Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Universal power supply monitor class
4 : *
5 : * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 : * Copyright © 2004 Szabolcs Gyurko
7 : * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 : *
9 : * Modified: 2004, Oct Szabolcs Gyurko
10 : */
11 :
12 : #include <linux/module.h>
13 : #include <linux/types.h>
14 : #include <linux/init.h>
15 : #include <linux/slab.h>
16 : #include <linux/delay.h>
17 : #include <linux/device.h>
18 : #include <linux/notifier.h>
19 : #include <linux/err.h>
20 : #include <linux/of.h>
21 : #include <linux/power_supply.h>
22 : #include <linux/property.h>
23 : #include <linux/thermal.h>
24 : #include <linux/fixp-arith.h>
25 : #include "power_supply.h"
26 : #include "samsung-sdi-battery.h"
27 :
28 : /* exported for the APM Power driver, APM emulation */
29 : struct class *power_supply_class;
30 : EXPORT_SYMBOL_GPL(power_supply_class);
31 :
32 : ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
33 : EXPORT_SYMBOL_GPL(power_supply_notifier);
34 :
35 : static struct device_type power_supply_dev_type;
36 :
37 : #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
38 :
39 0 : static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40 : struct power_supply *supply)
41 : {
42 : int i;
43 :
44 0 : if (!supply->supplied_from && !supplier->supplied_to)
45 : return false;
46 :
47 : /* Support both supplied_to and supplied_from modes */
48 0 : if (supply->supplied_from) {
49 0 : if (!supplier->desc->name)
50 : return false;
51 0 : for (i = 0; i < supply->num_supplies; i++)
52 0 : if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53 : return true;
54 : } else {
55 0 : if (!supply->desc->name)
56 : return false;
57 0 : for (i = 0; i < supplier->num_supplicants; i++)
58 0 : if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59 : return true;
60 : }
61 :
62 : return false;
63 : }
64 :
65 0 : static int __power_supply_changed_work(struct device *dev, void *data)
66 : {
67 0 : struct power_supply *psy = data;
68 0 : struct power_supply *pst = dev_get_drvdata(dev);
69 :
70 0 : if (__power_supply_is_supplied_by(psy, pst)) {
71 0 : if (pst->desc->external_power_changed)
72 0 : pst->desc->external_power_changed(pst);
73 : }
74 :
75 0 : return 0;
76 : }
77 :
78 0 : static void power_supply_changed_work(struct work_struct *work)
79 : {
80 : unsigned long flags;
81 0 : struct power_supply *psy = container_of(work, struct power_supply,
82 : changed_work);
83 :
84 : dev_dbg(&psy->dev, "%s\n", __func__);
85 :
86 0 : spin_lock_irqsave(&psy->changed_lock, flags);
87 : /*
88 : * Check 'changed' here to avoid issues due to race between
89 : * power_supply_changed() and this routine. In worst case
90 : * power_supply_changed() can be called again just before we take above
91 : * lock. During the first call of this routine we will mark 'changed' as
92 : * false and it will stay false for the next call as well.
93 : */
94 0 : if (likely(psy->changed)) {
95 0 : psy->changed = false;
96 0 : spin_unlock_irqrestore(&psy->changed_lock, flags);
97 0 : class_for_each_device(power_supply_class, NULL, psy,
98 : __power_supply_changed_work);
99 0 : power_supply_update_leds(psy);
100 0 : atomic_notifier_call_chain(&power_supply_notifier,
101 : PSY_EVENT_PROP_CHANGED, psy);
102 0 : kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103 0 : spin_lock_irqsave(&psy->changed_lock, flags);
104 : }
105 :
106 : /*
107 : * Hold the wakeup_source until all events are processed.
108 : * power_supply_changed() might have called again and have set 'changed'
109 : * to true.
110 : */
111 0 : if (likely(!psy->changed))
112 0 : pm_relax(&psy->dev);
113 0 : spin_unlock_irqrestore(&psy->changed_lock, flags);
114 0 : }
115 :
116 0 : void power_supply_changed(struct power_supply *psy)
117 : {
118 : unsigned long flags;
119 :
120 : dev_dbg(&psy->dev, "%s\n", __func__);
121 :
122 0 : spin_lock_irqsave(&psy->changed_lock, flags);
123 0 : psy->changed = true;
124 0 : pm_stay_awake(&psy->dev);
125 0 : spin_unlock_irqrestore(&psy->changed_lock, flags);
126 0 : schedule_work(&psy->changed_work);
127 0 : }
128 : EXPORT_SYMBOL_GPL(power_supply_changed);
129 :
130 : /*
131 : * Notify that power supply was registered after parent finished the probing.
132 : *
133 : * Often power supply is registered from driver's probe function. However
134 : * calling power_supply_changed() directly from power_supply_register()
135 : * would lead to execution of get_property() function provided by the driver
136 : * too early - before the probe ends.
137 : *
138 : * Avoid that by waiting on parent's mutex.
139 : */
140 0 : static void power_supply_deferred_register_work(struct work_struct *work)
141 : {
142 0 : struct power_supply *psy = container_of(work, struct power_supply,
143 : deferred_register_work.work);
144 :
145 0 : if (psy->dev.parent) {
146 0 : while (!mutex_trylock(&psy->dev.parent->mutex)) {
147 0 : if (psy->removing)
148 : return;
149 0 : msleep(10);
150 : }
151 : }
152 :
153 0 : power_supply_changed(psy);
154 :
155 0 : if (psy->dev.parent)
156 0 : mutex_unlock(&psy->dev.parent->mutex);
157 : }
158 :
159 : #ifdef CONFIG_OF
160 : static int __power_supply_populate_supplied_from(struct device *dev,
161 : void *data)
162 : {
163 : struct power_supply *psy = data;
164 : struct power_supply *epsy = dev_get_drvdata(dev);
165 : struct device_node *np;
166 : int i = 0;
167 :
168 : do {
169 : np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170 : if (!np)
171 : break;
172 :
173 : if (np == epsy->of_node) {
174 : dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175 : psy->desc->name, epsy->desc->name);
176 : psy->supplied_from[i-1] = (char *)epsy->desc->name;
177 : psy->num_supplies++;
178 : of_node_put(np);
179 : break;
180 : }
181 : of_node_put(np);
182 : } while (np);
183 :
184 : return 0;
185 : }
186 :
187 : static int power_supply_populate_supplied_from(struct power_supply *psy)
188 : {
189 : int error;
190 :
191 : error = class_for_each_device(power_supply_class, NULL, psy,
192 : __power_supply_populate_supplied_from);
193 :
194 : dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195 :
196 : return error;
197 : }
198 :
199 : static int __power_supply_find_supply_from_node(struct device *dev,
200 : void *data)
201 : {
202 : struct device_node *np = data;
203 : struct power_supply *epsy = dev_get_drvdata(dev);
204 :
205 : /* returning non-zero breaks out of class_for_each_device loop */
206 : if (epsy->of_node == np)
207 : return 1;
208 :
209 : return 0;
210 : }
211 :
212 : static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 : {
214 : int error;
215 :
216 : /*
217 : * class_for_each_device() either returns its own errors or values
218 : * returned by __power_supply_find_supply_from_node().
219 : *
220 : * __power_supply_find_supply_from_node() will return 0 (no match)
221 : * or 1 (match).
222 : *
223 : * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224 : * it returned 0, or error as returned by it.
225 : */
226 : error = class_for_each_device(power_supply_class, NULL, supply_node,
227 : __power_supply_find_supply_from_node);
228 :
229 : return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 : }
231 :
232 : static int power_supply_check_supplies(struct power_supply *psy)
233 : {
234 : struct device_node *np;
235 : int cnt = 0;
236 :
237 : /* If there is already a list honor it */
238 : if (psy->supplied_from && psy->num_supplies > 0)
239 : return 0;
240 :
241 : /* No device node found, nothing to do */
242 : if (!psy->of_node)
243 : return 0;
244 :
245 : do {
246 : int ret;
247 :
248 : np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249 : if (!np)
250 : break;
251 :
252 : ret = power_supply_find_supply_from_node(np);
253 : of_node_put(np);
254 :
255 : if (ret) {
256 : dev_dbg(&psy->dev, "Failed to find supply!\n");
257 : return ret;
258 : }
259 : } while (np);
260 :
261 : /* Missing valid "power-supplies" entries */
262 : if (cnt == 1)
263 : return 0;
264 :
265 : /* All supplies found, allocate char ** array for filling */
266 : psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
267 : GFP_KERNEL);
268 : if (!psy->supplied_from)
269 : return -ENOMEM;
270 :
271 : *psy->supplied_from = devm_kcalloc(&psy->dev,
272 : cnt - 1, sizeof(char *),
273 : GFP_KERNEL);
274 : if (!*psy->supplied_from)
275 : return -ENOMEM;
276 :
277 : return power_supply_populate_supplied_from(psy);
278 : }
279 : #else
280 0 : static int power_supply_check_supplies(struct power_supply *psy)
281 : {
282 : int nval, ret;
283 :
284 0 : if (!psy->dev.parent)
285 : return 0;
286 :
287 0 : nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288 0 : if (nval <= 0)
289 : return 0;
290 :
291 0 : psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292 : sizeof(char *), GFP_KERNEL);
293 0 : if (!psy->supplied_from)
294 : return -ENOMEM;
295 :
296 0 : ret = device_property_read_string_array(psy->dev.parent,
297 : "supplied-from", (const char **)psy->supplied_from, nval);
298 0 : if (ret < 0)
299 : return ret;
300 :
301 0 : psy->num_supplies = nval;
302 :
303 0 : return 0;
304 : }
305 : #endif
306 :
307 : struct psy_am_i_supplied_data {
308 : struct power_supply *psy;
309 : unsigned int count;
310 : };
311 :
312 0 : static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 : {
314 0 : union power_supply_propval ret = {0,};
315 0 : struct power_supply *epsy = dev_get_drvdata(dev);
316 0 : struct psy_am_i_supplied_data *data = _data;
317 :
318 0 : if (__power_supply_is_supplied_by(epsy, data->psy)) {
319 0 : data->count++;
320 0 : if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321 : &ret))
322 0 : return ret.intval;
323 : }
324 :
325 : return 0;
326 : }
327 :
328 0 : int power_supply_am_i_supplied(struct power_supply *psy)
329 : {
330 0 : struct psy_am_i_supplied_data data = { psy, 0 };
331 : int error;
332 :
333 0 : error = class_for_each_device(power_supply_class, NULL, &data,
334 : __power_supply_am_i_supplied);
335 :
336 : dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337 :
338 0 : if (data.count == 0)
339 : return -ENODEV;
340 :
341 0 : return error;
342 : }
343 : EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344 :
345 0 : static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 : {
347 0 : union power_supply_propval ret = {0,};
348 0 : struct power_supply *psy = dev_get_drvdata(dev);
349 0 : unsigned int *count = data;
350 :
351 0 : (*count)++;
352 0 : if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
353 0 : if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
354 : &ret))
355 0 : return ret.intval;
356 :
357 : return 0;
358 : }
359 :
360 0 : int power_supply_is_system_supplied(void)
361 : {
362 : int error;
363 0 : unsigned int count = 0;
364 :
365 0 : error = class_for_each_device(power_supply_class, NULL, &count,
366 : __power_supply_is_system_supplied);
367 :
368 : /*
369 : * If no power class device was found at all, most probably we are
370 : * running on a desktop system, so assume we are on mains power.
371 : */
372 0 : if (count == 0)
373 : return 1;
374 :
375 0 : return error;
376 : }
377 : EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
378 :
379 : struct psy_get_supplier_prop_data {
380 : struct power_supply *psy;
381 : enum power_supply_property psp;
382 : union power_supply_propval *val;
383 : };
384 :
385 0 : static int __power_supply_get_supplier_property(struct device *dev, void *_data)
386 : {
387 0 : struct power_supply *epsy = dev_get_drvdata(dev);
388 0 : struct psy_get_supplier_prop_data *data = _data;
389 :
390 0 : if (__power_supply_is_supplied_by(epsy, data->psy))
391 0 : if (!epsy->desc->get_property(epsy, data->psp, data->val))
392 : return 1; /* Success */
393 :
394 : return 0; /* Continue iterating */
395 : }
396 :
397 0 : int power_supply_get_property_from_supplier(struct power_supply *psy,
398 : enum power_supply_property psp,
399 : union power_supply_propval *val)
400 : {
401 0 : struct psy_get_supplier_prop_data data = {
402 : .psy = psy,
403 : .psp = psp,
404 : .val = val,
405 : };
406 : int ret;
407 :
408 : /*
409 : * This function is not intended for use with a supply with multiple
410 : * suppliers, we simply pick the first supply to report the psp.
411 : */
412 0 : ret = class_for_each_device(power_supply_class, NULL, &data,
413 : __power_supply_get_supplier_property);
414 0 : if (ret < 0)
415 : return ret;
416 0 : if (ret == 0)
417 : return -ENODEV;
418 :
419 0 : return 0;
420 : }
421 : EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
422 :
423 0 : int power_supply_set_battery_charged(struct power_supply *psy)
424 : {
425 0 : if (atomic_read(&psy->use_cnt) >= 0 &&
426 0 : psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
427 0 : psy->desc->set_charged) {
428 0 : psy->desc->set_charged(psy);
429 0 : return 0;
430 : }
431 :
432 : return -EINVAL;
433 : }
434 : EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
435 :
436 0 : static int power_supply_match_device_by_name(struct device *dev, const void *data)
437 : {
438 0 : const char *name = data;
439 0 : struct power_supply *psy = dev_get_drvdata(dev);
440 :
441 0 : return strcmp(psy->desc->name, name) == 0;
442 : }
443 :
444 : /**
445 : * power_supply_get_by_name() - Search for a power supply and returns its ref
446 : * @name: Power supply name to fetch
447 : *
448 : * If power supply was found, it increases reference count for the
449 : * internal power supply's device. The user should power_supply_put()
450 : * after usage.
451 : *
452 : * Return: On success returns a reference to a power supply with
453 : * matching name equals to @name, a NULL otherwise.
454 : */
455 0 : struct power_supply *power_supply_get_by_name(const char *name)
456 : {
457 0 : struct power_supply *psy = NULL;
458 0 : struct device *dev = class_find_device(power_supply_class, NULL, name,
459 : power_supply_match_device_by_name);
460 :
461 0 : if (dev) {
462 0 : psy = dev_get_drvdata(dev);
463 0 : atomic_inc(&psy->use_cnt);
464 : }
465 :
466 0 : return psy;
467 : }
468 : EXPORT_SYMBOL_GPL(power_supply_get_by_name);
469 :
470 : /**
471 : * power_supply_put() - Drop reference obtained with power_supply_get_by_name
472 : * @psy: Reference to put
473 : *
474 : * The reference to power supply should be put before unregistering
475 : * the power supply.
476 : */
477 0 : void power_supply_put(struct power_supply *psy)
478 : {
479 : might_sleep();
480 :
481 0 : atomic_dec(&psy->use_cnt);
482 0 : put_device(&psy->dev);
483 0 : }
484 : EXPORT_SYMBOL_GPL(power_supply_put);
485 :
486 : #ifdef CONFIG_OF
487 : static int power_supply_match_device_node(struct device *dev, const void *data)
488 : {
489 : return dev->parent && dev->parent->of_node == data;
490 : }
491 :
492 : /**
493 : * power_supply_get_by_phandle() - Search for a power supply and returns its ref
494 : * @np: Pointer to device node holding phandle property
495 : * @property: Name of property holding a power supply name
496 : *
497 : * If power supply was found, it increases reference count for the
498 : * internal power supply's device. The user should power_supply_put()
499 : * after usage.
500 : *
501 : * Return: On success returns a reference to a power supply with
502 : * matching name equals to value under @property, NULL or ERR_PTR otherwise.
503 : */
504 : struct power_supply *power_supply_get_by_phandle(struct device_node *np,
505 : const char *property)
506 : {
507 : struct device_node *power_supply_np;
508 : struct power_supply *psy = NULL;
509 : struct device *dev;
510 :
511 : power_supply_np = of_parse_phandle(np, property, 0);
512 : if (!power_supply_np)
513 : return ERR_PTR(-ENODEV);
514 :
515 : dev = class_find_device(power_supply_class, NULL, power_supply_np,
516 : power_supply_match_device_node);
517 :
518 : of_node_put(power_supply_np);
519 :
520 : if (dev) {
521 : psy = dev_get_drvdata(dev);
522 : atomic_inc(&psy->use_cnt);
523 : }
524 :
525 : return psy;
526 : }
527 : EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
528 :
529 : static void devm_power_supply_put(struct device *dev, void *res)
530 : {
531 : struct power_supply **psy = res;
532 :
533 : power_supply_put(*psy);
534 : }
535 :
536 : /**
537 : * devm_power_supply_get_by_phandle() - Resource managed version of
538 : * power_supply_get_by_phandle()
539 : * @dev: Pointer to device holding phandle property
540 : * @property: Name of property holding a power supply phandle
541 : *
542 : * Return: On success returns a reference to a power supply with
543 : * matching name equals to value under @property, NULL or ERR_PTR otherwise.
544 : */
545 : struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
546 : const char *property)
547 : {
548 : struct power_supply **ptr, *psy;
549 :
550 : if (!dev->of_node)
551 : return ERR_PTR(-ENODEV);
552 :
553 : ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
554 : if (!ptr)
555 : return ERR_PTR(-ENOMEM);
556 :
557 : psy = power_supply_get_by_phandle(dev->of_node, property);
558 : if (IS_ERR_OR_NULL(psy)) {
559 : devres_free(ptr);
560 : } else {
561 : *ptr = psy;
562 : devres_add(dev, ptr);
563 : }
564 : return psy;
565 : }
566 : EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
567 : #endif /* CONFIG_OF */
568 :
569 0 : int power_supply_get_battery_info(struct power_supply *psy,
570 : struct power_supply_battery_info **info_out)
571 : {
572 : struct power_supply_resistance_temp_table *resist_table;
573 : struct power_supply_battery_info *info;
574 0 : struct device_node *battery_np = NULL;
575 : struct fwnode_reference_args args;
576 : struct fwnode_handle *fwnode;
577 : const char *value;
578 : int err, len, index;
579 : const __be32 *list;
580 : u32 min_max[2];
581 :
582 0 : if (psy->of_node) {
583 : battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
584 : if (!battery_np)
585 : return -ENODEV;
586 :
587 : fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
588 : } else {
589 0 : err = fwnode_property_get_reference_args(
590 0 : dev_fwnode(psy->dev.parent),
591 : "monitored-battery", NULL, 0, 0, &args);
592 0 : if (err)
593 : return err;
594 :
595 0 : fwnode = args.fwnode;
596 : }
597 :
598 0 : err = fwnode_property_read_string(fwnode, "compatible", &value);
599 0 : if (err)
600 : goto out_put_node;
601 :
602 :
603 : /* Try static batteries first */
604 0 : err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
605 : if (!err)
606 : goto out_ret_pointer;
607 : else if (err == -ENODEV)
608 : /*
609 : * Device does not have a static battery.
610 : * Proceed to look for a simple battery.
611 : */
612 0 : err = 0;
613 :
614 0 : if (strcmp("simple-battery", value)) {
615 : err = -ENODEV;
616 : goto out_put_node;
617 : }
618 :
619 0 : info = devm_kmalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
620 0 : if (!info) {
621 : err = -ENOMEM;
622 : goto out_put_node;
623 : }
624 :
625 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
626 0 : info->energy_full_design_uwh = -EINVAL;
627 0 : info->charge_full_design_uah = -EINVAL;
628 0 : info->voltage_min_design_uv = -EINVAL;
629 0 : info->voltage_max_design_uv = -EINVAL;
630 0 : info->precharge_current_ua = -EINVAL;
631 0 : info->charge_term_current_ua = -EINVAL;
632 0 : info->constant_charge_current_max_ua = -EINVAL;
633 0 : info->constant_charge_voltage_max_uv = -EINVAL;
634 0 : info->tricklecharge_current_ua = -EINVAL;
635 0 : info->precharge_voltage_max_uv = -EINVAL;
636 0 : info->charge_restart_voltage_uv = -EINVAL;
637 0 : info->overvoltage_limit_uv = -EINVAL;
638 0 : info->maintenance_charge = NULL;
639 0 : info->alert_low_temp_charge_current_ua = -EINVAL;
640 0 : info->alert_low_temp_charge_voltage_uv = -EINVAL;
641 0 : info->alert_high_temp_charge_current_ua = -EINVAL;
642 0 : info->alert_high_temp_charge_voltage_uv = -EINVAL;
643 0 : info->temp_ambient_alert_min = INT_MIN;
644 0 : info->temp_ambient_alert_max = INT_MAX;
645 0 : info->temp_alert_min = INT_MIN;
646 0 : info->temp_alert_max = INT_MAX;
647 0 : info->temp_min = INT_MIN;
648 0 : info->temp_max = INT_MAX;
649 0 : info->factory_internal_resistance_uohm = -EINVAL;
650 0 : info->resist_table = NULL;
651 0 : info->bti_resistance_ohm = -EINVAL;
652 0 : info->bti_resistance_tolerance = -EINVAL;
653 :
654 0 : for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
655 0 : info->ocv_table[index] = NULL;
656 0 : info->ocv_temp[index] = -EINVAL;
657 0 : info->ocv_table_size[index] = -EINVAL;
658 : }
659 :
660 : /* The property and field names below must correspond to elements
661 : * in enum power_supply_property. For reasoning, see
662 : * Documentation/power/power_supply_class.rst.
663 : */
664 :
665 0 : if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
666 0 : if (!strcmp("nickel-cadmium", value))
667 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
668 0 : else if (!strcmp("nickel-metal-hydride", value))
669 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
670 0 : else if (!strcmp("lithium-ion", value))
671 : /* Imprecise lithium-ion type */
672 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
673 0 : else if (!strcmp("lithium-ion-polymer", value))
674 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
675 0 : else if (!strcmp("lithium-ion-iron-phosphate", value))
676 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
677 0 : else if (!strcmp("lithium-ion-manganese-oxide", value))
678 0 : info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
679 : else
680 0 : dev_warn(&psy->dev, "%s unknown battery type\n", value);
681 : }
682 :
683 0 : fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
684 0 : &info->energy_full_design_uwh);
685 0 : fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
686 0 : &info->charge_full_design_uah);
687 0 : fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
688 0 : &info->voltage_min_design_uv);
689 0 : fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
690 0 : &info->voltage_max_design_uv);
691 0 : fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
692 0 : &info->tricklecharge_current_ua);
693 0 : fwnode_property_read_u32(fwnode, "precharge-current-microamp",
694 0 : &info->precharge_current_ua);
695 0 : fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
696 0 : &info->precharge_voltage_max_uv);
697 0 : fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
698 0 : &info->charge_term_current_ua);
699 0 : fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
700 0 : &info->charge_restart_voltage_uv);
701 0 : fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
702 0 : &info->overvoltage_limit_uv);
703 0 : fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
704 0 : &info->constant_charge_current_max_ua);
705 0 : fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
706 0 : &info->constant_charge_voltage_max_uv);
707 0 : fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
708 0 : &info->factory_internal_resistance_uohm);
709 :
710 0 : if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
711 : min_max, ARRAY_SIZE(min_max))) {
712 0 : info->temp_ambient_alert_min = min_max[0];
713 0 : info->temp_ambient_alert_max = min_max[1];
714 : }
715 0 : if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
716 : min_max, ARRAY_SIZE(min_max))) {
717 0 : info->temp_alert_min = min_max[0];
718 0 : info->temp_alert_max = min_max[1];
719 : }
720 0 : if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
721 : min_max, ARRAY_SIZE(min_max))) {
722 0 : info->temp_min = min_max[0];
723 0 : info->temp_max = min_max[1];
724 : }
725 :
726 : /*
727 : * The below code uses raw of-data parsing to parse
728 : * /schemas/types.yaml#/definitions/uint32-matrix
729 : * data, so for now this is only support with of.
730 : */
731 : if (!battery_np)
732 : goto out_ret_pointer;
733 :
734 : len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
735 : if (len < 0 && len != -EINVAL) {
736 : err = len;
737 : goto out_put_node;
738 : } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
739 : dev_err(&psy->dev, "Too many temperature values\n");
740 : err = -EINVAL;
741 : goto out_put_node;
742 : } else if (len > 0) {
743 : of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
744 : info->ocv_temp, len);
745 : }
746 :
747 : for (index = 0; index < len; index++) {
748 : struct power_supply_battery_ocv_table *table;
749 : char *propname;
750 : int i, tab_len, size;
751 :
752 : propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
753 : list = of_get_property(battery_np, propname, &size);
754 : if (!list || !size) {
755 : dev_err(&psy->dev, "failed to get %s\n", propname);
756 : kfree(propname);
757 : power_supply_put_battery_info(psy, info);
758 : err = -EINVAL;
759 : goto out_put_node;
760 : }
761 :
762 : kfree(propname);
763 : tab_len = size / (2 * sizeof(__be32));
764 : info->ocv_table_size[index] = tab_len;
765 :
766 : table = info->ocv_table[index] =
767 : devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
768 : if (!info->ocv_table[index]) {
769 : power_supply_put_battery_info(psy, info);
770 : err = -ENOMEM;
771 : goto out_put_node;
772 : }
773 :
774 : for (i = 0; i < tab_len; i++) {
775 : table[i].ocv = be32_to_cpu(*list);
776 : list++;
777 : table[i].capacity = be32_to_cpu(*list);
778 : list++;
779 : }
780 : }
781 :
782 : list = of_get_property(battery_np, "resistance-temp-table", &len);
783 : if (!list || !len)
784 : goto out_ret_pointer;
785 :
786 : info->resist_table_size = len / (2 * sizeof(__be32));
787 : resist_table = info->resist_table = devm_kcalloc(&psy->dev,
788 : info->resist_table_size,
789 : sizeof(*resist_table),
790 : GFP_KERNEL);
791 : if (!info->resist_table) {
792 : power_supply_put_battery_info(psy, info);
793 : err = -ENOMEM;
794 : goto out_put_node;
795 : }
796 :
797 : for (index = 0; index < info->resist_table_size; index++) {
798 : resist_table[index].temp = be32_to_cpu(*list++);
799 : resist_table[index].resistance = be32_to_cpu(*list++);
800 : }
801 :
802 : out_ret_pointer:
803 : /* Finally return the whole thing */
804 0 : *info_out = info;
805 :
806 : out_put_node:
807 0 : fwnode_handle_put(fwnode);
808 0 : of_node_put(battery_np);
809 0 : return err;
810 : }
811 : EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
812 :
813 0 : void power_supply_put_battery_info(struct power_supply *psy,
814 : struct power_supply_battery_info *info)
815 : {
816 : int i;
817 :
818 0 : for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
819 0 : if (info->ocv_table[i])
820 0 : devm_kfree(&psy->dev, info->ocv_table[i]);
821 : }
822 :
823 0 : if (info->resist_table)
824 0 : devm_kfree(&psy->dev, info->resist_table);
825 :
826 0 : devm_kfree(&psy->dev, info);
827 0 : }
828 : EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
829 :
830 : /**
831 : * power_supply_temp2resist_simple() - find the battery internal resistance
832 : * percent from temperature
833 : * @table: Pointer to battery resistance temperature table
834 : * @table_len: The table length
835 : * @temp: Current temperature
836 : *
837 : * This helper function is used to look up battery internal resistance percent
838 : * according to current temperature value from the resistance temperature table,
839 : * and the table must be ordered descending. Then the actual battery internal
840 : * resistance = the ideal battery internal resistance * percent / 100.
841 : *
842 : * Return: the battery internal resistance percent
843 : */
844 0 : int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
845 : int table_len, int temp)
846 : {
847 : int i, high, low;
848 :
849 : /* Break loop at table_len - 1 because that is the highest index */
850 0 : for (i = 0; i < table_len - 1; i++)
851 0 : if (temp > table[i].temp)
852 : break;
853 :
854 : /* The library function will deal with high == low */
855 0 : if ((i == 0) || (i == (table_len - 1)))
856 : high = i;
857 : else
858 0 : high = i - 1;
859 0 : low = i;
860 :
861 0 : return fixp_linear_interpolate(table[low].temp,
862 0 : table[low].resistance,
863 : table[high].temp,
864 0 : table[high].resistance,
865 : temp);
866 : }
867 : EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
868 :
869 : /**
870 : * power_supply_vbat2ri() - find the battery internal resistance
871 : * from the battery voltage
872 : * @info: The battery information container
873 : * @table: Pointer to battery resistance temperature table
874 : * @vbat_uv: The battery voltage in microvolt
875 : * @charging: If we are charging (true) or not (false)
876 : *
877 : * This helper function is used to look up battery internal resistance
878 : * according to current battery voltage. Depending on whether the battery
879 : * is currently charging or not, different resistance will be returned.
880 : *
881 : * Returns the internal resistance in microohm or negative error code.
882 : */
883 0 : int power_supply_vbat2ri(struct power_supply_battery_info *info,
884 : int vbat_uv, bool charging)
885 : {
886 : struct power_supply_vbat_ri_table *vbat2ri;
887 : int table_len;
888 : int i, high, low;
889 :
890 : /*
891 : * If we are charging, and the battery supplies a separate table
892 : * for this state, we use that in order to compensate for the
893 : * charging voltage. Otherwise we use the main table.
894 : */
895 0 : if (charging && info->vbat2ri_charging) {
896 0 : vbat2ri = info->vbat2ri_charging;
897 0 : table_len = info->vbat2ri_charging_size;
898 : } else {
899 0 : vbat2ri = info->vbat2ri_discharging;
900 0 : table_len = info->vbat2ri_discharging_size;
901 : }
902 :
903 : /*
904 : * If no tables are specified, or if we are above the highest voltage in
905 : * the voltage table, just return the factory specified internal resistance.
906 : */
907 0 : if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
908 0 : if (charging && (info->factory_internal_resistance_charging_uohm > 0))
909 : return info->factory_internal_resistance_charging_uohm;
910 : else
911 0 : return info->factory_internal_resistance_uohm;
912 : }
913 :
914 : /* Break loop at table_len - 1 because that is the highest index */
915 0 : for (i = 0; i < table_len - 1; i++)
916 0 : if (vbat_uv > vbat2ri[i].vbat_uv)
917 : break;
918 :
919 : /* The library function will deal with high == low */
920 0 : if ((i == 0) || (i == (table_len - 1)))
921 : high = i;
922 : else
923 0 : high = i - 1;
924 0 : low = i;
925 :
926 0 : return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
927 0 : vbat2ri[low].ri_uohm,
928 : vbat2ri[high].vbat_uv,
929 0 : vbat2ri[high].ri_uohm,
930 : vbat_uv);
931 : }
932 : EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
933 :
934 : struct power_supply_maintenance_charge_table *
935 0 : power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
936 : int index)
937 : {
938 0 : if (index >= info->maintenance_charge_size)
939 : return NULL;
940 0 : return &info->maintenance_charge[index];
941 : }
942 : EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
943 :
944 : /**
945 : * power_supply_ocv2cap_simple() - find the battery capacity
946 : * @table: Pointer to battery OCV lookup table
947 : * @table_len: OCV table length
948 : * @ocv: Current OCV value
949 : *
950 : * This helper function is used to look up battery capacity according to
951 : * current OCV value from one OCV table, and the OCV table must be ordered
952 : * descending.
953 : *
954 : * Return: the battery capacity.
955 : */
956 0 : int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
957 : int table_len, int ocv)
958 : {
959 : int i, high, low;
960 :
961 : /* Break loop at table_len - 1 because that is the highest index */
962 0 : for (i = 0; i < table_len - 1; i++)
963 0 : if (ocv > table[i].ocv)
964 : break;
965 :
966 : /* The library function will deal with high == low */
967 0 : if ((i == 0) || (i == (table_len - 1)))
968 0 : high = i - 1;
969 : else
970 : high = i; /* i.e. i == 0 */
971 0 : low = i;
972 :
973 0 : return fixp_linear_interpolate(table[low].ocv,
974 0 : table[low].capacity,
975 : table[high].ocv,
976 0 : table[high].capacity,
977 : ocv);
978 : }
979 : EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
980 :
981 : struct power_supply_battery_ocv_table *
982 0 : power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
983 : int temp, int *table_len)
984 : {
985 0 : int best_temp_diff = INT_MAX, temp_diff;
986 0 : u8 i, best_index = 0;
987 :
988 0 : if (!info->ocv_table[0])
989 : return NULL;
990 :
991 0 : for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
992 : /* Out of capacity tables */
993 0 : if (!info->ocv_table[i])
994 : break;
995 :
996 0 : temp_diff = abs(info->ocv_temp[i] - temp);
997 :
998 0 : if (temp_diff < best_temp_diff) {
999 0 : best_temp_diff = temp_diff;
1000 0 : best_index = i;
1001 : }
1002 : }
1003 :
1004 0 : *table_len = info->ocv_table_size[best_index];
1005 0 : return info->ocv_table[best_index];
1006 : }
1007 : EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1008 :
1009 0 : int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1010 : int ocv, int temp)
1011 : {
1012 : struct power_supply_battery_ocv_table *table;
1013 : int table_len;
1014 :
1015 0 : table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1016 0 : if (!table)
1017 : return -EINVAL;
1018 :
1019 0 : return power_supply_ocv2cap_simple(table, table_len, ocv);
1020 : }
1021 : EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1022 :
1023 0 : bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1024 : int resistance)
1025 : {
1026 : int low, high;
1027 :
1028 : /* Nothing like this can be checked */
1029 0 : if (info->bti_resistance_ohm <= 0)
1030 : return false;
1031 :
1032 : /* This will be extremely strict and unlikely to work */
1033 0 : if (info->bti_resistance_tolerance <= 0)
1034 0 : return (info->bti_resistance_ohm == resistance);
1035 :
1036 0 : low = info->bti_resistance_ohm -
1037 0 : (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1038 0 : high = info->bti_resistance_ohm +
1039 0 : (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1040 :
1041 0 : return ((resistance >= low) && (resistance <= high));
1042 : }
1043 : EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1044 :
1045 0 : int power_supply_get_property(struct power_supply *psy,
1046 : enum power_supply_property psp,
1047 : union power_supply_propval *val)
1048 : {
1049 0 : if (atomic_read(&psy->use_cnt) <= 0) {
1050 0 : if (!psy->initialized)
1051 : return -EAGAIN;
1052 0 : return -ENODEV;
1053 : }
1054 :
1055 0 : return psy->desc->get_property(psy, psp, val);
1056 : }
1057 : EXPORT_SYMBOL_GPL(power_supply_get_property);
1058 :
1059 0 : int power_supply_set_property(struct power_supply *psy,
1060 : enum power_supply_property psp,
1061 : const union power_supply_propval *val)
1062 : {
1063 0 : if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1064 : return -ENODEV;
1065 :
1066 0 : return psy->desc->set_property(psy, psp, val);
1067 : }
1068 : EXPORT_SYMBOL_GPL(power_supply_set_property);
1069 :
1070 0 : int power_supply_property_is_writeable(struct power_supply *psy,
1071 : enum power_supply_property psp)
1072 : {
1073 0 : if (atomic_read(&psy->use_cnt) <= 0 ||
1074 0 : !psy->desc->property_is_writeable)
1075 : return -ENODEV;
1076 :
1077 0 : return psy->desc->property_is_writeable(psy, psp);
1078 : }
1079 : EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1080 :
1081 0 : void power_supply_external_power_changed(struct power_supply *psy)
1082 : {
1083 0 : if (atomic_read(&psy->use_cnt) <= 0 ||
1084 0 : !psy->desc->external_power_changed)
1085 : return;
1086 :
1087 0 : psy->desc->external_power_changed(psy);
1088 : }
1089 : EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1090 :
1091 0 : int power_supply_powers(struct power_supply *psy, struct device *dev)
1092 : {
1093 0 : return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1094 : }
1095 : EXPORT_SYMBOL_GPL(power_supply_powers);
1096 :
1097 0 : static void power_supply_dev_release(struct device *dev)
1098 : {
1099 0 : struct power_supply *psy = to_power_supply(dev);
1100 : dev_dbg(dev, "%s\n", __func__);
1101 0 : kfree(psy);
1102 0 : }
1103 :
1104 0 : int power_supply_reg_notifier(struct notifier_block *nb)
1105 : {
1106 0 : return atomic_notifier_chain_register(&power_supply_notifier, nb);
1107 : }
1108 : EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1109 :
1110 0 : void power_supply_unreg_notifier(struct notifier_block *nb)
1111 : {
1112 0 : atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1113 0 : }
1114 : EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1115 :
1116 : static bool psy_has_property(const struct power_supply_desc *psy_desc,
1117 : enum power_supply_property psp)
1118 : {
1119 : bool found = false;
1120 : int i;
1121 :
1122 0 : for (i = 0; i < psy_desc->num_properties; i++) {
1123 0 : if (psy_desc->properties[i] == psp) {
1124 : found = true;
1125 : break;
1126 : }
1127 : }
1128 :
1129 : return found;
1130 : }
1131 :
1132 : #ifdef CONFIG_THERMAL
1133 : static int power_supply_read_temp(struct thermal_zone_device *tzd,
1134 : int *temp)
1135 : {
1136 : struct power_supply *psy;
1137 : union power_supply_propval val;
1138 : int ret;
1139 :
1140 : WARN_ON(tzd == NULL);
1141 : psy = tzd->devdata;
1142 : ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1143 : if (ret)
1144 : return ret;
1145 :
1146 : /* Convert tenths of degree Celsius to milli degree Celsius. */
1147 : *temp = val.intval * 100;
1148 :
1149 : return ret;
1150 : }
1151 :
1152 : static struct thermal_zone_device_ops psy_tzd_ops = {
1153 : .get_temp = power_supply_read_temp,
1154 : };
1155 :
1156 : static int psy_register_thermal(struct power_supply *psy)
1157 : {
1158 : int ret;
1159 :
1160 : if (psy->desc->no_thermal)
1161 : return 0;
1162 :
1163 : /* Register battery zone device psy reports temperature */
1164 : if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1165 : psy->tzd = thermal_zone_device_register(psy->desc->name,
1166 : 0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
1167 : if (IS_ERR(psy->tzd))
1168 : return PTR_ERR(psy->tzd);
1169 : ret = thermal_zone_device_enable(psy->tzd);
1170 : if (ret)
1171 : thermal_zone_device_unregister(psy->tzd);
1172 : return ret;
1173 : }
1174 :
1175 : return 0;
1176 : }
1177 :
1178 : static void psy_unregister_thermal(struct power_supply *psy)
1179 : {
1180 : if (IS_ERR_OR_NULL(psy->tzd))
1181 : return;
1182 : thermal_zone_device_unregister(psy->tzd);
1183 : }
1184 :
1185 : /* thermal cooling device callbacks */
1186 : static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1187 : unsigned long *state)
1188 : {
1189 : struct power_supply *psy;
1190 : union power_supply_propval val;
1191 : int ret;
1192 :
1193 : psy = tcd->devdata;
1194 : ret = power_supply_get_property(psy,
1195 : POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1196 : if (ret)
1197 : return ret;
1198 :
1199 : *state = val.intval;
1200 :
1201 : return ret;
1202 : }
1203 :
1204 : static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1205 : unsigned long *state)
1206 : {
1207 : struct power_supply *psy;
1208 : union power_supply_propval val;
1209 : int ret;
1210 :
1211 : psy = tcd->devdata;
1212 : ret = power_supply_get_property(psy,
1213 : POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1214 : if (ret)
1215 : return ret;
1216 :
1217 : *state = val.intval;
1218 :
1219 : return ret;
1220 : }
1221 :
1222 : static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1223 : unsigned long state)
1224 : {
1225 : struct power_supply *psy;
1226 : union power_supply_propval val;
1227 : int ret;
1228 :
1229 : psy = tcd->devdata;
1230 : val.intval = state;
1231 : ret = psy->desc->set_property(psy,
1232 : POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1233 :
1234 : return ret;
1235 : }
1236 :
1237 : static const struct thermal_cooling_device_ops psy_tcd_ops = {
1238 : .get_max_state = ps_get_max_charge_cntl_limit,
1239 : .get_cur_state = ps_get_cur_charge_cntl_limit,
1240 : .set_cur_state = ps_set_cur_charge_cntl_limit,
1241 : };
1242 :
1243 : static int psy_register_cooler(struct power_supply *psy)
1244 : {
1245 : /* Register for cooling device if psy can control charging */
1246 : if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT)) {
1247 : psy->tcd = thermal_cooling_device_register(
1248 : (char *)psy->desc->name,
1249 : psy, &psy_tcd_ops);
1250 : return PTR_ERR_OR_ZERO(psy->tcd);
1251 : }
1252 :
1253 : return 0;
1254 : }
1255 :
1256 : static void psy_unregister_cooler(struct power_supply *psy)
1257 : {
1258 : if (IS_ERR_OR_NULL(psy->tcd))
1259 : return;
1260 : thermal_cooling_device_unregister(psy->tcd);
1261 : }
1262 : #else
1263 : static int psy_register_thermal(struct power_supply *psy)
1264 : {
1265 : return 0;
1266 : }
1267 :
1268 : static void psy_unregister_thermal(struct power_supply *psy)
1269 : {
1270 : }
1271 :
1272 : static int psy_register_cooler(struct power_supply *psy)
1273 : {
1274 : return 0;
1275 : }
1276 :
1277 : static void psy_unregister_cooler(struct power_supply *psy)
1278 : {
1279 : }
1280 : #endif
1281 :
1282 : static struct power_supply *__must_check
1283 0 : __power_supply_register(struct device *parent,
1284 : const struct power_supply_desc *desc,
1285 : const struct power_supply_config *cfg,
1286 : bool ws)
1287 : {
1288 : struct device *dev;
1289 : struct power_supply *psy;
1290 : int rc;
1291 :
1292 0 : if (!parent)
1293 0 : pr_warn("%s: Expected proper parent device for '%s'\n",
1294 : __func__, desc->name);
1295 :
1296 0 : if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1297 : return ERR_PTR(-EINVAL);
1298 :
1299 0 : if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1300 0 : (!desc->usb_types || !desc->num_usb_types))
1301 : return ERR_PTR(-EINVAL);
1302 :
1303 0 : psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1304 0 : if (!psy)
1305 : return ERR_PTR(-ENOMEM);
1306 :
1307 0 : dev = &psy->dev;
1308 :
1309 0 : device_initialize(dev);
1310 :
1311 0 : dev->class = power_supply_class;
1312 0 : dev->type = &power_supply_dev_type;
1313 0 : dev->parent = parent;
1314 0 : dev->release = power_supply_dev_release;
1315 0 : dev_set_drvdata(dev, psy);
1316 0 : psy->desc = desc;
1317 0 : if (cfg) {
1318 0 : dev->groups = cfg->attr_grp;
1319 0 : psy->drv_data = cfg->drv_data;
1320 0 : psy->of_node =
1321 0 : cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1322 0 : psy->supplied_to = cfg->supplied_to;
1323 0 : psy->num_supplicants = cfg->num_supplicants;
1324 : }
1325 :
1326 0 : rc = dev_set_name(dev, "%s", desc->name);
1327 0 : if (rc)
1328 : goto dev_set_name_failed;
1329 :
1330 0 : INIT_WORK(&psy->changed_work, power_supply_changed_work);
1331 0 : INIT_DELAYED_WORK(&psy->deferred_register_work,
1332 : power_supply_deferred_register_work);
1333 :
1334 0 : rc = power_supply_check_supplies(psy);
1335 0 : if (rc) {
1336 : dev_dbg(dev, "Not all required supplies found, defer probe\n");
1337 : goto check_supplies_failed;
1338 : }
1339 :
1340 0 : spin_lock_init(&psy->changed_lock);
1341 0 : rc = device_add(dev);
1342 0 : if (rc)
1343 : goto device_add_failed;
1344 :
1345 0 : rc = device_init_wakeup(dev, ws);
1346 0 : if (rc)
1347 : goto wakeup_init_failed;
1348 :
1349 0 : rc = psy_register_thermal(psy);
1350 : if (rc)
1351 : goto register_thermal_failed;
1352 :
1353 0 : rc = psy_register_cooler(psy);
1354 : if (rc)
1355 : goto register_cooler_failed;
1356 :
1357 0 : rc = power_supply_create_triggers(psy);
1358 : if (rc)
1359 : goto create_triggers_failed;
1360 :
1361 0 : rc = power_supply_add_hwmon_sysfs(psy);
1362 0 : if (rc)
1363 : goto add_hwmon_sysfs_failed;
1364 :
1365 : /*
1366 : * Update use_cnt after any uevents (most notably from device_add()).
1367 : * We are here still during driver's probe but
1368 : * the power_supply_uevent() calls back driver's get_property
1369 : * method so:
1370 : * 1. Driver did not assigned the returned struct power_supply,
1371 : * 2. Driver could not finish initialization (anything in its probe
1372 : * after calling power_supply_register()).
1373 : */
1374 0 : atomic_inc(&psy->use_cnt);
1375 0 : psy->initialized = true;
1376 :
1377 0 : queue_delayed_work(system_power_efficient_wq,
1378 : &psy->deferred_register_work,
1379 : POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1380 :
1381 0 : return psy;
1382 :
1383 : add_hwmon_sysfs_failed:
1384 : power_supply_remove_triggers(psy);
1385 : create_triggers_failed:
1386 0 : psy_unregister_cooler(psy);
1387 : register_cooler_failed:
1388 0 : psy_unregister_thermal(psy);
1389 : register_thermal_failed:
1390 0 : device_del(dev);
1391 : wakeup_init_failed:
1392 : device_add_failed:
1393 : check_supplies_failed:
1394 : dev_set_name_failed:
1395 0 : put_device(dev);
1396 0 : return ERR_PTR(rc);
1397 : }
1398 :
1399 : /**
1400 : * power_supply_register() - Register new power supply
1401 : * @parent: Device to be a parent of power supply's device, usually
1402 : * the device which probe function calls this
1403 : * @desc: Description of power supply, must be valid through whole
1404 : * lifetime of this power supply
1405 : * @cfg: Run-time specific configuration accessed during registering,
1406 : * may be NULL
1407 : *
1408 : * Return: A pointer to newly allocated power_supply on success
1409 : * or ERR_PTR otherwise.
1410 : * Use power_supply_unregister() on returned power_supply pointer to release
1411 : * resources.
1412 : */
1413 0 : struct power_supply *__must_check power_supply_register(struct device *parent,
1414 : const struct power_supply_desc *desc,
1415 : const struct power_supply_config *cfg)
1416 : {
1417 0 : return __power_supply_register(parent, desc, cfg, true);
1418 : }
1419 : EXPORT_SYMBOL_GPL(power_supply_register);
1420 :
1421 : /**
1422 : * power_supply_register_no_ws() - Register new non-waking-source power supply
1423 : * @parent: Device to be a parent of power supply's device, usually
1424 : * the device which probe function calls this
1425 : * @desc: Description of power supply, must be valid through whole
1426 : * lifetime of this power supply
1427 : * @cfg: Run-time specific configuration accessed during registering,
1428 : * may be NULL
1429 : *
1430 : * Return: A pointer to newly allocated power_supply on success
1431 : * or ERR_PTR otherwise.
1432 : * Use power_supply_unregister() on returned power_supply pointer to release
1433 : * resources.
1434 : */
1435 : struct power_supply *__must_check
1436 0 : power_supply_register_no_ws(struct device *parent,
1437 : const struct power_supply_desc *desc,
1438 : const struct power_supply_config *cfg)
1439 : {
1440 0 : return __power_supply_register(parent, desc, cfg, false);
1441 : }
1442 : EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1443 :
1444 0 : static void devm_power_supply_release(struct device *dev, void *res)
1445 : {
1446 0 : struct power_supply **psy = res;
1447 :
1448 0 : power_supply_unregister(*psy);
1449 0 : }
1450 :
1451 : /**
1452 : * devm_power_supply_register() - Register managed power supply
1453 : * @parent: Device to be a parent of power supply's device, usually
1454 : * the device which probe function calls this
1455 : * @desc: Description of power supply, must be valid through whole
1456 : * lifetime of this power supply
1457 : * @cfg: Run-time specific configuration accessed during registering,
1458 : * may be NULL
1459 : *
1460 : * Return: A pointer to newly allocated power_supply on success
1461 : * or ERR_PTR otherwise.
1462 : * The returned power_supply pointer will be automatically unregistered
1463 : * on driver detach.
1464 : */
1465 : struct power_supply *__must_check
1466 0 : devm_power_supply_register(struct device *parent,
1467 : const struct power_supply_desc *desc,
1468 : const struct power_supply_config *cfg)
1469 : {
1470 : struct power_supply **ptr, *psy;
1471 :
1472 0 : ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1473 :
1474 0 : if (!ptr)
1475 : return ERR_PTR(-ENOMEM);
1476 0 : psy = __power_supply_register(parent, desc, cfg, true);
1477 0 : if (IS_ERR(psy)) {
1478 0 : devres_free(ptr);
1479 : } else {
1480 0 : *ptr = psy;
1481 0 : devres_add(parent, ptr);
1482 : }
1483 : return psy;
1484 : }
1485 : EXPORT_SYMBOL_GPL(devm_power_supply_register);
1486 :
1487 : /**
1488 : * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1489 : * @parent: Device to be a parent of power supply's device, usually
1490 : * the device which probe function calls this
1491 : * @desc: Description of power supply, must be valid through whole
1492 : * lifetime of this power supply
1493 : * @cfg: Run-time specific configuration accessed during registering,
1494 : * may be NULL
1495 : *
1496 : * Return: A pointer to newly allocated power_supply on success
1497 : * or ERR_PTR otherwise.
1498 : * The returned power_supply pointer will be automatically unregistered
1499 : * on driver detach.
1500 : */
1501 : struct power_supply *__must_check
1502 0 : devm_power_supply_register_no_ws(struct device *parent,
1503 : const struct power_supply_desc *desc,
1504 : const struct power_supply_config *cfg)
1505 : {
1506 : struct power_supply **ptr, *psy;
1507 :
1508 0 : ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1509 :
1510 0 : if (!ptr)
1511 : return ERR_PTR(-ENOMEM);
1512 0 : psy = __power_supply_register(parent, desc, cfg, false);
1513 0 : if (IS_ERR(psy)) {
1514 0 : devres_free(ptr);
1515 : } else {
1516 0 : *ptr = psy;
1517 0 : devres_add(parent, ptr);
1518 : }
1519 : return psy;
1520 : }
1521 : EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1522 :
1523 : /**
1524 : * power_supply_unregister() - Remove this power supply from system
1525 : * @psy: Pointer to power supply to unregister
1526 : *
1527 : * Remove this power supply from the system. The resources of power supply
1528 : * will be freed here or on last power_supply_put() call.
1529 : */
1530 0 : void power_supply_unregister(struct power_supply *psy)
1531 : {
1532 0 : WARN_ON(atomic_dec_return(&psy->use_cnt));
1533 0 : psy->removing = true;
1534 0 : cancel_work_sync(&psy->changed_work);
1535 0 : cancel_delayed_work_sync(&psy->deferred_register_work);
1536 0 : sysfs_remove_link(&psy->dev.kobj, "powers");
1537 0 : power_supply_remove_hwmon_sysfs(psy);
1538 0 : power_supply_remove_triggers(psy);
1539 0 : psy_unregister_cooler(psy);
1540 0 : psy_unregister_thermal(psy);
1541 0 : device_init_wakeup(&psy->dev, false);
1542 0 : device_unregister(&psy->dev);
1543 0 : }
1544 : EXPORT_SYMBOL_GPL(power_supply_unregister);
1545 :
1546 0 : void *power_supply_get_drvdata(struct power_supply *psy)
1547 : {
1548 0 : return psy->drv_data;
1549 : }
1550 : EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1551 :
1552 1 : static int __init power_supply_class_init(void)
1553 : {
1554 1 : power_supply_class = class_create(THIS_MODULE, "power_supply");
1555 :
1556 2 : if (IS_ERR(power_supply_class))
1557 0 : return PTR_ERR(power_supply_class);
1558 :
1559 1 : power_supply_class->dev_uevent = power_supply_uevent;
1560 1 : power_supply_init_attrs(&power_supply_dev_type);
1561 :
1562 1 : return 0;
1563 : }
1564 :
1565 0 : static void __exit power_supply_class_exit(void)
1566 : {
1567 0 : class_destroy(power_supply_class);
1568 0 : }
1569 :
1570 : subsys_initcall(power_supply_class_init);
1571 : module_exit(power_supply_class_exit);
1572 :
1573 : MODULE_DESCRIPTION("Universal power supply monitor class");
1574 : MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1575 : "Szabolcs Gyurko, "
1576 : "Anton Vorontsov <cbou@mail.ru>");
1577 : MODULE_LICENSE("GPL");
|