Profile";
2714 : default:
2715 : return "Reserved";
2716 : }
2717 : case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2718 0 : switch (pixelformat) {
2719 : case DP_PIXELFORMAT_RGB:
2720 : return "Wide Fixed";
2721 : case DP_PIXELFORMAT_YUV444:
2722 : case DP_PIXELFORMAT_YUV422:
2723 : case DP_PIXELFORMAT_YUV420:
2724 0 : return "BT.709";
2725 : default:
2726 0 : return "Reserved";
2727 : }
2728 : case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2729 0 : switch (pixelformat) {
2730 : case DP_PIXELFORMAT_RGB:
2731 : return "Wide Float";
2732 : case DP_PIXELFORMAT_YUV444:
2733 : case DP_PIXELFORMAT_YUV422:
2734 : case DP_PIXELFORMAT_YUV420:
2735 0 : return "xvYCC 601";
2736 : default:
2737 0 : return "Reserved";
2738 : }
2739 : case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2740 0 : switch (pixelformat) {
2741 : case DP_PIXELFORMAT_RGB:
2742 : return "OpRGB";
2743 : case DP_PIXELFORMAT_YUV444:
2744 : case DP_PIXELFORMAT_YUV422:
2745 : case DP_PIXELFORMAT_YUV420:
2746 0 : return "xvYCC 709";
2747 : default:
2748 0 : return "Reserved";
2749 : }
2750 : case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2751 0 : switch (pixelformat) {
2752 : case DP_PIXELFORMAT_RGB:
2753 : return "DCI-P3";
2754 : case DP_PIXELFORMAT_YUV444:
2755 : case DP_PIXELFORMAT_YUV422:
2756 : case DP_PIXELFORMAT_YUV420:
2757 0 : return "sYCC 601";
2758 : default:
2759 0 : return "Reserved";
2760 : }
2761 : case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2762 0 : switch (pixelformat) {
2763 : case DP_PIXELFORMAT_RGB:
2764 : return "Custom Profile";
2765 : case DP_PIXELFORMAT_YUV444:
2766 : case DP_PIXELFORMAT_YUV422:
2767 : case DP_PIXELFORMAT_YUV420:
2768 0 : return "OpYCC 601";
2769 : default:
2770 0 : return "Reserved";
2771 : }
2772 : case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2773 0 : switch (pixelformat) {
2774 : case DP_PIXELFORMAT_RGB:
2775 : return "BT.2020 RGB";
2776 : case DP_PIXELFORMAT_YUV444:
2777 : case DP_PIXELFORMAT_YUV422:
2778 : case DP_PIXELFORMAT_YUV420:
2779 0 : return "BT.2020 CYCC";
2780 : default:
2781 0 : return "Reserved";
2782 : }
2783 : case DP_COLORIMETRY_BT2020_YCC:
2784 0 : switch (pixelformat) {
2785 : case DP_PIXELFORMAT_YUV444:
2786 : case DP_PIXELFORMAT_YUV422:
2787 : case DP_PIXELFORMAT_YUV420:
2788 : return "BT.2020 YCC";
2789 : default:
2790 0 : return "Reserved";
2791 : }
2792 : default:
2793 : return "Invalid";
2794 : }
2795 : }
2796 :
2797 : static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2798 : {
2799 0 : switch (dynamic_range) {
2800 : case DP_DYNAMIC_RANGE_VESA:
2801 : return "VESA range";
2802 : case DP_DYNAMIC_RANGE_CTA:
2803 : return "CTA range";
2804 : default:
2805 : return "Invalid";
2806 : }
2807 : }
2808 :
2809 : static const char *dp_content_type_get_name(enum dp_content_type content_type)
2810 : {
2811 : switch (content_type) {
2812 : case DP_CONTENT_TYPE_NOT_DEFINED:
2813 : return "Not defined";
2814 : case DP_CONTENT_TYPE_GRAPHICS:
2815 : return "Graphics";
2816 : case DP_CONTENT_TYPE_PHOTO:
2817 : return "Photo";
2818 : case DP_CONTENT_TYPE_VIDEO:
2819 : return "Video";
2820 : case DP_CONTENT_TYPE_GAME:
2821 : return "Game";
2822 : default:
2823 : return "Reserved";
2824 : }
2825 : }
2826 :
2827 0 : void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2828 : const struct drm_dp_vsc_sdp *vsc)
2829 : {
2830 : #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2831 0 : DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2832 : vsc->revision, vsc->length);
2833 0 : DP_SDP_LOG(" pixelformat: %s\n",
2834 : dp_pixelformat_get_name(vsc->pixelformat));
2835 0 : DP_SDP_LOG(" colorimetry: %s\n",
2836 : dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2837 0 : DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2838 0 : DP_SDP_LOG(" dynamic range: %s\n",
2839 : dp_dynamic_range_get_name(vsc->dynamic_range));
2840 0 : DP_SDP_LOG(" content type: %s\n",
2841 : dp_content_type_get_name(vsc->content_type));
2842 : #undef DP_SDP_LOG
2843 0 : }
2844 : EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2845 :
2846 : /**
2847 : * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2848 : * @dpcd: DisplayPort configuration data
2849 : * @port_cap: port capabilities
2850 : *
2851 : * Returns maximum frl bandwidth supported by PCON in GBPS,
2852 : * returns 0 if not supported.
2853 : */
2854 0 : int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2855 : const u8 port_cap[4])
2856 : {
2857 : int bw;
2858 : u8 buf;
2859 :
2860 0 : buf = port_cap[2];
2861 0 : bw = buf & DP_PCON_MAX_FRL_BW;
2862 :
2863 : switch (bw) {
2864 : case DP_PCON_MAX_9GBPS:
2865 : return 9;
2866 : case DP_PCON_MAX_18GBPS:
2867 : return 18;
2868 : case DP_PCON_MAX_24GBPS:
2869 : return 24;
2870 : case DP_PCON_MAX_32GBPS:
2871 : return 32;
2872 : case DP_PCON_MAX_40GBPS:
2873 : return 40;
2874 : case DP_PCON_MAX_48GBPS:
2875 : return 48;
2876 : case DP_PCON_MAX_0GBPS:
2877 : default:
2878 : return 0;
2879 : }
2880 :
2881 : return 0;
2882 : }
2883 : EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2884 :
2885 : /**
2886 : * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2887 : * @aux: DisplayPort AUX channel
2888 : * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2889 : *
2890 : * Returns 0 if success, else returns negative error code.
2891 : */
2892 0 : int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2893 : {
2894 : int ret;
2895 0 : u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2896 : DP_PCON_ENABLE_LINK_FRL_MODE;
2897 :
2898 0 : if (enable_frl_ready_hpd)
2899 0 : buf |= DP_PCON_ENABLE_HPD_READY;
2900 :
2901 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2902 :
2903 0 : return ret;
2904 : }
2905 : EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2906 :
2907 : /**
2908 : * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2909 : * @aux: DisplayPort AUX channel
2910 : *
2911 : * Returns true if success, else returns false.
2912 : */
2913 0 : bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2914 : {
2915 : int ret;
2916 : u8 buf;
2917 :
2918 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2919 0 : if (ret < 0)
2920 : return false;
2921 :
2922 0 : if (buf & DP_PCON_FRL_READY)
2923 : return true;
2924 :
2925 0 : return false;
2926 : }
2927 : EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2928 :
2929 : /**
2930 : * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2931 : * @aux: DisplayPort AUX channel
2932 : * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2933 : * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2934 : * In Concurrent Mode, the FRL link bring up can be done along with
2935 : * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2936 : * the DP Link training.
2937 : *
2938 : * Returns 0 if success, else returns negative error code.
2939 : */
2940 :
2941 0 : int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2942 : u8 frl_mode)
2943 : {
2944 : int ret;
2945 : u8 buf;
2946 :
2947 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2948 0 : if (ret < 0)
2949 : return ret;
2950 :
2951 0 : if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2952 0 : buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2953 : else
2954 0 : buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2955 :
2956 0 : switch (max_frl_gbps) {
2957 : case 9:
2958 0 : buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
2959 0 : break;
2960 : case 18:
2961 0 : buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
2962 0 : break;
2963 : case 24:
2964 0 : buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
2965 0 : break;
2966 : case 32:
2967 0 : buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
2968 0 : break;
2969 : case 40:
2970 0 : buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
2971 0 : break;
2972 : case 48:
2973 0 : buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
2974 0 : break;
2975 : case 0:
2976 : buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
2977 : break;
2978 : default:
2979 : return -EINVAL;
2980 : }
2981 :
2982 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2983 0 : if (ret < 0)
2984 : return ret;
2985 :
2986 0 : return 0;
2987 : }
2988 : EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
2989 :
2990 : /**
2991 : * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
2992 : * @aux: DisplayPort AUX channel
2993 : * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
2994 : * @frl_type : FRL training type, can be Extended, or Normal.
2995 : * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
2996 : * starting from min, and stops when link training is successful. In Extended
2997 : * FRL training, all frl bw selected in the mask are trained by the PCON.
2998 : *
2999 : * Returns 0 if success, else returns negative error code.
3000 : */
3001 0 : int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3002 : u8 frl_type)
3003 : {
3004 : int ret;
3005 0 : u8 buf = max_frl_mask;
3006 :
3007 0 : if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3008 0 : buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3009 : else
3010 0 : buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3011 :
3012 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3013 0 : if (ret < 0)
3014 : return ret;
3015 :
3016 0 : return 0;
3017 : }
3018 : EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3019 :
3020 : /**
3021 : * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3022 : * @aux: DisplayPort AUX channel
3023 : *
3024 : * Returns 0 if success, else returns negative error code.
3025 : */
3026 0 : int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3027 : {
3028 : int ret;
3029 :
3030 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3031 0 : if (ret < 0)
3032 : return ret;
3033 :
3034 0 : return 0;
3035 : }
3036 : EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3037 :
3038 : /**
3039 : * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3040 : * @aux: DisplayPort AUX channel
3041 : *
3042 : * Returns 0 if success, else returns negative error code.
3043 : */
3044 0 : int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3045 : {
3046 : int ret;
3047 0 : u8 buf = 0;
3048 :
3049 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3050 0 : if (ret < 0)
3051 : return ret;
3052 0 : if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3053 0 : drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3054 : aux->name);
3055 0 : return -EINVAL;
3056 : }
3057 0 : buf |= DP_PCON_ENABLE_HDMI_LINK;
3058 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3059 0 : if (ret < 0)
3060 : return ret;
3061 :
3062 0 : return 0;
3063 : }
3064 : EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3065 :
3066 : /**
3067 : * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3068 : * @aux: DisplayPort AUX channel
3069 : *
3070 : * Returns true if link is active else returns false.
3071 : */
3072 0 : bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3073 : {
3074 : u8 buf;
3075 : int ret;
3076 :
3077 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3078 0 : if (ret < 0)
3079 : return false;
3080 :
3081 0 : return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3082 : }
3083 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3084 :
3085 : /**
3086 : * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3087 : * @aux: DisplayPort AUX channel
3088 : * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3089 : * Valid only if the MODE returned is FRL. For Normal Link training mode
3090 : * only 1 of the bits will be set, but in case of Extended mode, more than
3091 : * one bits can be set.
3092 : *
3093 : * Returns the link mode : TMDS or FRL on success, else returns negative error
3094 : * code.
3095 : */
3096 0 : int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3097 : {
3098 : u8 buf;
3099 : int mode;
3100 : int ret;
3101 :
3102 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3103 0 : if (ret < 0)
3104 : return ret;
3105 :
3106 0 : mode = buf & DP_PCON_HDMI_LINK_MODE;
3107 :
3108 0 : if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3109 0 : *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3110 :
3111 : return mode;
3112 : }
3113 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3114 :
3115 : /**
3116 : * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3117 : * during link failure between PCON and HDMI sink
3118 : * @aux: DisplayPort AUX channel
3119 : * @connector: DRM connector
3120 : * code.
3121 : **/
3122 :
3123 0 : void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3124 : struct drm_connector *connector)
3125 : {
3126 : u8 buf, error_count;
3127 : int i, num_error;
3128 0 : struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3129 :
3130 0 : for (i = 0; i < hdmi->max_lanes; i++) {
3131 0 : if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3132 0 : return;
3133 :
3134 0 : error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3135 : switch (error_count) {
3136 : case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3137 : num_error = 100;
3138 : break;
3139 : case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3140 : num_error = 10;
3141 : break;
3142 : case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3143 : num_error = 3;
3144 : break;
3145 : default:
3146 : num_error = 0;
3147 : }
3148 :
3149 0 : drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3150 : aux->name, num_error, i);
3151 : }
3152 : }
3153 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3154 :
3155 : /*
3156 : * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3157 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3158 : *
3159 : * Returns true is PCON encoder is DSC 1.2 else returns false.
3160 : */
3161 0 : bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3162 : {
3163 : u8 buf;
3164 : u8 major_v, minor_v;
3165 :
3166 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3167 0 : major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3168 0 : minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3169 :
3170 0 : if (major_v == 1 && minor_v == 2)
3171 : return true;
3172 :
3173 0 : return false;
3174 : }
3175 : EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3176 :
3177 : /*
3178 : * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3179 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3180 : *
3181 : * Returns maximum no. of slices supported by the PCON DSC Encoder.
3182 : */
3183 0 : int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3184 : {
3185 : u8 slice_cap1, slice_cap2;
3186 :
3187 0 : slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3188 0 : slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3189 :
3190 0 : if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3191 : return 24;
3192 0 : if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3193 : return 20;
3194 0 : if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3195 : return 16;
3196 0 : if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3197 : return 12;
3198 0 : if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3199 : return 10;
3200 0 : if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3201 : return 8;
3202 0 : if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3203 : return 6;
3204 0 : if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3205 : return 4;
3206 0 : if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3207 : return 2;
3208 0 : if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3209 : return 1;
3210 :
3211 0 : return 0;
3212 : }
3213 : EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3214 :
3215 : /*
3216 : * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3217 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3218 : *
3219 : * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3220 : */
3221 0 : int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3222 : {
3223 : u8 buf;
3224 :
3225 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3226 :
3227 0 : return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3228 : }
3229 : EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3230 :
3231 : /*
3232 : * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3233 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3234 : *
3235 : * Returns the bpp precision supported by the PCON encoder.
3236 : */
3237 0 : int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3238 : {
3239 : u8 buf;
3240 :
3241 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3242 :
3243 : switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3244 : case DP_PCON_DSC_ONE_16TH_BPP:
3245 : return 16;
3246 : case DP_PCON_DSC_ONE_8TH_BPP:
3247 : return 8;
3248 : case DP_PCON_DSC_ONE_4TH_BPP:
3249 : return 4;
3250 : case DP_PCON_DSC_ONE_HALF_BPP:
3251 : return 2;
3252 : case DP_PCON_DSC_ONE_BPP:
3253 : return 1;
3254 : }
3255 :
3256 : return 0;
3257 : }
3258 : EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3259 :
3260 : static
3261 0 : int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3262 : {
3263 : u8 buf;
3264 : int ret;
3265 :
3266 0 : ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3267 0 : if (ret < 0)
3268 : return ret;
3269 :
3270 0 : buf |= DP_PCON_ENABLE_DSC_ENCODER;
3271 :
3272 0 : if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3273 0 : buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3274 0 : buf |= pps_buf_config << 2;
3275 : }
3276 :
3277 0 : ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3278 0 : if (ret < 0)
3279 : return ret;
3280 :
3281 0 : return 0;
3282 : }
3283 :
3284 : /**
3285 : * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3286 : * for DSC1.2 between PCON & HDMI2.1 sink
3287 : * @aux: DisplayPort AUX channel
3288 : *
3289 : * Returns 0 on success, else returns negative error code.
3290 : */
3291 0 : int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3292 : {
3293 : int ret;
3294 :
3295 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3296 0 : if (ret < 0)
3297 : return ret;
3298 :
3299 0 : return 0;
3300 : }
3301 : EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3302 :
3303 : /**
3304 : * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3305 : * HDMI sink
3306 : * @aux: DisplayPort AUX channel
3307 : * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3308 : *
3309 : * Returns 0 on success, else returns negative error code.
3310 : */
3311 0 : int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3312 : {
3313 : int ret;
3314 :
3315 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3316 0 : if (ret < 0)
3317 : return ret;
3318 :
3319 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3320 0 : if (ret < 0)
3321 : return ret;
3322 :
3323 0 : return 0;
3324 : }
3325 : EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3326 :
3327 : /*
3328 : * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3329 : * override registers
3330 : * @aux: DisplayPort AUX channel
3331 : * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3332 : * bits_per_pixel.
3333 : *
3334 : * Returns 0 on success, else returns negative error code.
3335 : */
3336 0 : int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3337 : {
3338 : int ret;
3339 :
3340 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3341 0 : if (ret < 0)
3342 : return ret;
3343 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3344 0 : if (ret < 0)
3345 : return ret;
3346 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3347 0 : if (ret < 0)
3348 : return ret;
3349 :
3350 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3351 0 : if (ret < 0)
3352 : return ret;
3353 :
3354 0 : return 0;
3355 : }
3356 : EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3357 :
3358 : /*
3359 : * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3360 : * @aux: displayPort AUX channel
3361 : * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3362 : *
3363 : * Returns 0 on success, else returns negative error code.
3364 : */
3365 0 : int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3366 : {
3367 : int ret;
3368 : u8 buf;
3369 :
3370 0 : ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3371 0 : if (ret < 0)
3372 : return ret;
3373 :
3374 0 : if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3375 0 : buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3376 : else
3377 0 : buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3378 :
3379 0 : ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3380 0 : if (ret < 0)
3381 : return ret;
3382 :
3383 0 : return 0;
3384 : }
3385 : EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3386 :
3387 : /**
3388 : * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3389 : * @aux: The DP AUX channel to use
3390 : * @bl: Backlight capability info from drm_edp_backlight_init()
3391 : * @level: The brightness level to set
3392 : *
3393 : * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3394 : * already have been enabled by the driver by calling drm_edp_backlight_enable().
3395 : *
3396 : * Returns: %0 on success, negative error code on failure
3397 : */
3398 0 : int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3399 : u16 level)
3400 : {
3401 : int ret;
3402 0 : u8 buf[2] = { 0 };
3403 :
3404 : /* The panel uses the PWM for controlling brightness levels */
3405 0 : if (!bl->aux_set)
3406 : return 0;
3407 :
3408 0 : if (bl->lsb_reg_used) {
3409 0 : buf[0] = (level & 0xff00) >> 8;
3410 0 : buf[1] = (level & 0x00ff);
3411 : } else {
3412 0 : buf[0] = level;
3413 : }
3414 :
3415 0 : ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3416 0 : if (ret != sizeof(buf)) {
3417 0 : drm_err(aux->drm_dev,
3418 : "%s: Failed to write aux backlight level: %d\n",
3419 : aux->name, ret);
3420 0 : return ret < 0 ? ret : -EIO;
3421 : }
3422 :
3423 : return 0;
3424 : }
3425 : EXPORT_SYMBOL(drm_edp_backlight_set_level);
3426 :
3427 : static int
3428 0 : drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3429 : bool enable)
3430 : {
3431 : int ret;
3432 : u8 buf;
3433 :
3434 : /* This panel uses the EDP_BL_PWR GPIO for enablement */
3435 0 : if (!bl->aux_enable)
3436 : return 0;
3437 :
3438 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3439 0 : if (ret != 1) {
3440 0 : drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3441 : aux->name, ret);
3442 0 : return ret < 0 ? ret : -EIO;
3443 : }
3444 0 : if (enable)
3445 0 : buf |= DP_EDP_BACKLIGHT_ENABLE;
3446 : else
3447 0 : buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3448 :
3449 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3450 0 : if (ret != 1) {
3451 0 : drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3452 : aux->name, ret);
3453 0 : return ret < 0 ? ret : -EIO;
3454 : }
3455 :
3456 : return 0;
3457 : }
3458 :
3459 : /**
3460 : * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3461 : * @aux: The DP AUX channel to use
3462 : * @bl: Backlight capability info from drm_edp_backlight_init()
3463 : * @level: The initial backlight level to set via AUX, if there is one
3464 : *
3465 : * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3466 : * restoring any important backlight state such as the given backlight level, the brightness byte
3467 : * count, backlight frequency, etc.
3468 : *
3469 : * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3470 : * that the driver handle enabling/disabling the panel through implementation-specific means using
3471 : * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3472 : * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3473 : * the EDP_BL_PWR GPIO.
3474 : *
3475 : * Returns: %0 on success, negative error code on failure.
3476 : */
3477 0 : int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3478 : const u16 level)
3479 : {
3480 : int ret;
3481 : u8 dpcd_buf;
3482 :
3483 0 : if (bl->aux_set)
3484 : dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3485 : else
3486 0 : dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3487 :
3488 0 : if (bl->pwmgen_bit_count) {
3489 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3490 0 : if (ret != 1)
3491 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3492 : aux->name, ret);
3493 : }
3494 :
3495 0 : if (bl->pwm_freq_pre_divider) {
3496 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3497 0 : if (ret != 1)
3498 0 : drm_dbg_kms(aux->drm_dev,
3499 : "%s: Failed to write aux backlight frequency: %d\n",
3500 : aux->name, ret);
3501 : else
3502 0 : dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3503 : }
3504 :
3505 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3506 0 : if (ret != 1) {
3507 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3508 : aux->name, ret);
3509 0 : return ret < 0 ? ret : -EIO;
3510 : }
3511 :
3512 0 : ret = drm_edp_backlight_set_level(aux, bl, level);
3513 0 : if (ret < 0)
3514 : return ret;
3515 0 : ret = drm_edp_backlight_set_enable(aux, bl, true);
3516 0 : if (ret < 0)
3517 : return ret;
3518 :
3519 0 : return 0;
3520 : }
3521 : EXPORT_SYMBOL(drm_edp_backlight_enable);
3522 :
3523 : /**
3524 : * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3525 : * @aux: The DP AUX channel to use
3526 : * @bl: Backlight capability info from drm_edp_backlight_init()
3527 : *
3528 : * This function handles disabling DPCD backlight controls on a panel over AUX.
3529 : *
3530 : * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3531 : * that the driver handle enabling/disabling the panel through implementation-specific means using
3532 : * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3533 : * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3534 : * the EDP_BL_PWR GPIO.
3535 : *
3536 : * Returns: %0 on success or no-op, negative error code on failure.
3537 : */
3538 0 : int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3539 : {
3540 : int ret;
3541 :
3542 0 : ret = drm_edp_backlight_set_enable(aux, bl, false);
3543 0 : if (ret < 0)
3544 : return ret;
3545 :
3546 0 : return 0;
3547 : }
3548 : EXPORT_SYMBOL(drm_edp_backlight_disable);
3549 :
3550 : static inline int
3551 0 : drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3552 : u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3553 : {
3554 0 : int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3555 : int ret;
3556 : u8 pn, pn_min, pn_max;
3557 :
3558 0 : if (!bl->aux_set)
3559 : return 0;
3560 :
3561 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3562 0 : if (ret != 1) {
3563 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3564 : aux->name, ret);
3565 0 : return -ENODEV;
3566 : }
3567 :
3568 0 : pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3569 0 : bl->max = (1 << pn) - 1;
3570 0 : if (!driver_pwm_freq_hz)
3571 : return 0;
3572 :
3573 : /*
3574 : * Set PWM Frequency divider to match desired frequency provided by the driver.
3575 : * The PWM Frequency is calculated as 27Mhz / (F x P).
3576 : * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3577 : * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3578 : * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3579 : * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3580 : */
3581 :
3582 : /* Find desired value of (F x P)
3583 : * Note that, if F x P is out of supported range, the maximum value or minimum value will
3584 : * applied automatically. So no need to check that.
3585 : */
3586 0 : fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3587 :
3588 : /* Use highest possible value of Pn for more granularity of brightness adjustment while
3589 : * satisfying the conditions below.
3590 : * - Pn is in the range of Pn_min and Pn_max
3591 : * - F is in the range of 1 and 255
3592 : * - FxP is within 25% of desired value.
3593 : * Note: 25% is arbitrary value and may need some tweak.
3594 : */
3595 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3596 0 : if (ret != 1) {
3597 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3598 : aux->name, ret);
3599 0 : return 0;
3600 : }
3601 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3602 0 : if (ret != 1) {
3603 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3604 : aux->name, ret);
3605 0 : return 0;
3606 : }
3607 0 : pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3608 0 : pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3609 :
3610 : /* Ensure frequency is within 25% of desired value */
3611 0 : fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3612 0 : fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3613 0 : if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3614 0 : drm_dbg_kms(aux->drm_dev,
3615 : "%s: Driver defined backlight frequency (%d) out of range\n",
3616 : aux->name, driver_pwm_freq_hz);
3617 0 : return 0;
3618 : }
3619 :
3620 0 : for (pn = pn_max; pn >= pn_min; pn--) {
3621 0 : f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3622 0 : fxp_actual = f << pn;
3623 0 : if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3624 : break;
3625 : }
3626 :
3627 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3628 0 : if (ret != 1) {
3629 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3630 : aux->name, ret);
3631 0 : return 0;
3632 : }
3633 0 : bl->pwmgen_bit_count = pn;
3634 0 : bl->max = (1 << pn) - 1;
3635 :
3636 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3637 0 : bl->pwm_freq_pre_divider = f;
3638 0 : drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3639 : aux->name, driver_pwm_freq_hz);
3640 : }
3641 :
3642 : return 0;
3643 : }
3644 :
3645 : static inline int
3646 0 : drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3647 : u8 *current_mode)
3648 : {
3649 : int ret;
3650 : u8 buf[2];
3651 : u8 mode_reg;
3652 :
3653 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3654 0 : if (ret != 1) {
3655 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3656 : aux->name, ret);
3657 0 : return ret < 0 ? ret : -EIO;
3658 : }
3659 :
3660 0 : *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3661 0 : if (!bl->aux_set)
3662 : return 0;
3663 :
3664 0 : if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3665 0 : int size = 1 + bl->lsb_reg_used;
3666 :
3667 0 : ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3668 0 : if (ret != size) {
3669 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3670 : aux->name, ret);
3671 0 : return ret < 0 ? ret : -EIO;
3672 : }
3673 :
3674 0 : if (bl->lsb_reg_used)
3675 0 : return (buf[0] << 8) | buf[1];
3676 : else
3677 0 : return buf[0];
3678 : }
3679 :
3680 : /*
3681 : * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3682 : * the driver should assume max brightness
3683 : */
3684 0 : return bl->max;
3685 : }
3686 :
3687 : /**
3688 : * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3689 : * interface.
3690 : * @aux: The DP aux device to use for probing
3691 : * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3692 : * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3693 : * @edp_dpcd: A cached copy of the eDP DPCD
3694 : * @current_level: Where to store the probed brightness level, if any
3695 : * @current_mode: Where to store the currently set backlight control mode
3696 : *
3697 : * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3698 : * along with also probing the current and maximum supported brightness levels.
3699 : *
3700 : * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3701 : * default frequency from the panel is used.
3702 : *
3703 : * Returns: %0 on success, negative error code on failure.
3704 : */
3705 : int
3706 0 : drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3707 : u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3708 : u16 *current_level, u8 *current_mode)
3709 : {
3710 : int ret;
3711 :
3712 0 : if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3713 0 : bl->aux_enable = true;
3714 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3715 0 : bl->aux_set = true;
3716 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3717 0 : bl->lsb_reg_used = true;
3718 :
3719 : /* Sanity check caps */
3720 0 : if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3721 0 : drm_dbg_kms(aux->drm_dev,
3722 : "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3723 : aux->name);
3724 0 : return -EINVAL;
3725 : }
3726 :
3727 0 : ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3728 0 : if (ret < 0)
3729 : return ret;
3730 :
3731 0 : ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3732 0 : if (ret < 0)
3733 : return ret;
3734 0 : *current_level = ret;
3735 :
3736 0 : drm_dbg_kms(aux->drm_dev,
3737 : "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3738 : aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3739 0 : if (bl->aux_set) {
3740 0 : drm_dbg_kms(aux->drm_dev,
3741 : "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3742 : aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3743 : bl->lsb_reg_used);
3744 : }
3745 :
3746 : return 0;
3747 : }
3748 : EXPORT_SYMBOL(drm_edp_backlight_init);
3749 :
3750 : #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3751 : (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3752 :
3753 0 : static int dp_aux_backlight_update_status(struct backlight_device *bd)
3754 : {
3755 0 : struct dp_aux_backlight *bl = bl_get_data(bd);
3756 0 : u16 brightness = backlight_get_brightness(bd);
3757 0 : int ret = 0;
3758 :
3759 0 : if (!backlight_is_blank(bd)) {
3760 0 : if (!bl->enabled) {
3761 0 : drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3762 0 : bl->enabled = true;
3763 0 : return 0;
3764 : }
3765 0 : ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3766 : } else {
3767 0 : if (bl->enabled) {
3768 0 : drm_edp_backlight_disable(bl->aux, &bl->info);
3769 0 : bl->enabled = false;
3770 : }
3771 : }
3772 :
3773 : return ret;
3774 : }
3775 :
3776 : static const struct backlight_ops dp_aux_bl_ops = {
3777 : .update_status = dp_aux_backlight_update_status,
3778 : };
3779 :
3780 : /**
3781 : * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3782 : * @panel: DRM panel
3783 : * @aux: The DP AUX channel to use
3784 : *
3785 : * Use this function to create and handle backlight if your panel
3786 : * supports backlight control over DP AUX channel using DPCD
3787 : * registers as per VESA's standard backlight control interface.
3788 : *
3789 : * When the panel is enabled backlight will be enabled after a
3790 : * successful call to &drm_panel_funcs.enable()
3791 : *
3792 : * When the panel is disabled backlight will be disabled before the
3793 : * call to &drm_panel_funcs.disable().
3794 : *
3795 : * A typical implementation for a panel driver supporting backlight
3796 : * control over DP AUX will call this function at probe time.
3797 : * Backlight will then be handled transparently without requiring
3798 : * any intervention from the driver.
3799 : *
3800 : * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3801 : *
3802 : * Return: 0 on success or a negative error code on failure.
3803 : */
3804 0 : int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3805 : {
3806 : struct dp_aux_backlight *bl;
3807 0 : struct backlight_properties props = { 0 };
3808 : u16 current_level;
3809 : u8 current_mode;
3810 : u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3811 : int ret;
3812 :
3813 0 : if (!panel || !panel->dev || !aux)
3814 : return -EINVAL;
3815 :
3816 0 : ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3817 : EDP_DISPLAY_CTL_CAP_SIZE);
3818 0 : if (ret < 0)
3819 : return ret;
3820 :
3821 0 : if (!drm_edp_backlight_supported(edp_dpcd)) {
3822 0 : DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3823 0 : return 0;
3824 : }
3825 :
3826 0 : bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3827 0 : if (!bl)
3828 : return -ENOMEM;
3829 :
3830 0 : bl->aux = aux;
3831 :
3832 0 : ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3833 : ¤t_level, ¤t_mode);
3834 0 : if (ret < 0)
3835 : return ret;
3836 :
3837 0 : props.type = BACKLIGHT_RAW;
3838 0 : props.brightness = current_level;
3839 0 : props.max_brightness = bl->info.max;
3840 :
3841 0 : bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3842 : panel->dev, bl,
3843 : &dp_aux_bl_ops, &props);
3844 0 : if (IS_ERR(bl->base))
3845 0 : return PTR_ERR(bl->base);
3846 :
3847 0 : backlight_disable(bl->base);
3848 :
3849 0 : panel->backlight = bl->base;
3850 :
3851 0 : return 0;
3852 : }
3853 : EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3854 :
3855 : #endif
|