Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * PCI Bus Services, see include/linux/pci.h for further explanation.
4 : *
5 : * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 : * David Mosberger-Tang
7 : *
8 : * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 : */
10 :
11 : #include <linux/acpi.h>
12 : #include <linux/kernel.h>
13 : #include <linux/delay.h>
14 : #include <linux/dmi.h>
15 : #include <linux/init.h>
16 : #include <linux/msi.h>
17 : #include <linux/of.h>
18 : #include <linux/pci.h>
19 : #include <linux/pm.h>
20 : #include <linux/slab.h>
21 : #include <linux/module.h>
22 : #include <linux/spinlock.h>
23 : #include <linux/string.h>
24 : #include <linux/log2.h>
25 : #include <linux/logic_pio.h>
26 : #include <linux/pm_wakeup.h>
27 : #include <linux/interrupt.h>
28 : #include <linux/device.h>
29 : #include <linux/pm_runtime.h>
30 : #include <linux/pci_hotplug.h>
31 : #include <linux/vmalloc.h>
32 : #include <asm/dma.h>
33 : #include <linux/aer.h>
34 : #include <linux/bitfield.h>
35 : #include "pci.h"
36 :
37 : DEFINE_MUTEX(pci_slot_mutex);
38 :
39 : const char *pci_power_names[] = {
40 : "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 : };
42 : EXPORT_SYMBOL_GPL(pci_power_names);
43 :
44 : int isa_dma_bridge_buggy;
45 : EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 :
47 : int pci_pci_problems;
48 : EXPORT_SYMBOL(pci_pci_problems);
49 :
50 : unsigned int pci_pm_d3hot_delay;
51 :
52 : static void pci_pme_list_scan(struct work_struct *work);
53 :
54 : static LIST_HEAD(pci_pme_list);
55 : static DEFINE_MUTEX(pci_pme_list_mutex);
56 : static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 :
58 : struct pci_pme_device {
59 : struct list_head list;
60 : struct pci_dev *dev;
61 : };
62 :
63 : #define PME_TIMEOUT 1000 /* How long between PME checks */
64 :
65 : static void pci_dev_d3_sleep(struct pci_dev *dev)
66 : {
67 0 : unsigned int delay = dev->d3hot_delay;
68 :
69 0 : if (delay < pci_pm_d3hot_delay)
70 0 : delay = pci_pm_d3hot_delay;
71 :
72 0 : if (delay)
73 0 : msleep(delay);
74 : }
75 :
76 0 : bool pci_reset_supported(struct pci_dev *dev)
77 : {
78 0 : return dev->reset_methods[0] != 0;
79 : }
80 :
81 : #ifdef CONFIG_PCI_DOMAINS
82 : int pci_domains_supported = 1;
83 : #endif
84 :
85 : #define DEFAULT_CARDBUS_IO_SIZE (256)
86 : #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 : /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 : unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 : unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 :
91 : #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 : #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 : #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 : /* hpiosize=nn can override this */
95 : unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
96 : /*
97 : * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 : * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 : * pci=hpmemsize=nnM overrides both
100 : */
101 : unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 : unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 :
104 : #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 : unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 :
107 :
108 : /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 : #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 : #elif defined CONFIG_PCIE_BUS_SAFE
112 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 : #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 : #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 : #else
118 : enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 : #endif
120 :
121 : /*
122 : * The default CLS is used if arch didn't set CLS explicitly and not
123 : * all pci devices agree on the same value. Arch can override either
124 : * the dfl or actual value as it sees fit. Don't forget this is
125 : * measured in 32-bit words, not bytes.
126 : */
127 : u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 : u8 pci_cache_line_size;
129 :
130 : /*
131 : * If we set up a device for bus mastering, we need to check the latency
132 : * timer as certain BIOSes forget to set it properly.
133 : */
134 : unsigned int pcibios_max_latency = 255;
135 :
136 : /* If set, the PCIe ARI capability will not be used. */
137 : static bool pcie_ari_disabled;
138 :
139 : /* If set, the PCIe ATS capability will not be used. */
140 : static bool pcie_ats_disabled;
141 :
142 : /* If set, the PCI config space of each device is printed during boot. */
143 : bool pci_early_dump;
144 :
145 0 : bool pci_ats_disabled(void)
146 : {
147 0 : return pcie_ats_disabled;
148 : }
149 : EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 :
151 : /* Disable bridge_d3 for all PCIe ports */
152 : static bool pci_bridge_d3_disable;
153 : /* Force bridge_d3 for all PCIe ports */
154 : static bool pci_bridge_d3_force;
155 :
156 0 : static int __init pcie_port_pm_setup(char *str)
157 : {
158 0 : if (!strcmp(str, "off"))
159 0 : pci_bridge_d3_disable = true;
160 0 : else if (!strcmp(str, "force"))
161 0 : pci_bridge_d3_force = true;
162 0 : return 1;
163 : }
164 : __setup("pcie_port_pm=", pcie_port_pm_setup);
165 :
166 : /* Time to wait after a reset for device to become responsive */
167 : #define PCIE_RESET_READY_POLL_MS 60000
168 :
169 : /**
170 : * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171 : * @bus: pointer to PCI bus structure to search
172 : *
173 : * Given a PCI bus, returns the highest PCI bus number present in the set
174 : * including the given PCI bus and its list of child PCI buses.
175 : */
176 0 : unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 : {
178 : struct pci_bus *tmp;
179 : unsigned char max, n;
180 :
181 0 : max = bus->busn_res.end;
182 0 : list_for_each_entry(tmp, &bus->children, node) {
183 0 : n = pci_bus_max_busnr(tmp);
184 0 : if (n > max)
185 0 : max = n;
186 : }
187 0 : return max;
188 : }
189 : EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 :
191 : /**
192 : * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193 : * @pdev: the PCI device
194 : *
195 : * Returns error bits set in PCI_STATUS and clears them.
196 : */
197 0 : int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 : {
199 : u16 status;
200 : int ret;
201 :
202 0 : ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 0 : if (ret != PCIBIOS_SUCCESSFUL)
204 : return -EIO;
205 :
206 0 : status &= PCI_STATUS_ERROR_BITS;
207 0 : if (status)
208 0 : pci_write_config_word(pdev, PCI_STATUS, status);
209 :
210 0 : return status;
211 : }
212 : EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 :
214 : #ifdef CONFIG_HAS_IOMEM
215 0 : static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 : bool write_combine)
217 : {
218 0 : struct resource *res = &pdev->resource[bar];
219 0 : resource_size_t start = res->start;
220 0 : resource_size_t size = resource_size(res);
221 :
222 : /*
223 : * Make sure the BAR is actually a memory resource, not an IO resource
224 : */
225 0 : if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 0 : pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 0 : return NULL;
228 : }
229 :
230 0 : if (write_combine)
231 0 : return ioremap_wc(start, size);
232 :
233 0 : return ioremap(start, size);
234 : }
235 :
236 0 : void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 : {
238 0 : return __pci_ioremap_resource(pdev, bar, false);
239 : }
240 : EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 :
242 0 : void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 : {
244 0 : return __pci_ioremap_resource(pdev, bar, true);
245 : }
246 : EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 : #endif
248 :
249 : /**
250 : * pci_dev_str_match_path - test if a path string matches a device
251 : * @dev: the PCI device to test
252 : * @path: string to match the device against
253 : * @endptr: pointer to the string after the match
254 : *
255 : * Test if a string (typically from a kernel parameter) formatted as a
256 : * path of device/function addresses matches a PCI device. The string must
257 : * be of the form:
258 : *
259 : * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260 : *
261 : * A path for a device can be obtained using 'lspci -t'. Using a path
262 : * is more robust against bus renumbering than using only a single bus,
263 : * device and function address.
264 : *
265 : * Returns 1 if the string matches the device, 0 if it does not and
266 : * a negative error code if it fails to parse the string.
267 : */
268 0 : static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 : const char **endptr)
270 : {
271 : int ret;
272 : unsigned int seg, bus, slot, func;
273 : char *wpath, *p;
274 : char end;
275 :
276 0 : *endptr = strchrnul(path, ';');
277 :
278 0 : wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 0 : if (!wpath)
280 : return -ENOMEM;
281 :
282 : while (1) {
283 0 : p = strrchr(wpath, '/');
284 0 : if (!p)
285 : break;
286 0 : ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 0 : if (ret != 2) {
288 : ret = -EINVAL;
289 : goto free_and_exit;
290 : }
291 :
292 0 : if (dev->devfn != PCI_DEVFN(slot, func)) {
293 : ret = 0;
294 : goto free_and_exit;
295 : }
296 :
297 : /*
298 : * Note: we don't need to get a reference to the upstream
299 : * bridge because we hold a reference to the top level
300 : * device which should hold a reference to the bridge,
301 : * and so on.
302 : */
303 0 : dev = pci_upstream_bridge(dev);
304 0 : if (!dev) {
305 : ret = 0;
306 : goto free_and_exit;
307 : }
308 :
309 0 : *p = 0;
310 : }
311 :
312 0 : ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 : &func, &end);
314 0 : if (ret != 4) {
315 0 : seg = 0;
316 0 : ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 0 : if (ret != 3) {
318 : ret = -EINVAL;
319 : goto free_and_exit;
320 : }
321 : }
322 :
323 0 : ret = (seg == pci_domain_nr(dev->bus) &&
324 0 : bus == dev->bus->number &&
325 0 : dev->devfn == PCI_DEVFN(slot, func));
326 :
327 : free_and_exit:
328 0 : kfree(wpath);
329 0 : return ret;
330 : }
331 :
332 : /**
333 : * pci_dev_str_match - test if a string matches a device
334 : * @dev: the PCI device to test
335 : * @p: string to match the device against
336 : * @endptr: pointer to the string after the match
337 : *
338 : * Test if a string (typically from a kernel parameter) matches a specified
339 : * PCI device. The string may be of one of the following formats:
340 : *
341 : * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342 : * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343 : *
344 : * The first format specifies a PCI bus/device/function address which
345 : * may change if new hardware is inserted, if motherboard firmware changes,
346 : * or due to changes caused in kernel parameters. If the domain is
347 : * left unspecified, it is taken to be 0. In order to be robust against
348 : * bus renumbering issues, a path of PCI device/function numbers may be used
349 : * to address the specific device. The path for a device can be determined
350 : * through the use of 'lspci -t'.
351 : *
352 : * The second format matches devices using IDs in the configuration
353 : * space which may match multiple devices in the system. A value of 0
354 : * for any field will match all devices. (Note: this differs from
355 : * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356 : * legacy reasons and convenience so users don't have to specify
357 : * FFFFFFFFs on the command line.)
358 : *
359 : * Returns 1 if the string matches the device, 0 if it does not and
360 : * a negative error code if the string cannot be parsed.
361 : */
362 0 : static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 : const char **endptr)
364 : {
365 : int ret;
366 : int count;
367 : unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 :
369 0 : if (strncmp(p, "pci:", 4) == 0) {
370 : /* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 0 : p += 4;
372 0 : ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 : &subsystem_vendor, &subsystem_device, &count);
374 0 : if (ret != 4) {
375 0 : ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 0 : if (ret != 2)
377 : return -EINVAL;
378 :
379 0 : subsystem_vendor = 0;
380 0 : subsystem_device = 0;
381 : }
382 :
383 0 : p += count;
384 :
385 0 : if ((!vendor || vendor == dev->vendor) &&
386 0 : (!device || device == dev->device) &&
387 0 : (!subsystem_vendor ||
388 0 : subsystem_vendor == dev->subsystem_vendor) &&
389 0 : (!subsystem_device ||
390 0 : subsystem_device == dev->subsystem_device))
391 : goto found;
392 : } else {
393 : /*
394 : * PCI Bus, Device, Function IDs are specified
395 : * (optionally, may include a path of devfns following it)
396 : */
397 0 : ret = pci_dev_str_match_path(dev, p, &p);
398 0 : if (ret < 0)
399 : return ret;
400 0 : else if (ret)
401 : goto found;
402 : }
403 :
404 0 : *endptr = p;
405 0 : return 0;
406 :
407 : found:
408 0 : *endptr = p;
409 0 : return 1;
410 : }
411 :
412 0 : static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 : u8 pos, int cap, int *ttl)
414 : {
415 : u8 id;
416 : u16 ent;
417 :
418 0 : pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 :
420 0 : while ((*ttl)--) {
421 0 : if (pos < 0x40)
422 : break;
423 0 : pos &= ~3;
424 0 : pci_bus_read_config_word(bus, devfn, pos, &ent);
425 :
426 0 : id = ent & 0xff;
427 0 : if (id == 0xff)
428 : break;
429 0 : if (id == cap)
430 0 : return pos;
431 0 : pos = (ent >> 8);
432 : }
433 : return 0;
434 : }
435 :
436 : static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 : u8 pos, int cap)
438 : {
439 0 : int ttl = PCI_FIND_CAP_TTL;
440 :
441 0 : return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 : }
443 :
444 0 : u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 : {
446 0 : return __pci_find_next_cap(dev->bus, dev->devfn,
447 0 : pos + PCI_CAP_LIST_NEXT, cap);
448 : }
449 : EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 :
451 0 : static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 : unsigned int devfn, u8 hdr_type)
453 : {
454 : u16 status;
455 :
456 0 : pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 0 : if (!(status & PCI_STATUS_CAP_LIST))
458 : return 0;
459 :
460 0 : switch (hdr_type) {
461 : case PCI_HEADER_TYPE_NORMAL:
462 : case PCI_HEADER_TYPE_BRIDGE:
463 : return PCI_CAPABILITY_LIST;
464 : case PCI_HEADER_TYPE_CARDBUS:
465 0 : return PCI_CB_CAPABILITY_LIST;
466 : }
467 :
468 0 : return 0;
469 : }
470 :
471 : /**
472 : * pci_find_capability - query for devices' capabilities
473 : * @dev: PCI device to query
474 : * @cap: capability code
475 : *
476 : * Tell if a device supports a given PCI capability.
477 : * Returns the address of the requested capability structure within the
478 : * device's PCI configuration space or 0 in case the device does not
479 : * support it. Possible values for @cap include:
480 : *
481 : * %PCI_CAP_ID_PM Power Management
482 : * %PCI_CAP_ID_AGP Accelerated Graphics Port
483 : * %PCI_CAP_ID_VPD Vital Product Data
484 : * %PCI_CAP_ID_SLOTID Slot Identification
485 : * %PCI_CAP_ID_MSI Message Signalled Interrupts
486 : * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
487 : * %PCI_CAP_ID_PCIX PCI-X
488 : * %PCI_CAP_ID_EXP PCI Express
489 : */
490 0 : u8 pci_find_capability(struct pci_dev *dev, int cap)
491 : {
492 : u8 pos;
493 :
494 0 : pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 0 : if (pos)
496 0 : pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 :
498 0 : return pos;
499 : }
500 : EXPORT_SYMBOL(pci_find_capability);
501 :
502 : /**
503 : * pci_bus_find_capability - query for devices' capabilities
504 : * @bus: the PCI bus to query
505 : * @devfn: PCI device to query
506 : * @cap: capability code
507 : *
508 : * Like pci_find_capability() but works for PCI devices that do not have a
509 : * pci_dev structure set up yet.
510 : *
511 : * Returns the address of the requested capability structure within the
512 : * device's PCI configuration space or 0 in case the device does not
513 : * support it.
514 : */
515 0 : u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 : {
517 : u8 hdr_type, pos;
518 :
519 0 : pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 :
521 0 : pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 0 : if (pos)
523 0 : pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 :
525 0 : return pos;
526 : }
527 : EXPORT_SYMBOL(pci_bus_find_capability);
528 :
529 : /**
530 : * pci_find_next_ext_capability - Find an extended capability
531 : * @dev: PCI device to query
532 : * @start: address at which to start looking (0 to start at beginning of list)
533 : * @cap: capability code
534 : *
535 : * Returns the address of the next matching extended capability structure
536 : * within the device's PCI configuration space or 0 if the device does
537 : * not support it. Some capabilities can occur several times, e.g., the
538 : * vendor-specific capability, and this provides a way to find them all.
539 : */
540 0 : u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 : {
542 : u32 header;
543 : int ttl;
544 0 : u16 pos = PCI_CFG_SPACE_SIZE;
545 :
546 : /* minimum 8 bytes per capability */
547 0 : ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 :
549 0 : if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 : return 0;
551 :
552 0 : if (start)
553 0 : pos = start;
554 :
555 0 : if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 : return 0;
557 :
558 : /*
559 : * If we have no capabilities, this is indicated by cap ID,
560 : * cap version and next pointer all being 0.
561 : */
562 0 : if (header == 0)
563 : return 0;
564 :
565 0 : while (ttl-- > 0) {
566 0 : if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 : return pos;
568 :
569 0 : pos = PCI_EXT_CAP_NEXT(header);
570 0 : if (pos < PCI_CFG_SPACE_SIZE)
571 : break;
572 :
573 0 : if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 : break;
575 : }
576 :
577 : return 0;
578 : }
579 : EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 :
581 : /**
582 : * pci_find_ext_capability - Find an extended capability
583 : * @dev: PCI device to query
584 : * @cap: capability code
585 : *
586 : * Returns the address of the requested extended capability structure
587 : * within the device's PCI configuration space or 0 if the device does
588 : * not support it. Possible values for @cap include:
589 : *
590 : * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
591 : * %PCI_EXT_CAP_ID_VC Virtual Channel
592 : * %PCI_EXT_CAP_ID_DSN Device Serial Number
593 : * %PCI_EXT_CAP_ID_PWR Power Budgeting
594 : */
595 0 : u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 : {
597 0 : return pci_find_next_ext_capability(dev, 0, cap);
598 : }
599 : EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 :
601 : /**
602 : * pci_get_dsn - Read and return the 8-byte Device Serial Number
603 : * @dev: PCI device to query
604 : *
605 : * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606 : * Number.
607 : *
608 : * Returns the DSN, or zero if the capability does not exist.
609 : */
610 0 : u64 pci_get_dsn(struct pci_dev *dev)
611 : {
612 : u32 dword;
613 : u64 dsn;
614 : int pos;
615 :
616 0 : pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 0 : if (!pos)
618 : return 0;
619 :
620 : /*
621 : * The Device Serial Number is two dwords offset 4 bytes from the
622 : * capability position. The specification says that the first dword is
623 : * the lower half, and the second dword is the upper half.
624 : */
625 0 : pos += 4;
626 0 : pci_read_config_dword(dev, pos, &dword);
627 0 : dsn = (u64)dword;
628 0 : pci_read_config_dword(dev, pos + 4, &dword);
629 0 : dsn |= ((u64)dword) << 32;
630 :
631 0 : return dsn;
632 : }
633 : EXPORT_SYMBOL_GPL(pci_get_dsn);
634 :
635 0 : static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 : {
637 0 : int rc, ttl = PCI_FIND_CAP_TTL;
638 : u8 cap, mask;
639 :
640 0 : if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 : mask = HT_3BIT_CAP_MASK;
642 : else
643 0 : mask = HT_5BIT_CAP_MASK;
644 :
645 0 : pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 : PCI_CAP_ID_HT, &ttl);
647 0 : while (pos) {
648 0 : rc = pci_read_config_byte(dev, pos + 3, &cap);
649 0 : if (rc != PCIBIOS_SUCCESSFUL)
650 : return 0;
651 :
652 0 : if ((cap & mask) == ht_cap)
653 : return pos;
654 :
655 0 : pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 0 : pos + PCI_CAP_LIST_NEXT,
657 : PCI_CAP_ID_HT, &ttl);
658 : }
659 :
660 : return 0;
661 : }
662 :
663 : /**
664 : * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665 : * @dev: PCI device to query
666 : * @pos: Position from which to continue searching
667 : * @ht_cap: HyperTransport capability code
668 : *
669 : * To be used in conjunction with pci_find_ht_capability() to search for
670 : * all capabilities matching @ht_cap. @pos should always be a value returned
671 : * from pci_find_ht_capability().
672 : *
673 : * NB. To be 100% safe against broken PCI devices, the caller should take
674 : * steps to avoid an infinite loop.
675 : */
676 0 : u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 : {
678 0 : return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 : }
680 : EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 :
682 : /**
683 : * pci_find_ht_capability - query a device's HyperTransport capabilities
684 : * @dev: PCI device to query
685 : * @ht_cap: HyperTransport capability code
686 : *
687 : * Tell if a device supports a given HyperTransport capability.
688 : * Returns an address within the device's PCI configuration space
689 : * or 0 in case the device does not support the request capability.
690 : * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691 : * which has a HyperTransport capability matching @ht_cap.
692 : */
693 0 : u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 : {
695 : u8 pos;
696 :
697 0 : pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 0 : if (pos)
699 0 : pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 :
701 0 : return pos;
702 : }
703 : EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 :
705 : /**
706 : * pci_find_vsec_capability - Find a vendor-specific extended capability
707 : * @dev: PCI device to query
708 : * @vendor: Vendor ID for which capability is defined
709 : * @cap: Vendor-specific capability ID
710 : *
711 : * If @dev has Vendor ID @vendor, search for a VSEC capability with
712 : * VSEC ID @cap. If found, return the capability offset in
713 : * config space; otherwise return 0.
714 : */
715 0 : u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 : {
717 0 : u16 vsec = 0;
718 : u32 header;
719 :
720 0 : if (vendor != dev->vendor)
721 : return 0;
722 :
723 0 : while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 : PCI_EXT_CAP_ID_VNDR))) {
725 0 : if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 0 : &header) == PCIBIOS_SUCCESSFUL &&
727 0 : PCI_VNDR_HEADER_ID(header) == cap)
728 : return vsec;
729 : }
730 :
731 : return 0;
732 : }
733 : EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 :
735 : /**
736 : * pci_find_dvsec_capability - Find DVSEC for vendor
737 : * @dev: PCI device to query
738 : * @vendor: Vendor ID to match for the DVSEC
739 : * @dvsec: Designated Vendor-specific capability ID
740 : *
741 : * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
742 : * offset in config space; otherwise return 0.
743 : */
744 0 : u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
745 : {
746 : int pos;
747 :
748 0 : pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
749 0 : if (!pos)
750 : return 0;
751 :
752 0 : while (pos) {
753 : u16 v, id;
754 :
755 0 : pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
756 0 : pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
757 0 : if (vendor == v && dvsec == id)
758 0 : return pos;
759 :
760 0 : pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
761 : }
762 :
763 : return 0;
764 : }
765 : EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
766 :
767 : /**
768 : * pci_find_parent_resource - return resource region of parent bus of given
769 : * region
770 : * @dev: PCI device structure contains resources to be searched
771 : * @res: child resource record for which parent is sought
772 : *
773 : * For given resource region of given device, return the resource region of
774 : * parent bus the given region is contained in.
775 : */
776 0 : struct resource *pci_find_parent_resource(const struct pci_dev *dev,
777 : struct resource *res)
778 : {
779 0 : const struct pci_bus *bus = dev->bus;
780 : struct resource *r;
781 : int i;
782 :
783 0 : pci_bus_for_each_resource(bus, r, i) {
784 0 : if (!r)
785 0 : continue;
786 0 : if (resource_contains(r, res)) {
787 :
788 : /*
789 : * If the window is prefetchable but the BAR is
790 : * not, the allocator made a mistake.
791 : */
792 0 : if (r->flags & IORESOURCE_PREFETCH &&
793 0 : !(res->flags & IORESOURCE_PREFETCH))
794 : return NULL;
795 :
796 : /*
797 : * If we're below a transparent bridge, there may
798 : * be both a positively-decoded aperture and a
799 : * subtractively-decoded region that contain the BAR.
800 : * We want the positively-decoded one, so this depends
801 : * on pci_bus_for_each_resource() giving us those
802 : * first.
803 : */
804 0 : return r;
805 : }
806 : }
807 : return NULL;
808 : }
809 : EXPORT_SYMBOL(pci_find_parent_resource);
810 :
811 : /**
812 : * pci_find_resource - Return matching PCI device resource
813 : * @dev: PCI device to query
814 : * @res: Resource to look for
815 : *
816 : * Goes over standard PCI resources (BARs) and checks if the given resource
817 : * is partially or fully contained in any of them. In that case the
818 : * matching resource is returned, %NULL otherwise.
819 : */
820 0 : struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
821 : {
822 : int i;
823 :
824 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++) {
825 0 : struct resource *r = &dev->resource[i];
826 :
827 0 : if (r->start && resource_contains(r, res))
828 : return r;
829 : }
830 :
831 : return NULL;
832 : }
833 : EXPORT_SYMBOL(pci_find_resource);
834 :
835 : /**
836 : * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
837 : * @dev: the PCI device to operate on
838 : * @pos: config space offset of status word
839 : * @mask: mask of bit(s) to care about in status word
840 : *
841 : * Return 1 when mask bit(s) in status word clear, 0 otherwise.
842 : */
843 0 : int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
844 : {
845 : int i;
846 :
847 : /* Wait for Transaction Pending bit clean */
848 0 : for (i = 0; i < 4; i++) {
849 : u16 status;
850 0 : if (i)
851 0 : msleep((1 << (i - 1)) * 100);
852 :
853 0 : pci_read_config_word(dev, pos, &status);
854 0 : if (!(status & mask))
855 0 : return 1;
856 : }
857 :
858 : return 0;
859 : }
860 :
861 : static int pci_acs_enable;
862 :
863 : /**
864 : * pci_request_acs - ask for ACS to be enabled if supported
865 : */
866 0 : void pci_request_acs(void)
867 : {
868 0 : pci_acs_enable = 1;
869 0 : }
870 :
871 : static const char *disable_acs_redir_param;
872 :
873 : /**
874 : * pci_disable_acs_redir - disable ACS redirect capabilities
875 : * @dev: the PCI device
876 : *
877 : * For only devices specified in the disable_acs_redir parameter.
878 : */
879 0 : static void pci_disable_acs_redir(struct pci_dev *dev)
880 : {
881 0 : int ret = 0;
882 : const char *p;
883 : int pos;
884 : u16 ctrl;
885 :
886 0 : if (!disable_acs_redir_param)
887 0 : return;
888 :
889 0 : p = disable_acs_redir_param;
890 0 : while (*p) {
891 0 : ret = pci_dev_str_match(dev, p, &p);
892 0 : if (ret < 0) {
893 0 : pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
894 : disable_acs_redir_param);
895 :
896 : break;
897 0 : } else if (ret == 1) {
898 : /* Found a match */
899 : break;
900 : }
901 :
902 0 : if (*p != ';' && *p != ',') {
903 : /* End of param or invalid format */
904 : break;
905 : }
906 0 : p++;
907 : }
908 :
909 0 : if (ret != 1)
910 : return;
911 :
912 0 : if (!pci_dev_specific_disable_acs_redir(dev))
913 : return;
914 :
915 0 : pos = dev->acs_cap;
916 0 : if (!pos) {
917 0 : pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
918 0 : return;
919 : }
920 :
921 0 : pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
922 :
923 : /* P2P Request & Completion Redirect */
924 0 : ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
925 :
926 0 : pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 :
928 0 : pci_info(dev, "disabled ACS redirect\n");
929 : }
930 :
931 : /**
932 : * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
933 : * @dev: the PCI device
934 : */
935 0 : static void pci_std_enable_acs(struct pci_dev *dev)
936 : {
937 : int pos;
938 : u16 cap;
939 : u16 ctrl;
940 :
941 0 : pos = dev->acs_cap;
942 0 : if (!pos)
943 0 : return;
944 :
945 0 : pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
946 0 : pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
947 :
948 : /* Source Validation */
949 0 : ctrl |= (cap & PCI_ACS_SV);
950 :
951 : /* P2P Request Redirect */
952 0 : ctrl |= (cap & PCI_ACS_RR);
953 :
954 : /* P2P Completion Redirect */
955 0 : ctrl |= (cap & PCI_ACS_CR);
956 :
957 : /* Upstream Forwarding */
958 0 : ctrl |= (cap & PCI_ACS_UF);
959 :
960 : /* Enable Translation Blocking for external devices and noats */
961 0 : if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
962 0 : ctrl |= (cap & PCI_ACS_TB);
963 :
964 0 : pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
965 : }
966 :
967 : /**
968 : * pci_enable_acs - enable ACS if hardware support it
969 : * @dev: the PCI device
970 : */
971 0 : static void pci_enable_acs(struct pci_dev *dev)
972 : {
973 0 : if (!pci_acs_enable)
974 : goto disable_acs_redir;
975 :
976 0 : if (!pci_dev_specific_enable_acs(dev))
977 : goto disable_acs_redir;
978 :
979 0 : pci_std_enable_acs(dev);
980 :
981 : disable_acs_redir:
982 : /*
983 : * Note: pci_disable_acs_redir() must be called even if ACS was not
984 : * enabled by the kernel because it may have been enabled by
985 : * platform firmware. So if we are told to disable it, we should
986 : * always disable it after setting the kernel's default
987 : * preferences.
988 : */
989 0 : pci_disable_acs_redir(dev);
990 0 : }
991 :
992 : /**
993 : * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
994 : * @dev: PCI device to have its BARs restored
995 : *
996 : * Restore the BAR values for a given device, so as to make it
997 : * accessible by its driver.
998 : */
999 : static void pci_restore_bars(struct pci_dev *dev)
1000 : {
1001 : int i;
1002 :
1003 0 : for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004 0 : pci_update_resource(dev, i);
1005 : }
1006 :
1007 : static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008 : {
1009 : if (pci_use_mid_pm())
1010 : return true;
1011 :
1012 0 : return acpi_pci_power_manageable(dev);
1013 : }
1014 :
1015 : static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016 : pci_power_t t)
1017 : {
1018 : if (pci_use_mid_pm())
1019 : return mid_pci_set_power_state(dev, t);
1020 :
1021 0 : return acpi_pci_set_power_state(dev, t);
1022 : }
1023 :
1024 : static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025 : {
1026 : if (pci_use_mid_pm())
1027 : return mid_pci_get_power_state(dev);
1028 :
1029 0 : return acpi_pci_get_power_state(dev);
1030 : }
1031 :
1032 : static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033 : {
1034 : if (!pci_use_mid_pm())
1035 : acpi_pci_refresh_power_state(dev);
1036 : }
1037 :
1038 : static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039 : {
1040 : if (pci_use_mid_pm())
1041 : return PCI_POWER_ERROR;
1042 :
1043 : return acpi_pci_choose_state(dev);
1044 : }
1045 :
1046 : static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047 : {
1048 : if (pci_use_mid_pm())
1049 : return PCI_POWER_ERROR;
1050 :
1051 0 : return acpi_pci_wakeup(dev, enable);
1052 : }
1053 :
1054 : static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055 : {
1056 : if (pci_use_mid_pm())
1057 : return false;
1058 :
1059 0 : return acpi_pci_need_resume(dev);
1060 : }
1061 :
1062 : static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063 : {
1064 : if (pci_use_mid_pm())
1065 : return false;
1066 :
1067 0 : return acpi_pci_bridge_d3(dev);
1068 : }
1069 :
1070 : /**
1071 : * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1072 : * given PCI device
1073 : * @dev: PCI device to handle.
1074 : * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1075 : *
1076 : * RETURN VALUE:
1077 : * -EINVAL if the requested state is invalid.
1078 : * -EIO if device does not support PCI PM or its PM capabilities register has a
1079 : * wrong version, or device doesn't support the requested state.
1080 : * 0 if device already is in the requested state.
1081 : * 0 if device's power state has been successfully changed.
1082 : */
1083 0 : static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1084 : {
1085 : u16 pmcsr;
1086 0 : bool need_restore = false;
1087 :
1088 : /* Check if we're already there */
1089 0 : if (dev->current_state == state)
1090 : return 0;
1091 :
1092 0 : if (!dev->pm_cap)
1093 : return -EIO;
1094 :
1095 0 : if (state < PCI_D0 || state > PCI_D3hot)
1096 : return -EINVAL;
1097 :
1098 : /*
1099 : * Validate transition: We can enter D0 from any state, but if
1100 : * we're already in a low-power state, we can only go deeper. E.g.,
1101 : * we can go from D1 to D3, but we can't go directly from D3 to D1;
1102 : * we'd have to go from D3 to D0, then to D1.
1103 : */
1104 0 : if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1105 0 : && dev->current_state > state) {
1106 0 : pci_err(dev, "invalid power transition (from %s to %s)\n",
1107 : pci_power_name(dev->current_state),
1108 : pci_power_name(state));
1109 0 : return -EINVAL;
1110 : }
1111 :
1112 : /* Check if this device supports the desired state */
1113 0 : if ((state == PCI_D1 && !dev->d1_support)
1114 0 : || (state == PCI_D2 && !dev->d2_support))
1115 : return -EIO;
1116 :
1117 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1118 0 : if (PCI_POSSIBLE_ERROR(pmcsr)) {
1119 0 : pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1120 : pci_power_name(dev->current_state),
1121 : pci_power_name(state));
1122 0 : return -EIO;
1123 : }
1124 :
1125 : /*
1126 : * If we're (effectively) in D3, force entire word to 0.
1127 : * This doesn't affect PME_Status, disables PME_En, and
1128 : * sets PowerState to 0.
1129 : */
1130 0 : switch (dev->current_state) {
1131 : case PCI_D0:
1132 : case PCI_D1:
1133 : case PCI_D2:
1134 0 : pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1135 0 : pmcsr |= state;
1136 0 : break;
1137 : case PCI_D3hot:
1138 : case PCI_D3cold:
1139 : case PCI_UNKNOWN: /* Boot-up */
1140 0 : if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1141 : && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1142 0 : need_restore = true;
1143 : fallthrough; /* force to D0 */
1144 : default:
1145 0 : pmcsr = 0;
1146 0 : break;
1147 : }
1148 :
1149 : /* Enter specified state */
1150 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1151 :
1152 : /*
1153 : * Mandatory power management transition delays; see PCI PM 1.1
1154 : * 5.6.1 table 18
1155 : */
1156 0 : if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1157 0 : pci_dev_d3_sleep(dev);
1158 0 : else if (state == PCI_D2 || dev->current_state == PCI_D2)
1159 : udelay(PCI_PM_D2_DELAY);
1160 :
1161 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 0 : dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 0 : if (dev->current_state != state)
1164 0 : pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1165 : pci_power_name(dev->current_state),
1166 : pci_power_name(state));
1167 :
1168 : /*
1169 : * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1170 : * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1171 : * from D3hot to D0 _may_ perform an internal reset, thereby
1172 : * going to "D0 Uninitialized" rather than "D0 Initialized".
1173 : * For example, at least some versions of the 3c905B and the
1174 : * 3c556B exhibit this behaviour.
1175 : *
1176 : * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1177 : * devices in a D3hot state at boot. Consequently, we need to
1178 : * restore at least the BARs so that the device will be
1179 : * accessible to its driver.
1180 : */
1181 0 : if (need_restore)
1182 : pci_restore_bars(dev);
1183 :
1184 0 : if (dev->bus->self)
1185 0 : pcie_aspm_pm_state_change(dev->bus->self);
1186 :
1187 : return 0;
1188 : }
1189 :
1190 : /**
1191 : * pci_update_current_state - Read power state of given device and cache it
1192 : * @dev: PCI device to handle.
1193 : * @state: State to cache in case the device doesn't have the PM capability
1194 : *
1195 : * The power state is read from the PMCSR register, which however is
1196 : * inaccessible in D3cold. The platform firmware is therefore queried first
1197 : * to detect accessibility of the register. In case the platform firmware
1198 : * reports an incorrect state or the device isn't power manageable by the
1199 : * platform at all, we try to detect D3cold by testing accessibility of the
1200 : * vendor ID in config space.
1201 : */
1202 0 : void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1203 : {
1204 0 : if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1205 0 : !pci_device_is_present(dev)) {
1206 0 : dev->current_state = PCI_D3cold;
1207 0 : } else if (dev->pm_cap) {
1208 : u16 pmcsr;
1209 :
1210 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211 0 : dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1212 : } else {
1213 0 : dev->current_state = state;
1214 : }
1215 0 : }
1216 :
1217 : /**
1218 : * pci_refresh_power_state - Refresh the given device's power state data
1219 : * @dev: Target PCI device.
1220 : *
1221 : * Ask the platform to refresh the devices power state information and invoke
1222 : * pci_update_current_state() to update its current PCI power state.
1223 : */
1224 0 : void pci_refresh_power_state(struct pci_dev *dev)
1225 : {
1226 0 : platform_pci_refresh_power_state(dev);
1227 0 : pci_update_current_state(dev, dev->current_state);
1228 0 : }
1229 :
1230 : /**
1231 : * pci_platform_power_transition - Use platform to change device power state
1232 : * @dev: PCI device to handle.
1233 : * @state: State to put the device into.
1234 : */
1235 0 : int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236 : {
1237 : int error;
1238 :
1239 0 : error = platform_pci_set_power_state(dev, state);
1240 : if (!error)
1241 : pci_update_current_state(dev, state);
1242 0 : else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243 0 : dev->current_state = PCI_D0;
1244 :
1245 0 : return error;
1246 : }
1247 : EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248 :
1249 0 : static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250 : {
1251 0 : pm_request_resume(&pci_dev->dev);
1252 0 : return 0;
1253 : }
1254 :
1255 : /**
1256 : * pci_resume_bus - Walk given bus and runtime resume devices on it
1257 : * @bus: Top bus of the subtree to walk.
1258 : */
1259 0 : void pci_resume_bus(struct pci_bus *bus)
1260 : {
1261 0 : if (bus)
1262 0 : pci_walk_bus(bus, pci_resume_one, NULL);
1263 0 : }
1264 :
1265 0 : static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266 : {
1267 0 : int delay = 1;
1268 : u32 id;
1269 :
1270 : /*
1271 : * After reset, the device should not silently discard config
1272 : * requests, but it may still indicate that it needs more time by
1273 : * responding to them with CRS completions. The Root Port will
1274 : * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1275 : * the read (except when CRS SV is enabled and the read was for the
1276 : * Vendor ID; in that case it synthesizes 0x0001 data).
1277 : *
1278 : * Wait for the device to return a non-CRS completion. Read the
1279 : * Command register instead of Vendor ID so we don't have to
1280 : * contend with the CRS SV value.
1281 : */
1282 0 : pci_read_config_dword(dev, PCI_COMMAND, &id);
1283 0 : while (PCI_POSSIBLE_ERROR(id)) {
1284 0 : if (delay > timeout) {
1285 0 : pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 : delay - 1, reset_type);
1287 0 : return -ENOTTY;
1288 : }
1289 :
1290 0 : if (delay > 1000)
1291 0 : pci_info(dev, "not ready %dms after %s; waiting\n",
1292 : delay - 1, reset_type);
1293 :
1294 0 : msleep(delay);
1295 0 : delay *= 2;
1296 0 : pci_read_config_dword(dev, PCI_COMMAND, &id);
1297 : }
1298 :
1299 0 : if (delay > 1000)
1300 0 : pci_info(dev, "ready %dms after %s\n", delay - 1,
1301 : reset_type);
1302 :
1303 : return 0;
1304 : }
1305 :
1306 : /**
1307 : * pci_power_up - Put the given device into D0
1308 : * @dev: PCI device to power up
1309 : */
1310 0 : int pci_power_up(struct pci_dev *dev)
1311 : {
1312 0 : pci_platform_power_transition(dev, PCI_D0);
1313 :
1314 : /*
1315 : * Mandatory power management transition delays are handled in
1316 : * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1317 : * corresponding bridge.
1318 : */
1319 0 : if (dev->runtime_d3cold) {
1320 : /*
1321 : * When powering on a bridge from D3cold, the whole hierarchy
1322 : * may be powered on into D0uninitialized state, resume them to
1323 : * give them a chance to suspend again
1324 : */
1325 0 : pci_resume_bus(dev->subordinate);
1326 : }
1327 :
1328 0 : return pci_raw_set_power_state(dev, PCI_D0);
1329 : }
1330 :
1331 : /**
1332 : * __pci_dev_set_current_state - Set current state of a PCI device
1333 : * @dev: Device to handle
1334 : * @data: pointer to state to be set
1335 : */
1336 0 : static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1337 : {
1338 0 : pci_power_t state = *(pci_power_t *)data;
1339 :
1340 0 : dev->current_state = state;
1341 0 : return 0;
1342 : }
1343 :
1344 : /**
1345 : * pci_bus_set_current_state - Walk given bus and set current state of devices
1346 : * @bus: Top bus of the subtree to walk.
1347 : * @state: state to be set
1348 : */
1349 0 : void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1350 : {
1351 0 : if (bus)
1352 0 : pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1353 0 : }
1354 :
1355 : /**
1356 : * pci_set_power_state - Set the power state of a PCI device
1357 : * @dev: PCI device to handle.
1358 : * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1359 : *
1360 : * Transition a device to a new power state, using the platform firmware and/or
1361 : * the device's PCI PM registers.
1362 : *
1363 : * RETURN VALUE:
1364 : * -EINVAL if the requested state is invalid.
1365 : * -EIO if device does not support PCI PM or its PM capabilities register has a
1366 : * wrong version, or device doesn't support the requested state.
1367 : * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1368 : * 0 if device already is in the requested state.
1369 : * 0 if the transition is to D3 but D3 is not supported.
1370 : * 0 if device's power state has been successfully changed.
1371 : */
1372 0 : int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1373 : {
1374 : int error;
1375 :
1376 : /* Bound the state we're entering */
1377 0 : if (state > PCI_D3cold)
1378 : state = PCI_D3cold;
1379 0 : else if (state < PCI_D0)
1380 : state = PCI_D0;
1381 0 : else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1382 :
1383 : /*
1384 : * If the device or the parent bridge do not support PCI
1385 : * PM, ignore the request if we're doing anything other
1386 : * than putting it into D0 (which would only happen on
1387 : * boot).
1388 : */
1389 : return 0;
1390 :
1391 : /* Check if we're already there */
1392 0 : if (dev->current_state == state)
1393 : return 0;
1394 :
1395 0 : if (state == PCI_D0)
1396 0 : return pci_power_up(dev);
1397 :
1398 : /*
1399 : * This device is quirked not to be put into D3, so don't put it in
1400 : * D3
1401 : */
1402 0 : if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1403 : return 0;
1404 :
1405 : /*
1406 : * To put device in D3cold, we put device into D3hot in native
1407 : * way, then put device into D3cold with platform ops
1408 : */
1409 0 : error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1410 : PCI_D3hot : state);
1411 :
1412 : if (pci_platform_power_transition(dev, state))
1413 : return error;
1414 :
1415 : /* Powering off a bridge may power off the whole hierarchy */
1416 : if (state == PCI_D3cold)
1417 : pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1418 :
1419 : return 0;
1420 : }
1421 : EXPORT_SYMBOL(pci_set_power_state);
1422 :
1423 : #define PCI_EXP_SAVE_REGS 7
1424 :
1425 : static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1426 : u16 cap, bool extended)
1427 : {
1428 : struct pci_cap_saved_state *tmp;
1429 :
1430 0 : hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1431 0 : if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1432 : return tmp;
1433 : }
1434 : return NULL;
1435 : }
1436 :
1437 0 : struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1438 : {
1439 0 : return _pci_find_saved_cap(dev, cap, false);
1440 : }
1441 :
1442 0 : struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1443 : {
1444 0 : return _pci_find_saved_cap(dev, cap, true);
1445 : }
1446 :
1447 0 : static int pci_save_pcie_state(struct pci_dev *dev)
1448 : {
1449 0 : int i = 0;
1450 : struct pci_cap_saved_state *save_state;
1451 : u16 *cap;
1452 :
1453 0 : if (!pci_is_pcie(dev))
1454 : return 0;
1455 :
1456 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1457 0 : if (!save_state) {
1458 0 : pci_err(dev, "buffer not found in %s\n", __func__);
1459 0 : return -ENOMEM;
1460 : }
1461 :
1462 0 : cap = (u16 *)&save_state->cap.data[0];
1463 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1464 0 : pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1465 0 : pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1466 0 : pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1467 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1468 0 : pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1469 0 : pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1470 :
1471 0 : return 0;
1472 : }
1473 :
1474 0 : void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1475 : {
1476 : #ifdef CONFIG_PCIEASPM
1477 : struct pci_dev *bridge;
1478 : u32 ctl;
1479 :
1480 0 : bridge = pci_upstream_bridge(dev);
1481 0 : if (bridge && bridge->ltr_path) {
1482 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1483 0 : if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1484 : pci_dbg(bridge, "re-enabling LTR\n");
1485 : pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1486 : PCI_EXP_DEVCTL2_LTR_EN);
1487 : }
1488 : }
1489 : #endif
1490 0 : }
1491 :
1492 0 : static void pci_restore_pcie_state(struct pci_dev *dev)
1493 : {
1494 0 : int i = 0;
1495 : struct pci_cap_saved_state *save_state;
1496 : u16 *cap;
1497 :
1498 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1499 0 : if (!save_state)
1500 : return;
1501 :
1502 : /*
1503 : * Downstream ports reset the LTR enable bit when link goes down.
1504 : * Check and re-configure the bit here before restoring device.
1505 : * PCIe r5.0, sec 7.5.3.16.
1506 : */
1507 0 : pci_bridge_reconfigure_ltr(dev);
1508 :
1509 0 : cap = (u16 *)&save_state->cap.data[0];
1510 0 : pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1511 0 : pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1512 0 : pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1513 0 : pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1514 0 : pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1515 0 : pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1516 0 : pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1517 : }
1518 :
1519 0 : static int pci_save_pcix_state(struct pci_dev *dev)
1520 : {
1521 : int pos;
1522 : struct pci_cap_saved_state *save_state;
1523 :
1524 0 : pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1525 0 : if (!pos)
1526 : return 0;
1527 :
1528 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1529 0 : if (!save_state) {
1530 0 : pci_err(dev, "buffer not found in %s\n", __func__);
1531 0 : return -ENOMEM;
1532 : }
1533 :
1534 0 : pci_read_config_word(dev, pos + PCI_X_CMD,
1535 0 : (u16 *)save_state->cap.data);
1536 :
1537 0 : return 0;
1538 : }
1539 :
1540 0 : static void pci_restore_pcix_state(struct pci_dev *dev)
1541 : {
1542 0 : int i = 0, pos;
1543 : struct pci_cap_saved_state *save_state;
1544 : u16 *cap;
1545 :
1546 0 : save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1547 0 : pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1548 0 : if (!save_state || !pos)
1549 : return;
1550 0 : cap = (u16 *)&save_state->cap.data[0];
1551 :
1552 0 : pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1553 : }
1554 :
1555 0 : static void pci_save_ltr_state(struct pci_dev *dev)
1556 : {
1557 : int ltr;
1558 : struct pci_cap_saved_state *save_state;
1559 : u32 *cap;
1560 :
1561 0 : if (!pci_is_pcie(dev))
1562 : return;
1563 :
1564 0 : ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1565 0 : if (!ltr)
1566 : return;
1567 :
1568 0 : save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1569 0 : if (!save_state) {
1570 0 : pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1571 0 : return;
1572 : }
1573 :
1574 : /* Some broken devices only support dword access to LTR */
1575 0 : cap = &save_state->cap.data[0];
1576 0 : pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1577 : }
1578 :
1579 0 : static void pci_restore_ltr_state(struct pci_dev *dev)
1580 : {
1581 : struct pci_cap_saved_state *save_state;
1582 : int ltr;
1583 : u32 *cap;
1584 :
1585 0 : save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1586 0 : ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1587 0 : if (!save_state || !ltr)
1588 : return;
1589 :
1590 : /* Some broken devices only support dword access to LTR */
1591 0 : cap = &save_state->cap.data[0];
1592 0 : pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1593 : }
1594 :
1595 : /**
1596 : * pci_save_state - save the PCI configuration space of a device before
1597 : * suspending
1598 : * @dev: PCI device that we're dealing with
1599 : */
1600 0 : int pci_save_state(struct pci_dev *dev)
1601 : {
1602 : int i;
1603 : /* XXX: 100% dword access ok here? */
1604 0 : for (i = 0; i < 16; i++) {
1605 0 : pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1606 : pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1607 : i * 4, dev->saved_config_space[i]);
1608 : }
1609 0 : dev->state_saved = true;
1610 :
1611 0 : i = pci_save_pcie_state(dev);
1612 0 : if (i != 0)
1613 : return i;
1614 :
1615 0 : i = pci_save_pcix_state(dev);
1616 0 : if (i != 0)
1617 : return i;
1618 :
1619 0 : pci_save_ltr_state(dev);
1620 0 : pci_save_dpc_state(dev);
1621 0 : pci_save_aer_state(dev);
1622 0 : pci_save_ptm_state(dev);
1623 0 : return pci_save_vc_state(dev);
1624 : }
1625 : EXPORT_SYMBOL(pci_save_state);
1626 :
1627 0 : static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1628 : u32 saved_val, int retry, bool force)
1629 : {
1630 : u32 val;
1631 :
1632 0 : pci_read_config_dword(pdev, offset, &val);
1633 0 : if (!force && val == saved_val)
1634 : return;
1635 :
1636 : for (;;) {
1637 : pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1638 : offset, val, saved_val);
1639 0 : pci_write_config_dword(pdev, offset, saved_val);
1640 0 : if (retry-- <= 0)
1641 : return;
1642 :
1643 0 : pci_read_config_dword(pdev, offset, &val);
1644 0 : if (val == saved_val)
1645 : return;
1646 :
1647 : mdelay(1);
1648 : }
1649 : }
1650 :
1651 : static void pci_restore_config_space_range(struct pci_dev *pdev,
1652 : int start, int end, int retry,
1653 : bool force)
1654 : {
1655 : int index;
1656 :
1657 0 : for (index = end; index >= start; index--)
1658 0 : pci_restore_config_dword(pdev, 4 * index,
1659 : pdev->saved_config_space[index],
1660 : retry, force);
1661 : }
1662 :
1663 0 : static void pci_restore_config_space(struct pci_dev *pdev)
1664 : {
1665 0 : if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1666 : pci_restore_config_space_range(pdev, 10, 15, 0, false);
1667 : /* Restore BARs before the command register. */
1668 : pci_restore_config_space_range(pdev, 4, 9, 10, false);
1669 : pci_restore_config_space_range(pdev, 0, 3, 0, false);
1670 0 : } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1671 : pci_restore_config_space_range(pdev, 12, 15, 0, false);
1672 :
1673 : /*
1674 : * Force rewriting of prefetch registers to avoid S3 resume
1675 : * issues on Intel PCI bridges that occur when these
1676 : * registers are not explicitly written.
1677 : */
1678 : pci_restore_config_space_range(pdev, 9, 11, 0, true);
1679 : pci_restore_config_space_range(pdev, 0, 8, 0, false);
1680 : } else {
1681 : pci_restore_config_space_range(pdev, 0, 15, 0, false);
1682 : }
1683 0 : }
1684 :
1685 0 : static void pci_restore_rebar_state(struct pci_dev *pdev)
1686 : {
1687 : unsigned int pos, nbars, i;
1688 : u32 ctrl;
1689 :
1690 0 : pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1691 0 : if (!pos)
1692 0 : return;
1693 :
1694 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1695 0 : nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1696 : PCI_REBAR_CTRL_NBAR_SHIFT;
1697 :
1698 0 : for (i = 0; i < nbars; i++, pos += 8) {
1699 : struct resource *res;
1700 : int bar_idx, size;
1701 :
1702 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1703 0 : bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1704 0 : res = pdev->resource + bar_idx;
1705 0 : size = pci_rebar_bytes_to_size(resource_size(res));
1706 0 : ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1707 0 : ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1708 0 : pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1709 : }
1710 : }
1711 :
1712 : /**
1713 : * pci_restore_state - Restore the saved state of a PCI device
1714 : * @dev: PCI device that we're dealing with
1715 : */
1716 0 : void pci_restore_state(struct pci_dev *dev)
1717 : {
1718 0 : if (!dev->state_saved)
1719 : return;
1720 :
1721 : /*
1722 : * Restore max latencies (in the LTR capability) before enabling
1723 : * LTR itself (in the PCIe capability).
1724 : */
1725 0 : pci_restore_ltr_state(dev);
1726 :
1727 0 : pci_restore_pcie_state(dev);
1728 0 : pci_restore_pasid_state(dev);
1729 0 : pci_restore_pri_state(dev);
1730 0 : pci_restore_ats_state(dev);
1731 0 : pci_restore_vc_state(dev);
1732 0 : pci_restore_rebar_state(dev);
1733 0 : pci_restore_dpc_state(dev);
1734 0 : pci_restore_ptm_state(dev);
1735 :
1736 0 : pci_aer_clear_status(dev);
1737 0 : pci_restore_aer_state(dev);
1738 :
1739 0 : pci_restore_config_space(dev);
1740 :
1741 0 : pci_restore_pcix_state(dev);
1742 0 : pci_restore_msi_state(dev);
1743 :
1744 : /* Restore ACS and IOV configuration state */
1745 0 : pci_enable_acs(dev);
1746 0 : pci_restore_iov_state(dev);
1747 :
1748 0 : dev->state_saved = false;
1749 : }
1750 : EXPORT_SYMBOL(pci_restore_state);
1751 :
1752 : struct pci_saved_state {
1753 : u32 config_space[16];
1754 : struct pci_cap_saved_data cap[];
1755 : };
1756 :
1757 : /**
1758 : * pci_store_saved_state - Allocate and return an opaque struct containing
1759 : * the device saved state.
1760 : * @dev: PCI device that we're dealing with
1761 : *
1762 : * Return NULL if no state or error.
1763 : */
1764 0 : struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1765 : {
1766 : struct pci_saved_state *state;
1767 : struct pci_cap_saved_state *tmp;
1768 : struct pci_cap_saved_data *cap;
1769 : size_t size;
1770 :
1771 0 : if (!dev->state_saved)
1772 : return NULL;
1773 :
1774 0 : size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1775 :
1776 0 : hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1777 0 : size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1778 :
1779 0 : state = kzalloc(size, GFP_KERNEL);
1780 0 : if (!state)
1781 : return NULL;
1782 :
1783 0 : memcpy(state->config_space, dev->saved_config_space,
1784 : sizeof(state->config_space));
1785 :
1786 0 : cap = state->cap;
1787 0 : hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1788 0 : size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1789 0 : memcpy(cap, &tmp->cap, len);
1790 0 : cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1791 : }
1792 : /* Empty cap_save terminates list */
1793 :
1794 : return state;
1795 : }
1796 : EXPORT_SYMBOL_GPL(pci_store_saved_state);
1797 :
1798 : /**
1799 : * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1800 : * @dev: PCI device that we're dealing with
1801 : * @state: Saved state returned from pci_store_saved_state()
1802 : */
1803 0 : int pci_load_saved_state(struct pci_dev *dev,
1804 : struct pci_saved_state *state)
1805 : {
1806 : struct pci_cap_saved_data *cap;
1807 :
1808 0 : dev->state_saved = false;
1809 :
1810 0 : if (!state)
1811 : return 0;
1812 :
1813 0 : memcpy(dev->saved_config_space, state->config_space,
1814 : sizeof(state->config_space));
1815 :
1816 0 : cap = state->cap;
1817 0 : while (cap->size) {
1818 : struct pci_cap_saved_state *tmp;
1819 :
1820 0 : tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1821 0 : if (!tmp || tmp->cap.size != cap->size)
1822 : return -EINVAL;
1823 :
1824 0 : memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1825 0 : cap = (struct pci_cap_saved_data *)((u8 *)cap +
1826 0 : sizeof(struct pci_cap_saved_data) + cap->size);
1827 : }
1828 :
1829 0 : dev->state_saved = true;
1830 0 : return 0;
1831 : }
1832 : EXPORT_SYMBOL_GPL(pci_load_saved_state);
1833 :
1834 : /**
1835 : * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1836 : * and free the memory allocated for it.
1837 : * @dev: PCI device that we're dealing with
1838 : * @state: Pointer to saved state returned from pci_store_saved_state()
1839 : */
1840 0 : int pci_load_and_free_saved_state(struct pci_dev *dev,
1841 : struct pci_saved_state **state)
1842 : {
1843 0 : int ret = pci_load_saved_state(dev, *state);
1844 0 : kfree(*state);
1845 0 : *state = NULL;
1846 0 : return ret;
1847 : }
1848 : EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1849 :
1850 0 : int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1851 : {
1852 0 : return pci_enable_resources(dev, bars);
1853 : }
1854 :
1855 0 : static int do_pci_enable_device(struct pci_dev *dev, int bars)
1856 : {
1857 : int err;
1858 : struct pci_dev *bridge;
1859 : u16 cmd;
1860 : u8 pin;
1861 :
1862 0 : err = pci_set_power_state(dev, PCI_D0);
1863 0 : if (err < 0 && err != -EIO)
1864 : return err;
1865 :
1866 0 : bridge = pci_upstream_bridge(dev);
1867 0 : if (bridge)
1868 0 : pcie_aspm_powersave_config_link(bridge);
1869 :
1870 0 : err = pcibios_enable_device(dev, bars);
1871 0 : if (err < 0)
1872 : return err;
1873 0 : pci_fixup_device(pci_fixup_enable, dev);
1874 :
1875 0 : if (dev->msi_enabled || dev->msix_enabled)
1876 : return 0;
1877 :
1878 0 : pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1879 0 : if (pin) {
1880 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
1881 0 : if (cmd & PCI_COMMAND_INTX_DISABLE)
1882 0 : pci_write_config_word(dev, PCI_COMMAND,
1883 : cmd & ~PCI_COMMAND_INTX_DISABLE);
1884 : }
1885 :
1886 : return 0;
1887 : }
1888 :
1889 : /**
1890 : * pci_reenable_device - Resume abandoned device
1891 : * @dev: PCI device to be resumed
1892 : *
1893 : * NOTE: This function is a backend of pci_default_resume() and is not supposed
1894 : * to be called by normal code, write proper resume handler and use it instead.
1895 : */
1896 0 : int pci_reenable_device(struct pci_dev *dev)
1897 : {
1898 0 : if (pci_is_enabled(dev))
1899 0 : return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1900 : return 0;
1901 : }
1902 : EXPORT_SYMBOL(pci_reenable_device);
1903 :
1904 0 : static void pci_enable_bridge(struct pci_dev *dev)
1905 : {
1906 : struct pci_dev *bridge;
1907 : int retval;
1908 :
1909 0 : bridge = pci_upstream_bridge(dev);
1910 0 : if (bridge)
1911 0 : pci_enable_bridge(bridge);
1912 :
1913 0 : if (pci_is_enabled(dev)) {
1914 0 : if (!dev->is_busmaster)
1915 : pci_set_master(dev);
1916 : return;
1917 : }
1918 :
1919 0 : retval = pci_enable_device(dev);
1920 0 : if (retval)
1921 0 : pci_err(dev, "Error enabling bridge (%d), continuing\n",
1922 : retval);
1923 : pci_set_master(dev);
1924 : }
1925 :
1926 0 : static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1927 : {
1928 : struct pci_dev *bridge;
1929 : int err;
1930 0 : int i, bars = 0;
1931 :
1932 : /*
1933 : * Power state could be unknown at this point, either due to a fresh
1934 : * boot or a device removal call. So get the current power state
1935 : * so that things like MSI message writing will behave as expected
1936 : * (e.g. if the device really is in D0 at enable time).
1937 : */
1938 0 : pci_update_current_state(dev, dev->current_state);
1939 :
1940 0 : if (atomic_inc_return(&dev->enable_cnt) > 1)
1941 : return 0; /* already enabled */
1942 :
1943 0 : bridge = pci_upstream_bridge(dev);
1944 0 : if (bridge)
1945 0 : pci_enable_bridge(bridge);
1946 :
1947 : /* only skip sriov related */
1948 0 : for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1949 0 : if (dev->resource[i].flags & flags)
1950 0 : bars |= (1 << i);
1951 0 : for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1952 0 : if (dev->resource[i].flags & flags)
1953 0 : bars |= (1 << i);
1954 :
1955 0 : err = do_pci_enable_device(dev, bars);
1956 0 : if (err < 0)
1957 0 : atomic_dec(&dev->enable_cnt);
1958 : return err;
1959 : }
1960 :
1961 : /**
1962 : * pci_enable_device_io - Initialize a device for use with IO space
1963 : * @dev: PCI device to be initialized
1964 : *
1965 : * Initialize device before it's used by a driver. Ask low-level code
1966 : * to enable I/O resources. Wake up the device if it was suspended.
1967 : * Beware, this function can fail.
1968 : */
1969 0 : int pci_enable_device_io(struct pci_dev *dev)
1970 : {
1971 0 : return pci_enable_device_flags(dev, IORESOURCE_IO);
1972 : }
1973 : EXPORT_SYMBOL(pci_enable_device_io);
1974 :
1975 : /**
1976 : * pci_enable_device_mem - Initialize a device for use with Memory space
1977 : * @dev: PCI device to be initialized
1978 : *
1979 : * Initialize device before it's used by a driver. Ask low-level code
1980 : * to enable Memory resources. Wake up the device if it was suspended.
1981 : * Beware, this function can fail.
1982 : */
1983 0 : int pci_enable_device_mem(struct pci_dev *dev)
1984 : {
1985 0 : return pci_enable_device_flags(dev, IORESOURCE_MEM);
1986 : }
1987 : EXPORT_SYMBOL(pci_enable_device_mem);
1988 :
1989 : /**
1990 : * pci_enable_device - Initialize device before it's used by a driver.
1991 : * @dev: PCI device to be initialized
1992 : *
1993 : * Initialize device before it's used by a driver. Ask low-level code
1994 : * to enable I/O and memory. Wake up the device if it was suspended.
1995 : * Beware, this function can fail.
1996 : *
1997 : * Note we don't actually enable the device many times if we call
1998 : * this function repeatedly (we just increment the count).
1999 : */
2000 0 : int pci_enable_device(struct pci_dev *dev)
2001 : {
2002 0 : return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2003 : }
2004 : EXPORT_SYMBOL(pci_enable_device);
2005 :
2006 : /*
2007 : * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2008 : * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2009 : * there's no need to track it separately. pci_devres is initialized
2010 : * when a device is enabled using managed PCI device enable interface.
2011 : */
2012 : struct pci_devres {
2013 : unsigned int enabled:1;
2014 : unsigned int pinned:1;
2015 : unsigned int orig_intx:1;
2016 : unsigned int restore_intx:1;
2017 : unsigned int mwi:1;
2018 : u32 region_mask;
2019 : };
2020 :
2021 0 : static void pcim_release(struct device *gendev, void *res)
2022 : {
2023 0 : struct pci_dev *dev = to_pci_dev(gendev);
2024 0 : struct pci_devres *this = res;
2025 : int i;
2026 :
2027 0 : for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2028 0 : if (this->region_mask & (1 << i))
2029 0 : pci_release_region(dev, i);
2030 :
2031 0 : if (this->mwi)
2032 0 : pci_clear_mwi(dev);
2033 :
2034 0 : if (this->restore_intx)
2035 0 : pci_intx(dev, this->orig_intx);
2036 :
2037 0 : if (this->enabled && !this->pinned)
2038 0 : pci_disable_device(dev);
2039 0 : }
2040 :
2041 0 : static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2042 : {
2043 : struct pci_devres *dr, *new_dr;
2044 :
2045 0 : dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2046 0 : if (dr)
2047 : return dr;
2048 :
2049 0 : new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2050 0 : if (!new_dr)
2051 : return NULL;
2052 0 : return devres_get(&pdev->dev, new_dr, NULL, NULL);
2053 : }
2054 :
2055 : static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2056 : {
2057 0 : if (pci_is_managed(pdev))
2058 0 : return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2059 : return NULL;
2060 : }
2061 :
2062 : /**
2063 : * pcim_enable_device - Managed pci_enable_device()
2064 : * @pdev: PCI device to be initialized
2065 : *
2066 : * Managed pci_enable_device().
2067 : */
2068 0 : int pcim_enable_device(struct pci_dev *pdev)
2069 : {
2070 : struct pci_devres *dr;
2071 : int rc;
2072 :
2073 0 : dr = get_pci_dr(pdev);
2074 0 : if (unlikely(!dr))
2075 : return -ENOMEM;
2076 0 : if (dr->enabled)
2077 : return 0;
2078 :
2079 0 : rc = pci_enable_device(pdev);
2080 0 : if (!rc) {
2081 0 : pdev->is_managed = 1;
2082 0 : dr->enabled = 1;
2083 : }
2084 : return rc;
2085 : }
2086 : EXPORT_SYMBOL(pcim_enable_device);
2087 :
2088 : /**
2089 : * pcim_pin_device - Pin managed PCI device
2090 : * @pdev: PCI device to pin
2091 : *
2092 : * Pin managed PCI device @pdev. Pinned device won't be disabled on
2093 : * driver detach. @pdev must have been enabled with
2094 : * pcim_enable_device().
2095 : */
2096 0 : void pcim_pin_device(struct pci_dev *pdev)
2097 : {
2098 : struct pci_devres *dr;
2099 :
2100 0 : dr = find_pci_dr(pdev);
2101 0 : WARN_ON(!dr || !dr->enabled);
2102 0 : if (dr)
2103 0 : dr->pinned = 1;
2104 0 : }
2105 : EXPORT_SYMBOL(pcim_pin_device);
2106 :
2107 : /*
2108 : * pcibios_device_add - provide arch specific hooks when adding device dev
2109 : * @dev: the PCI device being added
2110 : *
2111 : * Permits the platform to provide architecture specific functionality when
2112 : * devices are added. This is the default implementation. Architecture
2113 : * implementations can override this.
2114 : */
2115 0 : int __weak pcibios_device_add(struct pci_dev *dev)
2116 : {
2117 0 : return 0;
2118 : }
2119 :
2120 : /**
2121 : * pcibios_release_device - provide arch specific hooks when releasing
2122 : * device dev
2123 : * @dev: the PCI device being released
2124 : *
2125 : * Permits the platform to provide architecture specific functionality when
2126 : * devices are released. This is the default implementation. Architecture
2127 : * implementations can override this.
2128 : */
2129 0 : void __weak pcibios_release_device(struct pci_dev *dev) {}
2130 :
2131 : /**
2132 : * pcibios_disable_device - disable arch specific PCI resources for device dev
2133 : * @dev: the PCI device to disable
2134 : *
2135 : * Disables architecture specific PCI resources for the device. This
2136 : * is the default implementation. Architecture implementations can
2137 : * override this.
2138 : */
2139 0 : void __weak pcibios_disable_device(struct pci_dev *dev) {}
2140 :
2141 : /**
2142 : * pcibios_penalize_isa_irq - penalize an ISA IRQ
2143 : * @irq: ISA IRQ to penalize
2144 : * @active: IRQ active or not
2145 : *
2146 : * Permits the platform to provide architecture-specific functionality when
2147 : * penalizing ISA IRQs. This is the default implementation. Architecture
2148 : * implementations can override this.
2149 : */
2150 0 : void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2151 :
2152 0 : static void do_pci_disable_device(struct pci_dev *dev)
2153 : {
2154 : u16 pci_command;
2155 :
2156 0 : pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2157 0 : if (pci_command & PCI_COMMAND_MASTER) {
2158 0 : pci_command &= ~PCI_COMMAND_MASTER;
2159 0 : pci_write_config_word(dev, PCI_COMMAND, pci_command);
2160 : }
2161 :
2162 0 : pcibios_disable_device(dev);
2163 0 : }
2164 :
2165 : /**
2166 : * pci_disable_enabled_device - Disable device without updating enable_cnt
2167 : * @dev: PCI device to disable
2168 : *
2169 : * NOTE: This function is a backend of PCI power management routines and is
2170 : * not supposed to be called drivers.
2171 : */
2172 0 : void pci_disable_enabled_device(struct pci_dev *dev)
2173 : {
2174 0 : if (pci_is_enabled(dev))
2175 0 : do_pci_disable_device(dev);
2176 0 : }
2177 :
2178 : /**
2179 : * pci_disable_device - Disable PCI device after use
2180 : * @dev: PCI device to be disabled
2181 : *
2182 : * Signal to the system that the PCI device is not in use by the system
2183 : * anymore. This only involves disabling PCI bus-mastering, if active.
2184 : *
2185 : * Note we don't actually disable the device until all callers of
2186 : * pci_enable_device() have called pci_disable_device().
2187 : */
2188 0 : void pci_disable_device(struct pci_dev *dev)
2189 : {
2190 : struct pci_devres *dr;
2191 :
2192 0 : dr = find_pci_dr(dev);
2193 0 : if (dr)
2194 0 : dr->enabled = 0;
2195 :
2196 0 : dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2197 : "disabling already-disabled device");
2198 :
2199 0 : if (atomic_dec_return(&dev->enable_cnt) != 0)
2200 : return;
2201 :
2202 0 : do_pci_disable_device(dev);
2203 :
2204 0 : dev->is_busmaster = 0;
2205 : }
2206 : EXPORT_SYMBOL(pci_disable_device);
2207 :
2208 : /**
2209 : * pcibios_set_pcie_reset_state - set reset state for device dev
2210 : * @dev: the PCIe device reset
2211 : * @state: Reset state to enter into
2212 : *
2213 : * Set the PCIe reset state for the device. This is the default
2214 : * implementation. Architecture implementations can override this.
2215 : */
2216 0 : int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2217 : enum pcie_reset_state state)
2218 : {
2219 0 : return -EINVAL;
2220 : }
2221 :
2222 : /**
2223 : * pci_set_pcie_reset_state - set reset state for device dev
2224 : * @dev: the PCIe device reset
2225 : * @state: Reset state to enter into
2226 : *
2227 : * Sets the PCI reset state for the device.
2228 : */
2229 0 : int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2230 : {
2231 0 : return pcibios_set_pcie_reset_state(dev, state);
2232 : }
2233 : EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2234 :
2235 : #ifdef CONFIG_PCIEAER
2236 : void pcie_clear_device_status(struct pci_dev *dev)
2237 : {
2238 : u16 sta;
2239 :
2240 : pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2241 : pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2242 : }
2243 : #endif
2244 :
2245 : /**
2246 : * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2247 : * @dev: PCIe root port or event collector.
2248 : */
2249 0 : void pcie_clear_root_pme_status(struct pci_dev *dev)
2250 : {
2251 0 : pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2252 0 : }
2253 :
2254 : /**
2255 : * pci_check_pme_status - Check if given device has generated PME.
2256 : * @dev: Device to check.
2257 : *
2258 : * Check the PME status of the device and if set, clear it and clear PME enable
2259 : * (if set). Return 'true' if PME status and PME enable were both set or
2260 : * 'false' otherwise.
2261 : */
2262 0 : bool pci_check_pme_status(struct pci_dev *dev)
2263 : {
2264 : int pmcsr_pos;
2265 : u16 pmcsr;
2266 0 : bool ret = false;
2267 :
2268 0 : if (!dev->pm_cap)
2269 : return false;
2270 :
2271 0 : pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2272 0 : pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2273 0 : if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2274 : return false;
2275 :
2276 : /* Clear PME status. */
2277 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS;
2278 0 : if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2279 : /* Disable PME to avoid interrupt flood. */
2280 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2281 0 : ret = true;
2282 : }
2283 :
2284 0 : pci_write_config_word(dev, pmcsr_pos, pmcsr);
2285 :
2286 0 : return ret;
2287 : }
2288 :
2289 : /**
2290 : * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2291 : * @dev: Device to handle.
2292 : * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2293 : *
2294 : * Check if @dev has generated PME and queue a resume request for it in that
2295 : * case.
2296 : */
2297 0 : static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2298 : {
2299 0 : if (pme_poll_reset && dev->pme_poll)
2300 0 : dev->pme_poll = false;
2301 :
2302 0 : if (pci_check_pme_status(dev)) {
2303 0 : pci_wakeup_event(dev);
2304 0 : pm_request_resume(&dev->dev);
2305 : }
2306 0 : return 0;
2307 : }
2308 :
2309 : /**
2310 : * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2311 : * @bus: Top bus of the subtree to walk.
2312 : */
2313 0 : void pci_pme_wakeup_bus(struct pci_bus *bus)
2314 : {
2315 0 : if (bus)
2316 0 : pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2317 0 : }
2318 :
2319 :
2320 : /**
2321 : * pci_pme_capable - check the capability of PCI device to generate PME#
2322 : * @dev: PCI device to handle.
2323 : * @state: PCI state from which device will issue PME#.
2324 : */
2325 0 : bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2326 : {
2327 0 : if (!dev->pm_cap)
2328 : return false;
2329 :
2330 0 : return !!(dev->pme_support & (1 << state));
2331 : }
2332 : EXPORT_SYMBOL(pci_pme_capable);
2333 :
2334 0 : static void pci_pme_list_scan(struct work_struct *work)
2335 : {
2336 : struct pci_pme_device *pme_dev, *n;
2337 :
2338 0 : mutex_lock(&pci_pme_list_mutex);
2339 0 : list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2340 0 : if (pme_dev->dev->pme_poll) {
2341 : struct pci_dev *bridge;
2342 :
2343 0 : bridge = pme_dev->dev->bus->self;
2344 : /*
2345 : * If bridge is in low power state, the
2346 : * configuration space of subordinate devices
2347 : * may be not accessible
2348 : */
2349 0 : if (bridge && bridge->current_state != PCI_D0)
2350 0 : continue;
2351 : /*
2352 : * If the device is in D3cold it should not be
2353 : * polled either.
2354 : */
2355 0 : if (pme_dev->dev->current_state == PCI_D3cold)
2356 0 : continue;
2357 :
2358 0 : pci_pme_wakeup(pme_dev->dev, NULL);
2359 : } else {
2360 0 : list_del(&pme_dev->list);
2361 0 : kfree(pme_dev);
2362 : }
2363 : }
2364 0 : if (!list_empty(&pci_pme_list))
2365 0 : queue_delayed_work(system_freezable_wq, &pci_pme_work,
2366 : msecs_to_jiffies(PME_TIMEOUT));
2367 0 : mutex_unlock(&pci_pme_list_mutex);
2368 0 : }
2369 :
2370 0 : static void __pci_pme_active(struct pci_dev *dev, bool enable)
2371 : {
2372 : u16 pmcsr;
2373 :
2374 0 : if (!dev->pme_support)
2375 0 : return;
2376 :
2377 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2378 : /* Clear PME_Status by writing 1 to it and enable PME# */
2379 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2380 0 : if (!enable)
2381 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2382 :
2383 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2384 : }
2385 :
2386 : /**
2387 : * pci_pme_restore - Restore PME configuration after config space restore.
2388 : * @dev: PCI device to update.
2389 : */
2390 0 : void pci_pme_restore(struct pci_dev *dev)
2391 : {
2392 : u16 pmcsr;
2393 :
2394 0 : if (!dev->pme_support)
2395 0 : return;
2396 :
2397 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2398 0 : if (dev->wakeup_prepared) {
2399 0 : pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2400 0 : pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2401 : } else {
2402 0 : pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2403 0 : pmcsr |= PCI_PM_CTRL_PME_STATUS;
2404 : }
2405 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2406 : }
2407 :
2408 : /**
2409 : * pci_pme_active - enable or disable PCI device's PME# function
2410 : * @dev: PCI device to handle.
2411 : * @enable: 'true' to enable PME# generation; 'false' to disable it.
2412 : *
2413 : * The caller must verify that the device is capable of generating PME# before
2414 : * calling this function with @enable equal to 'true'.
2415 : */
2416 0 : void pci_pme_active(struct pci_dev *dev, bool enable)
2417 : {
2418 0 : __pci_pme_active(dev, enable);
2419 :
2420 : /*
2421 : * PCI (as opposed to PCIe) PME requires that the device have
2422 : * its PME# line hooked up correctly. Not all hardware vendors
2423 : * do this, so the PME never gets delivered and the device
2424 : * remains asleep. The easiest way around this is to
2425 : * periodically walk the list of suspended devices and check
2426 : * whether any have their PME flag set. The assumption is that
2427 : * we'll wake up often enough anyway that this won't be a huge
2428 : * hit, and the power savings from the devices will still be a
2429 : * win.
2430 : *
2431 : * Although PCIe uses in-band PME message instead of PME# line
2432 : * to report PME, PME does not work for some PCIe devices in
2433 : * reality. For example, there are devices that set their PME
2434 : * status bits, but don't really bother to send a PME message;
2435 : * there are PCI Express Root Ports that don't bother to
2436 : * trigger interrupts when they receive PME messages from the
2437 : * devices below. So PME poll is used for PCIe devices too.
2438 : */
2439 :
2440 0 : if (dev->pme_poll) {
2441 : struct pci_pme_device *pme_dev;
2442 0 : if (enable) {
2443 0 : pme_dev = kmalloc(sizeof(struct pci_pme_device),
2444 : GFP_KERNEL);
2445 0 : if (!pme_dev) {
2446 0 : pci_warn(dev, "can't enable PME#\n");
2447 0 : return;
2448 : }
2449 0 : pme_dev->dev = dev;
2450 0 : mutex_lock(&pci_pme_list_mutex);
2451 0 : list_add(&pme_dev->list, &pci_pme_list);
2452 0 : if (list_is_singular(&pci_pme_list))
2453 0 : queue_delayed_work(system_freezable_wq,
2454 : &pci_pme_work,
2455 : msecs_to_jiffies(PME_TIMEOUT));
2456 0 : mutex_unlock(&pci_pme_list_mutex);
2457 : } else {
2458 0 : mutex_lock(&pci_pme_list_mutex);
2459 0 : list_for_each_entry(pme_dev, &pci_pme_list, list) {
2460 0 : if (pme_dev->dev == dev) {
2461 0 : list_del(&pme_dev->list);
2462 0 : kfree(pme_dev);
2463 0 : break;
2464 : }
2465 : }
2466 0 : mutex_unlock(&pci_pme_list_mutex);
2467 : }
2468 : }
2469 :
2470 : pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2471 : }
2472 : EXPORT_SYMBOL(pci_pme_active);
2473 :
2474 : /**
2475 : * __pci_enable_wake - enable PCI device as wakeup event source
2476 : * @dev: PCI device affected
2477 : * @state: PCI state from which device will issue wakeup events
2478 : * @enable: True to enable event generation; false to disable
2479 : *
2480 : * This enables the device as a wakeup event source, or disables it.
2481 : * When such events involves platform-specific hooks, those hooks are
2482 : * called automatically by this routine.
2483 : *
2484 : * Devices with legacy power management (no standard PCI PM capabilities)
2485 : * always require such platform hooks.
2486 : *
2487 : * RETURN VALUE:
2488 : * 0 is returned on success
2489 : * -EINVAL is returned if device is not supposed to wake up the system
2490 : * Error code depending on the platform is returned if both the platform and
2491 : * the native mechanism fail to enable the generation of wake-up events
2492 : */
2493 0 : static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2494 : {
2495 0 : int ret = 0;
2496 :
2497 : /*
2498 : * Bridges that are not power-manageable directly only signal
2499 : * wakeup on behalf of subordinate devices which is set up
2500 : * elsewhere, so skip them. However, bridges that are
2501 : * power-manageable may signal wakeup for themselves (for example,
2502 : * on a hotplug event) and they need to be covered here.
2503 : */
2504 0 : if (!pci_power_manageable(dev))
2505 : return 0;
2506 :
2507 : /* Don't do the same thing twice in a row for one device. */
2508 0 : if (!!enable == !!dev->wakeup_prepared)
2509 : return 0;
2510 :
2511 : /*
2512 : * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2513 : * Anderson we should be doing PME# wake enable followed by ACPI wake
2514 : * enable. To disable wake-up we call the platform first, for symmetry.
2515 : */
2516 :
2517 0 : if (enable) {
2518 : int error;
2519 :
2520 : /*
2521 : * Enable PME signaling if the device can signal PME from
2522 : * D3cold regardless of whether or not it can signal PME from
2523 : * the current target state, because that will allow it to
2524 : * signal PME when the hierarchy above it goes into D3cold and
2525 : * the device itself ends up in D3cold as a result of that.
2526 : */
2527 0 : if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2528 0 : pci_pme_active(dev, true);
2529 : else
2530 : ret = 1;
2531 0 : error = platform_pci_set_wakeup(dev, true);
2532 0 : if (ret)
2533 0 : ret = error;
2534 0 : if (!ret)
2535 0 : dev->wakeup_prepared = true;
2536 : } else {
2537 0 : platform_pci_set_wakeup(dev, false);
2538 0 : pci_pme_active(dev, false);
2539 0 : dev->wakeup_prepared = false;
2540 : }
2541 :
2542 : return ret;
2543 : }
2544 :
2545 : /**
2546 : * pci_enable_wake - change wakeup settings for a PCI device
2547 : * @pci_dev: Target device
2548 : * @state: PCI state from which device will issue wakeup events
2549 : * @enable: Whether or not to enable event generation
2550 : *
2551 : * If @enable is set, check device_may_wakeup() for the device before calling
2552 : * __pci_enable_wake() for it.
2553 : */
2554 0 : int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2555 : {
2556 0 : if (enable && !device_may_wakeup(&pci_dev->dev))
2557 : return -EINVAL;
2558 :
2559 0 : return __pci_enable_wake(pci_dev, state, enable);
2560 : }
2561 : EXPORT_SYMBOL(pci_enable_wake);
2562 :
2563 : /**
2564 : * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2565 : * @dev: PCI device to prepare
2566 : * @enable: True to enable wake-up event generation; false to disable
2567 : *
2568 : * Many drivers want the device to wake up the system from D3_hot or D3_cold
2569 : * and this function allows them to set that up cleanly - pci_enable_wake()
2570 : * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2571 : * ordering constraints.
2572 : *
2573 : * This function only returns error code if the device is not allowed to wake
2574 : * up the system from sleep or it is not capable of generating PME# from both
2575 : * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2576 : */
2577 0 : int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2578 : {
2579 0 : return pci_pme_capable(dev, PCI_D3cold) ?
2580 0 : pci_enable_wake(dev, PCI_D3cold, enable) :
2581 0 : pci_enable_wake(dev, PCI_D3hot, enable);
2582 : }
2583 : EXPORT_SYMBOL(pci_wake_from_d3);
2584 :
2585 : /**
2586 : * pci_target_state - find an appropriate low power state for a given PCI dev
2587 : * @dev: PCI device
2588 : * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2589 : *
2590 : * Use underlying platform code to find a supported low power state for @dev.
2591 : * If the platform can't manage @dev, return the deepest state from which it
2592 : * can generate wake events, based on any available PME info.
2593 : */
2594 0 : static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2595 : {
2596 0 : if (platform_pci_power_manageable(dev)) {
2597 : /*
2598 : * Call the platform to find the target state for the device.
2599 : */
2600 : pci_power_t state = platform_pci_choose_state(dev);
2601 :
2602 : switch (state) {
2603 : case PCI_POWER_ERROR:
2604 : case PCI_UNKNOWN:
2605 : return PCI_D3hot;
2606 :
2607 : case PCI_D1:
2608 : case PCI_D2:
2609 : if (pci_no_d1d2(dev))
2610 : return PCI_D3hot;
2611 : }
2612 :
2613 : return state;
2614 : }
2615 :
2616 : /*
2617 : * If the device is in D3cold even though it's not power-manageable by
2618 : * the platform, it may have been powered down by non-standard means.
2619 : * Best to let it slumber.
2620 : */
2621 0 : if (dev->current_state == PCI_D3cold)
2622 : return PCI_D3cold;
2623 0 : else if (!dev->pm_cap)
2624 : return PCI_D0;
2625 :
2626 0 : if (wakeup && dev->pme_support) {
2627 : pci_power_t state = PCI_D3hot;
2628 :
2629 : /*
2630 : * Find the deepest state from which the device can generate
2631 : * PME#.
2632 : */
2633 0 : while (state && !(dev->pme_support & (1 << state)))
2634 0 : state--;
2635 :
2636 0 : if (state)
2637 : return state;
2638 0 : else if (dev->pme_support & 1)
2639 : return PCI_D0;
2640 : }
2641 :
2642 0 : return PCI_D3hot;
2643 : }
2644 :
2645 : /**
2646 : * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2647 : * into a sleep state
2648 : * @dev: Device to handle.
2649 : *
2650 : * Choose the power state appropriate for the device depending on whether
2651 : * it can wake up the system and/or is power manageable by the platform
2652 : * (PCI_D3hot is the default) and put the device into that state.
2653 : */
2654 0 : int pci_prepare_to_sleep(struct pci_dev *dev)
2655 : {
2656 0 : bool wakeup = device_may_wakeup(&dev->dev);
2657 0 : pci_power_t target_state = pci_target_state(dev, wakeup);
2658 : int error;
2659 :
2660 0 : if (target_state == PCI_POWER_ERROR)
2661 : return -EIO;
2662 :
2663 : /*
2664 : * There are systems (for example, Intel mobile chips since Coffee
2665 : * Lake) where the power drawn while suspended can be significantly
2666 : * reduced by disabling PTM on PCIe root ports as this allows the
2667 : * port to enter a lower-power PM state and the SoC to reach a
2668 : * lower-power idle state as a whole.
2669 : */
2670 0 : if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2671 : pci_disable_ptm(dev);
2672 :
2673 0 : pci_enable_wake(dev, target_state, wakeup);
2674 :
2675 0 : error = pci_set_power_state(dev, target_state);
2676 :
2677 0 : if (error) {
2678 0 : pci_enable_wake(dev, target_state, false);
2679 0 : pci_restore_ptm_state(dev);
2680 : }
2681 :
2682 : return error;
2683 : }
2684 : EXPORT_SYMBOL(pci_prepare_to_sleep);
2685 :
2686 : /**
2687 : * pci_back_from_sleep - turn PCI device on during system-wide transition
2688 : * into working state
2689 : * @dev: Device to handle.
2690 : *
2691 : * Disable device's system wake-up capability and put it into D0.
2692 : */
2693 0 : int pci_back_from_sleep(struct pci_dev *dev)
2694 : {
2695 0 : int ret = pci_set_power_state(dev, PCI_D0);
2696 :
2697 0 : if (ret)
2698 : return ret;
2699 :
2700 0 : pci_enable_wake(dev, PCI_D0, false);
2701 0 : return 0;
2702 : }
2703 : EXPORT_SYMBOL(pci_back_from_sleep);
2704 :
2705 : /**
2706 : * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2707 : * @dev: PCI device being suspended.
2708 : *
2709 : * Prepare @dev to generate wake-up events at run time and put it into a low
2710 : * power state.
2711 : */
2712 0 : int pci_finish_runtime_suspend(struct pci_dev *dev)
2713 : {
2714 : pci_power_t target_state;
2715 : int error;
2716 :
2717 0 : target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2718 0 : if (target_state == PCI_POWER_ERROR)
2719 : return -EIO;
2720 :
2721 0 : dev->runtime_d3cold = target_state == PCI_D3cold;
2722 :
2723 : /*
2724 : * There are systems (for example, Intel mobile chips since Coffee
2725 : * Lake) where the power drawn while suspended can be significantly
2726 : * reduced by disabling PTM on PCIe root ports as this allows the
2727 : * port to enter a lower-power PM state and the SoC to reach a
2728 : * lower-power idle state as a whole.
2729 : */
2730 0 : if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2731 : pci_disable_ptm(dev);
2732 :
2733 0 : __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2734 :
2735 0 : error = pci_set_power_state(dev, target_state);
2736 :
2737 0 : if (error) {
2738 0 : pci_enable_wake(dev, target_state, false);
2739 0 : pci_restore_ptm_state(dev);
2740 0 : dev->runtime_d3cold = false;
2741 : }
2742 :
2743 : return error;
2744 : }
2745 :
2746 : /**
2747 : * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2748 : * @dev: Device to check.
2749 : *
2750 : * Return true if the device itself is capable of generating wake-up events
2751 : * (through the platform or using the native PCIe PME) or if the device supports
2752 : * PME and one of its upstream bridges can generate wake-up events.
2753 : */
2754 0 : bool pci_dev_run_wake(struct pci_dev *dev)
2755 : {
2756 0 : struct pci_bus *bus = dev->bus;
2757 :
2758 0 : if (!dev->pme_support)
2759 : return false;
2760 :
2761 : /* PME-capable in principle, but not from the target power state */
2762 0 : if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2763 : return false;
2764 :
2765 0 : if (device_can_wakeup(&dev->dev))
2766 : return true;
2767 :
2768 0 : while (bus->parent) {
2769 0 : struct pci_dev *bridge = bus->self;
2770 :
2771 0 : if (device_can_wakeup(&bridge->dev))
2772 : return true;
2773 :
2774 : bus = bus->parent;
2775 : }
2776 :
2777 : /* We have reached the root bus. */
2778 0 : if (bus->bridge)
2779 0 : return device_can_wakeup(bus->bridge);
2780 :
2781 : return false;
2782 : }
2783 : EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2784 :
2785 : /**
2786 : * pci_dev_need_resume - Check if it is necessary to resume the device.
2787 : * @pci_dev: Device to check.
2788 : *
2789 : * Return 'true' if the device is not runtime-suspended or it has to be
2790 : * reconfigured due to wakeup settings difference between system and runtime
2791 : * suspend, or the current power state of it is not suitable for the upcoming
2792 : * (system-wide) transition.
2793 : */
2794 0 : bool pci_dev_need_resume(struct pci_dev *pci_dev)
2795 : {
2796 0 : struct device *dev = &pci_dev->dev;
2797 : pci_power_t target_state;
2798 :
2799 0 : if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2800 : return true;
2801 :
2802 0 : target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2803 :
2804 : /*
2805 : * If the earlier platform check has not triggered, D3cold is just power
2806 : * removal on top of D3hot, so no need to resume the device in that
2807 : * case.
2808 : */
2809 0 : return target_state != pci_dev->current_state &&
2810 0 : target_state != PCI_D3cold &&
2811 : pci_dev->current_state != PCI_D3hot;
2812 : }
2813 :
2814 : /**
2815 : * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2816 : * @pci_dev: Device to check.
2817 : *
2818 : * If the device is suspended and it is not configured for system wakeup,
2819 : * disable PME for it to prevent it from waking up the system unnecessarily.
2820 : *
2821 : * Note that if the device's power state is D3cold and the platform check in
2822 : * pci_dev_need_resume() has not triggered, the device's configuration need not
2823 : * be changed.
2824 : */
2825 0 : void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2826 : {
2827 0 : struct device *dev = &pci_dev->dev;
2828 :
2829 0 : spin_lock_irq(&dev->power.lock);
2830 :
2831 0 : if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2832 0 : pci_dev->current_state < PCI_D3cold)
2833 0 : __pci_pme_active(pci_dev, false);
2834 :
2835 0 : spin_unlock_irq(&dev->power.lock);
2836 0 : }
2837 :
2838 : /**
2839 : * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2840 : * @pci_dev: Device to handle.
2841 : *
2842 : * If the device is runtime suspended and wakeup-capable, enable PME for it as
2843 : * it might have been disabled during the prepare phase of system suspend if
2844 : * the device was not configured for system wakeup.
2845 : */
2846 0 : void pci_dev_complete_resume(struct pci_dev *pci_dev)
2847 : {
2848 0 : struct device *dev = &pci_dev->dev;
2849 :
2850 0 : if (!pci_dev_run_wake(pci_dev))
2851 : return;
2852 :
2853 0 : spin_lock_irq(&dev->power.lock);
2854 :
2855 0 : if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2856 0 : __pci_pme_active(pci_dev, true);
2857 :
2858 0 : spin_unlock_irq(&dev->power.lock);
2859 : }
2860 :
2861 : /**
2862 : * pci_choose_state - Choose the power state of a PCI device.
2863 : * @dev: Target PCI device.
2864 : * @state: Target state for the whole system.
2865 : *
2866 : * Returns PCI power state suitable for @dev and @state.
2867 : */
2868 0 : pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2869 : {
2870 0 : if (state.event == PM_EVENT_ON)
2871 : return PCI_D0;
2872 :
2873 0 : return pci_target_state(dev, false);
2874 : }
2875 : EXPORT_SYMBOL(pci_choose_state);
2876 :
2877 0 : void pci_config_pm_runtime_get(struct pci_dev *pdev)
2878 : {
2879 0 : struct device *dev = &pdev->dev;
2880 0 : struct device *parent = dev->parent;
2881 :
2882 0 : if (parent)
2883 : pm_runtime_get_sync(parent);
2884 0 : pm_runtime_get_noresume(dev);
2885 : /*
2886 : * pdev->current_state is set to PCI_D3cold during suspending,
2887 : * so wait until suspending completes
2888 : */
2889 0 : pm_runtime_barrier(dev);
2890 : /*
2891 : * Only need to resume devices in D3cold, because config
2892 : * registers are still accessible for devices suspended but
2893 : * not in D3cold.
2894 : */
2895 0 : if (pdev->current_state == PCI_D3cold)
2896 : pm_runtime_resume(dev);
2897 0 : }
2898 :
2899 0 : void pci_config_pm_runtime_put(struct pci_dev *pdev)
2900 : {
2901 0 : struct device *dev = &pdev->dev;
2902 0 : struct device *parent = dev->parent;
2903 :
2904 0 : pm_runtime_put(dev);
2905 0 : if (parent)
2906 : pm_runtime_put_sync(parent);
2907 0 : }
2908 :
2909 : static const struct dmi_system_id bridge_d3_blacklist[] = {
2910 : #ifdef CONFIG_X86
2911 : {
2912 : /*
2913 : * Gigabyte X299 root port is not marked as hotplug capable
2914 : * which allows Linux to power manage it. However, this
2915 : * confuses the BIOS SMI handler so don't power manage root
2916 : * ports on that system.
2917 : */
2918 : .ident = "X299 DESIGNARE EX-CF",
2919 : .matches = {
2920 : DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2921 : DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2922 : },
2923 : /*
2924 : * Downstream device is not accessible after putting a root port
2925 : * into D3cold and back into D0 on Elo i2.
2926 : */
2927 : .ident = "Elo i2",
2928 : .matches = {
2929 : DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2930 : DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2931 : DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2932 : },
2933 : },
2934 : #endif
2935 : { }
2936 : };
2937 :
2938 : /**
2939 : * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2940 : * @bridge: Bridge to check
2941 : *
2942 : * This function checks if it is possible to move the bridge to D3.
2943 : * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2944 : */
2945 0 : bool pci_bridge_d3_possible(struct pci_dev *bridge)
2946 : {
2947 0 : if (!pci_is_pcie(bridge))
2948 : return false;
2949 :
2950 0 : switch (pci_pcie_type(bridge)) {
2951 : case PCI_EXP_TYPE_ROOT_PORT:
2952 : case PCI_EXP_TYPE_UPSTREAM:
2953 : case PCI_EXP_TYPE_DOWNSTREAM:
2954 0 : if (pci_bridge_d3_disable)
2955 : return false;
2956 :
2957 : /*
2958 : * Hotplug ports handled by firmware in System Management Mode
2959 : * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2960 : */
2961 0 : if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2962 : return false;
2963 :
2964 0 : if (pci_bridge_d3_force)
2965 : return true;
2966 :
2967 : /* Even the oldest 2010 Thunderbolt controller supports D3. */
2968 0 : if (bridge->is_thunderbolt)
2969 : return true;
2970 :
2971 : /* Platform might know better if the bridge supports D3 */
2972 0 : if (platform_pci_bridge_d3(bridge))
2973 : return true;
2974 :
2975 : /*
2976 : * Hotplug ports handled natively by the OS were not validated
2977 : * by vendors for runtime D3 at least until 2018 because there
2978 : * was no OS support.
2979 : */
2980 : if (bridge->is_hotplug_bridge)
2981 : return false;
2982 :
2983 : if (dmi_check_system(bridge_d3_blacklist))
2984 : return false;
2985 :
2986 : /*
2987 : * It should be safe to put PCIe ports from 2015 or newer
2988 : * to D3.
2989 : */
2990 : if (dmi_get_bios_year() >= 2015)
2991 : return true;
2992 : break;
2993 : }
2994 :
2995 : return false;
2996 : }
2997 :
2998 0 : static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2999 : {
3000 0 : bool *d3cold_ok = data;
3001 :
3002 0 : if (/* The device needs to be allowed to go D3cold ... */
3003 0 : dev->no_d3cold || !dev->d3cold_allowed ||
3004 :
3005 : /* ... and if it is wakeup capable to do so from D3cold. */
3006 0 : (device_may_wakeup(&dev->dev) &&
3007 0 : !pci_pme_capable(dev, PCI_D3cold)) ||
3008 :
3009 : /* If it is a bridge it must be allowed to go to D3. */
3010 0 : !pci_power_manageable(dev))
3011 :
3012 0 : *d3cold_ok = false;
3013 :
3014 0 : return !*d3cold_ok;
3015 : }
3016 :
3017 : /*
3018 : * pci_bridge_d3_update - Update bridge D3 capabilities
3019 : * @dev: PCI device which is changed
3020 : *
3021 : * Update upstream bridge PM capabilities accordingly depending on if the
3022 : * device PM configuration was changed or the device is being removed. The
3023 : * change is also propagated upstream.
3024 : */
3025 0 : void pci_bridge_d3_update(struct pci_dev *dev)
3026 : {
3027 0 : bool remove = !device_is_registered(&dev->dev);
3028 : struct pci_dev *bridge;
3029 0 : bool d3cold_ok = true;
3030 :
3031 0 : bridge = pci_upstream_bridge(dev);
3032 0 : if (!bridge || !pci_bridge_d3_possible(bridge))
3033 0 : return;
3034 :
3035 : /*
3036 : * If D3 is currently allowed for the bridge, removing one of its
3037 : * children won't change that.
3038 : */
3039 0 : if (remove && bridge->bridge_d3)
3040 : return;
3041 :
3042 : /*
3043 : * If D3 is currently allowed for the bridge and a child is added or
3044 : * changed, disallowance of D3 can only be caused by that child, so
3045 : * we only need to check that single device, not any of its siblings.
3046 : *
3047 : * If D3 is currently not allowed for the bridge, checking the device
3048 : * first may allow us to skip checking its siblings.
3049 : */
3050 0 : if (!remove)
3051 0 : pci_dev_check_d3cold(dev, &d3cold_ok);
3052 :
3053 : /*
3054 : * If D3 is currently not allowed for the bridge, this may be caused
3055 : * either by the device being changed/removed or any of its siblings,
3056 : * so we need to go through all children to find out if one of them
3057 : * continues to block D3.
3058 : */
3059 0 : if (d3cold_ok && !bridge->bridge_d3)
3060 0 : pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3061 : &d3cold_ok);
3062 :
3063 0 : if (bridge->bridge_d3 != d3cold_ok) {
3064 0 : bridge->bridge_d3 = d3cold_ok;
3065 : /* Propagate change to upstream bridges */
3066 0 : pci_bridge_d3_update(bridge);
3067 : }
3068 : }
3069 :
3070 : /**
3071 : * pci_d3cold_enable - Enable D3cold for device
3072 : * @dev: PCI device to handle
3073 : *
3074 : * This function can be used in drivers to enable D3cold from the device
3075 : * they handle. It also updates upstream PCI bridge PM capabilities
3076 : * accordingly.
3077 : */
3078 0 : void pci_d3cold_enable(struct pci_dev *dev)
3079 : {
3080 0 : if (dev->no_d3cold) {
3081 0 : dev->no_d3cold = false;
3082 0 : pci_bridge_d3_update(dev);
3083 : }
3084 0 : }
3085 : EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3086 :
3087 : /**
3088 : * pci_d3cold_disable - Disable D3cold for device
3089 : * @dev: PCI device to handle
3090 : *
3091 : * This function can be used in drivers to disable D3cold from the device
3092 : * they handle. It also updates upstream PCI bridge PM capabilities
3093 : * accordingly.
3094 : */
3095 0 : void pci_d3cold_disable(struct pci_dev *dev)
3096 : {
3097 0 : if (!dev->no_d3cold) {
3098 0 : dev->no_d3cold = true;
3099 0 : pci_bridge_d3_update(dev);
3100 : }
3101 0 : }
3102 : EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3103 :
3104 : /**
3105 : * pci_pm_init - Initialize PM functions of given PCI device
3106 : * @dev: PCI device to handle.
3107 : */
3108 0 : void pci_pm_init(struct pci_dev *dev)
3109 : {
3110 : int pm;
3111 : u16 status;
3112 : u16 pmc;
3113 :
3114 0 : pm_runtime_forbid(&dev->dev);
3115 0 : pm_runtime_set_active(&dev->dev);
3116 0 : pm_runtime_enable(&dev->dev);
3117 0 : device_enable_async_suspend(&dev->dev);
3118 0 : dev->wakeup_prepared = false;
3119 :
3120 0 : dev->pm_cap = 0;
3121 0 : dev->pme_support = 0;
3122 :
3123 : /* find PCI PM capability in list */
3124 0 : pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3125 0 : if (!pm)
3126 0 : return;
3127 : /* Check device's ability to generate PME# */
3128 0 : pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3129 :
3130 0 : if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3131 0 : pci_err(dev, "unsupported PM cap regs version (%u)\n",
3132 : pmc & PCI_PM_CAP_VER_MASK);
3133 0 : return;
3134 : }
3135 :
3136 0 : dev->pm_cap = pm;
3137 0 : dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3138 0 : dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3139 0 : dev->bridge_d3 = pci_bridge_d3_possible(dev);
3140 0 : dev->d3cold_allowed = true;
3141 :
3142 0 : dev->d1_support = false;
3143 0 : dev->d2_support = false;
3144 0 : if (!pci_no_d1d2(dev)) {
3145 0 : if (pmc & PCI_PM_CAP_D1)
3146 0 : dev->d1_support = true;
3147 0 : if (pmc & PCI_PM_CAP_D2)
3148 0 : dev->d2_support = true;
3149 :
3150 0 : if (dev->d1_support || dev->d2_support)
3151 0 : pci_info(dev, "supports%s%s\n",
3152 : dev->d1_support ? " D1" : "",
3153 : dev->d2_support ? " D2" : "");
3154 : }
3155 :
3156 0 : pmc &= PCI_PM_CAP_PME_MASK;
3157 0 : if (pmc) {
3158 0 : pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3159 : (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3160 : (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3161 : (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3162 : (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3163 : (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3164 0 : dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3165 0 : dev->pme_poll = true;
3166 : /*
3167 : * Make device's PM flags reflect the wake-up capability, but
3168 : * let the user space enable it to wake up the system as needed.
3169 : */
3170 0 : device_set_wakeup_capable(&dev->dev, true);
3171 : /* Disable the PME# generation functionality */
3172 0 : pci_pme_active(dev, false);
3173 : }
3174 :
3175 0 : pci_read_config_word(dev, PCI_STATUS, &status);
3176 0 : if (status & PCI_STATUS_IMM_READY)
3177 0 : dev->imm_ready = 1;
3178 : }
3179 :
3180 : static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3181 : {
3182 0 : unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3183 :
3184 : switch (prop) {
3185 : case PCI_EA_P_MEM:
3186 : case PCI_EA_P_VF_MEM:
3187 : flags |= IORESOURCE_MEM;
3188 : break;
3189 : case PCI_EA_P_MEM_PREFETCH:
3190 : case PCI_EA_P_VF_MEM_PREFETCH:
3191 : flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3192 : break;
3193 : case PCI_EA_P_IO:
3194 : flags |= IORESOURCE_IO;
3195 : break;
3196 : default:
3197 : return 0;
3198 : }
3199 :
3200 : return flags;
3201 : }
3202 :
3203 : static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3204 : u8 prop)
3205 : {
3206 0 : if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3207 0 : return &dev->resource[bei];
3208 : #ifdef CONFIG_PCI_IOV
3209 : else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3210 : (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3211 : return &dev->resource[PCI_IOV_RESOURCES +
3212 : bei - PCI_EA_BEI_VF_BAR0];
3213 : #endif
3214 0 : else if (bei == PCI_EA_BEI_ROM)
3215 0 : return &dev->resource[PCI_ROM_RESOURCE];
3216 : else
3217 : return NULL;
3218 : }
3219 :
3220 : /* Read an Enhanced Allocation (EA) entry */
3221 0 : static int pci_ea_read(struct pci_dev *dev, int offset)
3222 : {
3223 : struct resource *res;
3224 0 : int ent_size, ent_offset = offset;
3225 : resource_size_t start, end;
3226 : unsigned long flags;
3227 : u32 dw0, bei, base, max_offset;
3228 : u8 prop;
3229 0 : bool support_64 = (sizeof(resource_size_t) >= 8);
3230 :
3231 0 : pci_read_config_dword(dev, ent_offset, &dw0);
3232 0 : ent_offset += 4;
3233 :
3234 : /* Entry size field indicates DWORDs after 1st */
3235 0 : ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3236 :
3237 0 : if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3238 : goto out;
3239 :
3240 0 : bei = (dw0 & PCI_EA_BEI) >> 4;
3241 0 : prop = (dw0 & PCI_EA_PP) >> 8;
3242 :
3243 : /*
3244 : * If the Property is in the reserved range, try the Secondary
3245 : * Property instead.
3246 : */
3247 0 : if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3248 0 : prop = (dw0 & PCI_EA_SP) >> 16;
3249 0 : if (prop > PCI_EA_P_BRIDGE_IO)
3250 : goto out;
3251 :
3252 0 : res = pci_ea_get_resource(dev, bei, prop);
3253 0 : if (!res) {
3254 0 : pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3255 0 : goto out;
3256 : }
3257 :
3258 0 : flags = pci_ea_flags(dev, prop);
3259 0 : if (!flags) {
3260 0 : pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3261 0 : goto out;
3262 : }
3263 :
3264 : /* Read Base */
3265 0 : pci_read_config_dword(dev, ent_offset, &base);
3266 0 : start = (base & PCI_EA_FIELD_MASK);
3267 0 : ent_offset += 4;
3268 :
3269 : /* Read MaxOffset */
3270 0 : pci_read_config_dword(dev, ent_offset, &max_offset);
3271 0 : ent_offset += 4;
3272 :
3273 : /* Read Base MSBs (if 64-bit entry) */
3274 0 : if (base & PCI_EA_IS_64) {
3275 : u32 base_upper;
3276 :
3277 0 : pci_read_config_dword(dev, ent_offset, &base_upper);
3278 0 : ent_offset += 4;
3279 :
3280 0 : flags |= IORESOURCE_MEM_64;
3281 :
3282 : /* entry starts above 32-bit boundary, can't use */
3283 : if (!support_64 && base_upper)
3284 : goto out;
3285 :
3286 : if (support_64)
3287 0 : start |= ((u64)base_upper << 32);
3288 : }
3289 :
3290 0 : end = start + (max_offset | 0x03);
3291 :
3292 : /* Read MaxOffset MSBs (if 64-bit entry) */
3293 0 : if (max_offset & PCI_EA_IS_64) {
3294 : u32 max_offset_upper;
3295 :
3296 0 : pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3297 0 : ent_offset += 4;
3298 :
3299 0 : flags |= IORESOURCE_MEM_64;
3300 :
3301 : /* entry too big, can't use */
3302 : if (!support_64 && max_offset_upper)
3303 : goto out;
3304 :
3305 : if (support_64)
3306 0 : end += ((u64)max_offset_upper << 32);
3307 : }
3308 :
3309 0 : if (end < start) {
3310 0 : pci_err(dev, "EA Entry crosses address boundary\n");
3311 0 : goto out;
3312 : }
3313 :
3314 0 : if (ent_size != ent_offset - offset) {
3315 0 : pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3316 : ent_size, ent_offset - offset);
3317 0 : goto out;
3318 : }
3319 :
3320 0 : res->name = pci_name(dev);
3321 0 : res->start = start;
3322 0 : res->end = end;
3323 0 : res->flags = flags;
3324 :
3325 0 : if (bei <= PCI_EA_BEI_BAR5)
3326 0 : pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3327 : bei, res, prop);
3328 0 : else if (bei == PCI_EA_BEI_ROM)
3329 0 : pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3330 : res, prop);
3331 0 : else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3332 0 : pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3333 : bei - PCI_EA_BEI_VF_BAR0, res, prop);
3334 : else
3335 0 : pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3336 : bei, res, prop);
3337 :
3338 : out:
3339 0 : return offset + ent_size;
3340 : }
3341 :
3342 : /* Enhanced Allocation Initialization */
3343 0 : void pci_ea_init(struct pci_dev *dev)
3344 : {
3345 : int ea;
3346 : u8 num_ent;
3347 : int offset;
3348 : int i;
3349 :
3350 : /* find PCI EA capability in list */
3351 0 : ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3352 0 : if (!ea)
3353 0 : return;
3354 :
3355 : /* determine the number of entries */
3356 0 : pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3357 : &num_ent);
3358 0 : num_ent &= PCI_EA_NUM_ENT_MASK;
3359 :
3360 0 : offset = ea + PCI_EA_FIRST_ENT;
3361 :
3362 : /* Skip DWORD 2 for type 1 functions */
3363 0 : if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3364 0 : offset += 4;
3365 :
3366 : /* parse each EA entry */
3367 0 : for (i = 0; i < num_ent; ++i)
3368 0 : offset = pci_ea_read(dev, offset);
3369 : }
3370 :
3371 : static void pci_add_saved_cap(struct pci_dev *pci_dev,
3372 : struct pci_cap_saved_state *new_cap)
3373 : {
3374 0 : hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3375 : }
3376 :
3377 : /**
3378 : * _pci_add_cap_save_buffer - allocate buffer for saving given
3379 : * capability registers
3380 : * @dev: the PCI device
3381 : * @cap: the capability to allocate the buffer for
3382 : * @extended: Standard or Extended capability ID
3383 : * @size: requested size of the buffer
3384 : */
3385 0 : static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3386 : bool extended, unsigned int size)
3387 : {
3388 : int pos;
3389 : struct pci_cap_saved_state *save_state;
3390 :
3391 0 : if (extended)
3392 0 : pos = pci_find_ext_capability(dev, cap);
3393 : else
3394 0 : pos = pci_find_capability(dev, cap);
3395 :
3396 0 : if (!pos)
3397 : return 0;
3398 :
3399 0 : save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3400 0 : if (!save_state)
3401 : return -ENOMEM;
3402 :
3403 0 : save_state->cap.cap_nr = cap;
3404 0 : save_state->cap.cap_extended = extended;
3405 0 : save_state->cap.size = size;
3406 0 : pci_add_saved_cap(dev, save_state);
3407 :
3408 0 : return 0;
3409 : }
3410 :
3411 0 : int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3412 : {
3413 0 : return _pci_add_cap_save_buffer(dev, cap, false, size);
3414 : }
3415 :
3416 0 : int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3417 : {
3418 0 : return _pci_add_cap_save_buffer(dev, cap, true, size);
3419 : }
3420 :
3421 : /**
3422 : * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3423 : * @dev: the PCI device
3424 : */
3425 0 : void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3426 : {
3427 : int error;
3428 :
3429 0 : error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3430 : PCI_EXP_SAVE_REGS * sizeof(u16));
3431 0 : if (error)
3432 0 : pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3433 :
3434 0 : error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3435 0 : if (error)
3436 0 : pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3437 :
3438 0 : error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3439 : 2 * sizeof(u16));
3440 0 : if (error)
3441 0 : pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3442 :
3443 0 : pci_allocate_vc_save_buffers(dev);
3444 0 : }
3445 :
3446 0 : void pci_free_cap_save_buffers(struct pci_dev *dev)
3447 : {
3448 : struct pci_cap_saved_state *tmp;
3449 : struct hlist_node *n;
3450 :
3451 0 : hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3452 0 : kfree(tmp);
3453 0 : }
3454 :
3455 : /**
3456 : * pci_configure_ari - enable or disable ARI forwarding
3457 : * @dev: the PCI device
3458 : *
3459 : * If @dev and its upstream bridge both support ARI, enable ARI in the
3460 : * bridge. Otherwise, disable ARI in the bridge.
3461 : */
3462 0 : void pci_configure_ari(struct pci_dev *dev)
3463 : {
3464 : u32 cap;
3465 : struct pci_dev *bridge;
3466 :
3467 0 : if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3468 0 : return;
3469 :
3470 0 : bridge = dev->bus->self;
3471 0 : if (!bridge)
3472 : return;
3473 :
3474 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3475 0 : if (!(cap & PCI_EXP_DEVCAP2_ARI))
3476 : return;
3477 :
3478 0 : if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3479 0 : pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3480 : PCI_EXP_DEVCTL2_ARI);
3481 0 : bridge->ari_enabled = 1;
3482 : } else {
3483 0 : pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3484 : PCI_EXP_DEVCTL2_ARI);
3485 0 : bridge->ari_enabled = 0;
3486 : }
3487 : }
3488 :
3489 0 : static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3490 : {
3491 : int pos;
3492 : u16 cap, ctrl;
3493 :
3494 0 : pos = pdev->acs_cap;
3495 0 : if (!pos)
3496 : return false;
3497 :
3498 : /*
3499 : * Except for egress control, capabilities are either required
3500 : * or only required if controllable. Features missing from the
3501 : * capability field can therefore be assumed as hard-wired enabled.
3502 : */
3503 0 : pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3504 0 : acs_flags &= (cap | PCI_ACS_EC);
3505 :
3506 0 : pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3507 0 : return (ctrl & acs_flags) == acs_flags;
3508 : }
3509 :
3510 : /**
3511 : * pci_acs_enabled - test ACS against required flags for a given device
3512 : * @pdev: device to test
3513 : * @acs_flags: required PCI ACS flags
3514 : *
3515 : * Return true if the device supports the provided flags. Automatically
3516 : * filters out flags that are not implemented on multifunction devices.
3517 : *
3518 : * Note that this interface checks the effective ACS capabilities of the
3519 : * device rather than the actual capabilities. For instance, most single
3520 : * function endpoints are not required to support ACS because they have no
3521 : * opportunity for peer-to-peer access. We therefore return 'true'
3522 : * regardless of whether the device exposes an ACS capability. This makes
3523 : * it much easier for callers of this function to ignore the actual type
3524 : * or topology of the device when testing ACS support.
3525 : */
3526 0 : bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3527 : {
3528 : int ret;
3529 :
3530 0 : ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3531 0 : if (ret >= 0)
3532 0 : return ret > 0;
3533 :
3534 : /*
3535 : * Conventional PCI and PCI-X devices never support ACS, either
3536 : * effectively or actually. The shared bus topology implies that
3537 : * any device on the bus can receive or snoop DMA.
3538 : */
3539 0 : if (!pci_is_pcie(pdev))
3540 : return false;
3541 :
3542 0 : switch (pci_pcie_type(pdev)) {
3543 : /*
3544 : * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3545 : * but since their primary interface is PCI/X, we conservatively
3546 : * handle them as we would a non-PCIe device.
3547 : */
3548 : case PCI_EXP_TYPE_PCIE_BRIDGE:
3549 : /*
3550 : * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3551 : * applicable... must never implement an ACS Extended Capability...".
3552 : * This seems arbitrary, but we take a conservative interpretation
3553 : * of this statement.
3554 : */
3555 : case PCI_EXP_TYPE_PCI_BRIDGE:
3556 : case PCI_EXP_TYPE_RC_EC:
3557 : return false;
3558 : /*
3559 : * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3560 : * implement ACS in order to indicate their peer-to-peer capabilities,
3561 : * regardless of whether they are single- or multi-function devices.
3562 : */
3563 : case PCI_EXP_TYPE_DOWNSTREAM:
3564 : case PCI_EXP_TYPE_ROOT_PORT:
3565 0 : return pci_acs_flags_enabled(pdev, acs_flags);
3566 : /*
3567 : * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3568 : * implemented by the remaining PCIe types to indicate peer-to-peer
3569 : * capabilities, but only when they are part of a multifunction
3570 : * device. The footnote for section 6.12 indicates the specific
3571 : * PCIe types included here.
3572 : */
3573 : case PCI_EXP_TYPE_ENDPOINT:
3574 : case PCI_EXP_TYPE_UPSTREAM:
3575 : case PCI_EXP_TYPE_LEG_END:
3576 : case PCI_EXP_TYPE_RC_END:
3577 0 : if (!pdev->multifunction)
3578 : break;
3579 :
3580 0 : return pci_acs_flags_enabled(pdev, acs_flags);
3581 : }
3582 :
3583 : /*
3584 : * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3585 : * to single function devices with the exception of downstream ports.
3586 : */
3587 0 : return true;
3588 : }
3589 :
3590 : /**
3591 : * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3592 : * @start: starting downstream device
3593 : * @end: ending upstream device or NULL to search to the root bus
3594 : * @acs_flags: required flags
3595 : *
3596 : * Walk up a device tree from start to end testing PCI ACS support. If
3597 : * any step along the way does not support the required flags, return false.
3598 : */
3599 0 : bool pci_acs_path_enabled(struct pci_dev *start,
3600 : struct pci_dev *end, u16 acs_flags)
3601 : {
3602 0 : struct pci_dev *pdev, *parent = start;
3603 :
3604 : do {
3605 0 : pdev = parent;
3606 :
3607 0 : if (!pci_acs_enabled(pdev, acs_flags))
3608 : return false;
3609 :
3610 0 : if (pci_is_root_bus(pdev->bus))
3611 0 : return (end == NULL);
3612 :
3613 0 : parent = pdev->bus->self;
3614 0 : } while (pdev != end);
3615 :
3616 : return true;
3617 : }
3618 :
3619 : /**
3620 : * pci_acs_init - Initialize ACS if hardware supports it
3621 : * @dev: the PCI device
3622 : */
3623 0 : void pci_acs_init(struct pci_dev *dev)
3624 : {
3625 0 : dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3626 :
3627 : /*
3628 : * Attempt to enable ACS regardless of capability because some Root
3629 : * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3630 : * the standard ACS capability but still support ACS via those
3631 : * quirks.
3632 : */
3633 0 : pci_enable_acs(dev);
3634 0 : }
3635 :
3636 : /**
3637 : * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3638 : * @pdev: PCI device
3639 : * @bar: BAR to find
3640 : *
3641 : * Helper to find the position of the ctrl register for a BAR.
3642 : * Returns -ENOTSUPP if resizable BARs are not supported at all.
3643 : * Returns -ENOENT if no ctrl register for the BAR could be found.
3644 : */
3645 0 : static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3646 : {
3647 : unsigned int pos, nbars, i;
3648 : u32 ctrl;
3649 :
3650 0 : pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3651 0 : if (!pos)
3652 : return -ENOTSUPP;
3653 :
3654 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3655 0 : nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3656 : PCI_REBAR_CTRL_NBAR_SHIFT;
3657 :
3658 0 : for (i = 0; i < nbars; i++, pos += 8) {
3659 : int bar_idx;
3660 :
3661 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3662 0 : bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3663 0 : if (bar_idx == bar)
3664 0 : return pos;
3665 : }
3666 :
3667 : return -ENOENT;
3668 : }
3669 :
3670 : /**
3671 : * pci_rebar_get_possible_sizes - get possible sizes for BAR
3672 : * @pdev: PCI device
3673 : * @bar: BAR to query
3674 : *
3675 : * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3676 : * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3677 : */
3678 0 : u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3679 : {
3680 : int pos;
3681 : u32 cap;
3682 :
3683 0 : pos = pci_rebar_find_pos(pdev, bar);
3684 0 : if (pos < 0)
3685 : return 0;
3686 :
3687 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3688 0 : cap &= PCI_REBAR_CAP_SIZES;
3689 :
3690 : /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3691 0 : if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3692 0 : bar == 0 && cap == 0x7000)
3693 0 : cap = 0x3f000;
3694 :
3695 0 : return cap >> 4;
3696 : }
3697 : EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3698 :
3699 : /**
3700 : * pci_rebar_get_current_size - get the current size of a BAR
3701 : * @pdev: PCI device
3702 : * @bar: BAR to set size to
3703 : *
3704 : * Read the size of a BAR from the resizable BAR config.
3705 : * Returns size if found or negative error code.
3706 : */
3707 0 : int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3708 : {
3709 : int pos;
3710 : u32 ctrl;
3711 :
3712 0 : pos = pci_rebar_find_pos(pdev, bar);
3713 0 : if (pos < 0)
3714 : return pos;
3715 :
3716 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3717 0 : return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3718 : }
3719 :
3720 : /**
3721 : * pci_rebar_set_size - set a new size for a BAR
3722 : * @pdev: PCI device
3723 : * @bar: BAR to set size to
3724 : * @size: new size as defined in the spec (0=1MB, 19=512GB)
3725 : *
3726 : * Set the new size of a BAR as defined in the spec.
3727 : * Returns zero if resizing was successful, error code otherwise.
3728 : */
3729 0 : int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3730 : {
3731 : int pos;
3732 : u32 ctrl;
3733 :
3734 0 : pos = pci_rebar_find_pos(pdev, bar);
3735 0 : if (pos < 0)
3736 : return pos;
3737 :
3738 0 : pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3739 0 : ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3740 0 : ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3741 0 : pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3742 0 : return 0;
3743 : }
3744 :
3745 : /**
3746 : * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3747 : * @dev: the PCI device
3748 : * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3749 : * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3750 : * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3751 : * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3752 : *
3753 : * Return 0 if all upstream bridges support AtomicOp routing, egress
3754 : * blocking is disabled on all upstream ports, and the root port supports
3755 : * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3756 : * AtomicOp completion), or negative otherwise.
3757 : */
3758 0 : int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3759 : {
3760 0 : struct pci_bus *bus = dev->bus;
3761 : struct pci_dev *bridge;
3762 : u32 cap, ctl2;
3763 :
3764 : /*
3765 : * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3766 : * in Device Control 2 is reserved in VFs and the PF value applies
3767 : * to all associated VFs.
3768 : */
3769 0 : if (dev->is_virtfn)
3770 : return -EINVAL;
3771 :
3772 0 : if (!pci_is_pcie(dev))
3773 : return -EINVAL;
3774 :
3775 : /*
3776 : * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3777 : * AtomicOp requesters. For now, we only support endpoints as
3778 : * requesters and root ports as completers. No endpoints as
3779 : * completers, and no peer-to-peer.
3780 : */
3781 :
3782 0 : switch (pci_pcie_type(dev)) {
3783 : case PCI_EXP_TYPE_ENDPOINT:
3784 : case PCI_EXP_TYPE_LEG_END:
3785 : case PCI_EXP_TYPE_RC_END:
3786 : break;
3787 : default:
3788 : return -EINVAL;
3789 : }
3790 :
3791 0 : while (bus->parent) {
3792 0 : bridge = bus->self;
3793 :
3794 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3795 :
3796 0 : switch (pci_pcie_type(bridge)) {
3797 : /* Ensure switch ports support AtomicOp routing */
3798 : case PCI_EXP_TYPE_UPSTREAM:
3799 : case PCI_EXP_TYPE_DOWNSTREAM:
3800 0 : if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3801 : return -EINVAL;
3802 : break;
3803 :
3804 : /* Ensure root port supports all the sizes we care about */
3805 : case PCI_EXP_TYPE_ROOT_PORT:
3806 0 : if ((cap & cap_mask) != cap_mask)
3807 : return -EINVAL;
3808 : break;
3809 : }
3810 :
3811 : /* Ensure upstream ports don't block AtomicOps on egress */
3812 0 : if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3813 0 : pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3814 : &ctl2);
3815 0 : if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3816 : return -EINVAL;
3817 : }
3818 :
3819 0 : bus = bus->parent;
3820 : }
3821 :
3822 0 : pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3823 : PCI_EXP_DEVCTL2_ATOMIC_REQ);
3824 0 : return 0;
3825 : }
3826 : EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3827 :
3828 : /**
3829 : * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3830 : * @dev: the PCI device
3831 : * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3832 : *
3833 : * Perform INTx swizzling for a device behind one level of bridge. This is
3834 : * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3835 : * behind bridges on add-in cards. For devices with ARI enabled, the slot
3836 : * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3837 : * the PCI Express Base Specification, Revision 2.1)
3838 : */
3839 0 : u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3840 : {
3841 : int slot;
3842 :
3843 0 : if (pci_ari_enabled(dev->bus))
3844 : slot = 0;
3845 : else
3846 0 : slot = PCI_SLOT(dev->devfn);
3847 :
3848 0 : return (((pin - 1) + slot) % 4) + 1;
3849 : }
3850 :
3851 0 : int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3852 : {
3853 : u8 pin;
3854 :
3855 0 : pin = dev->pin;
3856 0 : if (!pin)
3857 : return -1;
3858 :
3859 0 : while (!pci_is_root_bus(dev->bus)) {
3860 0 : pin = pci_swizzle_interrupt_pin(dev, pin);
3861 0 : dev = dev->bus->self;
3862 : }
3863 0 : *bridge = dev;
3864 0 : return pin;
3865 : }
3866 :
3867 : /**
3868 : * pci_common_swizzle - swizzle INTx all the way to root bridge
3869 : * @dev: the PCI device
3870 : * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3871 : *
3872 : * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3873 : * bridges all the way up to a PCI root bus.
3874 : */
3875 0 : u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3876 : {
3877 0 : u8 pin = *pinp;
3878 :
3879 0 : while (!pci_is_root_bus(dev->bus)) {
3880 0 : pin = pci_swizzle_interrupt_pin(dev, pin);
3881 0 : dev = dev->bus->self;
3882 : }
3883 0 : *pinp = pin;
3884 0 : return PCI_SLOT(dev->devfn);
3885 : }
3886 : EXPORT_SYMBOL_GPL(pci_common_swizzle);
3887 :
3888 : /**
3889 : * pci_release_region - Release a PCI bar
3890 : * @pdev: PCI device whose resources were previously reserved by
3891 : * pci_request_region()
3892 : * @bar: BAR to release
3893 : *
3894 : * Releases the PCI I/O and memory resources previously reserved by a
3895 : * successful call to pci_request_region(). Call this function only
3896 : * after all use of the PCI regions has ceased.
3897 : */
3898 0 : void pci_release_region(struct pci_dev *pdev, int bar)
3899 : {
3900 : struct pci_devres *dr;
3901 :
3902 0 : if (pci_resource_len(pdev, bar) == 0)
3903 : return;
3904 0 : if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3905 0 : release_region(pci_resource_start(pdev, bar),
3906 : pci_resource_len(pdev, bar));
3907 0 : else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3908 0 : release_mem_region(pci_resource_start(pdev, bar),
3909 : pci_resource_len(pdev, bar));
3910 :
3911 0 : dr = find_pci_dr(pdev);
3912 0 : if (dr)
3913 0 : dr->region_mask &= ~(1 << bar);
3914 : }
3915 : EXPORT_SYMBOL(pci_release_region);
3916 :
3917 : /**
3918 : * __pci_request_region - Reserved PCI I/O and memory resource
3919 : * @pdev: PCI device whose resources are to be reserved
3920 : * @bar: BAR to be reserved
3921 : * @res_name: Name to be associated with resource.
3922 : * @exclusive: whether the region access is exclusive or not
3923 : *
3924 : * Mark the PCI region associated with PCI device @pdev BAR @bar as
3925 : * being reserved by owner @res_name. Do not access any
3926 : * address inside the PCI regions unless this call returns
3927 : * successfully.
3928 : *
3929 : * If @exclusive is set, then the region is marked so that userspace
3930 : * is explicitly not allowed to map the resource via /dev/mem or
3931 : * sysfs MMIO access.
3932 : *
3933 : * Returns 0 on success, or %EBUSY on error. A warning
3934 : * message is also printed on failure.
3935 : */
3936 0 : static int __pci_request_region(struct pci_dev *pdev, int bar,
3937 : const char *res_name, int exclusive)
3938 : {
3939 : struct pci_devres *dr;
3940 :
3941 0 : if (pci_resource_len(pdev, bar) == 0)
3942 : return 0;
3943 :
3944 0 : if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3945 0 : if (!request_region(pci_resource_start(pdev, bar),
3946 : pci_resource_len(pdev, bar), res_name))
3947 : goto err_out;
3948 0 : } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3949 0 : if (!__request_mem_region(pci_resource_start(pdev, bar),
3950 : pci_resource_len(pdev, bar), res_name,
3951 : exclusive))
3952 : goto err_out;
3953 : }
3954 :
3955 0 : dr = find_pci_dr(pdev);
3956 0 : if (dr)
3957 0 : dr->region_mask |= 1 << bar;
3958 :
3959 : return 0;
3960 :
3961 : err_out:
3962 0 : pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3963 : &pdev->resource[bar]);
3964 0 : return -EBUSY;
3965 : }
3966 :
3967 : /**
3968 : * pci_request_region - Reserve PCI I/O and memory resource
3969 : * @pdev: PCI device whose resources are to be reserved
3970 : * @bar: BAR to be reserved
3971 : * @res_name: Name to be associated with resource
3972 : *
3973 : * Mark the PCI region associated with PCI device @pdev BAR @bar as
3974 : * being reserved by owner @res_name. Do not access any
3975 : * address inside the PCI regions unless this call returns
3976 : * successfully.
3977 : *
3978 : * Returns 0 on success, or %EBUSY on error. A warning
3979 : * message is also printed on failure.
3980 : */
3981 0 : int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3982 : {
3983 0 : return __pci_request_region(pdev, bar, res_name, 0);
3984 : }
3985 : EXPORT_SYMBOL(pci_request_region);
3986 :
3987 : /**
3988 : * pci_release_selected_regions - Release selected PCI I/O and memory resources
3989 : * @pdev: PCI device whose resources were previously reserved
3990 : * @bars: Bitmask of BARs to be released
3991 : *
3992 : * Release selected PCI I/O and memory resources previously reserved.
3993 : * Call this function only after all use of the PCI regions has ceased.
3994 : */
3995 0 : void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3996 : {
3997 : int i;
3998 :
3999 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++)
4000 0 : if (bars & (1 << i))
4001 0 : pci_release_region(pdev, i);
4002 0 : }
4003 : EXPORT_SYMBOL(pci_release_selected_regions);
4004 :
4005 0 : static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4006 : const char *res_name, int excl)
4007 : {
4008 : int i;
4009 :
4010 0 : for (i = 0; i < PCI_STD_NUM_BARS; i++)
4011 0 : if (bars & (1 << i))
4012 0 : if (__pci_request_region(pdev, i, res_name, excl))
4013 : goto err_out;
4014 : return 0;
4015 :
4016 : err_out:
4017 0 : while (--i >= 0)
4018 0 : if (bars & (1 << i))
4019 0 : pci_release_region(pdev, i);
4020 :
4021 : return -EBUSY;
4022 : }
4023 :
4024 :
4025 : /**
4026 : * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4027 : * @pdev: PCI device whose resources are to be reserved
4028 : * @bars: Bitmask of BARs to be requested
4029 : * @res_name: Name to be associated with resource
4030 : */
4031 0 : int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4032 : const char *res_name)
4033 : {
4034 0 : return __pci_request_selected_regions(pdev, bars, res_name, 0);
4035 : }
4036 : EXPORT_SYMBOL(pci_request_selected_regions);
4037 :
4038 0 : int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4039 : const char *res_name)
4040 : {
4041 0 : return __pci_request_selected_regions(pdev, bars, res_name,
4042 : IORESOURCE_EXCLUSIVE);
4043 : }
4044 : EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4045 :
4046 : /**
4047 : * pci_release_regions - Release reserved PCI I/O and memory resources
4048 : * @pdev: PCI device whose resources were previously reserved by
4049 : * pci_request_regions()
4050 : *
4051 : * Releases all PCI I/O and memory resources previously reserved by a
4052 : * successful call to pci_request_regions(). Call this function only
4053 : * after all use of the PCI regions has ceased.
4054 : */
4055 :
4056 0 : void pci_release_regions(struct pci_dev *pdev)
4057 : {
4058 0 : pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4059 0 : }
4060 : EXPORT_SYMBOL(pci_release_regions);
4061 :
4062 : /**
4063 : * pci_request_regions - Reserve PCI I/O and memory resources
4064 : * @pdev: PCI device whose resources are to be reserved
4065 : * @res_name: Name to be associated with resource.
4066 : *
4067 : * Mark all PCI regions associated with PCI device @pdev as
4068 : * being reserved by owner @res_name. Do not access any
4069 : * address inside the PCI regions unless this call returns
4070 : * successfully.
4071 : *
4072 : * Returns 0 on success, or %EBUSY on error. A warning
4073 : * message is also printed on failure.
4074 : */
4075 0 : int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4076 : {
4077 0 : return pci_request_selected_regions(pdev,
4078 : ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4079 : }
4080 : EXPORT_SYMBOL(pci_request_regions);
4081 :
4082 : /**
4083 : * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4084 : * @pdev: PCI device whose resources are to be reserved
4085 : * @res_name: Name to be associated with resource.
4086 : *
4087 : * Mark all PCI regions associated with PCI device @pdev as being reserved
4088 : * by owner @res_name. Do not access any address inside the PCI regions
4089 : * unless this call returns successfully.
4090 : *
4091 : * pci_request_regions_exclusive() will mark the region so that /dev/mem
4092 : * and the sysfs MMIO access will not be allowed.
4093 : *
4094 : * Returns 0 on success, or %EBUSY on error. A warning message is also
4095 : * printed on failure.
4096 : */
4097 0 : int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4098 : {
4099 0 : return pci_request_selected_regions_exclusive(pdev,
4100 : ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4101 : }
4102 : EXPORT_SYMBOL(pci_request_regions_exclusive);
4103 :
4104 : /*
4105 : * Record the PCI IO range (expressed as CPU physical address + size).
4106 : * Return a negative value if an error has occurred, zero otherwise
4107 : */
4108 0 : int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4109 : resource_size_t size)
4110 : {
4111 0 : int ret = 0;
4112 : #ifdef PCI_IOBASE
4113 : struct logic_pio_hwaddr *range;
4114 :
4115 0 : if (!size || addr + size < addr)
4116 : return -EINVAL;
4117 :
4118 0 : range = kzalloc(sizeof(*range), GFP_ATOMIC);
4119 0 : if (!range)
4120 : return -ENOMEM;
4121 :
4122 0 : range->fwnode = fwnode;
4123 0 : range->size = size;
4124 0 : range->hw_start = addr;
4125 0 : range->flags = LOGIC_PIO_CPU_MMIO;
4126 :
4127 0 : ret = logic_pio_register_range(range);
4128 0 : if (ret)
4129 0 : kfree(range);
4130 :
4131 : /* Ignore duplicates due to deferred probing */
4132 0 : if (ret == -EEXIST)
4133 0 : ret = 0;
4134 : #endif
4135 :
4136 : return ret;
4137 : }
4138 :
4139 0 : phys_addr_t pci_pio_to_address(unsigned long pio)
4140 : {
4141 0 : phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4142 :
4143 : #ifdef PCI_IOBASE
4144 0 : if (pio >= MMIO_UPPER_LIMIT)
4145 : return address;
4146 :
4147 0 : address = logic_pio_to_hwaddr(pio);
4148 : #endif
4149 :
4150 0 : return address;
4151 : }
4152 : EXPORT_SYMBOL_GPL(pci_pio_to_address);
4153 :
4154 0 : unsigned long __weak pci_address_to_pio(phys_addr_t address)
4155 : {
4156 : #ifdef PCI_IOBASE
4157 0 : return logic_pio_trans_cpuaddr(address);
4158 : #else
4159 : if (address > IO_SPACE_LIMIT)
4160 : return (unsigned long)-1;
4161 :
4162 : return (unsigned long) address;
4163 : #endif
4164 : }
4165 :
4166 : /**
4167 : * pci_remap_iospace - Remap the memory mapped I/O space
4168 : * @res: Resource describing the I/O space
4169 : * @phys_addr: physical address of range to be mapped
4170 : *
4171 : * Remap the memory mapped I/O space described by the @res and the CPU
4172 : * physical address @phys_addr into virtual address space. Only
4173 : * architectures that have memory mapped IO functions defined (and the
4174 : * PCI_IOBASE value defined) should call this function.
4175 : */
4176 : #ifndef pci_remap_iospace
4177 0 : int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4178 : {
4179 : #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4180 0 : unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4181 :
4182 0 : if (!(res->flags & IORESOURCE_IO))
4183 : return -EINVAL;
4184 :
4185 0 : if (res->end > IO_SPACE_LIMIT)
4186 : return -EINVAL;
4187 :
4188 0 : return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4189 0 : pgprot_device(PAGE_KERNEL));
4190 : #else
4191 : /*
4192 : * This architecture does not have memory mapped I/O space,
4193 : * so this function should never be called
4194 : */
4195 : WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4196 : return -ENODEV;
4197 : #endif
4198 : }
4199 : EXPORT_SYMBOL(pci_remap_iospace);
4200 : #endif
4201 :
4202 : /**
4203 : * pci_unmap_iospace - Unmap the memory mapped I/O space
4204 : * @res: resource to be unmapped
4205 : *
4206 : * Unmap the CPU virtual address @res from virtual address space. Only
4207 : * architectures that have memory mapped IO functions defined (and the
4208 : * PCI_IOBASE value defined) should call this function.
4209 : */
4210 0 : void pci_unmap_iospace(struct resource *res)
4211 : {
4212 : #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4213 0 : unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4214 :
4215 0 : vunmap_range(vaddr, vaddr + resource_size(res));
4216 : #endif
4217 0 : }
4218 : EXPORT_SYMBOL(pci_unmap_iospace);
4219 :
4220 0 : static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4221 : {
4222 0 : struct resource **res = ptr;
4223 :
4224 0 : pci_unmap_iospace(*res);
4225 0 : }
4226 :
4227 : /**
4228 : * devm_pci_remap_iospace - Managed pci_remap_iospace()
4229 : * @dev: Generic device to remap IO address for
4230 : * @res: Resource describing the I/O space
4231 : * @phys_addr: physical address of range to be mapped
4232 : *
4233 : * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4234 : * detach.
4235 : */
4236 0 : int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4237 : phys_addr_t phys_addr)
4238 : {
4239 : const struct resource **ptr;
4240 : int error;
4241 :
4242 0 : ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4243 0 : if (!ptr)
4244 : return -ENOMEM;
4245 :
4246 0 : error = pci_remap_iospace(res, phys_addr);
4247 0 : if (error) {
4248 0 : devres_free(ptr);
4249 : } else {
4250 0 : *ptr = res;
4251 0 : devres_add(dev, ptr);
4252 : }
4253 :
4254 : return error;
4255 : }
4256 : EXPORT_SYMBOL(devm_pci_remap_iospace);
4257 :
4258 : /**
4259 : * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4260 : * @dev: Generic device to remap IO address for
4261 : * @offset: Resource address to map
4262 : * @size: Size of map
4263 : *
4264 : * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4265 : * detach.
4266 : */
4267 0 : void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4268 : resource_size_t offset,
4269 : resource_size_t size)
4270 : {
4271 : void __iomem **ptr, *addr;
4272 :
4273 0 : ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4274 0 : if (!ptr)
4275 : return NULL;
4276 :
4277 0 : addr = pci_remap_cfgspace(offset, size);
4278 0 : if (addr) {
4279 0 : *ptr = addr;
4280 0 : devres_add(dev, ptr);
4281 : } else
4282 0 : devres_free(ptr);
4283 :
4284 : return addr;
4285 : }
4286 : EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4287 :
4288 : /**
4289 : * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4290 : * @dev: generic device to handle the resource for
4291 : * @res: configuration space resource to be handled
4292 : *
4293 : * Checks that a resource is a valid memory region, requests the memory
4294 : * region and ioremaps with pci_remap_cfgspace() API that ensures the
4295 : * proper PCI configuration space memory attributes are guaranteed.
4296 : *
4297 : * All operations are managed and will be undone on driver detach.
4298 : *
4299 : * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4300 : * on failure. Usage example::
4301 : *
4302 : * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4303 : * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4304 : * if (IS_ERR(base))
4305 : * return PTR_ERR(base);
4306 : */
4307 0 : void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4308 : struct resource *res)
4309 : {
4310 : resource_size_t size;
4311 : const char *name;
4312 : void __iomem *dest_ptr;
4313 :
4314 0 : BUG_ON(!dev);
4315 :
4316 0 : if (!res || resource_type(res) != IORESOURCE_MEM) {
4317 0 : dev_err(dev, "invalid resource\n");
4318 0 : return IOMEM_ERR_PTR(-EINVAL);
4319 : }
4320 :
4321 0 : size = resource_size(res);
4322 :
4323 0 : if (res->name)
4324 0 : name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4325 : res->name);
4326 : else
4327 0 : name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4328 0 : if (!name)
4329 : return IOMEM_ERR_PTR(-ENOMEM);
4330 :
4331 0 : if (!devm_request_mem_region(dev, res->start, size, name)) {
4332 0 : dev_err(dev, "can't request region for resource %pR\n", res);
4333 0 : return IOMEM_ERR_PTR(-EBUSY);
4334 : }
4335 :
4336 0 : dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4337 0 : if (!dest_ptr) {
4338 0 : dev_err(dev, "ioremap failed for resource %pR\n", res);
4339 0 : devm_release_mem_region(dev, res->start, size);
4340 0 : dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4341 : }
4342 :
4343 : return dest_ptr;
4344 : }
4345 : EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4346 :
4347 0 : static void __pci_set_master(struct pci_dev *dev, bool enable)
4348 : {
4349 : u16 old_cmd, cmd;
4350 :
4351 0 : pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4352 0 : if (enable)
4353 0 : cmd = old_cmd | PCI_COMMAND_MASTER;
4354 : else
4355 0 : cmd = old_cmd & ~PCI_COMMAND_MASTER;
4356 0 : if (cmd != old_cmd) {
4357 : pci_dbg(dev, "%s bus mastering\n",
4358 : enable ? "enabling" : "disabling");
4359 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4360 : }
4361 0 : dev->is_busmaster = enable;
4362 0 : }
4363 :
4364 : /**
4365 : * pcibios_setup - process "pci=" kernel boot arguments
4366 : * @str: string used to pass in "pci=" kernel boot arguments
4367 : *
4368 : * Process kernel boot arguments. This is the default implementation.
4369 : * Architecture specific implementations can override this as necessary.
4370 : */
4371 0 : char * __weak __init pcibios_setup(char *str)
4372 : {
4373 0 : return str;
4374 : }
4375 :
4376 : /**
4377 : * pcibios_set_master - enable PCI bus-mastering for device dev
4378 : * @dev: the PCI device to enable
4379 : *
4380 : * Enables PCI bus-mastering for the device. This is the default
4381 : * implementation. Architecture specific implementations can override
4382 : * this if necessary.
4383 : */
4384 0 : void __weak pcibios_set_master(struct pci_dev *dev)
4385 : {
4386 : u8 lat;
4387 :
4388 : /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4389 0 : if (pci_is_pcie(dev))
4390 0 : return;
4391 :
4392 0 : pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4393 0 : if (lat < 16)
4394 0 : lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4395 0 : else if (lat > pcibios_max_latency)
4396 0 : lat = pcibios_max_latency;
4397 : else
4398 : return;
4399 :
4400 0 : pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4401 : }
4402 :
4403 : /**
4404 : * pci_set_master - enables bus-mastering for device dev
4405 : * @dev: the PCI device to enable
4406 : *
4407 : * Enables bus-mastering on the device and calls pcibios_set_master()
4408 : * to do the needed arch specific settings.
4409 : */
4410 0 : void pci_set_master(struct pci_dev *dev)
4411 : {
4412 0 : __pci_set_master(dev, true);
4413 0 : pcibios_set_master(dev);
4414 0 : }
4415 : EXPORT_SYMBOL(pci_set_master);
4416 :
4417 : /**
4418 : * pci_clear_master - disables bus-mastering for device dev
4419 : * @dev: the PCI device to disable
4420 : */
4421 0 : void pci_clear_master(struct pci_dev *dev)
4422 : {
4423 0 : __pci_set_master(dev, false);
4424 0 : }
4425 : EXPORT_SYMBOL(pci_clear_master);
4426 :
4427 : /**
4428 : * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4429 : * @dev: the PCI device for which MWI is to be enabled
4430 : *
4431 : * Helper function for pci_set_mwi.
4432 : * Originally copied from drivers/net/acenic.c.
4433 : * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4434 : *
4435 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4436 : */
4437 0 : int pci_set_cacheline_size(struct pci_dev *dev)
4438 : {
4439 : u8 cacheline_size;
4440 :
4441 0 : if (!pci_cache_line_size)
4442 : return -EINVAL;
4443 :
4444 : /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4445 : equal to or multiple of the right value. */
4446 0 : pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4447 0 : if (cacheline_size >= pci_cache_line_size &&
4448 0 : (cacheline_size % pci_cache_line_size) == 0)
4449 : return 0;
4450 :
4451 : /* Write the correct value. */
4452 0 : pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4453 : /* Read it back. */
4454 0 : pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4455 0 : if (cacheline_size == pci_cache_line_size)
4456 : return 0;
4457 :
4458 : pci_dbg(dev, "cache line size of %d is not supported\n",
4459 : pci_cache_line_size << 2);
4460 :
4461 0 : return -EINVAL;
4462 : }
4463 : EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4464 :
4465 : /**
4466 : * pci_set_mwi - enables memory-write-invalidate PCI transaction
4467 : * @dev: the PCI device for which MWI is enabled
4468 : *
4469 : * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4470 : *
4471 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4472 : */
4473 0 : int pci_set_mwi(struct pci_dev *dev)
4474 : {
4475 : #ifdef PCI_DISABLE_MWI
4476 : return 0;
4477 : #else
4478 : int rc;
4479 : u16 cmd;
4480 :
4481 0 : rc = pci_set_cacheline_size(dev);
4482 0 : if (rc)
4483 : return rc;
4484 :
4485 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 0 : if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4487 : pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4488 0 : cmd |= PCI_COMMAND_INVALIDATE;
4489 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4490 : }
4491 : return 0;
4492 : #endif
4493 : }
4494 : EXPORT_SYMBOL(pci_set_mwi);
4495 :
4496 : /**
4497 : * pcim_set_mwi - a device-managed pci_set_mwi()
4498 : * @dev: the PCI device for which MWI is enabled
4499 : *
4500 : * Managed pci_set_mwi().
4501 : *
4502 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4503 : */
4504 0 : int pcim_set_mwi(struct pci_dev *dev)
4505 : {
4506 : struct pci_devres *dr;
4507 :
4508 0 : dr = find_pci_dr(dev);
4509 0 : if (!dr)
4510 : return -ENOMEM;
4511 :
4512 0 : dr->mwi = 1;
4513 0 : return pci_set_mwi(dev);
4514 : }
4515 : EXPORT_SYMBOL(pcim_set_mwi);
4516 :
4517 : /**
4518 : * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4519 : * @dev: the PCI device for which MWI is enabled
4520 : *
4521 : * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4522 : * Callers are not required to check the return value.
4523 : *
4524 : * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4525 : */
4526 0 : int pci_try_set_mwi(struct pci_dev *dev)
4527 : {
4528 : #ifdef PCI_DISABLE_MWI
4529 : return 0;
4530 : #else
4531 0 : return pci_set_mwi(dev);
4532 : #endif
4533 : }
4534 : EXPORT_SYMBOL(pci_try_set_mwi);
4535 :
4536 : /**
4537 : * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4538 : * @dev: the PCI device to disable
4539 : *
4540 : * Disables PCI Memory-Write-Invalidate transaction on the device
4541 : */
4542 0 : void pci_clear_mwi(struct pci_dev *dev)
4543 : {
4544 : #ifndef PCI_DISABLE_MWI
4545 : u16 cmd;
4546 :
4547 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4548 0 : if (cmd & PCI_COMMAND_INVALIDATE) {
4549 0 : cmd &= ~PCI_COMMAND_INVALIDATE;
4550 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4551 : }
4552 : #endif
4553 0 : }
4554 : EXPORT_SYMBOL(pci_clear_mwi);
4555 :
4556 : /**
4557 : * pci_disable_parity - disable parity checking for device
4558 : * @dev: the PCI device to operate on
4559 : *
4560 : * Disable parity checking for device @dev
4561 : */
4562 0 : void pci_disable_parity(struct pci_dev *dev)
4563 : {
4564 : u16 cmd;
4565 :
4566 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
4567 0 : if (cmd & PCI_COMMAND_PARITY) {
4568 0 : cmd &= ~PCI_COMMAND_PARITY;
4569 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
4570 : }
4571 0 : }
4572 :
4573 : /**
4574 : * pci_intx - enables/disables PCI INTx for device dev
4575 : * @pdev: the PCI device to operate on
4576 : * @enable: boolean: whether to enable or disable PCI INTx
4577 : *
4578 : * Enables/disables PCI INTx for device @pdev
4579 : */
4580 0 : void pci_intx(struct pci_dev *pdev, int enable)
4581 : {
4582 : u16 pci_command, new;
4583 :
4584 0 : pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4585 :
4586 0 : if (enable)
4587 0 : new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4588 : else
4589 0 : new = pci_command | PCI_COMMAND_INTX_DISABLE;
4590 :
4591 0 : if (new != pci_command) {
4592 : struct pci_devres *dr;
4593 :
4594 0 : pci_write_config_word(pdev, PCI_COMMAND, new);
4595 :
4596 0 : dr = find_pci_dr(pdev);
4597 0 : if (dr && !dr->restore_intx) {
4598 0 : dr->restore_intx = 1;
4599 0 : dr->orig_intx = !enable;
4600 : }
4601 : }
4602 0 : }
4603 : EXPORT_SYMBOL_GPL(pci_intx);
4604 :
4605 0 : static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4606 : {
4607 0 : struct pci_bus *bus = dev->bus;
4608 0 : bool mask_updated = true;
4609 : u32 cmd_status_dword;
4610 : u16 origcmd, newcmd;
4611 : unsigned long flags;
4612 : bool irq_pending;
4613 :
4614 : /*
4615 : * We do a single dword read to retrieve both command and status.
4616 : * Document assumptions that make this possible.
4617 : */
4618 : BUILD_BUG_ON(PCI_COMMAND % 4);
4619 : BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4620 :
4621 0 : raw_spin_lock_irqsave(&pci_lock, flags);
4622 :
4623 0 : bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4624 :
4625 0 : irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4626 :
4627 : /*
4628 : * Check interrupt status register to see whether our device
4629 : * triggered the interrupt (when masking) or the next IRQ is
4630 : * already pending (when unmasking).
4631 : */
4632 0 : if (mask != irq_pending) {
4633 : mask_updated = false;
4634 : goto done;
4635 : }
4636 :
4637 0 : origcmd = cmd_status_dword;
4638 0 : newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4639 0 : if (mask)
4640 0 : newcmd |= PCI_COMMAND_INTX_DISABLE;
4641 0 : if (newcmd != origcmd)
4642 0 : bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4643 :
4644 : done:
4645 0 : raw_spin_unlock_irqrestore(&pci_lock, flags);
4646 :
4647 0 : return mask_updated;
4648 : }
4649 :
4650 : /**
4651 : * pci_check_and_mask_intx - mask INTx on pending interrupt
4652 : * @dev: the PCI device to operate on
4653 : *
4654 : * Check if the device dev has its INTx line asserted, mask it and return
4655 : * true in that case. False is returned if no interrupt was pending.
4656 : */
4657 0 : bool pci_check_and_mask_intx(struct pci_dev *dev)
4658 : {
4659 0 : return pci_check_and_set_intx_mask(dev, true);
4660 : }
4661 : EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4662 :
4663 : /**
4664 : * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4665 : * @dev: the PCI device to operate on
4666 : *
4667 : * Check if the device dev has its INTx line asserted, unmask it if not and
4668 : * return true. False is returned and the mask remains active if there was
4669 : * still an interrupt pending.
4670 : */
4671 0 : bool pci_check_and_unmask_intx(struct pci_dev *dev)
4672 : {
4673 0 : return pci_check_and_set_intx_mask(dev, false);
4674 : }
4675 : EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4676 :
4677 : /**
4678 : * pci_wait_for_pending_transaction - wait for pending transaction
4679 : * @dev: the PCI device to operate on
4680 : *
4681 : * Return 0 if transaction is pending 1 otherwise.
4682 : */
4683 0 : int pci_wait_for_pending_transaction(struct pci_dev *dev)
4684 : {
4685 0 : if (!pci_is_pcie(dev))
4686 : return 1;
4687 :
4688 0 : return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4689 : PCI_EXP_DEVSTA_TRPND);
4690 : }
4691 : EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4692 :
4693 : /**
4694 : * pcie_flr - initiate a PCIe function level reset
4695 : * @dev: device to reset
4696 : *
4697 : * Initiate a function level reset unconditionally on @dev without
4698 : * checking any flags and DEVCAP
4699 : */
4700 0 : int pcie_flr(struct pci_dev *dev)
4701 : {
4702 0 : if (!pci_wait_for_pending_transaction(dev))
4703 0 : pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4704 :
4705 0 : pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4706 :
4707 0 : if (dev->imm_ready)
4708 : return 0;
4709 :
4710 : /*
4711 : * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4712 : * 100ms, but may silently discard requests while the FLR is in
4713 : * progress. Wait 100ms before trying to access the device.
4714 : */
4715 0 : msleep(100);
4716 :
4717 0 : return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4718 : }
4719 : EXPORT_SYMBOL_GPL(pcie_flr);
4720 :
4721 : /**
4722 : * pcie_reset_flr - initiate a PCIe function level reset
4723 : * @dev: device to reset
4724 : * @probe: if true, return 0 if device can be reset this way
4725 : *
4726 : * Initiate a function level reset on @dev.
4727 : */
4728 0 : int pcie_reset_flr(struct pci_dev *dev, bool probe)
4729 : {
4730 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4731 : return -ENOTTY;
4732 :
4733 0 : if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4734 : return -ENOTTY;
4735 :
4736 0 : if (probe)
4737 : return 0;
4738 :
4739 0 : return pcie_flr(dev);
4740 : }
4741 : EXPORT_SYMBOL_GPL(pcie_reset_flr);
4742 :
4743 0 : static int pci_af_flr(struct pci_dev *dev, bool probe)
4744 : {
4745 : int pos;
4746 : u8 cap;
4747 :
4748 0 : pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4749 0 : if (!pos)
4750 : return -ENOTTY;
4751 :
4752 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4753 : return -ENOTTY;
4754 :
4755 0 : pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4756 0 : if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4757 : return -ENOTTY;
4758 :
4759 0 : if (probe)
4760 : return 0;
4761 :
4762 : /*
4763 : * Wait for Transaction Pending bit to clear. A word-aligned test
4764 : * is used, so we use the control offset rather than status and shift
4765 : * the test bit to match.
4766 : */
4767 0 : if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4768 : PCI_AF_STATUS_TP << 8))
4769 0 : pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4770 :
4771 0 : pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4772 :
4773 0 : if (dev->imm_ready)
4774 : return 0;
4775 :
4776 : /*
4777 : * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4778 : * updated 27 July 2006; a device must complete an FLR within
4779 : * 100ms, but may silently discard requests while the FLR is in
4780 : * progress. Wait 100ms before trying to access the device.
4781 : */
4782 0 : msleep(100);
4783 :
4784 0 : return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4785 : }
4786 :
4787 : /**
4788 : * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4789 : * @dev: Device to reset.
4790 : * @probe: if true, return 0 if the device can be reset this way.
4791 : *
4792 : * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4793 : * unset, it will be reinitialized internally when going from PCI_D3hot to
4794 : * PCI_D0. If that's the case and the device is not in a low-power state
4795 : * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4796 : *
4797 : * NOTE: This causes the caller to sleep for twice the device power transition
4798 : * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4799 : * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4800 : * Moreover, only devices in D0 can be reset by this function.
4801 : */
4802 0 : static int pci_pm_reset(struct pci_dev *dev, bool probe)
4803 : {
4804 : u16 csr;
4805 :
4806 0 : if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4807 : return -ENOTTY;
4808 :
4809 0 : pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4810 0 : if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4811 : return -ENOTTY;
4812 :
4813 0 : if (probe)
4814 : return 0;
4815 :
4816 0 : if (dev->current_state != PCI_D0)
4817 : return -EINVAL;
4818 :
4819 0 : csr &= ~PCI_PM_CTRL_STATE_MASK;
4820 0 : csr |= PCI_D3hot;
4821 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4822 0 : pci_dev_d3_sleep(dev);
4823 :
4824 0 : csr &= ~PCI_PM_CTRL_STATE_MASK;
4825 : csr |= PCI_D0;
4826 0 : pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4827 0 : pci_dev_d3_sleep(dev);
4828 :
4829 0 : return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4830 : }
4831 :
4832 : /**
4833 : * pcie_wait_for_link_delay - Wait until link is active or inactive
4834 : * @pdev: Bridge device
4835 : * @active: waiting for active or inactive?
4836 : * @delay: Delay to wait after link has become active (in ms)
4837 : *
4838 : * Use this to wait till link becomes active or inactive.
4839 : */
4840 0 : static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4841 : int delay)
4842 : {
4843 0 : int timeout = 1000;
4844 : bool ret;
4845 : u16 lnk_status;
4846 :
4847 : /*
4848 : * Some controllers might not implement link active reporting. In this
4849 : * case, we wait for 1000 ms + any delay requested by the caller.
4850 : */
4851 0 : if (!pdev->link_active_reporting) {
4852 0 : msleep(timeout + delay);
4853 0 : return true;
4854 : }
4855 :
4856 : /*
4857 : * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4858 : * after which we should expect an link active if the reset was
4859 : * successful. If so, software must wait a minimum 100ms before sending
4860 : * configuration requests to devices downstream this port.
4861 : *
4862 : * If the link fails to activate, either the device was physically
4863 : * removed or the link is permanently failed.
4864 : */
4865 0 : if (active)
4866 0 : msleep(20);
4867 : for (;;) {
4868 0 : pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4869 0 : ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4870 0 : if (ret == active)
4871 : break;
4872 0 : if (timeout <= 0)
4873 : break;
4874 0 : msleep(10);
4875 0 : timeout -= 10;
4876 : }
4877 0 : if (active && ret)
4878 0 : msleep(delay);
4879 :
4880 0 : return ret == active;
4881 : }
4882 :
4883 : /**
4884 : * pcie_wait_for_link - Wait until link is active or inactive
4885 : * @pdev: Bridge device
4886 : * @active: waiting for active or inactive?
4887 : *
4888 : * Use this to wait till link becomes active or inactive.
4889 : */
4890 0 : bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4891 : {
4892 0 : return pcie_wait_for_link_delay(pdev, active, 100);
4893 : }
4894 :
4895 : /*
4896 : * Find maximum D3cold delay required by all the devices on the bus. The
4897 : * spec says 100 ms, but firmware can lower it and we allow drivers to
4898 : * increase it as well.
4899 : *
4900 : * Called with @pci_bus_sem locked for reading.
4901 : */
4902 : static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4903 : {
4904 : const struct pci_dev *pdev;
4905 0 : int min_delay = 100;
4906 0 : int max_delay = 0;
4907 :
4908 0 : list_for_each_entry(pdev, &bus->devices, bus_list) {
4909 0 : if (pdev->d3cold_delay < min_delay)
4910 0 : min_delay = pdev->d3cold_delay;
4911 0 : if (pdev->d3cold_delay > max_delay)
4912 0 : max_delay = pdev->d3cold_delay;
4913 : }
4914 :
4915 0 : return max(min_delay, max_delay);
4916 : }
4917 :
4918 : /**
4919 : * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4920 : * @dev: PCI bridge
4921 : *
4922 : * Handle necessary delays before access to the devices on the secondary
4923 : * side of the bridge are permitted after D3cold to D0 transition.
4924 : *
4925 : * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4926 : * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4927 : * 4.3.2.
4928 : */
4929 0 : void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4930 : {
4931 : struct pci_dev *child;
4932 : int delay;
4933 :
4934 0 : if (pci_dev_is_disconnected(dev))
4935 : return;
4936 :
4937 0 : if (!pci_is_bridge(dev) || !dev->bridge_d3)
4938 : return;
4939 :
4940 0 : down_read(&pci_bus_sem);
4941 :
4942 : /*
4943 : * We only deal with devices that are present currently on the bus.
4944 : * For any hot-added devices the access delay is handled in pciehp
4945 : * board_added(). In case of ACPI hotplug the firmware is expected
4946 : * to configure the devices before OS is notified.
4947 : */
4948 0 : if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4949 0 : up_read(&pci_bus_sem);
4950 0 : return;
4951 : }
4952 :
4953 : /* Take d3cold_delay requirements into account */
4954 0 : delay = pci_bus_max_d3cold_delay(dev->subordinate);
4955 0 : if (!delay) {
4956 0 : up_read(&pci_bus_sem);
4957 0 : return;
4958 : }
4959 :
4960 0 : child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4961 : bus_list);
4962 0 : up_read(&pci_bus_sem);
4963 :
4964 : /*
4965 : * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4966 : * accessing the device after reset (that is 1000 ms + 100 ms). In
4967 : * practice this should not be needed because we don't do power
4968 : * management for them (see pci_bridge_d3_possible()).
4969 : */
4970 0 : if (!pci_is_pcie(dev)) {
4971 : pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4972 0 : msleep(1000 + delay);
4973 0 : return;
4974 : }
4975 :
4976 : /*
4977 : * For PCIe downstream and root ports that do not support speeds
4978 : * greater than 5 GT/s need to wait minimum 100 ms. For higher
4979 : * speeds (gen3) we need to wait first for the data link layer to
4980 : * become active.
4981 : *
4982 : * However, 100 ms is the minimum and the PCIe spec says the
4983 : * software must allow at least 1s before it can determine that the
4984 : * device that did not respond is a broken device. There is
4985 : * evidence that 100 ms is not always enough, for example certain
4986 : * Titan Ridge xHCI controller does not always respond to
4987 : * configuration requests if we only wait for 100 ms (see
4988 : * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4989 : *
4990 : * Therefore we wait for 100 ms and check for the device presence.
4991 : * If it is still not present give it an additional 100 ms.
4992 : */
4993 0 : if (!pcie_downstream_port(dev))
4994 : return;
4995 :
4996 0 : if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4997 : pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4998 0 : msleep(delay);
4999 : } else {
5000 : pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5001 : delay);
5002 0 : if (!pcie_wait_for_link_delay(dev, true, delay)) {
5003 : /* Did not train, no need to wait any further */
5004 0 : pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5005 0 : return;
5006 : }
5007 : }
5008 :
5009 0 : if (!pci_device_is_present(child)) {
5010 : pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5011 0 : msleep(delay);
5012 : }
5013 : }
5014 :
5015 0 : void pci_reset_secondary_bus(struct pci_dev *dev)
5016 : {
5017 : u16 ctrl;
5018 :
5019 0 : pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5020 0 : ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5021 0 : pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5022 :
5023 : /*
5024 : * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5025 : * this to 2ms to ensure that we meet the minimum requirement.
5026 : */
5027 0 : msleep(2);
5028 :
5029 0 : ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5030 0 : pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5031 :
5032 : /*
5033 : * Trhfa for conventional PCI is 2^25 clock cycles.
5034 : * Assuming a minimum 33MHz clock this results in a 1s
5035 : * delay before we can consider subordinate devices to
5036 : * be re-initialized. PCIe has some ways to shorten this,
5037 : * but we don't make use of them yet.
5038 : */
5039 0 : ssleep(1);
5040 0 : }
5041 :
5042 0 : void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5043 : {
5044 0 : pci_reset_secondary_bus(dev);
5045 0 : }
5046 :
5047 : /**
5048 : * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5049 : * @dev: Bridge device
5050 : *
5051 : * Use the bridge control register to assert reset on the secondary bus.
5052 : * Devices on the secondary bus are left in power-on state.
5053 : */
5054 0 : int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5055 : {
5056 0 : pcibios_reset_secondary_bus(dev);
5057 :
5058 0 : return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5059 : }
5060 : EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5061 :
5062 0 : static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5063 : {
5064 : struct pci_dev *pdev;
5065 :
5066 0 : if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5067 0 : !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5068 : return -ENOTTY;
5069 :
5070 0 : list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5071 0 : if (pdev != dev)
5072 : return -ENOTTY;
5073 :
5074 0 : if (probe)
5075 : return 0;
5076 :
5077 0 : return pci_bridge_secondary_bus_reset(dev->bus->self);
5078 : }
5079 :
5080 : static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5081 : {
5082 0 : int rc = -ENOTTY;
5083 :
5084 0 : if (!hotplug || !try_module_get(hotplug->owner))
5085 : return rc;
5086 :
5087 0 : if (hotplug->ops->reset_slot)
5088 0 : rc = hotplug->ops->reset_slot(hotplug, probe);
5089 :
5090 : module_put(hotplug->owner);
5091 :
5092 : return rc;
5093 : }
5094 :
5095 0 : static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5096 : {
5097 0 : if (dev->multifunction || dev->subordinate || !dev->slot ||
5098 0 : dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5099 : return -ENOTTY;
5100 :
5101 0 : return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5102 : }
5103 :
5104 0 : static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5105 : {
5106 : int rc;
5107 :
5108 0 : rc = pci_dev_reset_slot_function(dev, probe);
5109 0 : if (rc != -ENOTTY)
5110 : return rc;
5111 0 : return pci_parent_bus_reset(dev, probe);
5112 : }
5113 :
5114 0 : void pci_dev_lock(struct pci_dev *dev)
5115 : {
5116 0 : pci_cfg_access_lock(dev);
5117 : /* block PM suspend, driver probe, etc. */
5118 0 : device_lock(&dev->dev);
5119 0 : }
5120 : EXPORT_SYMBOL_GPL(pci_dev_lock);
5121 :
5122 : /* Return 1 on successful lock, 0 on contention */
5123 0 : int pci_dev_trylock(struct pci_dev *dev)
5124 : {
5125 0 : if (pci_cfg_access_trylock(dev)) {
5126 0 : if (device_trylock(&dev->dev))
5127 : return 1;
5128 0 : pci_cfg_access_unlock(dev);
5129 : }
5130 :
5131 : return 0;
5132 : }
5133 : EXPORT_SYMBOL_GPL(pci_dev_trylock);
5134 :
5135 0 : void pci_dev_unlock(struct pci_dev *dev)
5136 : {
5137 0 : device_unlock(&dev->dev);
5138 0 : pci_cfg_access_unlock(dev);
5139 0 : }
5140 : EXPORT_SYMBOL_GPL(pci_dev_unlock);
5141 :
5142 0 : static void pci_dev_save_and_disable(struct pci_dev *dev)
5143 : {
5144 0 : const struct pci_error_handlers *err_handler =
5145 0 : dev->driver ? dev->driver->err_handler : NULL;
5146 :
5147 : /*
5148 : * dev->driver->err_handler->reset_prepare() is protected against
5149 : * races with ->remove() by the device lock, which must be held by
5150 : * the caller.
5151 : */
5152 0 : if (err_handler && err_handler->reset_prepare)
5153 0 : err_handler->reset_prepare(dev);
5154 :
5155 : /*
5156 : * Wake-up device prior to save. PM registers default to D0 after
5157 : * reset and a simple register restore doesn't reliably return
5158 : * to a non-D0 state anyway.
5159 : */
5160 0 : pci_set_power_state(dev, PCI_D0);
5161 :
5162 0 : pci_save_state(dev);
5163 : /*
5164 : * Disable the device by clearing the Command register, except for
5165 : * INTx-disable which is set. This not only disables MMIO and I/O port
5166 : * BARs, but also prevents the device from being Bus Master, preventing
5167 : * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5168 : * compliant devices, INTx-disable prevents legacy interrupts.
5169 : */
5170 0 : pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5171 0 : }
5172 :
5173 0 : static void pci_dev_restore(struct pci_dev *dev)
5174 : {
5175 0 : const struct pci_error_handlers *err_handler =
5176 0 : dev->driver ? dev->driver->err_handler : NULL;
5177 :
5178 0 : pci_restore_state(dev);
5179 :
5180 : /*
5181 : * dev->driver->err_handler->reset_done() is protected against
5182 : * races with ->remove() by the device lock, which must be held by
5183 : * the caller.
5184 : */
5185 0 : if (err_handler && err_handler->reset_done)
5186 0 : err_handler->reset_done(dev);
5187 0 : }
5188 :
5189 : /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5190 : static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5191 : { },
5192 : { pci_dev_specific_reset, .name = "device_specific" },
5193 : { pci_dev_acpi_reset, .name = "acpi" },
5194 : { pcie_reset_flr, .name = "flr" },
5195 : { pci_af_flr, .name = "af_flr" },
5196 : { pci_pm_reset, .name = "pm" },
5197 : { pci_reset_bus_function, .name = "bus" },
5198 : };
5199 :
5200 0 : static ssize_t reset_method_show(struct device *dev,
5201 : struct device_attribute *attr, char *buf)
5202 : {
5203 0 : struct pci_dev *pdev = to_pci_dev(dev);
5204 0 : ssize_t len = 0;
5205 : int i, m;
5206 :
5207 0 : for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5208 0 : m = pdev->reset_methods[i];
5209 0 : if (!m)
5210 : break;
5211 :
5212 0 : len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5213 : pci_reset_fn_methods[m].name);
5214 : }
5215 :
5216 0 : if (len)
5217 0 : len += sysfs_emit_at(buf, len, "\n");
5218 :
5219 0 : return len;
5220 : }
5221 :
5222 : static int reset_method_lookup(const char *name)
5223 : {
5224 : int m;
5225 :
5226 0 : for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5227 0 : if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5228 : return m;
5229 : }
5230 :
5231 : return 0; /* not found */
5232 : }
5233 :
5234 0 : static ssize_t reset_method_store(struct device *dev,
5235 : struct device_attribute *attr,
5236 : const char *buf, size_t count)
5237 : {
5238 0 : struct pci_dev *pdev = to_pci_dev(dev);
5239 : char *options, *name;
5240 : int m, n;
5241 0 : u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5242 :
5243 0 : if (sysfs_streq(buf, "")) {
5244 0 : pdev->reset_methods[0] = 0;
5245 0 : pci_warn(pdev, "All device reset methods disabled by user");
5246 0 : return count;
5247 : }
5248 :
5249 0 : if (sysfs_streq(buf, "default")) {
5250 0 : pci_init_reset_methods(pdev);
5251 0 : return count;
5252 : }
5253 :
5254 0 : options = kstrndup(buf, count, GFP_KERNEL);
5255 0 : if (!options)
5256 : return -ENOMEM;
5257 :
5258 : n = 0;
5259 0 : while ((name = strsep(&options, " ")) != NULL) {
5260 0 : if (sysfs_streq(name, ""))
5261 0 : continue;
5262 :
5263 0 : name = strim(name);
5264 :
5265 0 : m = reset_method_lookup(name);
5266 0 : if (!m) {
5267 0 : pci_err(pdev, "Invalid reset method '%s'", name);
5268 0 : goto error;
5269 : }
5270 :
5271 0 : if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5272 0 : pci_err(pdev, "Unsupported reset method '%s'", name);
5273 0 : goto error;
5274 : }
5275 :
5276 0 : if (n == PCI_NUM_RESET_METHODS - 1) {
5277 0 : pci_err(pdev, "Too many reset methods\n");
5278 0 : goto error;
5279 : }
5280 :
5281 0 : reset_methods[n++] = m;
5282 : }
5283 :
5284 0 : reset_methods[n] = 0;
5285 :
5286 : /* Warn if dev-specific supported but not highest priority */
5287 0 : if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5288 0 : reset_methods[0] != 1)
5289 0 : pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5290 0 : memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5291 0 : kfree(options);
5292 0 : return count;
5293 :
5294 : error:
5295 : /* Leave previous methods unchanged */
5296 0 : kfree(options);
5297 0 : return -EINVAL;
5298 : }
5299 : static DEVICE_ATTR_RW(reset_method);
5300 :
5301 : static struct attribute *pci_dev_reset_method_attrs[] = {
5302 : &dev_attr_reset_method.attr,
5303 : NULL,
5304 : };
5305 :
5306 0 : static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5307 : struct attribute *a, int n)
5308 : {
5309 0 : struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5310 :
5311 0 : if (!pci_reset_supported(pdev))
5312 : return 0;
5313 :
5314 0 : return a->mode;
5315 : }
5316 :
5317 : const struct attribute_group pci_dev_reset_method_attr_group = {
5318 : .attrs = pci_dev_reset_method_attrs,
5319 : .is_visible = pci_dev_reset_method_attr_is_visible,
5320 : };
5321 :
5322 : /**
5323 : * __pci_reset_function_locked - reset a PCI device function while holding
5324 : * the @dev mutex lock.
5325 : * @dev: PCI device to reset
5326 : *
5327 : * Some devices allow an individual function to be reset without affecting
5328 : * other functions in the same device. The PCI device must be responsive
5329 : * to PCI config space in order to use this function.
5330 : *
5331 : * The device function is presumed to be unused and the caller is holding
5332 : * the device mutex lock when this function is called.
5333 : *
5334 : * Resetting the device will make the contents of PCI configuration space
5335 : * random, so any caller of this must be prepared to reinitialise the
5336 : * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5337 : * etc.
5338 : *
5339 : * Returns 0 if the device function was successfully reset or negative if the
5340 : * device doesn't support resetting a single function.
5341 : */
5342 0 : int __pci_reset_function_locked(struct pci_dev *dev)
5343 : {
5344 : int i, m, rc;
5345 :
5346 : might_sleep();
5347 :
5348 : /*
5349 : * A reset method returns -ENOTTY if it doesn't support this device and
5350 : * we should try the next method.
5351 : *
5352 : * If it returns 0 (success), we're finished. If it returns any other
5353 : * error, we're also finished: this indicates that further reset
5354 : * mechanisms might be broken on the device.
5355 : */
5356 0 : for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5357 0 : m = dev->reset_methods[i];
5358 0 : if (!m)
5359 : return -ENOTTY;
5360 :
5361 0 : rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5362 0 : if (!rc)
5363 : return 0;
5364 0 : if (rc != -ENOTTY)
5365 : return rc;
5366 : }
5367 :
5368 : return -ENOTTY;
5369 : }
5370 : EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5371 :
5372 : /**
5373 : * pci_init_reset_methods - check whether device can be safely reset
5374 : * and store supported reset mechanisms.
5375 : * @dev: PCI device to check for reset mechanisms
5376 : *
5377 : * Some devices allow an individual function to be reset without affecting
5378 : * other functions in the same device. The PCI device must be in D0-D3hot
5379 : * state.
5380 : *
5381 : * Stores reset mechanisms supported by device in reset_methods byte array
5382 : * which is a member of struct pci_dev.
5383 : */
5384 0 : void pci_init_reset_methods(struct pci_dev *dev)
5385 : {
5386 : int m, i, rc;
5387 :
5388 : BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5389 :
5390 : might_sleep();
5391 :
5392 0 : i = 0;
5393 0 : for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5394 0 : rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5395 0 : if (!rc)
5396 0 : dev->reset_methods[i++] = m;
5397 0 : else if (rc != -ENOTTY)
5398 : break;
5399 : }
5400 :
5401 0 : dev->reset_methods[i] = 0;
5402 0 : }
5403 :
5404 : /**
5405 : * pci_reset_function - quiesce and reset a PCI device function
5406 : * @dev: PCI device to reset
5407 : *
5408 : * Some devices allow an individual function to be reset without affecting
5409 : * other functions in the same device. The PCI device must be responsive
5410 : * to PCI config space in order to use this function.
5411 : *
5412 : * This function does not just reset the PCI portion of a device, but
5413 : * clears all the state associated with the device. This function differs
5414 : * from __pci_reset_function_locked() in that it saves and restores device state
5415 : * over the reset and takes the PCI device lock.
5416 : *
5417 : * Returns 0 if the device function was successfully reset or negative if the
5418 : * device doesn't support resetting a single function.
5419 : */
5420 0 : int pci_reset_function(struct pci_dev *dev)
5421 : {
5422 : int rc;
5423 :
5424 0 : if (!pci_reset_supported(dev))
5425 : return -ENOTTY;
5426 :
5427 0 : pci_dev_lock(dev);
5428 0 : pci_dev_save_and_disable(dev);
5429 :
5430 0 : rc = __pci_reset_function_locked(dev);
5431 :
5432 0 : pci_dev_restore(dev);
5433 0 : pci_dev_unlock(dev);
5434 :
5435 0 : return rc;
5436 : }
5437 : EXPORT_SYMBOL_GPL(pci_reset_function);
5438 :
5439 : /**
5440 : * pci_reset_function_locked - quiesce and reset a PCI device function
5441 : * @dev: PCI device to reset
5442 : *
5443 : * Some devices allow an individual function to be reset without affecting
5444 : * other functions in the same device. The PCI device must be responsive
5445 : * to PCI config space in order to use this function.
5446 : *
5447 : * This function does not just reset the PCI portion of a device, but
5448 : * clears all the state associated with the device. This function differs
5449 : * from __pci_reset_function_locked() in that it saves and restores device state
5450 : * over the reset. It also differs from pci_reset_function() in that it
5451 : * requires the PCI device lock to be held.
5452 : *
5453 : * Returns 0 if the device function was successfully reset or negative if the
5454 : * device doesn't support resetting a single function.
5455 : */
5456 0 : int pci_reset_function_locked(struct pci_dev *dev)
5457 : {
5458 : int rc;
5459 :
5460 0 : if (!pci_reset_supported(dev))
5461 : return -ENOTTY;
5462 :
5463 0 : pci_dev_save_and_disable(dev);
5464 :
5465 0 : rc = __pci_reset_function_locked(dev);
5466 :
5467 0 : pci_dev_restore(dev);
5468 :
5469 0 : return rc;
5470 : }
5471 : EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5472 :
5473 : /**
5474 : * pci_try_reset_function - quiesce and reset a PCI device function
5475 : * @dev: PCI device to reset
5476 : *
5477 : * Same as above, except return -EAGAIN if unable to lock device.
5478 : */
5479 0 : int pci_try_reset_function(struct pci_dev *dev)
5480 : {
5481 : int rc;
5482 :
5483 0 : if (!pci_reset_supported(dev))
5484 : return -ENOTTY;
5485 :
5486 0 : if (!pci_dev_trylock(dev))
5487 : return -EAGAIN;
5488 :
5489 0 : pci_dev_save_and_disable(dev);
5490 0 : rc = __pci_reset_function_locked(dev);
5491 0 : pci_dev_restore(dev);
5492 0 : pci_dev_unlock(dev);
5493 :
5494 0 : return rc;
5495 : }
5496 : EXPORT_SYMBOL_GPL(pci_try_reset_function);
5497 :
5498 : /* Do any devices on or below this bus prevent a bus reset? */
5499 0 : static bool pci_bus_resetable(struct pci_bus *bus)
5500 : {
5501 : struct pci_dev *dev;
5502 :
5503 :
5504 0 : if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5505 : return false;
5506 :
5507 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5508 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5509 0 : (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5510 : return false;
5511 : }
5512 :
5513 : return true;
5514 : }
5515 :
5516 : /* Lock devices from the top of the tree down */
5517 0 : static void pci_bus_lock(struct pci_bus *bus)
5518 : {
5519 : struct pci_dev *dev;
5520 :
5521 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5522 0 : pci_dev_lock(dev);
5523 0 : if (dev->subordinate)
5524 0 : pci_bus_lock(dev->subordinate);
5525 : }
5526 0 : }
5527 :
5528 : /* Unlock devices from the bottom of the tree up */
5529 0 : static void pci_bus_unlock(struct pci_bus *bus)
5530 : {
5531 : struct pci_dev *dev;
5532 :
5533 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5534 0 : if (dev->subordinate)
5535 0 : pci_bus_unlock(dev->subordinate);
5536 0 : pci_dev_unlock(dev);
5537 : }
5538 0 : }
5539 :
5540 : /* Return 1 on successful lock, 0 on contention */
5541 0 : static int pci_bus_trylock(struct pci_bus *bus)
5542 : {
5543 : struct pci_dev *dev;
5544 :
5545 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5546 0 : if (!pci_dev_trylock(dev))
5547 : goto unlock;
5548 0 : if (dev->subordinate) {
5549 0 : if (!pci_bus_trylock(dev->subordinate)) {
5550 : pci_dev_unlock(dev);
5551 : goto unlock;
5552 : }
5553 : }
5554 : }
5555 : return 1;
5556 :
5557 : unlock:
5558 0 : list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5559 0 : if (dev->subordinate)
5560 0 : pci_bus_unlock(dev->subordinate);
5561 0 : pci_dev_unlock(dev);
5562 : }
5563 : return 0;
5564 : }
5565 :
5566 : /* Do any devices on or below this slot prevent a bus reset? */
5567 0 : static bool pci_slot_resetable(struct pci_slot *slot)
5568 : {
5569 : struct pci_dev *dev;
5570 :
5571 0 : if (slot->bus->self &&
5572 0 : (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5573 : return false;
5574 :
5575 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5576 0 : if (!dev->slot || dev->slot != slot)
5577 0 : continue;
5578 0 : if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5579 0 : (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5580 : return false;
5581 : }
5582 :
5583 : return true;
5584 : }
5585 :
5586 : /* Lock devices from the top of the tree down */
5587 0 : static void pci_slot_lock(struct pci_slot *slot)
5588 : {
5589 : struct pci_dev *dev;
5590 :
5591 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5592 0 : if (!dev->slot || dev->slot != slot)
5593 0 : continue;
5594 0 : pci_dev_lock(dev);
5595 0 : if (dev->subordinate)
5596 0 : pci_bus_lock(dev->subordinate);
5597 : }
5598 0 : }
5599 :
5600 : /* Unlock devices from the bottom of the tree up */
5601 0 : static void pci_slot_unlock(struct pci_slot *slot)
5602 : {
5603 : struct pci_dev *dev;
5604 :
5605 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 0 : if (!dev->slot || dev->slot != slot)
5607 0 : continue;
5608 0 : if (dev->subordinate)
5609 0 : pci_bus_unlock(dev->subordinate);
5610 : pci_dev_unlock(dev);
5611 : }
5612 0 : }
5613 :
5614 : /* Return 1 on successful lock, 0 on contention */
5615 0 : static int pci_slot_trylock(struct pci_slot *slot)
5616 : {
5617 : struct pci_dev *dev;
5618 :
5619 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5620 0 : if (!dev->slot || dev->slot != slot)
5621 0 : continue;
5622 0 : if (!pci_dev_trylock(dev))
5623 : goto unlock;
5624 0 : if (dev->subordinate) {
5625 0 : if (!pci_bus_trylock(dev->subordinate)) {
5626 : pci_dev_unlock(dev);
5627 : goto unlock;
5628 : }
5629 : }
5630 : }
5631 : return 1;
5632 :
5633 : unlock:
5634 0 : list_for_each_entry_continue_reverse(dev,
5635 : &slot->bus->devices, bus_list) {
5636 0 : if (!dev->slot || dev->slot != slot)
5637 0 : continue;
5638 0 : if (dev->subordinate)
5639 0 : pci_bus_unlock(dev->subordinate);
5640 : pci_dev_unlock(dev);
5641 : }
5642 : return 0;
5643 : }
5644 :
5645 : /*
5646 : * Save and disable devices from the top of the tree down while holding
5647 : * the @dev mutex lock for the entire tree.
5648 : */
5649 0 : static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5650 : {
5651 : struct pci_dev *dev;
5652 :
5653 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5654 0 : pci_dev_save_and_disable(dev);
5655 0 : if (dev->subordinate)
5656 0 : pci_bus_save_and_disable_locked(dev->subordinate);
5657 : }
5658 0 : }
5659 :
5660 : /*
5661 : * Restore devices from top of the tree down while holding @dev mutex lock
5662 : * for the entire tree. Parent bridges need to be restored before we can
5663 : * get to subordinate devices.
5664 : */
5665 0 : static void pci_bus_restore_locked(struct pci_bus *bus)
5666 : {
5667 : struct pci_dev *dev;
5668 :
5669 0 : list_for_each_entry(dev, &bus->devices, bus_list) {
5670 0 : pci_dev_restore(dev);
5671 0 : if (dev->subordinate)
5672 0 : pci_bus_restore_locked(dev->subordinate);
5673 : }
5674 0 : }
5675 :
5676 : /*
5677 : * Save and disable devices from the top of the tree down while holding
5678 : * the @dev mutex lock for the entire tree.
5679 : */
5680 0 : static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5681 : {
5682 : struct pci_dev *dev;
5683 :
5684 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5685 0 : if (!dev->slot || dev->slot != slot)
5686 0 : continue;
5687 0 : pci_dev_save_and_disable(dev);
5688 0 : if (dev->subordinate)
5689 0 : pci_bus_save_and_disable_locked(dev->subordinate);
5690 : }
5691 0 : }
5692 :
5693 : /*
5694 : * Restore devices from top of the tree down while holding @dev mutex lock
5695 : * for the entire tree. Parent bridges need to be restored before we can
5696 : * get to subordinate devices.
5697 : */
5698 0 : static void pci_slot_restore_locked(struct pci_slot *slot)
5699 : {
5700 : struct pci_dev *dev;
5701 :
5702 0 : list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5703 0 : if (!dev->slot || dev->slot != slot)
5704 0 : continue;
5705 0 : pci_dev_restore(dev);
5706 0 : if (dev->subordinate)
5707 0 : pci_bus_restore_locked(dev->subordinate);
5708 : }
5709 0 : }
5710 :
5711 0 : static int pci_slot_reset(struct pci_slot *slot, bool probe)
5712 : {
5713 : int rc;
5714 :
5715 0 : if (!slot || !pci_slot_resetable(slot))
5716 : return -ENOTTY;
5717 :
5718 0 : if (!probe)
5719 0 : pci_slot_lock(slot);
5720 :
5721 : might_sleep();
5722 :
5723 0 : rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5724 :
5725 0 : if (!probe)
5726 0 : pci_slot_unlock(slot);
5727 :
5728 : return rc;
5729 : }
5730 :
5731 : /**
5732 : * pci_probe_reset_slot - probe whether a PCI slot can be reset
5733 : * @slot: PCI slot to probe
5734 : *
5735 : * Return 0 if slot can be reset, negative if a slot reset is not supported.
5736 : */
5737 0 : int pci_probe_reset_slot(struct pci_slot *slot)
5738 : {
5739 0 : return pci_slot_reset(slot, PCI_RESET_PROBE);
5740 : }
5741 : EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5742 :
5743 : /**
5744 : * __pci_reset_slot - Try to reset a PCI slot
5745 : * @slot: PCI slot to reset
5746 : *
5747 : * A PCI bus may host multiple slots, each slot may support a reset mechanism
5748 : * independent of other slots. For instance, some slots may support slot power
5749 : * control. In the case of a 1:1 bus to slot architecture, this function may
5750 : * wrap the bus reset to avoid spurious slot related events such as hotplug.
5751 : * Generally a slot reset should be attempted before a bus reset. All of the
5752 : * function of the slot and any subordinate buses behind the slot are reset
5753 : * through this function. PCI config space of all devices in the slot and
5754 : * behind the slot is saved before and restored after reset.
5755 : *
5756 : * Same as above except return -EAGAIN if the slot cannot be locked
5757 : */
5758 0 : static int __pci_reset_slot(struct pci_slot *slot)
5759 : {
5760 : int rc;
5761 :
5762 0 : rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5763 0 : if (rc)
5764 : return rc;
5765 :
5766 0 : if (pci_slot_trylock(slot)) {
5767 0 : pci_slot_save_and_disable_locked(slot);
5768 : might_sleep();
5769 0 : rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5770 0 : pci_slot_restore_locked(slot);
5771 0 : pci_slot_unlock(slot);
5772 : } else
5773 : rc = -EAGAIN;
5774 :
5775 : return rc;
5776 : }
5777 :
5778 0 : static int pci_bus_reset(struct pci_bus *bus, bool probe)
5779 : {
5780 : int ret;
5781 :
5782 0 : if (!bus->self || !pci_bus_resetable(bus))
5783 : return -ENOTTY;
5784 :
5785 0 : if (probe)
5786 : return 0;
5787 :
5788 0 : pci_bus_lock(bus);
5789 :
5790 : might_sleep();
5791 :
5792 0 : ret = pci_bridge_secondary_bus_reset(bus->self);
5793 :
5794 0 : pci_bus_unlock(bus);
5795 :
5796 0 : return ret;
5797 : }
5798 :
5799 : /**
5800 : * pci_bus_error_reset - reset the bridge's subordinate bus
5801 : * @bridge: The parent device that connects to the bus to reset
5802 : *
5803 : * This function will first try to reset the slots on this bus if the method is
5804 : * available. If slot reset fails or is not available, this will fall back to a
5805 : * secondary bus reset.
5806 : */
5807 0 : int pci_bus_error_reset(struct pci_dev *bridge)
5808 : {
5809 0 : struct pci_bus *bus = bridge->subordinate;
5810 : struct pci_slot *slot;
5811 :
5812 0 : if (!bus)
5813 : return -ENOTTY;
5814 :
5815 0 : mutex_lock(&pci_slot_mutex);
5816 0 : if (list_empty(&bus->slots))
5817 : goto bus_reset;
5818 :
5819 0 : list_for_each_entry(slot, &bus->slots, list)
5820 0 : if (pci_probe_reset_slot(slot))
5821 : goto bus_reset;
5822 :
5823 0 : list_for_each_entry(slot, &bus->slots, list)
5824 0 : if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5825 : goto bus_reset;
5826 :
5827 0 : mutex_unlock(&pci_slot_mutex);
5828 0 : return 0;
5829 : bus_reset:
5830 0 : mutex_unlock(&pci_slot_mutex);
5831 0 : return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5832 : }
5833 :
5834 : /**
5835 : * pci_probe_reset_bus - probe whether a PCI bus can be reset
5836 : * @bus: PCI bus to probe
5837 : *
5838 : * Return 0 if bus can be reset, negative if a bus reset is not supported.
5839 : */
5840 0 : int pci_probe_reset_bus(struct pci_bus *bus)
5841 : {
5842 0 : return pci_bus_reset(bus, PCI_RESET_PROBE);
5843 : }
5844 : EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5845 :
5846 : /**
5847 : * __pci_reset_bus - Try to reset a PCI bus
5848 : * @bus: top level PCI bus to reset
5849 : *
5850 : * Same as above except return -EAGAIN if the bus cannot be locked
5851 : */
5852 0 : static int __pci_reset_bus(struct pci_bus *bus)
5853 : {
5854 : int rc;
5855 :
5856 0 : rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5857 0 : if (rc)
5858 : return rc;
5859 :
5860 0 : if (pci_bus_trylock(bus)) {
5861 0 : pci_bus_save_and_disable_locked(bus);
5862 : might_sleep();
5863 0 : rc = pci_bridge_secondary_bus_reset(bus->self);
5864 0 : pci_bus_restore_locked(bus);
5865 0 : pci_bus_unlock(bus);
5866 : } else
5867 : rc = -EAGAIN;
5868 :
5869 : return rc;
5870 : }
5871 :
5872 : /**
5873 : * pci_reset_bus - Try to reset a PCI bus
5874 : * @pdev: top level PCI device to reset via slot/bus
5875 : *
5876 : * Same as above except return -EAGAIN if the bus cannot be locked
5877 : */
5878 0 : int pci_reset_bus(struct pci_dev *pdev)
5879 : {
5880 0 : return (!pci_probe_reset_slot(pdev->slot)) ?
5881 0 : __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5882 : }
5883 : EXPORT_SYMBOL_GPL(pci_reset_bus);
5884 :
5885 : /**
5886 : * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5887 : * @dev: PCI device to query
5888 : *
5889 : * Returns mmrbc: maximum designed memory read count in bytes or
5890 : * appropriate error value.
5891 : */
5892 0 : int pcix_get_max_mmrbc(struct pci_dev *dev)
5893 : {
5894 : int cap;
5895 : u32 stat;
5896 :
5897 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5898 0 : if (!cap)
5899 : return -EINVAL;
5900 :
5901 0 : if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5902 : return -EINVAL;
5903 :
5904 0 : return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5905 : }
5906 : EXPORT_SYMBOL(pcix_get_max_mmrbc);
5907 :
5908 : /**
5909 : * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5910 : * @dev: PCI device to query
5911 : *
5912 : * Returns mmrbc: maximum memory read count in bytes or appropriate error
5913 : * value.
5914 : */
5915 0 : int pcix_get_mmrbc(struct pci_dev *dev)
5916 : {
5917 : int cap;
5918 : u16 cmd;
5919 :
5920 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 0 : if (!cap)
5922 : return -EINVAL;
5923 :
5924 0 : if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5925 : return -EINVAL;
5926 :
5927 0 : return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5928 : }
5929 : EXPORT_SYMBOL(pcix_get_mmrbc);
5930 :
5931 : /**
5932 : * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5933 : * @dev: PCI device to query
5934 : * @mmrbc: maximum memory read count in bytes
5935 : * valid values are 512, 1024, 2048, 4096
5936 : *
5937 : * If possible sets maximum memory read byte count, some bridges have errata
5938 : * that prevent this.
5939 : */
5940 0 : int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5941 : {
5942 : int cap;
5943 : u32 stat, v, o;
5944 : u16 cmd;
5945 :
5946 0 : if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5947 : return -EINVAL;
5948 :
5949 0 : v = ffs(mmrbc) - 10;
5950 :
5951 0 : cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5952 0 : if (!cap)
5953 : return -EINVAL;
5954 :
5955 0 : if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5956 : return -EINVAL;
5957 :
5958 0 : if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5959 : return -E2BIG;
5960 :
5961 0 : if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5962 : return -EINVAL;
5963 :
5964 0 : o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5965 0 : if (o != v) {
5966 0 : if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5967 : return -EIO;
5968 :
5969 0 : cmd &= ~PCI_X_CMD_MAX_READ;
5970 0 : cmd |= v << 2;
5971 0 : if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5972 : return -EIO;
5973 : }
5974 : return 0;
5975 : }
5976 : EXPORT_SYMBOL(pcix_set_mmrbc);
5977 :
5978 : /**
5979 : * pcie_get_readrq - get PCI Express read request size
5980 : * @dev: PCI device to query
5981 : *
5982 : * Returns maximum memory read request in bytes or appropriate error value.
5983 : */
5984 0 : int pcie_get_readrq(struct pci_dev *dev)
5985 : {
5986 : u16 ctl;
5987 :
5988 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5989 :
5990 0 : return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5991 : }
5992 : EXPORT_SYMBOL(pcie_get_readrq);
5993 :
5994 : /**
5995 : * pcie_set_readrq - set PCI Express maximum memory read request
5996 : * @dev: PCI device to query
5997 : * @rq: maximum memory read count in bytes
5998 : * valid values are 128, 256, 512, 1024, 2048, 4096
5999 : *
6000 : * If possible sets maximum memory read request in bytes
6001 : */
6002 0 : int pcie_set_readrq(struct pci_dev *dev, int rq)
6003 : {
6004 : u16 v;
6005 : int ret;
6006 :
6007 0 : if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6008 : return -EINVAL;
6009 :
6010 : /*
6011 : * If using the "performance" PCIe config, we clamp the read rq
6012 : * size to the max packet size to keep the host bridge from
6013 : * generating requests larger than we can cope with.
6014 : */
6015 0 : if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6016 0 : int mps = pcie_get_mps(dev);
6017 :
6018 0 : if (mps < rq)
6019 0 : rq = mps;
6020 : }
6021 :
6022 0 : v = (ffs(rq) - 8) << 12;
6023 :
6024 0 : ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6025 : PCI_EXP_DEVCTL_READRQ, v);
6026 :
6027 : return pcibios_err_to_errno(ret);
6028 : }
6029 : EXPORT_SYMBOL(pcie_set_readrq);
6030 :
6031 : /**
6032 : * pcie_get_mps - get PCI Express maximum payload size
6033 : * @dev: PCI device to query
6034 : *
6035 : * Returns maximum payload size in bytes
6036 : */
6037 0 : int pcie_get_mps(struct pci_dev *dev)
6038 : {
6039 : u16 ctl;
6040 :
6041 0 : pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6042 :
6043 0 : return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6044 : }
6045 : EXPORT_SYMBOL(pcie_get_mps);
6046 :
6047 : /**
6048 : * pcie_set_mps - set PCI Express maximum payload size
6049 : * @dev: PCI device to query
6050 : * @mps: maximum payload size in bytes
6051 : * valid values are 128, 256, 512, 1024, 2048, 4096
6052 : *
6053 : * If possible sets maximum payload size
6054 : */
6055 0 : int pcie_set_mps(struct pci_dev *dev, int mps)
6056 : {
6057 : u16 v;
6058 : int ret;
6059 :
6060 0 : if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6061 : return -EINVAL;
6062 :
6063 0 : v = ffs(mps) - 8;
6064 0 : if (v > dev->pcie_mpss)
6065 : return -EINVAL;
6066 0 : v <<= 5;
6067 :
6068 0 : ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6069 : PCI_EXP_DEVCTL_PAYLOAD, v);
6070 :
6071 : return pcibios_err_to_errno(ret);
6072 : }
6073 : EXPORT_SYMBOL(pcie_set_mps);
6074 :
6075 : /**
6076 : * pcie_bandwidth_available - determine minimum link settings of a PCIe
6077 : * device and its bandwidth limitation
6078 : * @dev: PCI device to query
6079 : * @limiting_dev: storage for device causing the bandwidth limitation
6080 : * @speed: storage for speed of limiting device
6081 : * @width: storage for width of limiting device
6082 : *
6083 : * Walk up the PCI device chain and find the point where the minimum
6084 : * bandwidth is available. Return the bandwidth available there and (if
6085 : * limiting_dev, speed, and width pointers are supplied) information about
6086 : * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6087 : * raw bandwidth.
6088 : */
6089 0 : u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6090 : enum pci_bus_speed *speed,
6091 : enum pcie_link_width *width)
6092 : {
6093 : u16 lnksta;
6094 : enum pci_bus_speed next_speed;
6095 : enum pcie_link_width next_width;
6096 : u32 bw, next_bw;
6097 :
6098 0 : if (speed)
6099 0 : *speed = PCI_SPEED_UNKNOWN;
6100 0 : if (width)
6101 0 : *width = PCIE_LNK_WIDTH_UNKNOWN;
6102 :
6103 : bw = 0;
6104 :
6105 0 : while (dev) {
6106 0 : pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6107 :
6108 0 : next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6109 0 : next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6110 : PCI_EXP_LNKSTA_NLW_SHIFT;
6111 :
6112 0 : next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6113 :
6114 : /* Check if current device limits the total bandwidth */
6115 0 : if (!bw || next_bw <= bw) {
6116 0 : bw = next_bw;
6117 :
6118 0 : if (limiting_dev)
6119 0 : *limiting_dev = dev;
6120 0 : if (speed)
6121 0 : *speed = next_speed;
6122 0 : if (width)
6123 0 : *width = next_width;
6124 : }
6125 :
6126 0 : dev = pci_upstream_bridge(dev);
6127 : }
6128 :
6129 0 : return bw;
6130 : }
6131 : EXPORT_SYMBOL(pcie_bandwidth_available);
6132 :
6133 : /**
6134 : * pcie_get_speed_cap - query for the PCI device's link speed capability
6135 : * @dev: PCI device to query
6136 : *
6137 : * Query the PCI device speed capability. Return the maximum link speed
6138 : * supported by the device.
6139 : */
6140 0 : enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6141 : {
6142 : u32 lnkcap2, lnkcap;
6143 :
6144 : /*
6145 : * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6146 : * implementation note there recommends using the Supported Link
6147 : * Speeds Vector in Link Capabilities 2 when supported.
6148 : *
6149 : * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6150 : * should use the Supported Link Speeds field in Link Capabilities,
6151 : * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6152 : */
6153 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6154 :
6155 : /* PCIe r3.0-compliant */
6156 0 : if (lnkcap2)
6157 0 : return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6158 :
6159 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6160 0 : if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6161 : return PCIE_SPEED_5_0GT;
6162 0 : else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6163 : return PCIE_SPEED_2_5GT;
6164 :
6165 0 : return PCI_SPEED_UNKNOWN;
6166 : }
6167 : EXPORT_SYMBOL(pcie_get_speed_cap);
6168 :
6169 : /**
6170 : * pcie_get_width_cap - query for the PCI device's link width capability
6171 : * @dev: PCI device to query
6172 : *
6173 : * Query the PCI device width capability. Return the maximum link width
6174 : * supported by the device.
6175 : */
6176 0 : enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6177 : {
6178 : u32 lnkcap;
6179 :
6180 0 : pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6181 0 : if (lnkcap)
6182 0 : return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6183 :
6184 : return PCIE_LNK_WIDTH_UNKNOWN;
6185 : }
6186 : EXPORT_SYMBOL(pcie_get_width_cap);
6187 :
6188 : /**
6189 : * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6190 : * @dev: PCI device
6191 : * @speed: storage for link speed
6192 : * @width: storage for link width
6193 : *
6194 : * Calculate a PCI device's link bandwidth by querying for its link speed
6195 : * and width, multiplying them, and applying encoding overhead. The result
6196 : * is in Mb/s, i.e., megabits/second of raw bandwidth.
6197 : */
6198 0 : u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6199 : enum pcie_link_width *width)
6200 : {
6201 0 : *speed = pcie_get_speed_cap(dev);
6202 0 : *width = pcie_get_width_cap(dev);
6203 :
6204 0 : if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6205 : return 0;
6206 :
6207 0 : return *width * PCIE_SPEED2MBS_ENC(*speed);
6208 : }
6209 :
6210 : /**
6211 : * __pcie_print_link_status - Report the PCI device's link speed and width
6212 : * @dev: PCI device to query
6213 : * @verbose: Print info even when enough bandwidth is available
6214 : *
6215 : * If the available bandwidth at the device is less than the device is
6216 : * capable of, report the device's maximum possible bandwidth and the
6217 : * upstream link that limits its performance. If @verbose, always print
6218 : * the available bandwidth, even if the device isn't constrained.
6219 : */
6220 0 : void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6221 : {
6222 : enum pcie_link_width width, width_cap;
6223 : enum pci_bus_speed speed, speed_cap;
6224 0 : struct pci_dev *limiting_dev = NULL;
6225 : u32 bw_avail, bw_cap;
6226 :
6227 0 : bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6228 0 : bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6229 :
6230 0 : if (bw_avail >= bw_cap && verbose)
6231 0 : pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6232 : bw_cap / 1000, bw_cap % 1000,
6233 : pci_speed_string(speed_cap), width_cap);
6234 0 : else if (bw_avail < bw_cap)
6235 0 : pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6236 : bw_avail / 1000, bw_avail % 1000,
6237 : pci_speed_string(speed), width,
6238 : limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6239 : bw_cap / 1000, bw_cap % 1000,
6240 : pci_speed_string(speed_cap), width_cap);
6241 0 : }
6242 :
6243 : /**
6244 : * pcie_print_link_status - Report the PCI device's link speed and width
6245 : * @dev: PCI device to query
6246 : *
6247 : * Report the available bandwidth at the device.
6248 : */
6249 0 : void pcie_print_link_status(struct pci_dev *dev)
6250 : {
6251 0 : __pcie_print_link_status(dev, true);
6252 0 : }
6253 : EXPORT_SYMBOL(pcie_print_link_status);
6254 :
6255 : /**
6256 : * pci_select_bars - Make BAR mask from the type of resource
6257 : * @dev: the PCI device for which BAR mask is made
6258 : * @flags: resource type mask to be selected
6259 : *
6260 : * This helper routine makes bar mask from the type of resource.
6261 : */
6262 0 : int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6263 : {
6264 0 : int i, bars = 0;
6265 0 : for (i = 0; i < PCI_NUM_RESOURCES; i++)
6266 0 : if (pci_resource_flags(dev, i) & flags)
6267 0 : bars |= (1 << i);
6268 0 : return bars;
6269 : }
6270 : EXPORT_SYMBOL(pci_select_bars);
6271 :
6272 : /* Some architectures require additional programming to enable VGA */
6273 : static arch_set_vga_state_t arch_set_vga_state;
6274 :
6275 0 : void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6276 : {
6277 0 : arch_set_vga_state = func; /* NULL disables */
6278 0 : }
6279 :
6280 : static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6281 : unsigned int command_bits, u32 flags)
6282 : {
6283 0 : if (arch_set_vga_state)
6284 0 : return arch_set_vga_state(dev, decode, command_bits,
6285 : flags);
6286 : return 0;
6287 : }
6288 :
6289 : /**
6290 : * pci_set_vga_state - set VGA decode state on device and parents if requested
6291 : * @dev: the PCI device
6292 : * @decode: true = enable decoding, false = disable decoding
6293 : * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6294 : * @flags: traverse ancestors and change bridges
6295 : * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6296 : */
6297 0 : int pci_set_vga_state(struct pci_dev *dev, bool decode,
6298 : unsigned int command_bits, u32 flags)
6299 : {
6300 : struct pci_bus *bus;
6301 : struct pci_dev *bridge;
6302 : u16 cmd;
6303 : int rc;
6304 :
6305 0 : WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6306 :
6307 : /* ARCH specific VGA enables */
6308 0 : rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6309 0 : if (rc)
6310 : return rc;
6311 :
6312 0 : if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6313 0 : pci_read_config_word(dev, PCI_COMMAND, &cmd);
6314 0 : if (decode)
6315 0 : cmd |= command_bits;
6316 : else
6317 0 : cmd &= ~command_bits;
6318 0 : pci_write_config_word(dev, PCI_COMMAND, cmd);
6319 : }
6320 :
6321 0 : if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6322 : return 0;
6323 :
6324 0 : bus = dev->bus;
6325 0 : while (bus) {
6326 0 : bridge = bus->self;
6327 0 : if (bridge) {
6328 0 : pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6329 : &cmd);
6330 0 : if (decode)
6331 0 : cmd |= PCI_BRIDGE_CTL_VGA;
6332 : else
6333 0 : cmd &= ~PCI_BRIDGE_CTL_VGA;
6334 0 : pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6335 : cmd);
6336 : }
6337 0 : bus = bus->parent;
6338 : }
6339 : return 0;
6340 : }
6341 :
6342 : #ifdef CONFIG_ACPI
6343 : bool pci_pr3_present(struct pci_dev *pdev)
6344 : {
6345 : struct acpi_device *adev;
6346 :
6347 : if (acpi_disabled)
6348 : return false;
6349 :
6350 : adev = ACPI_COMPANION(&pdev->dev);
6351 : if (!adev)
6352 : return false;
6353 :
6354 : return adev->power.flags.power_resources &&
6355 : acpi_has_method(adev->handle, "_PR3");
6356 : }
6357 : EXPORT_SYMBOL_GPL(pci_pr3_present);
6358 : #endif
6359 :
6360 : /**
6361 : * pci_add_dma_alias - Add a DMA devfn alias for a device
6362 : * @dev: the PCI device for which alias is added
6363 : * @devfn_from: alias slot and function
6364 : * @nr_devfns: number of subsequent devfns to alias
6365 : *
6366 : * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6367 : * which is used to program permissible bus-devfn source addresses for DMA
6368 : * requests in an IOMMU. These aliases factor into IOMMU group creation
6369 : * and are useful for devices generating DMA requests beyond or different
6370 : * from their logical bus-devfn. Examples include device quirks where the
6371 : * device simply uses the wrong devfn, as well as non-transparent bridges
6372 : * where the alias may be a proxy for devices in another domain.
6373 : *
6374 : * IOMMU group creation is performed during device discovery or addition,
6375 : * prior to any potential DMA mapping and therefore prior to driver probing
6376 : * (especially for userspace assigned devices where IOMMU group definition
6377 : * cannot be left as a userspace activity). DMA aliases should therefore
6378 : * be configured via quirks, such as the PCI fixup header quirk.
6379 : */
6380 0 : void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6381 : unsigned int nr_devfns)
6382 : {
6383 : int devfn_to;
6384 :
6385 0 : nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6386 0 : devfn_to = devfn_from + nr_devfns - 1;
6387 :
6388 0 : if (!dev->dma_alias_mask)
6389 0 : dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6390 0 : if (!dev->dma_alias_mask) {
6391 0 : pci_warn(dev, "Unable to allocate DMA alias mask\n");
6392 0 : return;
6393 : }
6394 :
6395 0 : bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6396 :
6397 0 : if (nr_devfns == 1)
6398 0 : pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6399 : PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6400 0 : else if (nr_devfns > 1)
6401 0 : pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6402 : PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6403 : PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6404 : }
6405 :
6406 0 : bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6407 : {
6408 0 : return (dev1->dma_alias_mask &&
6409 0 : test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6410 0 : (dev2->dma_alias_mask &&
6411 0 : test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6412 0 : pci_real_dma_dev(dev1) == dev2 ||
6413 0 : pci_real_dma_dev(dev2) == dev1;
6414 : }
6415 :
6416 0 : bool pci_device_is_present(struct pci_dev *pdev)
6417 : {
6418 : u32 v;
6419 :
6420 0 : if (pci_dev_is_disconnected(pdev))
6421 : return false;
6422 0 : return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6423 : }
6424 : EXPORT_SYMBOL_GPL(pci_device_is_present);
6425 :
6426 0 : void pci_ignore_hotplug(struct pci_dev *dev)
6427 : {
6428 0 : struct pci_dev *bridge = dev->bus->self;
6429 :
6430 0 : dev->ignore_hotplug = 1;
6431 : /* Propagate the "ignore hotplug" setting to the parent bridge. */
6432 0 : if (bridge)
6433 0 : bridge->ignore_hotplug = 1;
6434 0 : }
6435 : EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6436 :
6437 : /**
6438 : * pci_real_dma_dev - Get PCI DMA device for PCI device
6439 : * @dev: the PCI device that may have a PCI DMA alias
6440 : *
6441 : * Permits the platform to provide architecture-specific functionality to
6442 : * devices needing to alias DMA to another PCI device on another PCI bus. If
6443 : * the PCI device is on the same bus, it is recommended to use
6444 : * pci_add_dma_alias(). This is the default implementation. Architecture
6445 : * implementations can override this.
6446 : */
6447 0 : struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6448 : {
6449 0 : return dev;
6450 : }
6451 :
6452 0 : resource_size_t __weak pcibios_default_alignment(void)
6453 : {
6454 0 : return 0;
6455 : }
6456 :
6457 : /*
6458 : * Arches that don't want to expose struct resource to userland as-is in
6459 : * sysfs and /proc can implement their own pci_resource_to_user().
6460 : */
6461 0 : void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6462 : const struct resource *rsrc,
6463 : resource_size_t *start, resource_size_t *end)
6464 : {
6465 0 : *start = rsrc->start;
6466 0 : *end = rsrc->end;
6467 0 : }
6468 :
6469 : static char *resource_alignment_param;
6470 : static DEFINE_SPINLOCK(resource_alignment_lock);
6471 :
6472 : /**
6473 : * pci_specified_resource_alignment - get resource alignment specified by user.
6474 : * @dev: the PCI device to get
6475 : * @resize: whether or not to change resources' size when reassigning alignment
6476 : *
6477 : * RETURNS: Resource alignment if it is specified.
6478 : * Zero if it is not specified.
6479 : */
6480 0 : static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6481 : bool *resize)
6482 : {
6483 : int align_order, count;
6484 0 : resource_size_t align = pcibios_default_alignment();
6485 : const char *p;
6486 : int ret;
6487 :
6488 0 : spin_lock(&resource_alignment_lock);
6489 0 : p = resource_alignment_param;
6490 0 : if (!p || !*p)
6491 : goto out;
6492 0 : if (pci_has_flag(PCI_PROBE_ONLY)) {
6493 0 : align = 0;
6494 0 : pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6495 : goto out;
6496 : }
6497 :
6498 0 : while (*p) {
6499 0 : count = 0;
6500 0 : if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6501 0 : p[count] == '@') {
6502 0 : p += count + 1;
6503 0 : if (align_order > 63) {
6504 0 : pr_err("PCI: Invalid requested alignment (order %d)\n",
6505 : align_order);
6506 0 : align_order = PAGE_SHIFT;
6507 : }
6508 : } else {
6509 0 : align_order = PAGE_SHIFT;
6510 : }
6511 :
6512 0 : ret = pci_dev_str_match(dev, p, &p);
6513 0 : if (ret == 1) {
6514 0 : *resize = true;
6515 0 : align = 1ULL << align_order;
6516 0 : break;
6517 0 : } else if (ret < 0) {
6518 0 : pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6519 : p);
6520 0 : break;
6521 : }
6522 :
6523 0 : if (*p != ';' && *p != ',') {
6524 : /* End of param or invalid format */
6525 : break;
6526 : }
6527 0 : p++;
6528 : }
6529 : out:
6530 0 : spin_unlock(&resource_alignment_lock);
6531 0 : return align;
6532 : }
6533 :
6534 0 : static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6535 : resource_size_t align, bool resize)
6536 : {
6537 0 : struct resource *r = &dev->resource[bar];
6538 : resource_size_t size;
6539 :
6540 0 : if (!(r->flags & IORESOURCE_MEM))
6541 : return;
6542 :
6543 0 : if (r->flags & IORESOURCE_PCI_FIXED) {
6544 0 : pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6545 : bar, r, (unsigned long long)align);
6546 0 : return;
6547 : }
6548 :
6549 0 : size = resource_size(r);
6550 0 : if (size >= align)
6551 : return;
6552 :
6553 : /*
6554 : * Increase the alignment of the resource. There are two ways we
6555 : * can do this:
6556 : *
6557 : * 1) Increase the size of the resource. BARs are aligned on their
6558 : * size, so when we reallocate space for this resource, we'll
6559 : * allocate it with the larger alignment. This also prevents
6560 : * assignment of any other BARs inside the alignment region, so
6561 : * if we're requesting page alignment, this means no other BARs
6562 : * will share the page.
6563 : *
6564 : * The disadvantage is that this makes the resource larger than
6565 : * the hardware BAR, which may break drivers that compute things
6566 : * based on the resource size, e.g., to find registers at a
6567 : * fixed offset before the end of the BAR.
6568 : *
6569 : * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6570 : * set r->start to the desired alignment. By itself this
6571 : * doesn't prevent other BARs being put inside the alignment
6572 : * region, but if we realign *every* resource of every device in
6573 : * the system, none of them will share an alignment region.
6574 : *
6575 : * When the user has requested alignment for only some devices via
6576 : * the "pci=resource_alignment" argument, "resize" is true and we
6577 : * use the first method. Otherwise we assume we're aligning all
6578 : * devices and we use the second.
6579 : */
6580 :
6581 0 : pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6582 : bar, r, (unsigned long long)align);
6583 :
6584 0 : if (resize) {
6585 0 : r->start = 0;
6586 0 : r->end = align - 1;
6587 : } else {
6588 0 : r->flags &= ~IORESOURCE_SIZEALIGN;
6589 0 : r->flags |= IORESOURCE_STARTALIGN;
6590 0 : r->start = align;
6591 0 : r->end = r->start + size - 1;
6592 : }
6593 0 : r->flags |= IORESOURCE_UNSET;
6594 : }
6595 :
6596 : /*
6597 : * This function disables memory decoding and releases memory resources
6598 : * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6599 : * It also rounds up size to specified alignment.
6600 : * Later on, the kernel will assign page-aligned memory resource back
6601 : * to the device.
6602 : */
6603 0 : void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6604 : {
6605 : int i;
6606 : struct resource *r;
6607 : resource_size_t align;
6608 : u16 command;
6609 0 : bool resize = false;
6610 :
6611 : /*
6612 : * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6613 : * 3.4.1.11. Their resources are allocated from the space
6614 : * described by the VF BARx register in the PF's SR-IOV capability.
6615 : * We can't influence their alignment here.
6616 : */
6617 0 : if (dev->is_virtfn)
6618 0 : return;
6619 :
6620 : /* check if specified PCI is target device to reassign */
6621 0 : align = pci_specified_resource_alignment(dev, &resize);
6622 0 : if (!align)
6623 : return;
6624 :
6625 0 : if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6626 0 : (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6627 0 : pci_warn(dev, "Can't reassign resources to host bridge\n");
6628 0 : return;
6629 : }
6630 :
6631 0 : pci_read_config_word(dev, PCI_COMMAND, &command);
6632 0 : command &= ~PCI_COMMAND_MEMORY;
6633 0 : pci_write_config_word(dev, PCI_COMMAND, command);
6634 :
6635 0 : for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6636 0 : pci_request_resource_alignment(dev, i, align, resize);
6637 :
6638 : /*
6639 : * Need to disable bridge's resource window,
6640 : * to enable the kernel to reassign new resource
6641 : * window later on.
6642 : */
6643 0 : if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6644 0 : for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6645 0 : r = &dev->resource[i];
6646 0 : if (!(r->flags & IORESOURCE_MEM))
6647 0 : continue;
6648 0 : r->flags |= IORESOURCE_UNSET;
6649 0 : r->end = resource_size(r) - 1;
6650 0 : r->start = 0;
6651 : }
6652 0 : pci_disable_bridge_window(dev);
6653 : }
6654 : }
6655 :
6656 0 : static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6657 : {
6658 0 : size_t count = 0;
6659 :
6660 0 : spin_lock(&resource_alignment_lock);
6661 0 : if (resource_alignment_param)
6662 0 : count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6663 0 : spin_unlock(&resource_alignment_lock);
6664 :
6665 0 : return count;
6666 : }
6667 :
6668 0 : static ssize_t resource_alignment_store(struct bus_type *bus,
6669 : const char *buf, size_t count)
6670 : {
6671 : char *param, *old, *end;
6672 :
6673 0 : if (count >= (PAGE_SIZE - 1))
6674 : return -EINVAL;
6675 :
6676 0 : param = kstrndup(buf, count, GFP_KERNEL);
6677 0 : if (!param)
6678 : return -ENOMEM;
6679 :
6680 0 : end = strchr(param, '\n');
6681 0 : if (end)
6682 0 : *end = '\0';
6683 :
6684 0 : spin_lock(&resource_alignment_lock);
6685 0 : old = resource_alignment_param;
6686 0 : if (strlen(param)) {
6687 0 : resource_alignment_param = param;
6688 : } else {
6689 0 : kfree(param);
6690 0 : resource_alignment_param = NULL;
6691 : }
6692 0 : spin_unlock(&resource_alignment_lock);
6693 :
6694 0 : kfree(old);
6695 :
6696 0 : return count;
6697 : }
6698 :
6699 : static BUS_ATTR_RW(resource_alignment);
6700 :
6701 1 : static int __init pci_resource_alignment_sysfs_init(void)
6702 : {
6703 1 : return bus_create_file(&pci_bus_type,
6704 : &bus_attr_resource_alignment);
6705 : }
6706 : late_initcall(pci_resource_alignment_sysfs_init);
6707 :
6708 : static void pci_no_domains(void)
6709 : {
6710 : #ifdef CONFIG_PCI_DOMAINS
6711 : pci_domains_supported = 0;
6712 : #endif
6713 : }
6714 :
6715 : #ifdef CONFIG_PCI_DOMAINS_GENERIC
6716 : static atomic_t __domain_nr = ATOMIC_INIT(-1);
6717 :
6718 : static int pci_get_new_domain_nr(void)
6719 : {
6720 : return atomic_inc_return(&__domain_nr);
6721 : }
6722 :
6723 : static int of_pci_bus_find_domain_nr(struct device *parent)
6724 : {
6725 : static int use_dt_domains = -1;
6726 : int domain = -1;
6727 :
6728 : if (parent)
6729 : domain = of_get_pci_domain_nr(parent->of_node);
6730 :
6731 : /*
6732 : * Check DT domain and use_dt_domains values.
6733 : *
6734 : * If DT domain property is valid (domain >= 0) and
6735 : * use_dt_domains != 0, the DT assignment is valid since this means
6736 : * we have not previously allocated a domain number by using
6737 : * pci_get_new_domain_nr(); we should also update use_dt_domains to
6738 : * 1, to indicate that we have just assigned a domain number from
6739 : * DT.
6740 : *
6741 : * If DT domain property value is not valid (ie domain < 0), and we
6742 : * have not previously assigned a domain number from DT
6743 : * (use_dt_domains != 1) we should assign a domain number by
6744 : * using the:
6745 : *
6746 : * pci_get_new_domain_nr()
6747 : *
6748 : * API and update the use_dt_domains value to keep track of method we
6749 : * are using to assign domain numbers (use_dt_domains = 0).
6750 : *
6751 : * All other combinations imply we have a platform that is trying
6752 : * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6753 : * which is a recipe for domain mishandling and it is prevented by
6754 : * invalidating the domain value (domain = -1) and printing a
6755 : * corresponding error.
6756 : */
6757 : if (domain >= 0 && use_dt_domains) {
6758 : use_dt_domains = 1;
6759 : } else if (domain < 0 && use_dt_domains != 1) {
6760 : use_dt_domains = 0;
6761 : domain = pci_get_new_domain_nr();
6762 : } else {
6763 : if (parent)
6764 : pr_err("Node %pOF has ", parent->of_node);
6765 : pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6766 : domain = -1;
6767 : }
6768 :
6769 : return domain;
6770 : }
6771 :
6772 : int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6773 : {
6774 : return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6775 : acpi_pci_bus_find_domain_nr(bus);
6776 : }
6777 : #endif
6778 :
6779 : /**
6780 : * pci_ext_cfg_avail - can we access extended PCI config space?
6781 : *
6782 : * Returns 1 if we can access PCI extended config space (offsets
6783 : * greater than 0xff). This is the default implementation. Architecture
6784 : * implementations can override this.
6785 : */
6786 0 : int __weak pci_ext_cfg_avail(void)
6787 : {
6788 0 : return 1;
6789 : }
6790 :
6791 0 : void __weak pci_fixup_cardbus(struct pci_bus *bus)
6792 : {
6793 0 : }
6794 : EXPORT_SYMBOL(pci_fixup_cardbus);
6795 :
6796 0 : static int __init pci_setup(char *str)
6797 : {
6798 0 : while (str) {
6799 0 : char *k = strchr(str, ',');
6800 0 : if (k)
6801 0 : *k++ = 0;
6802 0 : if (*str && (str = pcibios_setup(str)) && *str) {
6803 0 : if (!strcmp(str, "nomsi")) {
6804 0 : pci_no_msi();
6805 0 : } else if (!strncmp(str, "noats", 5)) {
6806 0 : pr_info("PCIe: ATS is disabled\n");
6807 0 : pcie_ats_disabled = true;
6808 0 : } else if (!strcmp(str, "noaer")) {
6809 : pci_no_aer();
6810 0 : } else if (!strcmp(str, "earlydump")) {
6811 0 : pci_early_dump = true;
6812 0 : } else if (!strncmp(str, "realloc=", 8)) {
6813 0 : pci_realloc_get_opt(str + 8);
6814 0 : } else if (!strncmp(str, "realloc", 7)) {
6815 0 : pci_realloc_get_opt("on");
6816 0 : } else if (!strcmp(str, "nodomains")) {
6817 : pci_no_domains();
6818 0 : } else if (!strncmp(str, "noari", 5)) {
6819 0 : pcie_ari_disabled = true;
6820 0 : } else if (!strncmp(str, "cbiosize=", 9)) {
6821 0 : pci_cardbus_io_size = memparse(str + 9, &str);
6822 0 : } else if (!strncmp(str, "cbmemsize=", 10)) {
6823 0 : pci_cardbus_mem_size = memparse(str + 10, &str);
6824 0 : } else if (!strncmp(str, "resource_alignment=", 19)) {
6825 0 : resource_alignment_param = str + 19;
6826 0 : } else if (!strncmp(str, "ecrc=", 5)) {
6827 : pcie_ecrc_get_policy(str + 5);
6828 0 : } else if (!strncmp(str, "hpiosize=", 9)) {
6829 0 : pci_hotplug_io_size = memparse(str + 9, &str);
6830 0 : } else if (!strncmp(str, "hpmmiosize=", 11)) {
6831 0 : pci_hotplug_mmio_size = memparse(str + 11, &str);
6832 0 : } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6833 0 : pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6834 0 : } else if (!strncmp(str, "hpmemsize=", 10)) {
6835 0 : pci_hotplug_mmio_size = memparse(str + 10, &str);
6836 0 : pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6837 0 : } else if (!strncmp(str, "hpbussize=", 10)) {
6838 0 : pci_hotplug_bus_size =
6839 0 : simple_strtoul(str + 10, &str, 0);
6840 0 : if (pci_hotplug_bus_size > 0xff)
6841 0 : pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6842 0 : } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6843 0 : pcie_bus_config = PCIE_BUS_TUNE_OFF;
6844 0 : } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6845 0 : pcie_bus_config = PCIE_BUS_SAFE;
6846 0 : } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6847 0 : pcie_bus_config = PCIE_BUS_PERFORMANCE;
6848 0 : } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6849 0 : pcie_bus_config = PCIE_BUS_PEER2PEER;
6850 0 : } else if (!strncmp(str, "pcie_scan_all", 13)) {
6851 : pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6852 0 : } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6853 0 : disable_acs_redir_param = str + 18;
6854 : } else {
6855 0 : pr_err("PCI: Unknown option `%s'\n", str);
6856 : }
6857 : }
6858 0 : str = k;
6859 : }
6860 0 : return 0;
6861 : }
6862 : early_param("pci", pci_setup);
6863 :
6864 : /*
6865 : * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6866 : * in pci_setup(), above, to point to data in the __initdata section which
6867 : * will be freed after the init sequence is complete. We can't allocate memory
6868 : * in pci_setup() because some architectures do not have any memory allocation
6869 : * service available during an early_param() call. So we allocate memory and
6870 : * copy the variable here before the init section is freed.
6871 : *
6872 : */
6873 1 : static int __init pci_realloc_setup_params(void)
6874 : {
6875 1 : resource_alignment_param = kstrdup(resource_alignment_param,
6876 : GFP_KERNEL);
6877 1 : disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6878 :
6879 1 : return 0;
6880 : }
6881 : pure_initcall(pci_realloc_setup_params);
|