Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * HID support for Linux
4 : *
5 : * Copyright (c) 1999 Andreas Gal
6 : * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 : * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 : * Copyright (c) 2006-2012 Jiri Kosina
9 : */
10 :
11 : /*
12 : */
13 :
14 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 :
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/init.h>
19 : #include <linux/kernel.h>
20 : #include <linux/list.h>
21 : #include <linux/mm.h>
22 : #include <linux/spinlock.h>
23 : #include <asm/unaligned.h>
24 : #include <asm/byteorder.h>
25 : #include <linux/input.h>
26 : #include <linux/wait.h>
27 : #include <linux/vmalloc.h>
28 : #include <linux/sched.h>
29 : #include <linux/semaphore.h>
30 :
31 : #include <linux/hid.h>
32 : #include <linux/hiddev.h>
33 : #include <linux/hid-debug.h>
34 : #include <linux/hidraw.h>
35 :
36 : #include "hid-ids.h"
37 :
38 : /*
39 : * Version Information
40 : */
41 :
42 : #define DRIVER_DESC "HID core driver"
43 :
44 : int hid_debug = 0;
45 : module_param_named(debug, hid_debug, int, 0600);
46 : MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 : EXPORT_SYMBOL_GPL(hid_debug);
48 :
49 : static int hid_ignore_special_drivers = 0;
50 : module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 : MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 :
53 : /*
54 : * Register a new report for a device.
55 : */
56 :
57 0 : struct hid_report *hid_register_report(struct hid_device *device,
58 : unsigned int type, unsigned int id,
59 : unsigned int application)
60 : {
61 0 : struct hid_report_enum *report_enum = device->report_enum + type;
62 : struct hid_report *report;
63 :
64 0 : if (id >= HID_MAX_IDS)
65 : return NULL;
66 0 : if (report_enum->report_id_hash[id])
67 : return report_enum->report_id_hash[id];
68 :
69 0 : report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 0 : if (!report)
71 : return NULL;
72 :
73 0 : if (id != 0)
74 0 : report_enum->numbered = 1;
75 :
76 0 : report->id = id;
77 0 : report->type = type;
78 0 : report->size = 0;
79 0 : report->device = device;
80 0 : report->application = application;
81 0 : report_enum->report_id_hash[id] = report;
82 :
83 0 : list_add_tail(&report->list, &report_enum->report_list);
84 0 : INIT_LIST_HEAD(&report->field_entry_list);
85 :
86 0 : return report;
87 : }
88 : EXPORT_SYMBOL_GPL(hid_register_report);
89 :
90 : /*
91 : * Register a new field for this report.
92 : */
93 :
94 0 : static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95 : {
96 : struct hid_field *field;
97 :
98 0 : if (report->maxfield == HID_MAX_FIELDS) {
99 0 : hid_err(report->device, "too many fields in report\n");
100 0 : return NULL;
101 : }
102 :
103 0 : field = kzalloc((sizeof(struct hid_field) +
104 0 : usages * sizeof(struct hid_usage) +
105 0 : 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
106 0 : if (!field)
107 : return NULL;
108 :
109 0 : field->index = report->maxfield++;
110 0 : report->field[field->index] = field;
111 0 : field->usage = (struct hid_usage *)(field + 1);
112 0 : field->value = (s32 *)(field->usage + usages);
113 0 : field->new_value = (s32 *)(field->value + usages);
114 0 : field->usages_priorities = (s32 *)(field->new_value + usages);
115 0 : field->report = report;
116 :
117 0 : return field;
118 : }
119 :
120 : /*
121 : * Open a collection. The type/usage is pushed on the stack.
122 : */
123 :
124 0 : static int open_collection(struct hid_parser *parser, unsigned type)
125 : {
126 : struct hid_collection *collection;
127 : unsigned usage;
128 : int collection_index;
129 :
130 0 : usage = parser->local.usage[0];
131 :
132 0 : if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 : unsigned int *collection_stack;
134 0 : unsigned int new_size = parser->collection_stack_size +
135 : HID_COLLECTION_STACK_SIZE;
136 :
137 0 : collection_stack = krealloc(parser->collection_stack,
138 : new_size * sizeof(unsigned int),
139 : GFP_KERNEL);
140 0 : if (!collection_stack)
141 : return -ENOMEM;
142 :
143 0 : parser->collection_stack = collection_stack;
144 0 : parser->collection_stack_size = new_size;
145 : }
146 :
147 0 : if (parser->device->maxcollection == parser->device->collection_size) {
148 0 : collection = kmalloc(
149 : array3_size(sizeof(struct hid_collection),
150 : parser->device->collection_size,
151 : 2),
152 : GFP_KERNEL);
153 0 : if (collection == NULL) {
154 0 : hid_err(parser->device, "failed to reallocate collection array\n");
155 0 : return -ENOMEM;
156 : }
157 0 : memcpy(collection, parser->device->collection,
158 : sizeof(struct hid_collection) *
159 0 : parser->device->collection_size);
160 0 : memset(collection + parser->device->collection_size, 0,
161 : sizeof(struct hid_collection) *
162 0 : parser->device->collection_size);
163 0 : kfree(parser->device->collection);
164 0 : parser->device->collection = collection;
165 0 : parser->device->collection_size *= 2;
166 : }
167 :
168 0 : parser->collection_stack[parser->collection_stack_ptr++] =
169 0 : parser->device->maxcollection;
170 :
171 0 : collection_index = parser->device->maxcollection++;
172 0 : collection = parser->device->collection + collection_index;
173 0 : collection->type = type;
174 0 : collection->usage = usage;
175 0 : collection->level = parser->collection_stack_ptr - 1;
176 0 : collection->parent_idx = (collection->level == 0) ? -1 :
177 0 : parser->collection_stack[collection->level - 1];
178 :
179 0 : if (type == HID_COLLECTION_APPLICATION)
180 0 : parser->device->maxapplication++;
181 :
182 : return 0;
183 : }
184 :
185 : /*
186 : * Close a collection.
187 : */
188 :
189 : static int close_collection(struct hid_parser *parser)
190 : {
191 0 : if (!parser->collection_stack_ptr) {
192 0 : hid_err(parser->device, "collection stack underflow\n");
193 : return -EINVAL;
194 : }
195 0 : parser->collection_stack_ptr--;
196 : return 0;
197 : }
198 :
199 : /*
200 : * Climb up the stack, search for the specified collection type
201 : * and return the usage.
202 : */
203 :
204 : static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205 : {
206 0 : struct hid_collection *collection = parser->device->collection;
207 : int n;
208 :
209 0 : for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 0 : unsigned index = parser->collection_stack[n];
211 0 : if (collection[index].type == type)
212 0 : return collection[index].usage;
213 : }
214 : return 0; /* we know nothing about this usage type */
215 : }
216 :
217 : /*
218 : * Concatenate usage which defines 16 bits or less with the
219 : * currently defined usage page to form a 32 bit usage
220 : */
221 :
222 : static void complete_usage(struct hid_parser *parser, unsigned int index)
223 : {
224 0 : parser->local.usage[index] &= 0xFFFF;
225 0 : parser->local.usage[index] |=
226 0 : (parser->global.usage_page & 0xFFFF) << 16;
227 : }
228 :
229 : /*
230 : * Add a usage to the temporary parser table.
231 : */
232 :
233 0 : static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
234 : {
235 0 : if (parser->local.usage_index >= HID_MAX_USAGES) {
236 0 : hid_err(parser->device, "usage index exceeded\n");
237 0 : return -1;
238 : }
239 0 : parser->local.usage[parser->local.usage_index] = usage;
240 :
241 : /*
242 : * If Usage item only includes usage id, concatenate it with
243 : * currently defined usage page
244 : */
245 0 : if (size <= 2)
246 0 : complete_usage(parser, parser->local.usage_index);
247 :
248 0 : parser->local.usage_size[parser->local.usage_index] = size;
249 0 : parser->local.collection_index[parser->local.usage_index] =
250 0 : parser->collection_stack_ptr ?
251 0 : parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
252 0 : parser->local.usage_index++;
253 0 : return 0;
254 : }
255 :
256 : /*
257 : * Register a new field for this report.
258 : */
259 :
260 0 : static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
261 : {
262 : struct hid_report *report;
263 : struct hid_field *field;
264 : unsigned int usages;
265 : unsigned int offset;
266 : unsigned int i;
267 : unsigned int application;
268 :
269 0 : application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
270 :
271 0 : report = hid_register_report(parser->device, report_type,
272 : parser->global.report_id, application);
273 0 : if (!report) {
274 0 : hid_err(parser->device, "hid_register_report failed\n");
275 0 : return -1;
276 : }
277 :
278 : /* Handle both signed and unsigned cases properly */
279 0 : if ((parser->global.logical_minimum < 0 &&
280 0 : parser->global.logical_maximum <
281 0 : parser->global.logical_minimum) ||
282 0 : (parser->global.logical_minimum >= 0 &&
283 0 : (__u32)parser->global.logical_maximum <
284 0 : (__u32)parser->global.logical_minimum)) {
285 0 : dbg_hid("logical range invalid 0x%x 0x%x\n",
286 : parser->global.logical_minimum,
287 : parser->global.logical_maximum);
288 : return -1;
289 : }
290 :
291 0 : offset = report->size;
292 0 : report->size += parser->global.report_size * parser->global.report_count;
293 :
294 : /* Total size check: Allow for possible report index byte */
295 0 : if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
296 0 : hid_err(parser->device, "report is too long\n");
297 0 : return -1;
298 : }
299 :
300 0 : if (!parser->local.usage_index) /* Ignore padding fields */
301 : return 0;
302 :
303 0 : usages = max_t(unsigned, parser->local.usage_index,
304 : parser->global.report_count);
305 :
306 0 : field = hid_register_field(report, usages);
307 0 : if (!field)
308 : return 0;
309 :
310 0 : field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
311 0 : field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
312 0 : field->application = application;
313 :
314 0 : for (i = 0; i < usages; i++) {
315 0 : unsigned j = i;
316 : /* Duplicate the last usage we parsed if we have excess values */
317 0 : if (i >= parser->local.usage_index)
318 0 : j = parser->local.usage_index - 1;
319 0 : field->usage[i].hid = parser->local.usage[j];
320 0 : field->usage[i].collection_index =
321 0 : parser->local.collection_index[j];
322 0 : field->usage[i].usage_index = i;
323 0 : field->usage[i].resolution_multiplier = 1;
324 : }
325 :
326 0 : field->maxusage = usages;
327 0 : field->flags = flags;
328 0 : field->report_offset = offset;
329 0 : field->report_type = report_type;
330 0 : field->report_size = parser->global.report_size;
331 0 : field->report_count = parser->global.report_count;
332 0 : field->logical_minimum = parser->global.logical_minimum;
333 0 : field->logical_maximum = parser->global.logical_maximum;
334 0 : field->physical_minimum = parser->global.physical_minimum;
335 0 : field->physical_maximum = parser->global.physical_maximum;
336 0 : field->unit_exponent = parser->global.unit_exponent;
337 0 : field->unit = parser->global.unit;
338 :
339 0 : return 0;
340 : }
341 :
342 : /*
343 : * Read data value from item.
344 : */
345 :
346 : static u32 item_udata(struct hid_item *item)
347 : {
348 0 : switch (item->size) {
349 0 : case 1: return item->data.u8;
350 0 : case 2: return item->data.u16;
351 0 : case 4: return item->data.u32;
352 : }
353 : return 0;
354 : }
355 :
356 : static s32 item_sdata(struct hid_item *item)
357 : {
358 0 : switch (item->size) {
359 0 : case 1: return item->data.s8;
360 0 : case 2: return item->data.s16;
361 0 : case 4: return item->data.s32;
362 : }
363 : return 0;
364 : }
365 :
366 : /*
367 : * Process a global item.
368 : */
369 :
370 0 : static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371 : {
372 : __s32 raw_value;
373 0 : switch (item->tag) {
374 : case HID_GLOBAL_ITEM_TAG_PUSH:
375 :
376 0 : if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
377 0 : hid_err(parser->device, "global environment stack overflow\n");
378 0 : return -1;
379 : }
380 :
381 0 : memcpy(parser->global_stack + parser->global_stack_ptr++,
382 0 : &parser->global, sizeof(struct hid_global));
383 0 : return 0;
384 :
385 : case HID_GLOBAL_ITEM_TAG_POP:
386 :
387 0 : if (!parser->global_stack_ptr) {
388 0 : hid_err(parser->device, "global environment stack underflow\n");
389 0 : return -1;
390 : }
391 :
392 0 : memcpy(&parser->global, parser->global_stack +
393 0 : --parser->global_stack_ptr, sizeof(struct hid_global));
394 0 : return 0;
395 :
396 : case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
397 0 : parser->global.usage_page = item_udata(item);
398 0 : return 0;
399 :
400 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
401 0 : parser->global.logical_minimum = item_sdata(item);
402 0 : return 0;
403 :
404 : case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
405 0 : if (parser->global.logical_minimum < 0)
406 0 : parser->global.logical_maximum = item_sdata(item);
407 : else
408 0 : parser->global.logical_maximum = item_udata(item);
409 : return 0;
410 :
411 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
412 0 : parser->global.physical_minimum = item_sdata(item);
413 0 : return 0;
414 :
415 : case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
416 0 : if (parser->global.physical_minimum < 0)
417 0 : parser->global.physical_maximum = item_sdata(item);
418 : else
419 0 : parser->global.physical_maximum = item_udata(item);
420 : return 0;
421 :
422 : case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
423 : /* Many devices provide unit exponent as a two's complement
424 : * nibble due to the common misunderstanding of HID
425 : * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
426 : * both this and the standard encoding. */
427 0 : raw_value = item_sdata(item);
428 0 : if (!(raw_value & 0xfffffff0))
429 0 : parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 : else
431 0 : parser->global.unit_exponent = raw_value;
432 : return 0;
433 :
434 : case HID_GLOBAL_ITEM_TAG_UNIT:
435 0 : parser->global.unit = item_udata(item);
436 0 : return 0;
437 :
438 : case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
439 0 : parser->global.report_size = item_udata(item);
440 0 : if (parser->global.report_size > 256) {
441 0 : hid_err(parser->device, "invalid report_size %d\n",
442 : parser->global.report_size);
443 0 : return -1;
444 : }
445 : return 0;
446 :
447 : case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
448 0 : parser->global.report_count = item_udata(item);
449 0 : if (parser->global.report_count > HID_MAX_USAGES) {
450 0 : hid_err(parser->device, "invalid report_count %d\n",
451 : parser->global.report_count);
452 0 : return -1;
453 : }
454 : return 0;
455 :
456 : case HID_GLOBAL_ITEM_TAG_REPORT_ID:
457 0 : parser->global.report_id = item_udata(item);
458 0 : if (parser->global.report_id == 0 ||
459 : parser->global.report_id >= HID_MAX_IDS) {
460 0 : hid_err(parser->device, "report_id %u is invalid\n",
461 : parser->global.report_id);
462 0 : return -1;
463 : }
464 : return 0;
465 :
466 : default:
467 0 : hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
468 0 : return -1;
469 : }
470 : }
471 :
472 : /*
473 : * Process a local item.
474 : */
475 :
476 0 : static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477 : {
478 : __u32 data;
479 : unsigned n;
480 : __u32 count;
481 :
482 0 : data = item_udata(item);
483 :
484 0 : switch (item->tag) {
485 : case HID_LOCAL_ITEM_TAG_DELIMITER:
486 :
487 0 : if (data) {
488 : /*
489 : * We treat items before the first delimiter
490 : * as global to all usage sets (branch 0).
491 : * In the moment we process only these global
492 : * items and the first delimiter set.
493 : */
494 0 : if (parser->local.delimiter_depth != 0) {
495 0 : hid_err(parser->device, "nested delimiters\n");
496 0 : return -1;
497 : }
498 0 : parser->local.delimiter_depth++;
499 0 : parser->local.delimiter_branch++;
500 : } else {
501 0 : if (parser->local.delimiter_depth < 1) {
502 0 : hid_err(parser->device, "bogus close delimiter\n");
503 0 : return -1;
504 : }
505 0 : parser->local.delimiter_depth--;
506 : }
507 : return 0;
508 :
509 : case HID_LOCAL_ITEM_TAG_USAGE:
510 :
511 0 : if (parser->local.delimiter_branch > 1) {
512 0 : dbg_hid("alternative usage ignored\n");
513 : return 0;
514 : }
515 :
516 0 : return hid_add_usage(parser, data, item->size);
517 :
518 : case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519 :
520 0 : if (parser->local.delimiter_branch > 1) {
521 0 : dbg_hid("alternative usage ignored\n");
522 : return 0;
523 : }
524 :
525 0 : parser->local.usage_minimum = data;
526 0 : return 0;
527 :
528 : case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529 :
530 0 : if (parser->local.delimiter_branch > 1) {
531 0 : dbg_hid("alternative usage ignored\n");
532 : return 0;
533 : }
534 :
535 0 : count = data - parser->local.usage_minimum;
536 0 : if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 : /*
538 : * We do not warn if the name is not set, we are
539 : * actually pre-scanning the device.
540 : */
541 0 : if (dev_name(&parser->device->dev))
542 0 : hid_warn(parser->device,
543 : "ignoring exceeding usage max\n");
544 0 : data = HID_MAX_USAGES - parser->local.usage_index +
545 0 : parser->local.usage_minimum - 1;
546 0 : if (data <= 0) {
547 0 : hid_err(parser->device,
548 : "no more usage index available\n");
549 0 : return -1;
550 : }
551 : }
552 :
553 0 : for (n = parser->local.usage_minimum; n <= data; n++)
554 0 : if (hid_add_usage(parser, n, item->size)) {
555 0 : dbg_hid("hid_add_usage failed\n");
556 : return -1;
557 : }
558 : return 0;
559 :
560 : default:
561 :
562 0 : dbg_hid("unknown local item tag 0x%x\n", item->tag);
563 : return 0;
564 : }
565 : return 0;
566 : }
567 :
568 : /*
569 : * Concatenate Usage Pages into Usages where relevant:
570 : * As per specification, 6.2.2.8: "When the parser encounters a main item it
571 : * concatenates the last declared Usage Page with a Usage to form a complete
572 : * usage value."
573 : */
574 :
575 0 : static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576 : {
577 : int i;
578 : unsigned int usage_page;
579 : unsigned int current_page;
580 :
581 0 : if (!parser->local.usage_index)
582 : return;
583 :
584 0 : usage_page = parser->global.usage_page;
585 :
586 : /*
587 : * Concatenate usage page again only if last declared Usage Page
588 : * has not been already used in previous usages concatenation
589 : */
590 0 : for (i = parser->local.usage_index - 1; i >= 0; i--) {
591 0 : if (parser->local.usage_size[i] > 2)
592 : /* Ignore extended usages */
593 0 : continue;
594 :
595 0 : current_page = parser->local.usage[i] >> 16;
596 0 : if (current_page == usage_page)
597 : break;
598 :
599 0 : complete_usage(parser, i);
600 : }
601 : }
602 :
603 : /*
604 : * Process a main item.
605 : */
606 :
607 0 : static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608 : {
609 : __u32 data;
610 : int ret;
611 :
612 0 : hid_concatenate_last_usage_page(parser);
613 :
614 0 : data = item_udata(item);
615 :
616 0 : switch (item->tag) {
617 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
618 0 : ret = open_collection(parser, data & 0xff);
619 0 : break;
620 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
621 0 : ret = close_collection(parser);
622 : break;
623 : case HID_MAIN_ITEM_TAG_INPUT:
624 0 : ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 0 : break;
626 : case HID_MAIN_ITEM_TAG_OUTPUT:
627 0 : ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 0 : break;
629 : case HID_MAIN_ITEM_TAG_FEATURE:
630 0 : ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
631 0 : break;
632 : default:
633 0 : hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
634 0 : ret = 0;
635 : }
636 :
637 0 : memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
638 :
639 0 : return ret;
640 : }
641 :
642 : /*
643 : * Process a reserved item.
644 : */
645 :
646 0 : static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 : {
648 0 : dbg_hid("reserved item type, tag 0x%x\n", item->tag);
649 0 : return 0;
650 : }
651 :
652 : /*
653 : * Free a report and all registered fields. The field->usage and
654 : * field->value table's are allocated behind the field, so we need
655 : * only to free(field) itself.
656 : */
657 :
658 0 : static void hid_free_report(struct hid_report *report)
659 : {
660 : unsigned n;
661 :
662 0 : kfree(report->field_entries);
663 :
664 0 : for (n = 0; n < report->maxfield; n++)
665 0 : kfree(report->field[n]);
666 0 : kfree(report);
667 0 : }
668 :
669 : /*
670 : * Close report. This function returns the device
671 : * state to the point prior to hid_open_report().
672 : */
673 0 : static void hid_close_report(struct hid_device *device)
674 : {
675 : unsigned i, j;
676 :
677 0 : for (i = 0; i < HID_REPORT_TYPES; i++) {
678 0 : struct hid_report_enum *report_enum = device->report_enum + i;
679 :
680 0 : for (j = 0; j < HID_MAX_IDS; j++) {
681 0 : struct hid_report *report = report_enum->report_id_hash[j];
682 0 : if (report)
683 0 : hid_free_report(report);
684 : }
685 0 : memset(report_enum, 0, sizeof(*report_enum));
686 0 : INIT_LIST_HEAD(&report_enum->report_list);
687 : }
688 :
689 0 : kfree(device->rdesc);
690 0 : device->rdesc = NULL;
691 0 : device->rsize = 0;
692 :
693 0 : kfree(device->collection);
694 0 : device->collection = NULL;
695 0 : device->collection_size = 0;
696 0 : device->maxcollection = 0;
697 0 : device->maxapplication = 0;
698 :
699 0 : device->status &= ~HID_STAT_PARSED;
700 0 : }
701 :
702 : /*
703 : * Free a device structure, all reports, and all fields.
704 : */
705 :
706 0 : static void hid_device_release(struct device *dev)
707 : {
708 0 : struct hid_device *hid = to_hid_device(dev);
709 :
710 0 : hid_close_report(hid);
711 0 : kfree(hid->dev_rdesc);
712 0 : kfree(hid);
713 0 : }
714 :
715 : /*
716 : * Fetch a report description item from the data stream. We support long
717 : * items, though they are not used yet.
718 : */
719 :
720 0 : static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
721 : {
722 : u8 b;
723 :
724 0 : if ((end - start) <= 0)
725 : return NULL;
726 :
727 0 : b = *start++;
728 :
729 0 : item->type = (b >> 2) & 3;
730 0 : item->tag = (b >> 4) & 15;
731 :
732 0 : if (item->tag == HID_ITEM_TAG_LONG) {
733 :
734 0 : item->format = HID_ITEM_FORMAT_LONG;
735 :
736 0 : if ((end - start) < 2)
737 : return NULL;
738 :
739 0 : item->size = *start++;
740 0 : item->tag = *start++;
741 :
742 0 : if ((end - start) < item->size)
743 : return NULL;
744 :
745 0 : item->data.longdata = start;
746 0 : start += item->size;
747 0 : return start;
748 : }
749 :
750 0 : item->format = HID_ITEM_FORMAT_SHORT;
751 0 : item->size = b & 3;
752 :
753 0 : switch (item->size) {
754 : case 0:
755 : return start;
756 :
757 : case 1:
758 0 : if ((end - start) < 1)
759 : return NULL;
760 0 : item->data.u8 = *start++;
761 0 : return start;
762 :
763 : case 2:
764 0 : if ((end - start) < 2)
765 : return NULL;
766 0 : item->data.u16 = get_unaligned_le16(start);
767 0 : start = (__u8 *)((__le16 *)start + 1);
768 0 : return start;
769 :
770 : case 3:
771 0 : item->size++;
772 0 : if ((end - start) < 4)
773 : return NULL;
774 0 : item->data.u32 = get_unaligned_le32(start);
775 0 : start = (__u8 *)((__le32 *)start + 1);
776 0 : return start;
777 : }
778 :
779 0 : return NULL;
780 : }
781 :
782 : static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
783 : {
784 0 : struct hid_device *hid = parser->device;
785 :
786 0 : if (usage == HID_DG_CONTACTID)
787 0 : hid->group = HID_GROUP_MULTITOUCH;
788 : }
789 :
790 : static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
791 : {
792 0 : if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
793 : parser->global.report_size == 8)
794 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795 :
796 0 : if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
797 : parser->global.report_size == 8)
798 0 : parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799 : }
800 :
801 0 : static void hid_scan_collection(struct hid_parser *parser, unsigned type)
802 : {
803 0 : struct hid_device *hid = parser->device;
804 : int i;
805 :
806 0 : if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
807 : type == HID_COLLECTION_PHYSICAL)
808 0 : hid->group = HID_GROUP_SENSOR_HUB;
809 :
810 0 : if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 0 : hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 0 : hid->group == HID_GROUP_MULTITOUCH)
813 0 : hid->group = HID_GROUP_GENERIC;
814 :
815 0 : if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 0 : for (i = 0; i < parser->local.usage_index; i++)
817 0 : if (parser->local.usage[i] == HID_GD_POINTER)
818 0 : parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819 :
820 0 : if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 0 : parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822 :
823 0 : if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 0 : for (i = 0; i < parser->local.usage_index; i++)
825 0 : if (parser->local.usage[i] ==
826 : (HID_UP_GOOGLEVENDOR | 0x0001))
827 0 : parser->device->group =
828 : HID_GROUP_VIVALDI;
829 0 : }
830 :
831 0 : static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 : {
833 : __u32 data;
834 : int i;
835 :
836 0 : hid_concatenate_last_usage_page(parser);
837 :
838 0 : data = item_udata(item);
839 :
840 0 : switch (item->tag) {
841 : case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 0 : hid_scan_collection(parser, data & 0xff);
843 0 : break;
844 : case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 : break;
846 : case HID_MAIN_ITEM_TAG_INPUT:
847 : /* ignore constant inputs, they will be ignored by hid-input */
848 0 : if (data & HID_MAIN_ITEM_CONSTANT)
849 : break;
850 0 : for (i = 0; i < parser->local.usage_index; i++)
851 0 : hid_scan_input_usage(parser, parser->local.usage[i]);
852 : break;
853 : case HID_MAIN_ITEM_TAG_OUTPUT:
854 : break;
855 : case HID_MAIN_ITEM_TAG_FEATURE:
856 0 : for (i = 0; i < parser->local.usage_index; i++)
857 0 : hid_scan_feature_usage(parser, parser->local.usage[i]);
858 : break;
859 : }
860 :
861 : /* Reset the local parser environment */
862 0 : memset(&parser->local, 0, sizeof(parser->local));
863 :
864 0 : return 0;
865 : }
866 :
867 : /*
868 : * Scan a report descriptor before the device is added to the bus.
869 : * Sets device groups and other properties that determine what driver
870 : * to load.
871 : */
872 0 : static int hid_scan_report(struct hid_device *hid)
873 : {
874 : struct hid_parser *parser;
875 : struct hid_item item;
876 0 : __u8 *start = hid->dev_rdesc;
877 0 : __u8 *end = start + hid->dev_rsize;
878 : static int (*dispatch_type[])(struct hid_parser *parser,
879 : struct hid_item *item) = {
880 : hid_scan_main,
881 : hid_parser_global,
882 : hid_parser_local,
883 : hid_parser_reserved
884 : };
885 :
886 0 : parser = vzalloc(sizeof(struct hid_parser));
887 0 : if (!parser)
888 : return -ENOMEM;
889 :
890 0 : parser->device = hid;
891 0 : hid->group = HID_GROUP_GENERIC;
892 :
893 : /*
894 : * The parsing is simpler than the one in hid_open_report() as we should
895 : * be robust against hid errors. Those errors will be raised by
896 : * hid_open_report() anyway.
897 : */
898 0 : while ((start = fetch_item(start, end, &item)) != NULL)
899 0 : dispatch_type[item.type](parser, &item);
900 :
901 : /*
902 : * Handle special flags set during scanning.
903 : */
904 0 : if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 0 : (hid->group == HID_GROUP_MULTITOUCH))
906 0 : hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907 :
908 : /*
909 : * Vendor specific handlings
910 : */
911 0 : switch (hid->vendor) {
912 : case USB_VENDOR_ID_WACOM:
913 0 : hid->group = HID_GROUP_WACOM;
914 0 : break;
915 : case USB_VENDOR_ID_SYNAPTICS:
916 0 : if (hid->group == HID_GROUP_GENERIC)
917 0 : if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 : && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 : /*
920 : * hid-rmi should take care of them,
921 : * not hid-generic
922 : */
923 0 : hid->group = HID_GROUP_RMI;
924 : break;
925 : }
926 :
927 0 : kfree(parser->collection_stack);
928 0 : vfree(parser);
929 0 : return 0;
930 : }
931 :
932 : /**
933 : * hid_parse_report - parse device report
934 : *
935 : * @hid: hid device
936 : * @start: report start
937 : * @size: report size
938 : *
939 : * Allocate the device report as read by the bus driver. This function should
940 : * only be called from parse() in ll drivers.
941 : */
942 0 : int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 : {
944 0 : hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 0 : if (!hid->dev_rdesc)
946 : return -ENOMEM;
947 0 : hid->dev_rsize = size;
948 0 : return 0;
949 : }
950 : EXPORT_SYMBOL_GPL(hid_parse_report);
951 :
952 : static const char * const hid_report_names[] = {
953 : "HID_INPUT_REPORT",
954 : "HID_OUTPUT_REPORT",
955 : "HID_FEATURE_REPORT",
956 : };
957 : /**
958 : * hid_validate_values - validate existing device report's value indexes
959 : *
960 : * @hid: hid device
961 : * @type: which report type to examine
962 : * @id: which report ID to examine (0 for first)
963 : * @field_index: which report field to examine
964 : * @report_counts: expected number of values
965 : *
966 : * Validate the number of values in a given field of a given report, after
967 : * parsing.
968 : */
969 0 : struct hid_report *hid_validate_values(struct hid_device *hid,
970 : unsigned int type, unsigned int id,
971 : unsigned int field_index,
972 : unsigned int report_counts)
973 : {
974 : struct hid_report *report;
975 :
976 0 : if (type > HID_FEATURE_REPORT) {
977 0 : hid_err(hid, "invalid HID report type %u\n", type);
978 0 : return NULL;
979 : }
980 :
981 0 : if (id >= HID_MAX_IDS) {
982 0 : hid_err(hid, "invalid HID report id %u\n", id);
983 0 : return NULL;
984 : }
985 :
986 : /*
987 : * Explicitly not using hid_get_report() here since it depends on
988 : * ->numbered being checked, which may not always be the case when
989 : * drivers go to access report values.
990 : */
991 0 : if (id == 0) {
992 : /*
993 : * Validating on id 0 means we should examine the first
994 : * report in the list.
995 : */
996 0 : report = list_entry(
997 : hid->report_enum[type].report_list.next,
998 : struct hid_report, list);
999 : } else {
1000 0 : report = hid->report_enum[type].report_id_hash[id];
1001 : }
1002 0 : if (!report) {
1003 0 : hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 0 : return NULL;
1005 : }
1006 0 : if (report->maxfield <= field_index) {
1007 0 : hid_err(hid, "not enough fields in %s %u\n",
1008 : hid_report_names[type], id);
1009 0 : return NULL;
1010 : }
1011 0 : if (report->field[field_index]->report_count < report_counts) {
1012 0 : hid_err(hid, "not enough values in %s %u field %u\n",
1013 : hid_report_names[type], id, field_index);
1014 0 : return NULL;
1015 : }
1016 : return report;
1017 : }
1018 : EXPORT_SYMBOL_GPL(hid_validate_values);
1019 :
1020 0 : static int hid_calculate_multiplier(struct hid_device *hid,
1021 : struct hid_field *multiplier)
1022 : {
1023 : int m;
1024 0 : __s32 v = *multiplier->value;
1025 0 : __s32 lmin = multiplier->logical_minimum;
1026 0 : __s32 lmax = multiplier->logical_maximum;
1027 0 : __s32 pmin = multiplier->physical_minimum;
1028 0 : __s32 pmax = multiplier->physical_maximum;
1029 :
1030 : /*
1031 : * "Because OS implementations will generally divide the control's
1032 : * reported count by the Effective Resolution Multiplier, designers
1033 : * should take care not to establish a potential Effective
1034 : * Resolution Multiplier of zero."
1035 : * HID Usage Table, v1.12, Section 4.3.1, p31
1036 : */
1037 0 : if (lmax - lmin == 0)
1038 : return 1;
1039 : /*
1040 : * Handling the unit exponent is left as an exercise to whoever
1041 : * finds a device where that exponent is not 0.
1042 : */
1043 0 : m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 0 : if (unlikely(multiplier->unit_exponent != 0)) {
1045 0 : hid_warn(hid,
1046 : "unsupported Resolution Multiplier unit exponent %d\n",
1047 : multiplier->unit_exponent);
1048 : }
1049 :
1050 : /* There are no devices with an effective multiplier > 255 */
1051 0 : if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 0 : hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 0 : m = 1;
1054 : }
1055 :
1056 : return m;
1057 : }
1058 :
1059 0 : static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 : struct hid_field *field,
1061 : struct hid_collection *multiplier_collection,
1062 : int effective_multiplier)
1063 : {
1064 : struct hid_collection *collection;
1065 : struct hid_usage *usage;
1066 : int i;
1067 :
1068 : /*
1069 : * If multiplier_collection is NULL, the multiplier applies
1070 : * to all fields in the report.
1071 : * Otherwise, it is the Logical Collection the multiplier applies to
1072 : * but our field may be in a subcollection of that collection.
1073 : */
1074 0 : for (i = 0; i < field->maxusage; i++) {
1075 0 : usage = &field->usage[i];
1076 :
1077 0 : collection = &hid->collection[usage->collection_index];
1078 0 : while (collection->parent_idx != -1 &&
1079 : collection != multiplier_collection)
1080 0 : collection = &hid->collection[collection->parent_idx];
1081 :
1082 0 : if (collection->parent_idx != -1 ||
1083 : multiplier_collection == NULL)
1084 0 : usage->resolution_multiplier = effective_multiplier;
1085 :
1086 : }
1087 0 : }
1088 :
1089 0 : static void hid_apply_multiplier(struct hid_device *hid,
1090 : struct hid_field *multiplier)
1091 : {
1092 : struct hid_report_enum *rep_enum;
1093 : struct hid_report *rep;
1094 : struct hid_field *field;
1095 : struct hid_collection *multiplier_collection;
1096 : int effective_multiplier;
1097 : int i;
1098 :
1099 : /*
1100 : * "The Resolution Multiplier control must be contained in the same
1101 : * Logical Collection as the control(s) to which it is to be applied.
1102 : * If no Resolution Multiplier is defined, then the Resolution
1103 : * Multiplier defaults to 1. If more than one control exists in a
1104 : * Logical Collection, the Resolution Multiplier is associated with
1105 : * all controls in the collection. If no Logical Collection is
1106 : * defined, the Resolution Multiplier is associated with all
1107 : * controls in the report."
1108 : * HID Usage Table, v1.12, Section 4.3.1, p30
1109 : *
1110 : * Thus, search from the current collection upwards until we find a
1111 : * logical collection. Then search all fields for that same parent
1112 : * collection. Those are the fields the multiplier applies to.
1113 : *
1114 : * If we have more than one multiplier, it will overwrite the
1115 : * applicable fields later.
1116 : */
1117 0 : multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 0 : while (multiplier_collection->parent_idx != -1 &&
1119 0 : multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 0 : multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121 :
1122 0 : effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123 :
1124 0 : rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 0 : for (i = 0; i < rep->maxfield; i++) {
1127 0 : field = rep->field[i];
1128 0 : hid_apply_multiplier_to_field(hid, field,
1129 : multiplier_collection,
1130 : effective_multiplier);
1131 : }
1132 : }
1133 0 : }
1134 :
1135 : /*
1136 : * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 : *
1138 : * @device: hid device
1139 : *
1140 : * Search for all Resolution Multiplier Feature Reports and apply their
1141 : * value to all matching Input items. This only updates the internal struct
1142 : * fields.
1143 : *
1144 : * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 : * is anything other than 1, the hardware will send pre-multiplied events
1146 : * so that the same physical interaction generates an accumulated
1147 : * accumulated_value = value * * multiplier
1148 : * This may be achieved by sending
1149 : * - "value * multiplier" for each event, or
1150 : * - "value" but "multiplier" times as frequently, or
1151 : * - a combination of the above
1152 : * The only guarantee is that the same physical interaction always generates
1153 : * an accumulated 'value * multiplier'.
1154 : *
1155 : * This function must be called before any event processing and after
1156 : * any SetRequest to the Resolution Multiplier.
1157 : */
1158 0 : void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 : {
1160 : struct hid_report_enum *rep_enum;
1161 : struct hid_report *rep;
1162 : struct hid_usage *usage;
1163 : int i, j;
1164 :
1165 0 : rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 0 : list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 0 : for (i = 0; i < rep->maxfield; i++) {
1168 : /* Ignore if report count is out of bounds. */
1169 0 : if (rep->field[i]->report_count < 1)
1170 0 : continue;
1171 :
1172 0 : for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 0 : usage = &rep->field[i]->usage[j];
1174 0 : if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 0 : hid_apply_multiplier(hid,
1176 : rep->field[i]);
1177 : }
1178 : }
1179 : }
1180 0 : }
1181 : EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182 :
1183 : /**
1184 : * hid_open_report - open a driver-specific device report
1185 : *
1186 : * @device: hid device
1187 : *
1188 : * Parse a report description into a hid_device structure. Reports are
1189 : * enumerated, fields are attached to these reports.
1190 : * 0 returned on success, otherwise nonzero error value.
1191 : *
1192 : * This function (or the equivalent hid_parse() macro) should only be
1193 : * called from probe() in drivers, before starting the device.
1194 : */
1195 0 : int hid_open_report(struct hid_device *device)
1196 : {
1197 : struct hid_parser *parser;
1198 : struct hid_item item;
1199 : unsigned int size;
1200 : __u8 *start;
1201 : __u8 *buf;
1202 : __u8 *end;
1203 : __u8 *next;
1204 : int ret;
1205 : static int (*dispatch_type[])(struct hid_parser *parser,
1206 : struct hid_item *item) = {
1207 : hid_parser_main,
1208 : hid_parser_global,
1209 : hid_parser_local,
1210 : hid_parser_reserved
1211 : };
1212 :
1213 0 : if (WARN_ON(device->status & HID_STAT_PARSED))
1214 : return -EBUSY;
1215 :
1216 0 : start = device->dev_rdesc;
1217 0 : if (WARN_ON(!start))
1218 : return -ENODEV;
1219 0 : size = device->dev_rsize;
1220 :
1221 0 : buf = kmemdup(start, size, GFP_KERNEL);
1222 0 : if (buf == NULL)
1223 : return -ENOMEM;
1224 :
1225 0 : if (device->driver->report_fixup)
1226 0 : start = device->driver->report_fixup(device, buf, &size);
1227 : else
1228 : start = buf;
1229 :
1230 0 : start = kmemdup(start, size, GFP_KERNEL);
1231 0 : kfree(buf);
1232 0 : if (start == NULL)
1233 : return -ENOMEM;
1234 :
1235 0 : device->rdesc = start;
1236 0 : device->rsize = size;
1237 :
1238 0 : parser = vzalloc(sizeof(struct hid_parser));
1239 0 : if (!parser) {
1240 : ret = -ENOMEM;
1241 : goto alloc_err;
1242 : }
1243 :
1244 0 : parser->device = device;
1245 :
1246 0 : end = start + size;
1247 :
1248 0 : device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249 : sizeof(struct hid_collection), GFP_KERNEL);
1250 0 : if (!device->collection) {
1251 : ret = -ENOMEM;
1252 : goto err;
1253 : }
1254 0 : device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255 :
1256 0 : ret = -EINVAL;
1257 0 : while ((next = fetch_item(start, end, &item)) != NULL) {
1258 0 : start = next;
1259 :
1260 0 : if (item.format != HID_ITEM_FORMAT_SHORT) {
1261 0 : hid_err(device, "unexpected long global item\n");
1262 0 : goto err;
1263 : }
1264 :
1265 0 : if (dispatch_type[item.type](parser, &item)) {
1266 0 : hid_err(device, "item %u %u %u %u parsing failed\n",
1267 : item.format, (unsigned)item.size,
1268 : (unsigned)item.type, (unsigned)item.tag);
1269 0 : goto err;
1270 : }
1271 :
1272 0 : if (start == end) {
1273 0 : if (parser->collection_stack_ptr) {
1274 0 : hid_err(device, "unbalanced collection at end of report description\n");
1275 0 : goto err;
1276 : }
1277 0 : if (parser->local.delimiter_depth) {
1278 0 : hid_err(device, "unbalanced delimiter at end of report description\n");
1279 0 : goto err;
1280 : }
1281 :
1282 : /*
1283 : * fetch initial values in case the device's
1284 : * default multiplier isn't the recommended 1
1285 : */
1286 0 : hid_setup_resolution_multiplier(device);
1287 :
1288 0 : kfree(parser->collection_stack);
1289 0 : vfree(parser);
1290 0 : device->status |= HID_STAT_PARSED;
1291 :
1292 0 : return 0;
1293 : }
1294 : }
1295 :
1296 0 : hid_err(device, "item fetching failed at offset %u/%u\n",
1297 : size - (unsigned int)(end - start), size);
1298 : err:
1299 0 : kfree(parser->collection_stack);
1300 : alloc_err:
1301 0 : vfree(parser);
1302 0 : hid_close_report(device);
1303 0 : return ret;
1304 : }
1305 : EXPORT_SYMBOL_GPL(hid_open_report);
1306 :
1307 : /*
1308 : * Convert a signed n-bit integer to signed 32-bit integer. Common
1309 : * cases are done through the compiler, the screwed things has to be
1310 : * done by hand.
1311 : */
1312 :
1313 0 : static s32 snto32(__u32 value, unsigned n)
1314 : {
1315 0 : if (!value || !n)
1316 : return 0;
1317 :
1318 0 : switch (n) {
1319 0 : case 8: return ((__s8)value);
1320 0 : case 16: return ((__s16)value);
1321 0 : case 32: return ((__s32)value);
1322 : }
1323 0 : return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1324 : }
1325 :
1326 0 : s32 hid_snto32(__u32 value, unsigned n)
1327 : {
1328 0 : return snto32(value, n);
1329 : }
1330 : EXPORT_SYMBOL_GPL(hid_snto32);
1331 :
1332 : /*
1333 : * Convert a signed 32-bit integer to a signed n-bit integer.
1334 : */
1335 :
1336 : static u32 s32ton(__s32 value, unsigned n)
1337 : {
1338 0 : s32 a = value >> (n - 1);
1339 0 : if (a && a != -1)
1340 0 : return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1341 0 : return value & ((1 << n) - 1);
1342 : }
1343 :
1344 : /*
1345 : * Extract/implement a data field from/to a little endian report (bit array).
1346 : *
1347 : * Code sort-of follows HID spec:
1348 : * http://www.usb.org/developers/hidpage/HID1_11.pdf
1349 : *
1350 : * While the USB HID spec allows unlimited length bit fields in "report
1351 : * descriptors", most devices never use more than 16 bits.
1352 : * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1353 : * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1354 : */
1355 :
1356 : static u32 __extract(u8 *report, unsigned offset, int n)
1357 : {
1358 0 : unsigned int idx = offset / 8;
1359 0 : unsigned int bit_nr = 0;
1360 0 : unsigned int bit_shift = offset % 8;
1361 0 : int bits_to_copy = 8 - bit_shift;
1362 0 : u32 value = 0;
1363 0 : u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1364 :
1365 0 : while (n > 0) {
1366 0 : value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1367 0 : n -= bits_to_copy;
1368 0 : bit_nr += bits_to_copy;
1369 0 : bits_to_copy = 8;
1370 0 : bit_shift = 0;
1371 0 : idx++;
1372 : }
1373 :
1374 0 : return value & mask;
1375 : }
1376 :
1377 0 : u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1378 : unsigned offset, unsigned n)
1379 : {
1380 0 : if (n > 32) {
1381 0 : hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1382 : __func__, n, current->comm);
1383 : n = 32;
1384 : }
1385 :
1386 0 : return __extract(report, offset, n);
1387 : }
1388 : EXPORT_SYMBOL_GPL(hid_field_extract);
1389 :
1390 : /*
1391 : * "implement" : set bits in a little endian bit stream.
1392 : * Same concepts as "extract" (see comments above).
1393 : * The data mangled in the bit stream remains in little endian
1394 : * order the whole time. It make more sense to talk about
1395 : * endianness of register values by considering a register
1396 : * a "cached" copy of the little endian bit stream.
1397 : */
1398 :
1399 0 : static void __implement(u8 *report, unsigned offset, int n, u32 value)
1400 : {
1401 0 : unsigned int idx = offset / 8;
1402 0 : unsigned int bit_shift = offset % 8;
1403 0 : int bits_to_set = 8 - bit_shift;
1404 :
1405 0 : while (n - bits_to_set >= 0) {
1406 0 : report[idx] &= ~(0xff << bit_shift);
1407 0 : report[idx] |= value << bit_shift;
1408 0 : value >>= bits_to_set;
1409 0 : n -= bits_to_set;
1410 0 : bits_to_set = 8;
1411 0 : bit_shift = 0;
1412 0 : idx++;
1413 : }
1414 :
1415 : /* last nibble */
1416 0 : if (n) {
1417 0 : u8 bit_mask = ((1U << n) - 1);
1418 0 : report[idx] &= ~(bit_mask << bit_shift);
1419 0 : report[idx] |= value << bit_shift;
1420 : }
1421 0 : }
1422 :
1423 0 : static void implement(const struct hid_device *hid, u8 *report,
1424 : unsigned offset, unsigned n, u32 value)
1425 : {
1426 0 : if (unlikely(n > 32)) {
1427 0 : hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1428 : __func__, n, current->comm);
1429 0 : n = 32;
1430 0 : } else if (n < 32) {
1431 0 : u32 m = (1U << n) - 1;
1432 :
1433 0 : if (unlikely(value > m)) {
1434 0 : hid_warn(hid,
1435 : "%s() called with too large value %d (n: %d)! (%s)\n",
1436 : __func__, value, n, current->comm);
1437 0 : WARN_ON(1);
1438 0 : value &= m;
1439 : }
1440 : }
1441 :
1442 0 : __implement(report, offset, n, value);
1443 0 : }
1444 :
1445 : /*
1446 : * Search an array for a value.
1447 : */
1448 :
1449 : static int search(__s32 *array, __s32 value, unsigned n)
1450 : {
1451 0 : while (n--) {
1452 0 : if (*array++ == value)
1453 : return 0;
1454 : }
1455 : return -1;
1456 : }
1457 :
1458 : /**
1459 : * hid_match_report - check if driver's raw_event should be called
1460 : *
1461 : * @hid: hid device
1462 : * @report: hid report to match against
1463 : *
1464 : * compare hid->driver->report_table->report_type to report->type
1465 : */
1466 : static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1467 : {
1468 0 : const struct hid_report_id *id = hid->driver->report_table;
1469 :
1470 0 : if (!id) /* NULL means all */
1471 : return 1;
1472 :
1473 0 : for (; id->report_type != HID_TERMINATOR; id++)
1474 0 : if (id->report_type == HID_ANY_ID ||
1475 0 : id->report_type == report->type)
1476 : return 1;
1477 : return 0;
1478 : }
1479 :
1480 : /**
1481 : * hid_match_usage - check if driver's event should be called
1482 : *
1483 : * @hid: hid device
1484 : * @usage: usage to match against
1485 : *
1486 : * compare hid->driver->usage_table->usage_{type,code} to
1487 : * usage->usage_{type,code}
1488 : */
1489 0 : static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1490 : {
1491 0 : const struct hid_usage_id *id = hid->driver->usage_table;
1492 :
1493 0 : if (!id) /* NULL means all */
1494 : return 1;
1495 :
1496 0 : for (; id->usage_type != HID_ANY_ID - 1; id++)
1497 0 : if ((id->usage_hid == HID_ANY_ID ||
1498 0 : id->usage_hid == usage->hid) &&
1499 0 : (id->usage_type == HID_ANY_ID ||
1500 0 : id->usage_type == usage->type) &&
1501 0 : (id->usage_code == HID_ANY_ID ||
1502 0 : id->usage_code == usage->code))
1503 : return 1;
1504 : return 0;
1505 : }
1506 :
1507 0 : static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1508 : struct hid_usage *usage, __s32 value, int interrupt)
1509 : {
1510 0 : struct hid_driver *hdrv = hid->driver;
1511 : int ret;
1512 :
1513 0 : if (!list_empty(&hid->debug_list))
1514 : hid_dump_input(hid, usage, value);
1515 :
1516 0 : if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1517 0 : ret = hdrv->event(hid, field, usage, value);
1518 0 : if (ret != 0) {
1519 0 : if (ret < 0)
1520 0 : hid_err(hid, "%s's event failed with %d\n",
1521 : hdrv->name, ret);
1522 : return;
1523 : }
1524 : }
1525 :
1526 0 : if (hid->claimed & HID_CLAIMED_INPUT)
1527 0 : hidinput_hid_event(hid, field, usage, value);
1528 0 : if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1529 0 : hid->hiddev_hid_event(hid, field, usage, value);
1530 : }
1531 :
1532 : /*
1533 : * Checks if the given value is valid within this field
1534 : */
1535 : static inline int hid_array_value_is_valid(struct hid_field *field,
1536 : __s32 value)
1537 : {
1538 0 : __s32 min = field->logical_minimum;
1539 :
1540 : /*
1541 : * Value needs to be between logical min and max, and
1542 : * (value - min) is used as an index in the usage array.
1543 : * This array is of size field->maxusage
1544 : */
1545 0 : return value >= min &&
1546 0 : value <= field->logical_maximum &&
1547 0 : value - min < field->maxusage;
1548 : }
1549 :
1550 : /*
1551 : * Fetch the field from the data. The field content is stored for next
1552 : * report processing (we do differential reporting to the layer).
1553 : */
1554 0 : static void hid_input_fetch_field(struct hid_device *hid,
1555 : struct hid_field *field,
1556 : __u8 *data)
1557 : {
1558 : unsigned n;
1559 0 : unsigned count = field->report_count;
1560 0 : unsigned offset = field->report_offset;
1561 0 : unsigned size = field->report_size;
1562 0 : __s32 min = field->logical_minimum;
1563 : __s32 *value;
1564 :
1565 0 : value = field->new_value;
1566 0 : memset(value, 0, count * sizeof(__s32));
1567 0 : field->ignored = false;
1568 :
1569 0 : for (n = 0; n < count; n++) {
1570 :
1571 0 : value[n] = min < 0 ?
1572 0 : snto32(hid_field_extract(hid, data, offset + n * size,
1573 0 : size), size) :
1574 0 : hid_field_extract(hid, data, offset + n * size, size);
1575 :
1576 : /* Ignore report if ErrorRollOver */
1577 0 : if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1578 0 : hid_array_value_is_valid(field, value[n]) &&
1579 0 : field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1580 0 : field->ignored = true;
1581 0 : return;
1582 : }
1583 : }
1584 : }
1585 :
1586 : /*
1587 : * Process a received variable field.
1588 : */
1589 :
1590 0 : static void hid_input_var_field(struct hid_device *hid,
1591 : struct hid_field *field,
1592 : int interrupt)
1593 : {
1594 0 : unsigned int count = field->report_count;
1595 0 : __s32 *value = field->new_value;
1596 : unsigned int n;
1597 :
1598 0 : for (n = 0; n < count; n++)
1599 0 : hid_process_event(hid,
1600 : field,
1601 0 : &field->usage[n],
1602 0 : value[n],
1603 : interrupt);
1604 :
1605 0 : memcpy(field->value, value, count * sizeof(__s32));
1606 0 : }
1607 :
1608 : /*
1609 : * Process a received array field. The field content is stored for
1610 : * next report processing (we do differential reporting to the layer).
1611 : */
1612 :
1613 0 : static void hid_input_array_field(struct hid_device *hid,
1614 : struct hid_field *field,
1615 : int interrupt)
1616 : {
1617 : unsigned int n;
1618 0 : unsigned int count = field->report_count;
1619 0 : __s32 min = field->logical_minimum;
1620 : __s32 *value;
1621 :
1622 0 : value = field->new_value;
1623 :
1624 : /* ErrorRollOver */
1625 0 : if (field->ignored)
1626 : return;
1627 :
1628 0 : for (n = 0; n < count; n++) {
1629 0 : if (hid_array_value_is_valid(field, field->value[n]) &&
1630 0 : search(value, field->value[n], count))
1631 0 : hid_process_event(hid,
1632 : field,
1633 0 : &field->usage[field->value[n] - min],
1634 : 0,
1635 : interrupt);
1636 :
1637 0 : if (hid_array_value_is_valid(field, value[n]) &&
1638 0 : search(field->value, value[n], count))
1639 0 : hid_process_event(hid,
1640 : field,
1641 0 : &field->usage[value[n] - min],
1642 : 1,
1643 : interrupt);
1644 : }
1645 :
1646 0 : memcpy(field->value, value, count * sizeof(__s32));
1647 : }
1648 :
1649 : /*
1650 : * Analyse a received report, and fetch the data from it. The field
1651 : * content is stored for next report processing (we do differential
1652 : * reporting to the layer).
1653 : */
1654 0 : static void hid_process_report(struct hid_device *hid,
1655 : struct hid_report *report,
1656 : __u8 *data,
1657 : int interrupt)
1658 : {
1659 : unsigned int a;
1660 : struct hid_field_entry *entry;
1661 : struct hid_field *field;
1662 :
1663 : /* first retrieve all incoming values in data */
1664 0 : for (a = 0; a < report->maxfield; a++)
1665 0 : hid_input_fetch_field(hid, field = report->field[a], data);
1666 :
1667 0 : if (!list_empty(&report->field_entry_list)) {
1668 : /* INPUT_REPORT, we have a priority list of fields */
1669 0 : list_for_each_entry(entry,
1670 : &report->field_entry_list,
1671 : list) {
1672 0 : field = entry->field;
1673 :
1674 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1675 0 : hid_process_event(hid,
1676 : field,
1677 0 : &field->usage[entry->index],
1678 0 : field->new_value[entry->index],
1679 : interrupt);
1680 : else
1681 0 : hid_input_array_field(hid, field, interrupt);
1682 : }
1683 :
1684 : /* we need to do the memcpy at the end for var items */
1685 0 : for (a = 0; a < report->maxfield; a++) {
1686 0 : field = report->field[a];
1687 :
1688 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689 0 : memcpy(field->value, field->new_value,
1690 0 : field->report_count * sizeof(__s32));
1691 : }
1692 : } else {
1693 : /* FEATURE_REPORT, regular processing */
1694 0 : for (a = 0; a < report->maxfield; a++) {
1695 0 : field = report->field[a];
1696 :
1697 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1698 0 : hid_input_var_field(hid, field, interrupt);
1699 : else
1700 0 : hid_input_array_field(hid, field, interrupt);
1701 : }
1702 : }
1703 0 : }
1704 :
1705 : /*
1706 : * Insert a given usage_index in a field in the list
1707 : * of processed usages in the report.
1708 : *
1709 : * The elements of lower priority score are processed
1710 : * first.
1711 : */
1712 : static void __hid_insert_field_entry(struct hid_device *hid,
1713 : struct hid_report *report,
1714 : struct hid_field_entry *entry,
1715 : struct hid_field *field,
1716 : unsigned int usage_index)
1717 : {
1718 : struct hid_field_entry *next;
1719 :
1720 0 : entry->field = field;
1721 0 : entry->index = usage_index;
1722 0 : entry->priority = field->usages_priorities[usage_index];
1723 :
1724 : /* insert the element at the correct position */
1725 0 : list_for_each_entry(next,
1726 : &report->field_entry_list,
1727 : list) {
1728 : /*
1729 : * the priority of our element is strictly higher
1730 : * than the next one, insert it before
1731 : */
1732 0 : if (entry->priority > next->priority) {
1733 0 : list_add_tail(&entry->list, &next->list);
1734 : return;
1735 : }
1736 : }
1737 :
1738 : /* lowest priority score: insert at the end */
1739 0 : list_add_tail(&entry->list, &report->field_entry_list);
1740 : }
1741 :
1742 0 : static void hid_report_process_ordering(struct hid_device *hid,
1743 : struct hid_report *report)
1744 : {
1745 : struct hid_field *field;
1746 : struct hid_field_entry *entries;
1747 : unsigned int a, u, usages;
1748 0 : unsigned int count = 0;
1749 :
1750 : /* count the number of individual fields in the report */
1751 0 : for (a = 0; a < report->maxfield; a++) {
1752 0 : field = report->field[a];
1753 :
1754 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE)
1755 0 : count += field->report_count;
1756 : else
1757 0 : count++;
1758 : }
1759 :
1760 : /* allocate the memory to process the fields */
1761 0 : entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1762 0 : if (!entries)
1763 : return;
1764 :
1765 0 : report->field_entries = entries;
1766 :
1767 : /*
1768 : * walk through all fields in the report and
1769 : * store them by priority order in report->field_entry_list
1770 : *
1771 : * - Var elements are individualized (field + usage_index)
1772 : * - Arrays are taken as one, we can not chose an order for them
1773 : */
1774 0 : usages = 0;
1775 0 : for (a = 0; a < report->maxfield; a++) {
1776 0 : field = report->field[a];
1777 :
1778 0 : if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1779 0 : for (u = 0; u < field->report_count; u++) {
1780 0 : __hid_insert_field_entry(hid, report,
1781 0 : &entries[usages],
1782 : field, u);
1783 0 : usages++;
1784 : }
1785 : } else {
1786 0 : __hid_insert_field_entry(hid, report, &entries[usages],
1787 : field, 0);
1788 0 : usages++;
1789 : }
1790 : }
1791 : }
1792 :
1793 : static void hid_process_ordering(struct hid_device *hid)
1794 : {
1795 : struct hid_report *report;
1796 0 : struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1797 :
1798 0 : list_for_each_entry(report, &report_enum->report_list, list)
1799 0 : hid_report_process_ordering(hid, report);
1800 : }
1801 :
1802 : /*
1803 : * Output the field into the report.
1804 : */
1805 :
1806 0 : static void hid_output_field(const struct hid_device *hid,
1807 : struct hid_field *field, __u8 *data)
1808 : {
1809 0 : unsigned count = field->report_count;
1810 0 : unsigned offset = field->report_offset;
1811 0 : unsigned size = field->report_size;
1812 : unsigned n;
1813 :
1814 0 : for (n = 0; n < count; n++) {
1815 0 : if (field->logical_minimum < 0) /* signed values */
1816 0 : implement(hid, data, offset + n * size, size,
1817 0 : s32ton(field->value[n], size));
1818 : else /* unsigned values */
1819 0 : implement(hid, data, offset + n * size, size,
1820 0 : field->value[n]);
1821 : }
1822 0 : }
1823 :
1824 : /*
1825 : * Compute the size of a report.
1826 : */
1827 : static size_t hid_compute_report_size(struct hid_report *report)
1828 : {
1829 0 : if (report->size)
1830 0 : return ((report->size - 1) >> 3) + 1;
1831 :
1832 : return 0;
1833 : }
1834 :
1835 : /*
1836 : * Create a report. 'data' has to be allocated using
1837 : * hid_alloc_report_buf() so that it has proper size.
1838 : */
1839 :
1840 0 : void hid_output_report(struct hid_report *report, __u8 *data)
1841 : {
1842 : unsigned n;
1843 :
1844 0 : if (report->id > 0)
1845 0 : *data++ = report->id;
1846 :
1847 0 : memset(data, 0, hid_compute_report_size(report));
1848 0 : for (n = 0; n < report->maxfield; n++)
1849 0 : hid_output_field(report->device, report->field[n], data);
1850 0 : }
1851 : EXPORT_SYMBOL_GPL(hid_output_report);
1852 :
1853 : /*
1854 : * Allocator for buffer that is going to be passed to hid_output_report()
1855 : */
1856 0 : u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1857 : {
1858 : /*
1859 : * 7 extra bytes are necessary to achieve proper functionality
1860 : * of implement() working on 8 byte chunks
1861 : */
1862 :
1863 0 : u32 len = hid_report_len(report) + 7;
1864 :
1865 0 : return kmalloc(len, flags);
1866 : }
1867 : EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1868 :
1869 : /*
1870 : * Set a field value. The report this field belongs to has to be
1871 : * created and transferred to the device, to set this value in the
1872 : * device.
1873 : */
1874 :
1875 0 : int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1876 : {
1877 : unsigned size;
1878 :
1879 0 : if (!field)
1880 : return -1;
1881 :
1882 0 : size = field->report_size;
1883 :
1884 : hid_dump_input(field->report->device, field->usage + offset, value);
1885 :
1886 0 : if (offset >= field->report_count) {
1887 0 : hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1888 : offset, field->report_count);
1889 0 : return -1;
1890 : }
1891 0 : if (field->logical_minimum < 0) {
1892 0 : if (value != snto32(s32ton(value, size), size)) {
1893 0 : hid_err(field->report->device, "value %d is out of range\n", value);
1894 0 : return -1;
1895 : }
1896 : }
1897 0 : field->value[offset] = value;
1898 0 : return 0;
1899 : }
1900 : EXPORT_SYMBOL_GPL(hid_set_field);
1901 :
1902 0 : static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1903 : const u8 *data)
1904 : {
1905 : struct hid_report *report;
1906 0 : unsigned int n = 0; /* Normally report number is 0 */
1907 :
1908 : /* Device uses numbered reports, data[0] is report number */
1909 0 : if (report_enum->numbered)
1910 0 : n = *data;
1911 :
1912 0 : report = report_enum->report_id_hash[n];
1913 0 : if (report == NULL)
1914 0 : dbg_hid("undefined report_id %u received\n", n);
1915 :
1916 0 : return report;
1917 : }
1918 :
1919 : /*
1920 : * Implement a generic .request() callback, using .raw_request()
1921 : * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1922 : */
1923 0 : int __hid_request(struct hid_device *hid, struct hid_report *report,
1924 : int reqtype)
1925 : {
1926 : char *buf;
1927 : int ret;
1928 : u32 len;
1929 :
1930 0 : buf = hid_alloc_report_buf(report, GFP_KERNEL);
1931 0 : if (!buf)
1932 : return -ENOMEM;
1933 :
1934 0 : len = hid_report_len(report);
1935 :
1936 0 : if (reqtype == HID_REQ_SET_REPORT)
1937 0 : hid_output_report(report, buf);
1938 :
1939 0 : ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1940 0 : report->type, reqtype);
1941 0 : if (ret < 0) {
1942 0 : dbg_hid("unable to complete request: %d\n", ret);
1943 : goto out;
1944 : }
1945 :
1946 0 : if (reqtype == HID_REQ_GET_REPORT)
1947 0 : hid_input_report(hid, report->type, buf, ret, 0);
1948 :
1949 : ret = 0;
1950 :
1951 : out:
1952 0 : kfree(buf);
1953 0 : return ret;
1954 : }
1955 : EXPORT_SYMBOL_GPL(__hid_request);
1956 :
1957 0 : int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1958 : int interrupt)
1959 : {
1960 0 : struct hid_report_enum *report_enum = hid->report_enum + type;
1961 : struct hid_report *report;
1962 : struct hid_driver *hdrv;
1963 0 : u32 rsize, csize = size;
1964 0 : u8 *cdata = data;
1965 0 : int ret = 0;
1966 :
1967 0 : report = hid_get_report(report_enum, data);
1968 0 : if (!report)
1969 : goto out;
1970 :
1971 0 : if (report_enum->numbered) {
1972 0 : cdata++;
1973 0 : csize--;
1974 : }
1975 :
1976 0 : rsize = hid_compute_report_size(report);
1977 :
1978 0 : if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1979 : rsize = HID_MAX_BUFFER_SIZE - 1;
1980 0 : else if (rsize > HID_MAX_BUFFER_SIZE)
1981 0 : rsize = HID_MAX_BUFFER_SIZE;
1982 :
1983 0 : if (csize < rsize) {
1984 0 : dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1985 : csize, rsize);
1986 0 : memset(cdata + csize, 0, rsize - csize);
1987 : }
1988 :
1989 0 : if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1990 0 : hid->hiddev_report_event(hid, report);
1991 0 : if (hid->claimed & HID_CLAIMED_HIDRAW) {
1992 : ret = hidraw_report_event(hid, data, size);
1993 : if (ret)
1994 : goto out;
1995 : }
1996 :
1997 0 : if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1998 0 : hid_process_report(hid, report, cdata, interrupt);
1999 0 : hdrv = hid->driver;
2000 0 : if (hdrv && hdrv->report)
2001 0 : hdrv->report(hid, report);
2002 : }
2003 :
2004 0 : if (hid->claimed & HID_CLAIMED_INPUT)
2005 0 : hidinput_report_event(hid, report);
2006 : out:
2007 0 : return ret;
2008 : }
2009 : EXPORT_SYMBOL_GPL(hid_report_raw_event);
2010 :
2011 : /**
2012 : * hid_input_report - report data from lower layer (usb, bt...)
2013 : *
2014 : * @hid: hid device
2015 : * @type: HID report type (HID_*_REPORT)
2016 : * @data: report contents
2017 : * @size: size of data parameter
2018 : * @interrupt: distinguish between interrupt and control transfers
2019 : *
2020 : * This is data entry for lower layers.
2021 : */
2022 0 : int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
2023 : {
2024 : struct hid_report_enum *report_enum;
2025 : struct hid_driver *hdrv;
2026 : struct hid_report *report;
2027 0 : int ret = 0;
2028 :
2029 0 : if (!hid)
2030 : return -ENODEV;
2031 :
2032 0 : if (down_trylock(&hid->driver_input_lock))
2033 : return -EBUSY;
2034 :
2035 0 : if (!hid->driver) {
2036 : ret = -ENODEV;
2037 : goto unlock;
2038 : }
2039 0 : report_enum = hid->report_enum + type;
2040 0 : hdrv = hid->driver;
2041 :
2042 0 : if (!size) {
2043 0 : dbg_hid("empty report\n");
2044 : ret = -1;
2045 : goto unlock;
2046 : }
2047 :
2048 : /* Avoid unnecessary overhead if debugfs is disabled */
2049 0 : if (!list_empty(&hid->debug_list))
2050 : hid_dump_report(hid, type, data, size);
2051 :
2052 0 : report = hid_get_report(report_enum, data);
2053 :
2054 0 : if (!report) {
2055 : ret = -1;
2056 : goto unlock;
2057 : }
2058 :
2059 0 : if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2060 0 : ret = hdrv->raw_event(hid, report, data, size);
2061 0 : if (ret < 0)
2062 : goto unlock;
2063 : }
2064 :
2065 0 : ret = hid_report_raw_event(hid, type, data, size, interrupt);
2066 :
2067 : unlock:
2068 0 : up(&hid->driver_input_lock);
2069 0 : return ret;
2070 : }
2071 : EXPORT_SYMBOL_GPL(hid_input_report);
2072 :
2073 0 : bool hid_match_one_id(const struct hid_device *hdev,
2074 : const struct hid_device_id *id)
2075 : {
2076 0 : return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2077 0 : (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2078 0 : (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2079 0 : (id->product == HID_ANY_ID || id->product == hdev->product);
2080 : }
2081 :
2082 0 : const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2083 : const struct hid_device_id *id)
2084 : {
2085 0 : for (; id->bus; id++)
2086 0 : if (hid_match_one_id(hdev, id))
2087 : return id;
2088 :
2089 : return NULL;
2090 : }
2091 :
2092 : static const struct hid_device_id hid_hiddev_list[] = {
2093 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2094 : { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2095 : { }
2096 : };
2097 :
2098 0 : static bool hid_hiddev(struct hid_device *hdev)
2099 : {
2100 0 : return !!hid_match_id(hdev, hid_hiddev_list);
2101 : }
2102 :
2103 :
2104 : static ssize_t
2105 0 : read_report_descriptor(struct file *filp, struct kobject *kobj,
2106 : struct bin_attribute *attr,
2107 : char *buf, loff_t off, size_t count)
2108 : {
2109 0 : struct device *dev = kobj_to_dev(kobj);
2110 0 : struct hid_device *hdev = to_hid_device(dev);
2111 :
2112 0 : if (off >= hdev->rsize)
2113 : return 0;
2114 :
2115 0 : if (off + count > hdev->rsize)
2116 0 : count = hdev->rsize - off;
2117 :
2118 0 : memcpy(buf, hdev->rdesc + off, count);
2119 :
2120 0 : return count;
2121 : }
2122 :
2123 : static ssize_t
2124 0 : show_country(struct device *dev, struct device_attribute *attr,
2125 : char *buf)
2126 : {
2127 0 : struct hid_device *hdev = to_hid_device(dev);
2128 :
2129 0 : return sprintf(buf, "%02x\n", hdev->country & 0xff);
2130 : }
2131 :
2132 : static struct bin_attribute dev_bin_attr_report_desc = {
2133 : .attr = { .name = "report_descriptor", .mode = 0444 },
2134 : .read = read_report_descriptor,
2135 : .size = HID_MAX_DESCRIPTOR_SIZE,
2136 : };
2137 :
2138 : static const struct device_attribute dev_attr_country = {
2139 : .attr = { .name = "country", .mode = 0444 },
2140 : .show = show_country,
2141 : };
2142 :
2143 0 : int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2144 : {
2145 : static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2146 : "Joystick", "Gamepad", "Keyboard", "Keypad",
2147 : "Multi-Axis Controller"
2148 : };
2149 : const char *type, *bus;
2150 0 : char buf[64] = "";
2151 : unsigned int i;
2152 : int len;
2153 : int ret;
2154 :
2155 0 : if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2156 0 : connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2157 0 : if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2158 0 : connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2159 0 : if (hdev->bus != BUS_USB)
2160 0 : connect_mask &= ~HID_CONNECT_HIDDEV;
2161 0 : if (hid_hiddev(hdev))
2162 0 : connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2163 :
2164 0 : if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2165 : connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2166 0 : hdev->claimed |= HID_CLAIMED_INPUT;
2167 :
2168 0 : if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2169 0 : !hdev->hiddev_connect(hdev,
2170 : connect_mask & HID_CONNECT_HIDDEV_FORCE))
2171 0 : hdev->claimed |= HID_CLAIMED_HIDDEV;
2172 : if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2173 : hdev->claimed |= HID_CLAIMED_HIDRAW;
2174 :
2175 0 : if (connect_mask & HID_CONNECT_DRIVER)
2176 0 : hdev->claimed |= HID_CLAIMED_DRIVER;
2177 :
2178 : /* Drivers with the ->raw_event callback set are not required to connect
2179 : * to any other listener. */
2180 0 : if (!hdev->claimed && !hdev->driver->raw_event) {
2181 0 : hid_err(hdev, "device has no listeners, quitting\n");
2182 0 : return -ENODEV;
2183 : }
2184 :
2185 0 : hid_process_ordering(hdev);
2186 :
2187 0 : if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2188 0 : (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2189 0 : hdev->ff_init(hdev);
2190 :
2191 0 : len = 0;
2192 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2193 0 : len += sprintf(buf + len, "input");
2194 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2195 0 : len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2196 0 : ((struct hiddev *)hdev->hiddev)->minor);
2197 0 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2198 0 : len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2199 0 : ((struct hidraw *)hdev->hidraw)->minor);
2200 :
2201 0 : type = "Device";
2202 0 : for (i = 0; i < hdev->maxcollection; i++) {
2203 0 : struct hid_collection *col = &hdev->collection[i];
2204 0 : if (col->type == HID_COLLECTION_APPLICATION &&
2205 0 : (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2206 0 : (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2207 0 : type = types[col->usage & 0xffff];
2208 0 : break;
2209 : }
2210 : }
2211 :
2212 0 : switch (hdev->bus) {
2213 : case BUS_USB:
2214 : bus = "USB";
2215 : break;
2216 : case BUS_BLUETOOTH:
2217 : bus = "BLUETOOTH";
2218 : break;
2219 : case BUS_I2C:
2220 : bus = "I2C";
2221 : break;
2222 : case BUS_VIRTUAL:
2223 : bus = "VIRTUAL";
2224 : break;
2225 : default:
2226 : bus = "<UNKNOWN>";
2227 : }
2228 :
2229 0 : ret = device_create_file(&hdev->dev, &dev_attr_country);
2230 0 : if (ret)
2231 0 : hid_warn(hdev,
2232 : "can't create sysfs country code attribute err: %d\n", ret);
2233 :
2234 0 : hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2235 : buf, bus, hdev->version >> 8, hdev->version & 0xff,
2236 : type, hdev->name, hdev->phys);
2237 :
2238 0 : return 0;
2239 : }
2240 : EXPORT_SYMBOL_GPL(hid_connect);
2241 :
2242 0 : void hid_disconnect(struct hid_device *hdev)
2243 : {
2244 0 : device_remove_file(&hdev->dev, &dev_attr_country);
2245 0 : if (hdev->claimed & HID_CLAIMED_INPUT)
2246 0 : hidinput_disconnect(hdev);
2247 0 : if (hdev->claimed & HID_CLAIMED_HIDDEV)
2248 0 : hdev->hiddev_disconnect(hdev);
2249 : if (hdev->claimed & HID_CLAIMED_HIDRAW)
2250 : hidraw_disconnect(hdev);
2251 0 : hdev->claimed = 0;
2252 0 : }
2253 : EXPORT_SYMBOL_GPL(hid_disconnect);
2254 :
2255 : /**
2256 : * hid_hw_start - start underlying HW
2257 : * @hdev: hid device
2258 : * @connect_mask: which outputs to connect, see HID_CONNECT_*
2259 : *
2260 : * Call this in probe function *after* hid_parse. This will setup HW
2261 : * buffers and start the device (if not defeirred to device open).
2262 : * hid_hw_stop must be called if this was successful.
2263 : */
2264 0 : int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2265 : {
2266 : int error;
2267 :
2268 0 : error = hdev->ll_driver->start(hdev);
2269 0 : if (error)
2270 : return error;
2271 :
2272 0 : if (connect_mask) {
2273 0 : error = hid_connect(hdev, connect_mask);
2274 0 : if (error) {
2275 0 : hdev->ll_driver->stop(hdev);
2276 0 : return error;
2277 : }
2278 : }
2279 :
2280 : return 0;
2281 : }
2282 : EXPORT_SYMBOL_GPL(hid_hw_start);
2283 :
2284 : /**
2285 : * hid_hw_stop - stop underlying HW
2286 : * @hdev: hid device
2287 : *
2288 : * This is usually called from remove function or from probe when something
2289 : * failed and hid_hw_start was called already.
2290 : */
2291 0 : void hid_hw_stop(struct hid_device *hdev)
2292 : {
2293 0 : hid_disconnect(hdev);
2294 0 : hdev->ll_driver->stop(hdev);
2295 0 : }
2296 : EXPORT_SYMBOL_GPL(hid_hw_stop);
2297 :
2298 : /**
2299 : * hid_hw_open - signal underlying HW to start delivering events
2300 : * @hdev: hid device
2301 : *
2302 : * Tell underlying HW to start delivering events from the device.
2303 : * This function should be called sometime after successful call
2304 : * to hid_hw_start().
2305 : */
2306 0 : int hid_hw_open(struct hid_device *hdev)
2307 : {
2308 : int ret;
2309 :
2310 0 : ret = mutex_lock_killable(&hdev->ll_open_lock);
2311 0 : if (ret)
2312 : return ret;
2313 :
2314 0 : if (!hdev->ll_open_count++) {
2315 0 : ret = hdev->ll_driver->open(hdev);
2316 0 : if (ret)
2317 0 : hdev->ll_open_count--;
2318 : }
2319 :
2320 0 : mutex_unlock(&hdev->ll_open_lock);
2321 0 : return ret;
2322 : }
2323 : EXPORT_SYMBOL_GPL(hid_hw_open);
2324 :
2325 : /**
2326 : * hid_hw_close - signal underlaying HW to stop delivering events
2327 : *
2328 : * @hdev: hid device
2329 : *
2330 : * This function indicates that we are not interested in the events
2331 : * from this device anymore. Delivery of events may or may not stop,
2332 : * depending on the number of users still outstanding.
2333 : */
2334 0 : void hid_hw_close(struct hid_device *hdev)
2335 : {
2336 0 : mutex_lock(&hdev->ll_open_lock);
2337 0 : if (!--hdev->ll_open_count)
2338 0 : hdev->ll_driver->close(hdev);
2339 0 : mutex_unlock(&hdev->ll_open_lock);
2340 0 : }
2341 : EXPORT_SYMBOL_GPL(hid_hw_close);
2342 :
2343 : /**
2344 : * hid_hw_request - send report request to device
2345 : *
2346 : * @hdev: hid device
2347 : * @report: report to send
2348 : * @reqtype: hid request type
2349 : */
2350 0 : void hid_hw_request(struct hid_device *hdev,
2351 : struct hid_report *report, int reqtype)
2352 : {
2353 0 : if (hdev->ll_driver->request)
2354 0 : return hdev->ll_driver->request(hdev, report, reqtype);
2355 :
2356 0 : __hid_request(hdev, report, reqtype);
2357 : }
2358 : EXPORT_SYMBOL_GPL(hid_hw_request);
2359 :
2360 : /**
2361 : * hid_hw_raw_request - send report request to device
2362 : *
2363 : * @hdev: hid device
2364 : * @reportnum: report ID
2365 : * @buf: in/out data to transfer
2366 : * @len: length of buf
2367 : * @rtype: HID report type
2368 : * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2369 : *
2370 : * Return: count of data transferred, negative if error
2371 : *
2372 : * Same behavior as hid_hw_request, but with raw buffers instead.
2373 : */
2374 0 : int hid_hw_raw_request(struct hid_device *hdev,
2375 : unsigned char reportnum, __u8 *buf,
2376 : size_t len, unsigned char rtype, int reqtype)
2377 : {
2378 0 : if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2379 : return -EINVAL;
2380 :
2381 0 : return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2382 : rtype, reqtype);
2383 : }
2384 : EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2385 :
2386 : /**
2387 : * hid_hw_output_report - send output report to device
2388 : *
2389 : * @hdev: hid device
2390 : * @buf: raw data to transfer
2391 : * @len: length of buf
2392 : *
2393 : * Return: count of data transferred, negative if error
2394 : */
2395 0 : int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2396 : {
2397 0 : if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2398 : return -EINVAL;
2399 :
2400 0 : if (hdev->ll_driver->output_report)
2401 0 : return hdev->ll_driver->output_report(hdev, buf, len);
2402 :
2403 : return -ENOSYS;
2404 : }
2405 : EXPORT_SYMBOL_GPL(hid_hw_output_report);
2406 :
2407 : #ifdef CONFIG_PM
2408 0 : int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2409 : {
2410 0 : if (hdev->driver && hdev->driver->suspend)
2411 0 : return hdev->driver->suspend(hdev, state);
2412 :
2413 : return 0;
2414 : }
2415 : EXPORT_SYMBOL_GPL(hid_driver_suspend);
2416 :
2417 0 : int hid_driver_reset_resume(struct hid_device *hdev)
2418 : {
2419 0 : if (hdev->driver && hdev->driver->reset_resume)
2420 0 : return hdev->driver->reset_resume(hdev);
2421 :
2422 : return 0;
2423 : }
2424 : EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2425 :
2426 0 : int hid_driver_resume(struct hid_device *hdev)
2427 : {
2428 0 : if (hdev->driver && hdev->driver->resume)
2429 0 : return hdev->driver->resume(hdev);
2430 :
2431 : return 0;
2432 : }
2433 : EXPORT_SYMBOL_GPL(hid_driver_resume);
2434 : #endif /* CONFIG_PM */
2435 :
2436 : struct hid_dynid {
2437 : struct list_head list;
2438 : struct hid_device_id id;
2439 : };
2440 :
2441 : /**
2442 : * new_id_store - add a new HID device ID to this driver and re-probe devices
2443 : * @drv: target device driver
2444 : * @buf: buffer for scanning device ID data
2445 : * @count: input size
2446 : *
2447 : * Adds a new dynamic hid device ID to this driver,
2448 : * and causes the driver to probe for all devices again.
2449 : */
2450 0 : static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2451 : size_t count)
2452 : {
2453 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2454 : struct hid_dynid *dynid;
2455 : __u32 bus, vendor, product;
2456 0 : unsigned long driver_data = 0;
2457 : int ret;
2458 :
2459 0 : ret = sscanf(buf, "%x %x %x %lx",
2460 : &bus, &vendor, &product, &driver_data);
2461 0 : if (ret < 3)
2462 : return -EINVAL;
2463 :
2464 0 : dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2465 0 : if (!dynid)
2466 : return -ENOMEM;
2467 :
2468 0 : dynid->id.bus = bus;
2469 0 : dynid->id.group = HID_GROUP_ANY;
2470 0 : dynid->id.vendor = vendor;
2471 0 : dynid->id.product = product;
2472 0 : dynid->id.driver_data = driver_data;
2473 :
2474 0 : spin_lock(&hdrv->dyn_lock);
2475 0 : list_add_tail(&dynid->list, &hdrv->dyn_list);
2476 0 : spin_unlock(&hdrv->dyn_lock);
2477 :
2478 0 : ret = driver_attach(&hdrv->driver);
2479 :
2480 0 : return ret ? : count;
2481 : }
2482 : static DRIVER_ATTR_WO(new_id);
2483 :
2484 : static struct attribute *hid_drv_attrs[] = {
2485 : &driver_attr_new_id.attr,
2486 : NULL,
2487 : };
2488 : ATTRIBUTE_GROUPS(hid_drv);
2489 :
2490 0 : static void hid_free_dynids(struct hid_driver *hdrv)
2491 : {
2492 : struct hid_dynid *dynid, *n;
2493 :
2494 0 : spin_lock(&hdrv->dyn_lock);
2495 0 : list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2496 0 : list_del(&dynid->list);
2497 0 : kfree(dynid);
2498 : }
2499 0 : spin_unlock(&hdrv->dyn_lock);
2500 0 : }
2501 :
2502 0 : const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2503 : struct hid_driver *hdrv)
2504 : {
2505 : struct hid_dynid *dynid;
2506 :
2507 0 : spin_lock(&hdrv->dyn_lock);
2508 0 : list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2509 0 : if (hid_match_one_id(hdev, &dynid->id)) {
2510 0 : spin_unlock(&hdrv->dyn_lock);
2511 0 : return &dynid->id;
2512 : }
2513 : }
2514 0 : spin_unlock(&hdrv->dyn_lock);
2515 :
2516 0 : return hid_match_id(hdev, hdrv->id_table);
2517 : }
2518 : EXPORT_SYMBOL_GPL(hid_match_device);
2519 :
2520 0 : static int hid_bus_match(struct device *dev, struct device_driver *drv)
2521 : {
2522 0 : struct hid_driver *hdrv = to_hid_driver(drv);
2523 0 : struct hid_device *hdev = to_hid_device(dev);
2524 :
2525 0 : return hid_match_device(hdev, hdrv) != NULL;
2526 : }
2527 :
2528 : /**
2529 : * hid_compare_device_paths - check if both devices share the same path
2530 : * @hdev_a: hid device
2531 : * @hdev_b: hid device
2532 : * @separator: char to use as separator
2533 : *
2534 : * Check if two devices share the same path up to the last occurrence of
2535 : * the separator char. Both paths must exist (i.e., zero-length paths
2536 : * don't match).
2537 : */
2538 0 : bool hid_compare_device_paths(struct hid_device *hdev_a,
2539 : struct hid_device *hdev_b, char separator)
2540 : {
2541 0 : int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2542 0 : int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2543 :
2544 0 : if (n1 != n2 || n1 <= 0 || n2 <= 0)
2545 : return false;
2546 :
2547 0 : return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2548 : }
2549 : EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2550 :
2551 0 : static int hid_device_probe(struct device *dev)
2552 : {
2553 0 : struct hid_driver *hdrv = to_hid_driver(dev->driver);
2554 0 : struct hid_device *hdev = to_hid_device(dev);
2555 : const struct hid_device_id *id;
2556 0 : int ret = 0;
2557 :
2558 0 : if (down_interruptible(&hdev->driver_input_lock)) {
2559 : ret = -EINTR;
2560 : goto end;
2561 : }
2562 0 : hdev->io_started = false;
2563 :
2564 0 : clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2565 :
2566 0 : if (!hdev->driver) {
2567 0 : id = hid_match_device(hdev, hdrv);
2568 0 : if (id == NULL) {
2569 : ret = -ENODEV;
2570 : goto unlock;
2571 : }
2572 :
2573 0 : if (hdrv->match) {
2574 0 : if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2575 : ret = -ENODEV;
2576 : goto unlock;
2577 : }
2578 : } else {
2579 : /*
2580 : * hid-generic implements .match(), so if
2581 : * hid_ignore_special_drivers is set, we can safely
2582 : * return.
2583 : */
2584 0 : if (hid_ignore_special_drivers) {
2585 : ret = -ENODEV;
2586 : goto unlock;
2587 : }
2588 : }
2589 :
2590 : /* reset the quirks that has been previously set */
2591 0 : hdev->quirks = hid_lookup_quirk(hdev);
2592 0 : hdev->driver = hdrv;
2593 0 : if (hdrv->probe) {
2594 0 : ret = hdrv->probe(hdev, id);
2595 : } else { /* default probe */
2596 0 : ret = hid_open_report(hdev);
2597 0 : if (!ret)
2598 0 : ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2599 : }
2600 0 : if (ret) {
2601 0 : hid_close_report(hdev);
2602 0 : hdev->driver = NULL;
2603 : }
2604 : }
2605 : unlock:
2606 0 : if (!hdev->io_started)
2607 0 : up(&hdev->driver_input_lock);
2608 : end:
2609 0 : return ret;
2610 : }
2611 :
2612 0 : static void hid_device_remove(struct device *dev)
2613 : {
2614 0 : struct hid_device *hdev = to_hid_device(dev);
2615 : struct hid_driver *hdrv;
2616 :
2617 0 : down(&hdev->driver_input_lock);
2618 0 : hdev->io_started = false;
2619 :
2620 0 : hdrv = hdev->driver;
2621 0 : if (hdrv) {
2622 0 : if (hdrv->remove)
2623 0 : hdrv->remove(hdev);
2624 : else /* default remove */
2625 : hid_hw_stop(hdev);
2626 0 : hid_close_report(hdev);
2627 0 : hdev->driver = NULL;
2628 : }
2629 :
2630 0 : if (!hdev->io_started)
2631 0 : up(&hdev->driver_input_lock);
2632 0 : }
2633 :
2634 0 : static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2635 : char *buf)
2636 : {
2637 0 : struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2638 :
2639 0 : return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2640 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product);
2641 : }
2642 : static DEVICE_ATTR_RO(modalias);
2643 :
2644 : static struct attribute *hid_dev_attrs[] = {
2645 : &dev_attr_modalias.attr,
2646 : NULL,
2647 : };
2648 : static struct bin_attribute *hid_dev_bin_attrs[] = {
2649 : &dev_bin_attr_report_desc,
2650 : NULL
2651 : };
2652 : static const struct attribute_group hid_dev_group = {
2653 : .attrs = hid_dev_attrs,
2654 : .bin_attrs = hid_dev_bin_attrs,
2655 : };
2656 : __ATTRIBUTE_GROUPS(hid_dev);
2657 :
2658 0 : static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2659 : {
2660 0 : struct hid_device *hdev = to_hid_device(dev);
2661 :
2662 0 : if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2663 0 : hdev->bus, hdev->vendor, hdev->product))
2664 : return -ENOMEM;
2665 :
2666 0 : if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2667 : return -ENOMEM;
2668 :
2669 0 : if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2670 : return -ENOMEM;
2671 :
2672 0 : if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2673 : return -ENOMEM;
2674 :
2675 0 : if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2676 0 : hdev->bus, hdev->group, hdev->vendor, hdev->product))
2677 : return -ENOMEM;
2678 :
2679 0 : return 0;
2680 : }
2681 :
2682 : struct bus_type hid_bus_type = {
2683 : .name = "hid",
2684 : .dev_groups = hid_dev_groups,
2685 : .drv_groups = hid_drv_groups,
2686 : .match = hid_bus_match,
2687 : .probe = hid_device_probe,
2688 : .remove = hid_device_remove,
2689 : .uevent = hid_uevent,
2690 : };
2691 : EXPORT_SYMBOL(hid_bus_type);
2692 :
2693 0 : int hid_add_device(struct hid_device *hdev)
2694 : {
2695 : static atomic_t id = ATOMIC_INIT(0);
2696 : int ret;
2697 :
2698 0 : if (WARN_ON(hdev->status & HID_STAT_ADDED))
2699 : return -EBUSY;
2700 :
2701 0 : hdev->quirks = hid_lookup_quirk(hdev);
2702 :
2703 : /* we need to kill them here, otherwise they will stay allocated to
2704 : * wait for coming driver */
2705 0 : if (hid_ignore(hdev))
2706 : return -ENODEV;
2707 :
2708 : /*
2709 : * Check for the mandatory transport channel.
2710 : */
2711 0 : if (!hdev->ll_driver->raw_request) {
2712 0 : hid_err(hdev, "transport driver missing .raw_request()\n");
2713 0 : return -EINVAL;
2714 : }
2715 :
2716 : /*
2717 : * Read the device report descriptor once and use as template
2718 : * for the driver-specific modifications.
2719 : */
2720 0 : ret = hdev->ll_driver->parse(hdev);
2721 0 : if (ret)
2722 : return ret;
2723 0 : if (!hdev->dev_rdesc)
2724 : return -ENODEV;
2725 :
2726 : /*
2727 : * Scan generic devices for group information
2728 : */
2729 0 : if (hid_ignore_special_drivers) {
2730 0 : hdev->group = HID_GROUP_GENERIC;
2731 0 : } else if (!hdev->group &&
2732 0 : !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2733 0 : ret = hid_scan_report(hdev);
2734 0 : if (ret)
2735 0 : hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2736 : }
2737 :
2738 : /* XXX hack, any other cleaner solution after the driver core
2739 : * is converted to allow more than 20 bytes as the device name? */
2740 0 : dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2741 : hdev->vendor, hdev->product, atomic_inc_return(&id));
2742 :
2743 : hid_debug_register(hdev, dev_name(&hdev->dev));
2744 0 : ret = device_add(&hdev->dev);
2745 0 : if (!ret)
2746 0 : hdev->status |= HID_STAT_ADDED;
2747 : else
2748 : hid_debug_unregister(hdev);
2749 :
2750 : return ret;
2751 : }
2752 : EXPORT_SYMBOL_GPL(hid_add_device);
2753 :
2754 : /**
2755 : * hid_allocate_device - allocate new hid device descriptor
2756 : *
2757 : * Allocate and initialize hid device, so that hid_destroy_device might be
2758 : * used to free it.
2759 : *
2760 : * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2761 : * error value.
2762 : */
2763 0 : struct hid_device *hid_allocate_device(void)
2764 : {
2765 : struct hid_device *hdev;
2766 0 : int ret = -ENOMEM;
2767 :
2768 0 : hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2769 0 : if (hdev == NULL)
2770 : return ERR_PTR(ret);
2771 :
2772 0 : device_initialize(&hdev->dev);
2773 0 : hdev->dev.release = hid_device_release;
2774 0 : hdev->dev.bus = &hid_bus_type;
2775 0 : device_enable_async_suspend(&hdev->dev);
2776 :
2777 0 : hid_close_report(hdev);
2778 :
2779 0 : init_waitqueue_head(&hdev->debug_wait);
2780 0 : INIT_LIST_HEAD(&hdev->debug_list);
2781 0 : spin_lock_init(&hdev->debug_list_lock);
2782 0 : sema_init(&hdev->driver_input_lock, 1);
2783 0 : mutex_init(&hdev->ll_open_lock);
2784 :
2785 0 : return hdev;
2786 : }
2787 : EXPORT_SYMBOL_GPL(hid_allocate_device);
2788 :
2789 0 : static void hid_remove_device(struct hid_device *hdev)
2790 : {
2791 0 : if (hdev->status & HID_STAT_ADDED) {
2792 0 : device_del(&hdev->dev);
2793 : hid_debug_unregister(hdev);
2794 0 : hdev->status &= ~HID_STAT_ADDED;
2795 : }
2796 0 : kfree(hdev->dev_rdesc);
2797 0 : hdev->dev_rdesc = NULL;
2798 0 : hdev->dev_rsize = 0;
2799 0 : }
2800 :
2801 : /**
2802 : * hid_destroy_device - free previously allocated device
2803 : *
2804 : * @hdev: hid device
2805 : *
2806 : * If you allocate hid_device through hid_allocate_device, you should ever
2807 : * free by this function.
2808 : */
2809 0 : void hid_destroy_device(struct hid_device *hdev)
2810 : {
2811 0 : hid_remove_device(hdev);
2812 0 : put_device(&hdev->dev);
2813 0 : }
2814 : EXPORT_SYMBOL_GPL(hid_destroy_device);
2815 :
2816 :
2817 0 : static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2818 : {
2819 0 : struct hid_driver *hdrv = data;
2820 0 : struct hid_device *hdev = to_hid_device(dev);
2821 :
2822 0 : if (hdev->driver == hdrv &&
2823 0 : !hdrv->match(hdev, hid_ignore_special_drivers) &&
2824 0 : !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2825 0 : return device_reprobe(dev);
2826 :
2827 : return 0;
2828 : }
2829 :
2830 66 : static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2831 : {
2832 66 : struct hid_driver *hdrv = to_hid_driver(drv);
2833 :
2834 66 : if (hdrv->match) {
2835 11 : bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2836 : __hid_bus_reprobe_drivers);
2837 : }
2838 :
2839 66 : return 0;
2840 : }
2841 :
2842 0 : static int __bus_removed_driver(struct device_driver *drv, void *data)
2843 : {
2844 0 : return bus_rescan_devices(&hid_bus_type);
2845 : }
2846 :
2847 11 : int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2848 : const char *mod_name)
2849 : {
2850 : int ret;
2851 :
2852 11 : hdrv->driver.name = hdrv->name;
2853 11 : hdrv->driver.bus = &hid_bus_type;
2854 11 : hdrv->driver.owner = owner;
2855 11 : hdrv->driver.mod_name = mod_name;
2856 :
2857 22 : INIT_LIST_HEAD(&hdrv->dyn_list);
2858 11 : spin_lock_init(&hdrv->dyn_lock);
2859 :
2860 11 : ret = driver_register(&hdrv->driver);
2861 :
2862 11 : if (ret == 0)
2863 11 : bus_for_each_drv(&hid_bus_type, NULL, NULL,
2864 : __hid_bus_driver_added);
2865 :
2866 11 : return ret;
2867 : }
2868 : EXPORT_SYMBOL_GPL(__hid_register_driver);
2869 :
2870 0 : void hid_unregister_driver(struct hid_driver *hdrv)
2871 : {
2872 0 : driver_unregister(&hdrv->driver);
2873 0 : hid_free_dynids(hdrv);
2874 :
2875 0 : bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2876 0 : }
2877 : EXPORT_SYMBOL_GPL(hid_unregister_driver);
2878 :
2879 0 : int hid_check_keys_pressed(struct hid_device *hid)
2880 : {
2881 : struct hid_input *hidinput;
2882 : int i;
2883 :
2884 0 : if (!(hid->claimed & HID_CLAIMED_INPUT))
2885 : return 0;
2886 :
2887 0 : list_for_each_entry(hidinput, &hid->inputs, list) {
2888 0 : for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2889 0 : if (hidinput->input->key[i])
2890 : return 1;
2891 : }
2892 :
2893 : return 0;
2894 : }
2895 : EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2896 :
2897 1 : static int __init hid_init(void)
2898 : {
2899 : int ret;
2900 :
2901 1 : if (hid_debug)
2902 0 : pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2903 : "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2904 :
2905 1 : ret = bus_register(&hid_bus_type);
2906 1 : if (ret) {
2907 0 : pr_err("can't register hid bus\n");
2908 : goto err;
2909 : }
2910 :
2911 : ret = hidraw_init();
2912 : if (ret)
2913 : goto err_bus;
2914 :
2915 : hid_debug_init();
2916 :
2917 : return 0;
2918 : err_bus:
2919 : bus_unregister(&hid_bus_type);
2920 : err:
2921 0 : return ret;
2922 : }
2923 :
2924 0 : static void __exit hid_exit(void)
2925 : {
2926 : hid_debug_exit();
2927 : hidraw_exit();
2928 0 : bus_unregister(&hid_bus_type);
2929 0 : hid_quirks_exit(HID_BUS_ANY);
2930 0 : }
2931 :
2932 : module_init(hid_init);
2933 : module_exit(hid_exit);
2934 :
2935 : MODULE_AUTHOR("Andreas Gal");
2936 : MODULE_AUTHOR("Vojtech Pavlik");
2937 : MODULE_AUTHOR("Jiri Kosina");
2938 : MODULE_LICENSE("GPL");
|