Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /* Virtio ring implementation.
3 : *
4 : * Copyright 2007 Rusty Russell IBM Corporation
5 : */
6 : #include <linux/virtio.h>
7 : #include <linux/virtio_ring.h>
8 : #include <linux/virtio_config.h>
9 : #include <linux/device.h>
10 : #include <linux/slab.h>
11 : #include <linux/module.h>
12 : #include <linux/hrtimer.h>
13 : #include <linux/dma-mapping.h>
14 : #include <linux/spinlock.h>
15 : #include <xen/xen.h>
16 :
17 : #ifdef DEBUG
18 : /* For development, we want to crash whenever the ring is screwed. */
19 : #define BAD_RING(_vq, fmt, args...) \
20 : do { \
21 : dev_err(&(_vq)->vq.vdev->dev, \
22 : "%s:"fmt, (_vq)->vq.name, ##args); \
23 : BUG(); \
24 : } while (0)
25 : /* Caller is supposed to guarantee no reentry. */
26 : #define START_USE(_vq) \
27 : do { \
28 : if ((_vq)->in_use) \
29 : panic("%s:in_use = %i\n", \
30 : (_vq)->vq.name, (_vq)->in_use); \
31 : (_vq)->in_use = __LINE__; \
32 : } while (0)
33 : #define END_USE(_vq) \
34 : do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
35 : #define LAST_ADD_TIME_UPDATE(_vq) \
36 : do { \
37 : ktime_t now = ktime_get(); \
38 : \
39 : /* No kick or get, with .1 second between? Warn. */ \
40 : if ((_vq)->last_add_time_valid) \
41 : WARN_ON(ktime_to_ms(ktime_sub(now, \
42 : (_vq)->last_add_time)) > 100); \
43 : (_vq)->last_add_time = now; \
44 : (_vq)->last_add_time_valid = true; \
45 : } while (0)
46 : #define LAST_ADD_TIME_CHECK(_vq) \
47 : do { \
48 : if ((_vq)->last_add_time_valid) { \
49 : WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
50 : (_vq)->last_add_time)) > 100); \
51 : } \
52 : } while (0)
53 : #define LAST_ADD_TIME_INVALID(_vq) \
54 : ((_vq)->last_add_time_valid = false)
55 : #else
56 : #define BAD_RING(_vq, fmt, args...) \
57 : do { \
58 : dev_err(&_vq->vq.vdev->dev, \
59 : "%s:"fmt, (_vq)->vq.name, ##args); \
60 : (_vq)->broken = true; \
61 : } while (0)
62 : #define START_USE(vq)
63 : #define END_USE(vq)
64 : #define LAST_ADD_TIME_UPDATE(vq)
65 : #define LAST_ADD_TIME_CHECK(vq)
66 : #define LAST_ADD_TIME_INVALID(vq)
67 : #endif
68 :
69 : struct vring_desc_state_split {
70 : void *data; /* Data for callback. */
71 : struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
72 : };
73 :
74 : struct vring_desc_state_packed {
75 : void *data; /* Data for callback. */
76 : struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
77 : u16 num; /* Descriptor list length. */
78 : u16 last; /* The last desc state in a list. */
79 : };
80 :
81 : struct vring_desc_extra {
82 : dma_addr_t addr; /* Descriptor DMA addr. */
83 : u32 len; /* Descriptor length. */
84 : u16 flags; /* Descriptor flags. */
85 : u16 next; /* The next desc state in a list. */
86 : };
87 :
88 : struct vring_virtqueue {
89 : struct virtqueue vq;
90 :
91 : /* Is this a packed ring? */
92 : bool packed_ring;
93 :
94 : /* Is DMA API used? */
95 : bool use_dma_api;
96 :
97 : /* Can we use weak barriers? */
98 : bool weak_barriers;
99 :
100 : /* Other side has made a mess, don't try any more. */
101 : bool broken;
102 :
103 : /* Host supports indirect buffers */
104 : bool indirect;
105 :
106 : /* Host publishes avail event idx */
107 : bool event;
108 :
109 : /* Head of free buffer list. */
110 : unsigned int free_head;
111 : /* Number we've added since last sync. */
112 : unsigned int num_added;
113 :
114 : /* Last used index we've seen. */
115 : u16 last_used_idx;
116 :
117 : /* Hint for event idx: already triggered no need to disable. */
118 : bool event_triggered;
119 :
120 : union {
121 : /* Available for split ring */
122 : struct {
123 : /* Actual memory layout for this queue. */
124 : struct vring vring;
125 :
126 : /* Last written value to avail->flags */
127 : u16 avail_flags_shadow;
128 :
129 : /*
130 : * Last written value to avail->idx in
131 : * guest byte order.
132 : */
133 : u16 avail_idx_shadow;
134 :
135 : /* Per-descriptor state. */
136 : struct vring_desc_state_split *desc_state;
137 : struct vring_desc_extra *desc_extra;
138 :
139 : /* DMA address and size information */
140 : dma_addr_t queue_dma_addr;
141 : size_t queue_size_in_bytes;
142 : } split;
143 :
144 : /* Available for packed ring */
145 : struct {
146 : /* Actual memory layout for this queue. */
147 : struct {
148 : unsigned int num;
149 : struct vring_packed_desc *desc;
150 : struct vring_packed_desc_event *driver;
151 : struct vring_packed_desc_event *device;
152 : } vring;
153 :
154 : /* Driver ring wrap counter. */
155 : bool avail_wrap_counter;
156 :
157 : /* Device ring wrap counter. */
158 : bool used_wrap_counter;
159 :
160 : /* Avail used flags. */
161 : u16 avail_used_flags;
162 :
163 : /* Index of the next avail descriptor. */
164 : u16 next_avail_idx;
165 :
166 : /*
167 : * Last written value to driver->flags in
168 : * guest byte order.
169 : */
170 : u16 event_flags_shadow;
171 :
172 : /* Per-descriptor state. */
173 : struct vring_desc_state_packed *desc_state;
174 : struct vring_desc_extra *desc_extra;
175 :
176 : /* DMA address and size information */
177 : dma_addr_t ring_dma_addr;
178 : dma_addr_t driver_event_dma_addr;
179 : dma_addr_t device_event_dma_addr;
180 : size_t ring_size_in_bytes;
181 : size_t event_size_in_bytes;
182 : } packed;
183 : };
184 :
185 : /* How to notify other side. FIXME: commonalize hcalls! */
186 : bool (*notify)(struct virtqueue *vq);
187 :
188 : /* DMA, allocation, and size information */
189 : bool we_own_ring;
190 :
191 : #ifdef DEBUG
192 : /* They're supposed to lock for us. */
193 : unsigned int in_use;
194 :
195 : /* Figure out if their kicks are too delayed. */
196 : bool last_add_time_valid;
197 : ktime_t last_add_time;
198 : #endif
199 : };
200 :
201 :
202 : /*
203 : * Helpers.
204 : */
205 :
206 : #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
207 :
208 : static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
209 : unsigned int total_sg)
210 : {
211 0 : struct vring_virtqueue *vq = to_vvq(_vq);
212 :
213 : /*
214 : * If the host supports indirect descriptor tables, and we have multiple
215 : * buffers, then go indirect. FIXME: tune this threshold
216 : */
217 0 : return (vq->indirect && total_sg > 1 && vq->vq.num_free);
218 : }
219 :
220 : /*
221 : * Modern virtio devices have feature bits to specify whether they need a
222 : * quirk and bypass the IOMMU. If not there, just use the DMA API.
223 : *
224 : * If there, the interaction between virtio and DMA API is messy.
225 : *
226 : * On most systems with virtio, physical addresses match bus addresses,
227 : * and it doesn't particularly matter whether we use the DMA API.
228 : *
229 : * On some systems, including Xen and any system with a physical device
230 : * that speaks virtio behind a physical IOMMU, we must use the DMA API
231 : * for virtio DMA to work at all.
232 : *
233 : * On other systems, including SPARC and PPC64, virtio-pci devices are
234 : * enumerated as though they are behind an IOMMU, but the virtio host
235 : * ignores the IOMMU, so we must either pretend that the IOMMU isn't
236 : * there or somehow map everything as the identity.
237 : *
238 : * For the time being, we preserve historic behavior and bypass the DMA
239 : * API.
240 : *
241 : * TODO: install a per-device DMA ops structure that does the right thing
242 : * taking into account all the above quirks, and use the DMA API
243 : * unconditionally on data path.
244 : */
245 :
246 : static bool vring_use_dma_api(struct virtio_device *vdev)
247 : {
248 0 : if (!virtio_has_dma_quirk(vdev))
249 : return true;
250 :
251 : /* Otherwise, we are left to guess. */
252 : /*
253 : * In theory, it's possible to have a buggy QEMU-supposed
254 : * emulated Q35 IOMMU and Xen enabled at the same time. On
255 : * such a configuration, virtio has never worked and will
256 : * not work without an even larger kludge. Instead, enable
257 : * the DMA API if we're a Xen guest, which at least allows
258 : * all of the sensible Xen configurations to work correctly.
259 : */
260 : if (xen_domain())
261 : return true;
262 :
263 : return false;
264 : }
265 :
266 0 : size_t virtio_max_dma_size(struct virtio_device *vdev)
267 : {
268 0 : size_t max_segment_size = SIZE_MAX;
269 :
270 0 : if (vring_use_dma_api(vdev))
271 0 : max_segment_size = dma_max_mapping_size(vdev->dev.parent);
272 :
273 0 : return max_segment_size;
274 : }
275 : EXPORT_SYMBOL_GPL(virtio_max_dma_size);
276 :
277 0 : static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
278 : dma_addr_t *dma_handle, gfp_t flag)
279 : {
280 0 : if (vring_use_dma_api(vdev)) {
281 0 : return dma_alloc_coherent(vdev->dev.parent, size,
282 : dma_handle, flag);
283 : } else {
284 0 : void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
285 :
286 0 : if (queue) {
287 0 : phys_addr_t phys_addr = virt_to_phys(queue);
288 0 : *dma_handle = (dma_addr_t)phys_addr;
289 :
290 : /*
291 : * Sanity check: make sure we dind't truncate
292 : * the address. The only arches I can find that
293 : * have 64-bit phys_addr_t but 32-bit dma_addr_t
294 : * are certain non-highmem MIPS and x86
295 : * configurations, but these configurations
296 : * should never allocate physical pages above 32
297 : * bits, so this is fine. Just in case, throw a
298 : * warning and abort if we end up with an
299 : * unrepresentable address.
300 : */
301 0 : if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
302 : free_pages_exact(queue, PAGE_ALIGN(size));
303 : return NULL;
304 : }
305 : }
306 : return queue;
307 : }
308 : }
309 :
310 0 : static void vring_free_queue(struct virtio_device *vdev, size_t size,
311 : void *queue, dma_addr_t dma_handle)
312 : {
313 0 : if (vring_use_dma_api(vdev))
314 0 : dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
315 : else
316 0 : free_pages_exact(queue, PAGE_ALIGN(size));
317 0 : }
318 :
319 : /*
320 : * The DMA ops on various arches are rather gnarly right now, and
321 : * making all of the arch DMA ops work on the vring device itself
322 : * is a mess. For now, we use the parent device for DMA ops.
323 : */
324 : static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
325 : {
326 0 : return vq->vq.vdev->dev.parent;
327 : }
328 :
329 : /* Map one sg entry. */
330 0 : static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
331 : struct scatterlist *sg,
332 : enum dma_data_direction direction)
333 : {
334 0 : if (!vq->use_dma_api)
335 0 : return (dma_addr_t)sg_phys(sg);
336 :
337 : /*
338 : * We can't use dma_map_sg, because we don't use scatterlists in
339 : * the way it expects (we don't guarantee that the scatterlist
340 : * will exist for the lifetime of the mapping).
341 : */
342 0 : return dma_map_page(vring_dma_dev(vq),
343 : sg_page(sg), sg->offset, sg->length,
344 : direction);
345 : }
346 :
347 : static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
348 : void *cpu_addr, size_t size,
349 : enum dma_data_direction direction)
350 : {
351 0 : if (!vq->use_dma_api)
352 0 : return (dma_addr_t)virt_to_phys(cpu_addr);
353 :
354 0 : return dma_map_single(vring_dma_dev(vq),
355 : cpu_addr, size, direction);
356 : }
357 :
358 : static int vring_mapping_error(const struct vring_virtqueue *vq,
359 : dma_addr_t addr)
360 : {
361 0 : if (!vq->use_dma_api)
362 : return 0;
363 :
364 0 : return dma_mapping_error(vring_dma_dev(vq), addr);
365 : }
366 :
367 :
368 : /*
369 : * Split ring specific functions - *_split().
370 : */
371 :
372 0 : static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
373 : struct vring_desc *desc)
374 : {
375 : u16 flags;
376 :
377 0 : if (!vq->use_dma_api)
378 : return;
379 :
380 0 : flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
381 :
382 0 : dma_unmap_page(vring_dma_dev(vq),
383 : virtio64_to_cpu(vq->vq.vdev, desc->addr),
384 : virtio32_to_cpu(vq->vq.vdev, desc->len),
385 : (flags & VRING_DESC_F_WRITE) ?
386 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
387 : }
388 :
389 0 : static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
390 : unsigned int i)
391 : {
392 0 : struct vring_desc_extra *extra = vq->split.desc_extra;
393 : u16 flags;
394 :
395 0 : if (!vq->use_dma_api)
396 : goto out;
397 :
398 0 : flags = extra[i].flags;
399 :
400 0 : if (flags & VRING_DESC_F_INDIRECT) {
401 0 : dma_unmap_single(vring_dma_dev(vq),
402 : extra[i].addr,
403 : extra[i].len,
404 : (flags & VRING_DESC_F_WRITE) ?
405 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
406 : } else {
407 0 : dma_unmap_page(vring_dma_dev(vq),
408 : extra[i].addr,
409 : extra[i].len,
410 : (flags & VRING_DESC_F_WRITE) ?
411 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
412 : }
413 :
414 : out:
415 0 : return extra[i].next;
416 : }
417 :
418 0 : static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
419 : unsigned int total_sg,
420 : gfp_t gfp)
421 : {
422 : struct vring_desc *desc;
423 : unsigned int i;
424 :
425 : /*
426 : * We require lowmem mappings for the descriptors because
427 : * otherwise virt_to_phys will give us bogus addresses in the
428 : * virtqueue.
429 : */
430 0 : gfp &= ~__GFP_HIGHMEM;
431 :
432 0 : desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
433 0 : if (!desc)
434 : return NULL;
435 :
436 0 : for (i = 0; i < total_sg; i++)
437 0 : desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
438 : return desc;
439 : }
440 :
441 0 : static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
442 : struct vring_desc *desc,
443 : unsigned int i,
444 : dma_addr_t addr,
445 : unsigned int len,
446 : u16 flags,
447 : bool indirect)
448 : {
449 0 : struct vring_virtqueue *vring = to_vvq(vq);
450 0 : struct vring_desc_extra *extra = vring->split.desc_extra;
451 : u16 next;
452 :
453 0 : desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
454 0 : desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
455 0 : desc[i].len = cpu_to_virtio32(vq->vdev, len);
456 :
457 0 : if (!indirect) {
458 0 : next = extra[i].next;
459 0 : desc[i].next = cpu_to_virtio16(vq->vdev, next);
460 :
461 0 : extra[i].addr = addr;
462 0 : extra[i].len = len;
463 0 : extra[i].flags = flags;
464 : } else
465 0 : next = virtio16_to_cpu(vq->vdev, desc[i].next);
466 :
467 0 : return next;
468 : }
469 :
470 0 : static inline int virtqueue_add_split(struct virtqueue *_vq,
471 : struct scatterlist *sgs[],
472 : unsigned int total_sg,
473 : unsigned int out_sgs,
474 : unsigned int in_sgs,
475 : void *data,
476 : void *ctx,
477 : gfp_t gfp)
478 : {
479 0 : struct vring_virtqueue *vq = to_vvq(_vq);
480 : struct scatterlist *sg;
481 : struct vring_desc *desc;
482 : unsigned int i, n, avail, descs_used, prev, err_idx;
483 : int head;
484 : bool indirect;
485 :
486 : START_USE(vq);
487 :
488 0 : BUG_ON(data == NULL);
489 0 : BUG_ON(ctx && vq->indirect);
490 :
491 0 : if (unlikely(vq->broken)) {
492 : END_USE(vq);
493 : return -EIO;
494 : }
495 :
496 : LAST_ADD_TIME_UPDATE(vq);
497 :
498 0 : BUG_ON(total_sg == 0);
499 :
500 0 : head = vq->free_head;
501 :
502 0 : if (virtqueue_use_indirect(_vq, total_sg))
503 0 : desc = alloc_indirect_split(_vq, total_sg, gfp);
504 : else {
505 0 : desc = NULL;
506 0 : WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
507 : }
508 :
509 0 : if (desc) {
510 : /* Use a single buffer which doesn't continue */
511 : indirect = true;
512 : /* Set up rest to use this indirect table. */
513 : i = 0;
514 : descs_used = 1;
515 : } else {
516 0 : indirect = false;
517 0 : desc = vq->split.vring.desc;
518 0 : i = head;
519 0 : descs_used = total_sg;
520 : }
521 :
522 0 : if (vq->vq.num_free < descs_used) {
523 : pr_debug("Can't add buf len %i - avail = %i\n",
524 : descs_used, vq->vq.num_free);
525 : /* FIXME: for historical reasons, we force a notify here if
526 : * there are outgoing parts to the buffer. Presumably the
527 : * host should service the ring ASAP. */
528 0 : if (out_sgs)
529 0 : vq->notify(&vq->vq);
530 0 : if (indirect)
531 0 : kfree(desc);
532 : END_USE(vq);
533 : return -ENOSPC;
534 : }
535 :
536 0 : for (n = 0; n < out_sgs; n++) {
537 0 : for (sg = sgs[n]; sg; sg = sg_next(sg)) {
538 0 : dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
539 0 : if (vring_mapping_error(vq, addr))
540 : goto unmap_release;
541 :
542 0 : prev = i;
543 : /* Note that we trust indirect descriptor
544 : * table since it use stream DMA mapping.
545 : */
546 0 : i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
547 : VRING_DESC_F_NEXT,
548 : indirect);
549 : }
550 : }
551 0 : for (; n < (out_sgs + in_sgs); n++) {
552 0 : for (sg = sgs[n]; sg; sg = sg_next(sg)) {
553 0 : dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
554 0 : if (vring_mapping_error(vq, addr))
555 : goto unmap_release;
556 :
557 0 : prev = i;
558 : /* Note that we trust indirect descriptor
559 : * table since it use stream DMA mapping.
560 : */
561 0 : i = virtqueue_add_desc_split(_vq, desc, i, addr,
562 : sg->length,
563 : VRING_DESC_F_NEXT |
564 : VRING_DESC_F_WRITE,
565 : indirect);
566 : }
567 : }
568 : /* Last one doesn't continue. */
569 0 : desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
570 0 : if (!indirect && vq->use_dma_api)
571 0 : vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
572 : ~VRING_DESC_F_NEXT;
573 :
574 0 : if (indirect) {
575 : /* Now that the indirect table is filled in, map it. */
576 0 : dma_addr_t addr = vring_map_single(
577 : vq, desc, total_sg * sizeof(struct vring_desc),
578 : DMA_TO_DEVICE);
579 0 : if (vring_mapping_error(vq, addr))
580 : goto unmap_release;
581 :
582 0 : virtqueue_add_desc_split(_vq, vq->split.vring.desc,
583 : head, addr,
584 : total_sg * sizeof(struct vring_desc),
585 : VRING_DESC_F_INDIRECT,
586 : false);
587 : }
588 :
589 : /* We're using some buffers from the free list. */
590 0 : vq->vq.num_free -= descs_used;
591 :
592 : /* Update free pointer */
593 0 : if (indirect)
594 0 : vq->free_head = vq->split.desc_extra[head].next;
595 : else
596 0 : vq->free_head = i;
597 :
598 : /* Store token and indirect buffer state. */
599 0 : vq->split.desc_state[head].data = data;
600 0 : if (indirect)
601 0 : vq->split.desc_state[head].indir_desc = desc;
602 : else
603 0 : vq->split.desc_state[head].indir_desc = ctx;
604 :
605 : /* Put entry in available array (but don't update avail->idx until they
606 : * do sync). */
607 0 : avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
608 0 : vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
609 :
610 : /* Descriptors and available array need to be set before we expose the
611 : * new available array entries. */
612 0 : virtio_wmb(vq->weak_barriers);
613 0 : vq->split.avail_idx_shadow++;
614 0 : vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
615 : vq->split.avail_idx_shadow);
616 0 : vq->num_added++;
617 :
618 : pr_debug("Added buffer head %i to %p\n", head, vq);
619 : END_USE(vq);
620 :
621 : /* This is very unlikely, but theoretically possible. Kick
622 : * just in case. */
623 0 : if (unlikely(vq->num_added == (1 << 16) - 1))
624 0 : virtqueue_kick(_vq);
625 :
626 : return 0;
627 :
628 : unmap_release:
629 0 : err_idx = i;
630 :
631 0 : if (indirect)
632 : i = 0;
633 : else
634 0 : i = head;
635 :
636 0 : for (n = 0; n < total_sg; n++) {
637 0 : if (i == err_idx)
638 : break;
639 0 : if (indirect) {
640 0 : vring_unmap_one_split_indirect(vq, &desc[i]);
641 0 : i = virtio16_to_cpu(_vq->vdev, desc[i].next);
642 : } else
643 0 : i = vring_unmap_one_split(vq, i);
644 : }
645 :
646 0 : if (indirect)
647 0 : kfree(desc);
648 :
649 : END_USE(vq);
650 : return -ENOMEM;
651 : }
652 :
653 0 : static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
654 : {
655 0 : struct vring_virtqueue *vq = to_vvq(_vq);
656 : u16 new, old;
657 : bool needs_kick;
658 :
659 : START_USE(vq);
660 : /* We need to expose available array entries before checking avail
661 : * event. */
662 0 : virtio_mb(vq->weak_barriers);
663 :
664 0 : old = vq->split.avail_idx_shadow - vq->num_added;
665 0 : new = vq->split.avail_idx_shadow;
666 0 : vq->num_added = 0;
667 :
668 : LAST_ADD_TIME_CHECK(vq);
669 : LAST_ADD_TIME_INVALID(vq);
670 :
671 0 : if (vq->event) {
672 0 : needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
673 0 : vring_avail_event(&vq->split.vring)),
674 : new, old);
675 : } else {
676 0 : needs_kick = !(vq->split.vring.used->flags &
677 0 : cpu_to_virtio16(_vq->vdev,
678 : VRING_USED_F_NO_NOTIFY));
679 : }
680 : END_USE(vq);
681 0 : return needs_kick;
682 : }
683 :
684 0 : static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
685 : void **ctx)
686 : {
687 : unsigned int i, j;
688 0 : __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
689 :
690 : /* Clear data ptr. */
691 0 : vq->split.desc_state[head].data = NULL;
692 :
693 : /* Put back on free list: unmap first-level descriptors and find end */
694 0 : i = head;
695 :
696 0 : while (vq->split.vring.desc[i].flags & nextflag) {
697 0 : vring_unmap_one_split(vq, i);
698 0 : i = vq->split.desc_extra[i].next;
699 0 : vq->vq.num_free++;
700 : }
701 :
702 0 : vring_unmap_one_split(vq, i);
703 0 : vq->split.desc_extra[i].next = vq->free_head;
704 0 : vq->free_head = head;
705 :
706 : /* Plus final descriptor */
707 0 : vq->vq.num_free++;
708 :
709 0 : if (vq->indirect) {
710 0 : struct vring_desc *indir_desc =
711 0 : vq->split.desc_state[head].indir_desc;
712 : u32 len;
713 :
714 : /* Free the indirect table, if any, now that it's unmapped. */
715 0 : if (!indir_desc)
716 : return;
717 :
718 0 : len = vq->split.desc_extra[head].len;
719 :
720 0 : BUG_ON(!(vq->split.desc_extra[head].flags &
721 : VRING_DESC_F_INDIRECT));
722 0 : BUG_ON(len == 0 || len % sizeof(struct vring_desc));
723 :
724 0 : for (j = 0; j < len / sizeof(struct vring_desc); j++)
725 0 : vring_unmap_one_split_indirect(vq, &indir_desc[j]);
726 :
727 0 : kfree(indir_desc);
728 0 : vq->split.desc_state[head].indir_desc = NULL;
729 0 : } else if (ctx) {
730 0 : *ctx = vq->split.desc_state[head].indir_desc;
731 : }
732 : }
733 :
734 : static inline bool more_used_split(const struct vring_virtqueue *vq)
735 : {
736 0 : return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
737 0 : vq->split.vring.used->idx);
738 : }
739 :
740 0 : static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
741 : unsigned int *len,
742 : void **ctx)
743 : {
744 0 : struct vring_virtqueue *vq = to_vvq(_vq);
745 : void *ret;
746 : unsigned int i;
747 : u16 last_used;
748 :
749 : START_USE(vq);
750 :
751 0 : if (unlikely(vq->broken)) {
752 : END_USE(vq);
753 : return NULL;
754 : }
755 :
756 0 : if (!more_used_split(vq)) {
757 : pr_debug("No more buffers in queue\n");
758 : END_USE(vq);
759 : return NULL;
760 : }
761 :
762 : /* Only get used array entries after they have been exposed by host. */
763 0 : virtio_rmb(vq->weak_barriers);
764 :
765 0 : last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
766 0 : i = virtio32_to_cpu(_vq->vdev,
767 0 : vq->split.vring.used->ring[last_used].id);
768 0 : *len = virtio32_to_cpu(_vq->vdev,
769 0 : vq->split.vring.used->ring[last_used].len);
770 :
771 0 : if (unlikely(i >= vq->split.vring.num)) {
772 0 : BAD_RING(vq, "id %u out of range\n", i);
773 0 : return NULL;
774 : }
775 0 : if (unlikely(!vq->split.desc_state[i].data)) {
776 0 : BAD_RING(vq, "id %u is not a head!\n", i);
777 0 : return NULL;
778 : }
779 :
780 : /* detach_buf_split clears data, so grab it now. */
781 0 : ret = vq->split.desc_state[i].data;
782 0 : detach_buf_split(vq, i, ctx);
783 0 : vq->last_used_idx++;
784 : /* If we expect an interrupt for the next entry, tell host
785 : * by writing event index and flush out the write before
786 : * the read in the next get_buf call. */
787 0 : if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
788 0 : virtio_store_mb(vq->weak_barriers,
789 : &vring_used_event(&vq->split.vring),
790 : cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
791 :
792 : LAST_ADD_TIME_INVALID(vq);
793 :
794 : END_USE(vq);
795 : return ret;
796 : }
797 :
798 0 : static void virtqueue_disable_cb_split(struct virtqueue *_vq)
799 : {
800 0 : struct vring_virtqueue *vq = to_vvq(_vq);
801 :
802 0 : if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
803 0 : vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
804 0 : if (vq->event)
805 : /* TODO: this is a hack. Figure out a cleaner value to write. */
806 0 : vring_used_event(&vq->split.vring) = 0x0;
807 : else
808 0 : vq->split.vring.avail->flags =
809 0 : cpu_to_virtio16(_vq->vdev,
810 : vq->split.avail_flags_shadow);
811 : }
812 0 : }
813 :
814 0 : static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
815 : {
816 0 : struct vring_virtqueue *vq = to_vvq(_vq);
817 : u16 last_used_idx;
818 :
819 : START_USE(vq);
820 :
821 : /* We optimistically turn back on interrupts, then check if there was
822 : * more to do. */
823 : /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
824 : * either clear the flags bit or point the event index at the next
825 : * entry. Always do both to keep code simple. */
826 0 : if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
827 0 : vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
828 0 : if (!vq->event)
829 0 : vq->split.vring.avail->flags =
830 0 : cpu_to_virtio16(_vq->vdev,
831 : vq->split.avail_flags_shadow);
832 : }
833 0 : vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
834 0 : last_used_idx = vq->last_used_idx);
835 : END_USE(vq);
836 0 : return last_used_idx;
837 : }
838 :
839 : static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
840 : {
841 0 : struct vring_virtqueue *vq = to_vvq(_vq);
842 :
843 0 : return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
844 0 : vq->split.vring.used->idx);
845 : }
846 :
847 0 : static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
848 : {
849 0 : struct vring_virtqueue *vq = to_vvq(_vq);
850 : u16 bufs;
851 :
852 : START_USE(vq);
853 :
854 : /* We optimistically turn back on interrupts, then check if there was
855 : * more to do. */
856 : /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
857 : * either clear the flags bit or point the event index at the next
858 : * entry. Always update the event index to keep code simple. */
859 0 : if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
860 0 : vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
861 0 : if (!vq->event)
862 0 : vq->split.vring.avail->flags =
863 0 : cpu_to_virtio16(_vq->vdev,
864 : vq->split.avail_flags_shadow);
865 : }
866 : /* TODO: tune this threshold */
867 0 : bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
868 :
869 0 : virtio_store_mb(vq->weak_barriers,
870 : &vring_used_event(&vq->split.vring),
871 : cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
872 :
873 0 : if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
874 : - vq->last_used_idx) > bufs)) {
875 : END_USE(vq);
876 : return false;
877 : }
878 :
879 : END_USE(vq);
880 0 : return true;
881 : }
882 :
883 0 : static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
884 : {
885 0 : struct vring_virtqueue *vq = to_vvq(_vq);
886 : unsigned int i;
887 : void *buf;
888 :
889 : START_USE(vq);
890 :
891 0 : for (i = 0; i < vq->split.vring.num; i++) {
892 0 : if (!vq->split.desc_state[i].data)
893 0 : continue;
894 : /* detach_buf_split clears data, so grab it now. */
895 0 : buf = vq->split.desc_state[i].data;
896 0 : detach_buf_split(vq, i, NULL);
897 0 : vq->split.avail_idx_shadow--;
898 0 : vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
899 : vq->split.avail_idx_shadow);
900 : END_USE(vq);
901 0 : return buf;
902 : }
903 : /* That should have freed everything. */
904 0 : BUG_ON(vq->vq.num_free != vq->split.vring.num);
905 :
906 : END_USE(vq);
907 : return NULL;
908 : }
909 :
910 0 : static struct virtqueue *vring_create_virtqueue_split(
911 : unsigned int index,
912 : unsigned int num,
913 : unsigned int vring_align,
914 : struct virtio_device *vdev,
915 : bool weak_barriers,
916 : bool may_reduce_num,
917 : bool context,
918 : bool (*notify)(struct virtqueue *),
919 : void (*callback)(struct virtqueue *),
920 : const char *name)
921 : {
922 : struct virtqueue *vq;
923 0 : void *queue = NULL;
924 : dma_addr_t dma_addr;
925 : size_t queue_size_in_bytes;
926 : struct vring vring;
927 :
928 : /* We assume num is a power of 2. */
929 0 : if (num & (num - 1)) {
930 0 : dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
931 0 : return NULL;
932 : }
933 :
934 : /* TODO: allocate each queue chunk individually */
935 0 : for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
936 0 : queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
937 : &dma_addr,
938 : GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
939 0 : if (queue)
940 : break;
941 0 : if (!may_reduce_num)
942 : return NULL;
943 : }
944 :
945 0 : if (!num)
946 : return NULL;
947 :
948 0 : if (!queue) {
949 : /* Try to get a single page. You are my only hope! */
950 0 : queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
951 : &dma_addr, GFP_KERNEL|__GFP_ZERO);
952 : }
953 0 : if (!queue)
954 : return NULL;
955 :
956 0 : queue_size_in_bytes = vring_size(num, vring_align);
957 0 : vring_init(&vring, num, queue, vring_align);
958 :
959 0 : vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
960 : notify, callback, name);
961 0 : if (!vq) {
962 0 : vring_free_queue(vdev, queue_size_in_bytes, queue,
963 : dma_addr);
964 0 : return NULL;
965 : }
966 :
967 0 : to_vvq(vq)->split.queue_dma_addr = dma_addr;
968 0 : to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
969 0 : to_vvq(vq)->we_own_ring = true;
970 :
971 0 : return vq;
972 : }
973 :
974 :
975 : /*
976 : * Packed ring specific functions - *_packed().
977 : */
978 :
979 0 : static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
980 : struct vring_desc_extra *extra)
981 : {
982 : u16 flags;
983 :
984 0 : if (!vq->use_dma_api)
985 : return;
986 :
987 0 : flags = extra->flags;
988 :
989 0 : if (flags & VRING_DESC_F_INDIRECT) {
990 0 : dma_unmap_single(vring_dma_dev(vq),
991 : extra->addr, extra->len,
992 : (flags & VRING_DESC_F_WRITE) ?
993 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
994 : } else {
995 0 : dma_unmap_page(vring_dma_dev(vq),
996 : extra->addr, extra->len,
997 : (flags & VRING_DESC_F_WRITE) ?
998 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
999 : }
1000 : }
1001 :
1002 0 : static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1003 : struct vring_packed_desc *desc)
1004 : {
1005 : u16 flags;
1006 :
1007 0 : if (!vq->use_dma_api)
1008 : return;
1009 :
1010 0 : flags = le16_to_cpu(desc->flags);
1011 :
1012 0 : dma_unmap_page(vring_dma_dev(vq),
1013 : le64_to_cpu(desc->addr),
1014 : le32_to_cpu(desc->len),
1015 : (flags & VRING_DESC_F_WRITE) ?
1016 : DMA_FROM_DEVICE : DMA_TO_DEVICE);
1017 : }
1018 :
1019 : static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1020 : gfp_t gfp)
1021 : {
1022 : struct vring_packed_desc *desc;
1023 :
1024 : /*
1025 : * We require lowmem mappings for the descriptors because
1026 : * otherwise virt_to_phys will give us bogus addresses in the
1027 : * virtqueue.
1028 : */
1029 0 : gfp &= ~__GFP_HIGHMEM;
1030 :
1031 0 : desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1032 :
1033 : return desc;
1034 : }
1035 :
1036 0 : static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1037 : struct scatterlist *sgs[],
1038 : unsigned int total_sg,
1039 : unsigned int out_sgs,
1040 : unsigned int in_sgs,
1041 : void *data,
1042 : gfp_t gfp)
1043 : {
1044 : struct vring_packed_desc *desc;
1045 : struct scatterlist *sg;
1046 : unsigned int i, n, err_idx;
1047 : u16 head, id;
1048 : dma_addr_t addr;
1049 :
1050 0 : head = vq->packed.next_avail_idx;
1051 0 : desc = alloc_indirect_packed(total_sg, gfp);
1052 0 : if (!desc)
1053 : return -ENOMEM;
1054 :
1055 0 : if (unlikely(vq->vq.num_free < 1)) {
1056 : pr_debug("Can't add buf len 1 - avail = 0\n");
1057 0 : kfree(desc);
1058 : END_USE(vq);
1059 0 : return -ENOSPC;
1060 : }
1061 :
1062 0 : i = 0;
1063 0 : id = vq->free_head;
1064 0 : BUG_ON(id == vq->packed.vring.num);
1065 :
1066 0 : for (n = 0; n < out_sgs + in_sgs; n++) {
1067 0 : for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1068 0 : addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1069 : DMA_TO_DEVICE : DMA_FROM_DEVICE);
1070 0 : if (vring_mapping_error(vq, addr))
1071 : goto unmap_release;
1072 :
1073 0 : desc[i].flags = cpu_to_le16(n < out_sgs ?
1074 : 0 : VRING_DESC_F_WRITE);
1075 0 : desc[i].addr = cpu_to_le64(addr);
1076 0 : desc[i].len = cpu_to_le32(sg->length);
1077 0 : i++;
1078 : }
1079 : }
1080 :
1081 : /* Now that the indirect table is filled in, map it. */
1082 0 : addr = vring_map_single(vq, desc,
1083 : total_sg * sizeof(struct vring_packed_desc),
1084 : DMA_TO_DEVICE);
1085 0 : if (vring_mapping_error(vq, addr))
1086 : goto unmap_release;
1087 :
1088 0 : vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1089 0 : vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1090 : sizeof(struct vring_packed_desc));
1091 0 : vq->packed.vring.desc[head].id = cpu_to_le16(id);
1092 :
1093 0 : if (vq->use_dma_api) {
1094 0 : vq->packed.desc_extra[id].addr = addr;
1095 0 : vq->packed.desc_extra[id].len = total_sg *
1096 : sizeof(struct vring_packed_desc);
1097 0 : vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1098 0 : vq->packed.avail_used_flags;
1099 : }
1100 :
1101 : /*
1102 : * A driver MUST NOT make the first descriptor in the list
1103 : * available before all subsequent descriptors comprising
1104 : * the list are made available.
1105 : */
1106 0 : virtio_wmb(vq->weak_barriers);
1107 0 : vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1108 : vq->packed.avail_used_flags);
1109 :
1110 : /* We're using some buffers from the free list. */
1111 0 : vq->vq.num_free -= 1;
1112 :
1113 : /* Update free pointer */
1114 0 : n = head + 1;
1115 0 : if (n >= vq->packed.vring.num) {
1116 0 : n = 0;
1117 0 : vq->packed.avail_wrap_counter ^= 1;
1118 0 : vq->packed.avail_used_flags ^=
1119 : 1 << VRING_PACKED_DESC_F_AVAIL |
1120 : 1 << VRING_PACKED_DESC_F_USED;
1121 : }
1122 0 : vq->packed.next_avail_idx = n;
1123 0 : vq->free_head = vq->packed.desc_extra[id].next;
1124 :
1125 : /* Store token and indirect buffer state. */
1126 0 : vq->packed.desc_state[id].num = 1;
1127 0 : vq->packed.desc_state[id].data = data;
1128 0 : vq->packed.desc_state[id].indir_desc = desc;
1129 0 : vq->packed.desc_state[id].last = id;
1130 :
1131 0 : vq->num_added += 1;
1132 :
1133 : pr_debug("Added buffer head %i to %p\n", head, vq);
1134 : END_USE(vq);
1135 :
1136 0 : return 0;
1137 :
1138 : unmap_release:
1139 0 : err_idx = i;
1140 :
1141 0 : for (i = 0; i < err_idx; i++)
1142 0 : vring_unmap_desc_packed(vq, &desc[i]);
1143 :
1144 0 : kfree(desc);
1145 :
1146 : END_USE(vq);
1147 0 : return -ENOMEM;
1148 : }
1149 :
1150 0 : static inline int virtqueue_add_packed(struct virtqueue *_vq,
1151 : struct scatterlist *sgs[],
1152 : unsigned int total_sg,
1153 : unsigned int out_sgs,
1154 : unsigned int in_sgs,
1155 : void *data,
1156 : void *ctx,
1157 : gfp_t gfp)
1158 : {
1159 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1160 : struct vring_packed_desc *desc;
1161 : struct scatterlist *sg;
1162 : unsigned int i, n, c, descs_used, err_idx;
1163 : __le16 head_flags, flags;
1164 : u16 head, id, prev, curr, avail_used_flags;
1165 : int err;
1166 :
1167 : START_USE(vq);
1168 :
1169 0 : BUG_ON(data == NULL);
1170 0 : BUG_ON(ctx && vq->indirect);
1171 :
1172 0 : if (unlikely(vq->broken)) {
1173 : END_USE(vq);
1174 : return -EIO;
1175 : }
1176 :
1177 : LAST_ADD_TIME_UPDATE(vq);
1178 :
1179 0 : BUG_ON(total_sg == 0);
1180 :
1181 0 : if (virtqueue_use_indirect(_vq, total_sg)) {
1182 0 : err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1183 : in_sgs, data, gfp);
1184 0 : if (err != -ENOMEM) {
1185 : END_USE(vq);
1186 : return err;
1187 : }
1188 :
1189 : /* fall back on direct */
1190 : }
1191 :
1192 0 : head = vq->packed.next_avail_idx;
1193 0 : avail_used_flags = vq->packed.avail_used_flags;
1194 :
1195 0 : WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1196 :
1197 0 : desc = vq->packed.vring.desc;
1198 0 : i = head;
1199 0 : descs_used = total_sg;
1200 :
1201 0 : if (unlikely(vq->vq.num_free < descs_used)) {
1202 : pr_debug("Can't add buf len %i - avail = %i\n",
1203 : descs_used, vq->vq.num_free);
1204 : END_USE(vq);
1205 : return -ENOSPC;
1206 : }
1207 :
1208 0 : id = vq->free_head;
1209 0 : BUG_ON(id == vq->packed.vring.num);
1210 :
1211 : curr = id;
1212 : c = 0;
1213 0 : for (n = 0; n < out_sgs + in_sgs; n++) {
1214 0 : for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1215 0 : dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1216 : DMA_TO_DEVICE : DMA_FROM_DEVICE);
1217 0 : if (vring_mapping_error(vq, addr))
1218 : goto unmap_release;
1219 :
1220 0 : flags = cpu_to_le16(vq->packed.avail_used_flags |
1221 : (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1222 : (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1223 0 : if (i == head)
1224 : head_flags = flags;
1225 : else
1226 0 : desc[i].flags = flags;
1227 :
1228 0 : desc[i].addr = cpu_to_le64(addr);
1229 0 : desc[i].len = cpu_to_le32(sg->length);
1230 0 : desc[i].id = cpu_to_le16(id);
1231 :
1232 0 : if (unlikely(vq->use_dma_api)) {
1233 0 : vq->packed.desc_extra[curr].addr = addr;
1234 0 : vq->packed.desc_extra[curr].len = sg->length;
1235 0 : vq->packed.desc_extra[curr].flags =
1236 : le16_to_cpu(flags);
1237 : }
1238 0 : prev = curr;
1239 0 : curr = vq->packed.desc_extra[curr].next;
1240 :
1241 0 : if ((unlikely(++i >= vq->packed.vring.num))) {
1242 0 : i = 0;
1243 0 : vq->packed.avail_used_flags ^=
1244 : 1 << VRING_PACKED_DESC_F_AVAIL |
1245 : 1 << VRING_PACKED_DESC_F_USED;
1246 : }
1247 : }
1248 : }
1249 :
1250 0 : if (i < head)
1251 0 : vq->packed.avail_wrap_counter ^= 1;
1252 :
1253 : /* We're using some buffers from the free list. */
1254 0 : vq->vq.num_free -= descs_used;
1255 :
1256 : /* Update free pointer */
1257 0 : vq->packed.next_avail_idx = i;
1258 0 : vq->free_head = curr;
1259 :
1260 : /* Store token. */
1261 0 : vq->packed.desc_state[id].num = descs_used;
1262 0 : vq->packed.desc_state[id].data = data;
1263 0 : vq->packed.desc_state[id].indir_desc = ctx;
1264 0 : vq->packed.desc_state[id].last = prev;
1265 :
1266 : /*
1267 : * A driver MUST NOT make the first descriptor in the list
1268 : * available before all subsequent descriptors comprising
1269 : * the list are made available.
1270 : */
1271 0 : virtio_wmb(vq->weak_barriers);
1272 0 : vq->packed.vring.desc[head].flags = head_flags;
1273 0 : vq->num_added += descs_used;
1274 :
1275 : pr_debug("Added buffer head %i to %p\n", head, vq);
1276 : END_USE(vq);
1277 :
1278 0 : return 0;
1279 :
1280 : unmap_release:
1281 0 : err_idx = i;
1282 0 : i = head;
1283 0 : curr = vq->free_head;
1284 :
1285 0 : vq->packed.avail_used_flags = avail_used_flags;
1286 :
1287 0 : for (n = 0; n < total_sg; n++) {
1288 0 : if (i == err_idx)
1289 : break;
1290 0 : vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1291 0 : curr = vq->packed.desc_extra[curr].next;
1292 0 : i++;
1293 0 : if (i >= vq->packed.vring.num)
1294 0 : i = 0;
1295 : }
1296 :
1297 : END_USE(vq);
1298 : return -EIO;
1299 : }
1300 :
1301 0 : static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1302 : {
1303 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1304 : u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1305 : bool needs_kick;
1306 : union {
1307 : struct {
1308 : __le16 off_wrap;
1309 : __le16 flags;
1310 : };
1311 : u32 u32;
1312 : } snapshot;
1313 :
1314 : START_USE(vq);
1315 :
1316 : /*
1317 : * We need to expose the new flags value before checking notification
1318 : * suppressions.
1319 : */
1320 0 : virtio_mb(vq->weak_barriers);
1321 :
1322 0 : old = vq->packed.next_avail_idx - vq->num_added;
1323 0 : new = vq->packed.next_avail_idx;
1324 0 : vq->num_added = 0;
1325 :
1326 0 : snapshot.u32 = *(u32 *)vq->packed.vring.device;
1327 0 : flags = le16_to_cpu(snapshot.flags);
1328 :
1329 : LAST_ADD_TIME_CHECK(vq);
1330 : LAST_ADD_TIME_INVALID(vq);
1331 :
1332 0 : if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1333 0 : needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1334 0 : goto out;
1335 : }
1336 :
1337 0 : off_wrap = le16_to_cpu(snapshot.off_wrap);
1338 :
1339 0 : wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1340 0 : event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1341 0 : if (wrap_counter != vq->packed.avail_wrap_counter)
1342 0 : event_idx -= vq->packed.vring.num;
1343 :
1344 0 : needs_kick = vring_need_event(event_idx, new, old);
1345 : out:
1346 : END_USE(vq);
1347 0 : return needs_kick;
1348 : }
1349 :
1350 0 : static void detach_buf_packed(struct vring_virtqueue *vq,
1351 : unsigned int id, void **ctx)
1352 : {
1353 0 : struct vring_desc_state_packed *state = NULL;
1354 : struct vring_packed_desc *desc;
1355 : unsigned int i, curr;
1356 :
1357 0 : state = &vq->packed.desc_state[id];
1358 :
1359 : /* Clear data ptr. */
1360 0 : state->data = NULL;
1361 :
1362 0 : vq->packed.desc_extra[state->last].next = vq->free_head;
1363 0 : vq->free_head = id;
1364 0 : vq->vq.num_free += state->num;
1365 :
1366 0 : if (unlikely(vq->use_dma_api)) {
1367 : curr = id;
1368 0 : for (i = 0; i < state->num; i++) {
1369 0 : vring_unmap_extra_packed(vq,
1370 0 : &vq->packed.desc_extra[curr]);
1371 0 : curr = vq->packed.desc_extra[curr].next;
1372 : }
1373 : }
1374 :
1375 0 : if (vq->indirect) {
1376 : u32 len;
1377 :
1378 : /* Free the indirect table, if any, now that it's unmapped. */
1379 0 : desc = state->indir_desc;
1380 0 : if (!desc)
1381 : return;
1382 :
1383 0 : if (vq->use_dma_api) {
1384 0 : len = vq->packed.desc_extra[id].len;
1385 0 : for (i = 0; i < len / sizeof(struct vring_packed_desc);
1386 0 : i++)
1387 0 : vring_unmap_desc_packed(vq, &desc[i]);
1388 : }
1389 0 : kfree(desc);
1390 0 : state->indir_desc = NULL;
1391 0 : } else if (ctx) {
1392 0 : *ctx = state->indir_desc;
1393 : }
1394 : }
1395 :
1396 : static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1397 : u16 idx, bool used_wrap_counter)
1398 : {
1399 : bool avail, used;
1400 : u16 flags;
1401 :
1402 0 : flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1403 0 : avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1404 0 : used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1405 :
1406 0 : return avail == used && used == used_wrap_counter;
1407 : }
1408 :
1409 : static inline bool more_used_packed(const struct vring_virtqueue *vq)
1410 : {
1411 0 : return is_used_desc_packed(vq, vq->last_used_idx,
1412 : vq->packed.used_wrap_counter);
1413 : }
1414 :
1415 0 : static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1416 : unsigned int *len,
1417 : void **ctx)
1418 : {
1419 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1420 : u16 last_used, id;
1421 : void *ret;
1422 :
1423 : START_USE(vq);
1424 :
1425 0 : if (unlikely(vq->broken)) {
1426 : END_USE(vq);
1427 : return NULL;
1428 : }
1429 :
1430 0 : if (!more_used_packed(vq)) {
1431 : pr_debug("No more buffers in queue\n");
1432 : END_USE(vq);
1433 : return NULL;
1434 : }
1435 :
1436 : /* Only get used elements after they have been exposed by host. */
1437 0 : virtio_rmb(vq->weak_barriers);
1438 :
1439 0 : last_used = vq->last_used_idx;
1440 0 : id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1441 0 : *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1442 :
1443 0 : if (unlikely(id >= vq->packed.vring.num)) {
1444 0 : BAD_RING(vq, "id %u out of range\n", id);
1445 0 : return NULL;
1446 : }
1447 0 : if (unlikely(!vq->packed.desc_state[id].data)) {
1448 0 : BAD_RING(vq, "id %u is not a head!\n", id);
1449 0 : return NULL;
1450 : }
1451 :
1452 : /* detach_buf_packed clears data, so grab it now. */
1453 0 : ret = vq->packed.desc_state[id].data;
1454 0 : detach_buf_packed(vq, id, ctx);
1455 :
1456 0 : vq->last_used_idx += vq->packed.desc_state[id].num;
1457 0 : if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1458 0 : vq->last_used_idx -= vq->packed.vring.num;
1459 0 : vq->packed.used_wrap_counter ^= 1;
1460 : }
1461 :
1462 : /*
1463 : * If we expect an interrupt for the next entry, tell host
1464 : * by writing event index and flush out the write before
1465 : * the read in the next get_buf call.
1466 : */
1467 0 : if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1468 0 : virtio_store_mb(vq->weak_barriers,
1469 : &vq->packed.vring.driver->off_wrap,
1470 : cpu_to_le16(vq->last_used_idx |
1471 : (vq->packed.used_wrap_counter <<
1472 : VRING_PACKED_EVENT_F_WRAP_CTR)));
1473 :
1474 : LAST_ADD_TIME_INVALID(vq);
1475 :
1476 : END_USE(vq);
1477 : return ret;
1478 : }
1479 :
1480 : static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1481 : {
1482 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1483 :
1484 0 : if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1485 0 : vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1486 0 : vq->packed.vring.driver->flags =
1487 : cpu_to_le16(vq->packed.event_flags_shadow);
1488 : }
1489 : }
1490 :
1491 0 : static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1492 : {
1493 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1494 :
1495 : START_USE(vq);
1496 :
1497 : /*
1498 : * We optimistically turn back on interrupts, then check if there was
1499 : * more to do.
1500 : */
1501 :
1502 0 : if (vq->event) {
1503 0 : vq->packed.vring.driver->off_wrap =
1504 0 : cpu_to_le16(vq->last_used_idx |
1505 : (vq->packed.used_wrap_counter <<
1506 : VRING_PACKED_EVENT_F_WRAP_CTR));
1507 : /*
1508 : * We need to update event offset and event wrap
1509 : * counter first before updating event flags.
1510 : */
1511 0 : virtio_wmb(vq->weak_barriers);
1512 : }
1513 :
1514 0 : if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1515 0 : vq->packed.event_flags_shadow = vq->event ?
1516 : VRING_PACKED_EVENT_FLAG_DESC :
1517 : VRING_PACKED_EVENT_FLAG_ENABLE;
1518 0 : vq->packed.vring.driver->flags =
1519 : cpu_to_le16(vq->packed.event_flags_shadow);
1520 : }
1521 :
1522 : END_USE(vq);
1523 0 : return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1524 : VRING_PACKED_EVENT_F_WRAP_CTR);
1525 : }
1526 :
1527 : static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1528 : {
1529 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1530 : bool wrap_counter;
1531 : u16 used_idx;
1532 :
1533 0 : wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1534 0 : used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1535 :
1536 0 : return is_used_desc_packed(vq, used_idx, wrap_counter);
1537 : }
1538 :
1539 0 : static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1540 : {
1541 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1542 : u16 used_idx, wrap_counter;
1543 : u16 bufs;
1544 :
1545 : START_USE(vq);
1546 :
1547 : /*
1548 : * We optimistically turn back on interrupts, then check if there was
1549 : * more to do.
1550 : */
1551 :
1552 0 : if (vq->event) {
1553 : /* TODO: tune this threshold */
1554 0 : bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1555 0 : wrap_counter = vq->packed.used_wrap_counter;
1556 :
1557 0 : used_idx = vq->last_used_idx + bufs;
1558 0 : if (used_idx >= vq->packed.vring.num) {
1559 0 : used_idx -= vq->packed.vring.num;
1560 0 : wrap_counter ^= 1;
1561 : }
1562 :
1563 0 : vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1564 : (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1565 :
1566 : /*
1567 : * We need to update event offset and event wrap
1568 : * counter first before updating event flags.
1569 : */
1570 0 : virtio_wmb(vq->weak_barriers);
1571 : }
1572 :
1573 0 : if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1574 0 : vq->packed.event_flags_shadow = vq->event ?
1575 : VRING_PACKED_EVENT_FLAG_DESC :
1576 : VRING_PACKED_EVENT_FLAG_ENABLE;
1577 0 : vq->packed.vring.driver->flags =
1578 : cpu_to_le16(vq->packed.event_flags_shadow);
1579 : }
1580 :
1581 : /*
1582 : * We need to update event suppression structure first
1583 : * before re-checking for more used buffers.
1584 : */
1585 0 : virtio_mb(vq->weak_barriers);
1586 :
1587 0 : if (is_used_desc_packed(vq,
1588 0 : vq->last_used_idx,
1589 0 : vq->packed.used_wrap_counter)) {
1590 : END_USE(vq);
1591 : return false;
1592 : }
1593 :
1594 : END_USE(vq);
1595 0 : return true;
1596 : }
1597 :
1598 0 : static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1599 : {
1600 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1601 : unsigned int i;
1602 : void *buf;
1603 :
1604 : START_USE(vq);
1605 :
1606 0 : for (i = 0; i < vq->packed.vring.num; i++) {
1607 0 : if (!vq->packed.desc_state[i].data)
1608 0 : continue;
1609 : /* detach_buf clears data, so grab it now. */
1610 0 : buf = vq->packed.desc_state[i].data;
1611 0 : detach_buf_packed(vq, i, NULL);
1612 : END_USE(vq);
1613 0 : return buf;
1614 : }
1615 : /* That should have freed everything. */
1616 0 : BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1617 :
1618 : END_USE(vq);
1619 : return NULL;
1620 : }
1621 :
1622 0 : static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1623 : unsigned int num)
1624 : {
1625 : struct vring_desc_extra *desc_extra;
1626 : unsigned int i;
1627 :
1628 0 : desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1629 : GFP_KERNEL);
1630 0 : if (!desc_extra)
1631 : return NULL;
1632 :
1633 0 : memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1634 :
1635 0 : for (i = 0; i < num - 1; i++)
1636 0 : desc_extra[i].next = i + 1;
1637 :
1638 : return desc_extra;
1639 : }
1640 :
1641 0 : static struct virtqueue *vring_create_virtqueue_packed(
1642 : unsigned int index,
1643 : unsigned int num,
1644 : unsigned int vring_align,
1645 : struct virtio_device *vdev,
1646 : bool weak_barriers,
1647 : bool may_reduce_num,
1648 : bool context,
1649 : bool (*notify)(struct virtqueue *),
1650 : void (*callback)(struct virtqueue *),
1651 : const char *name)
1652 : {
1653 : struct vring_virtqueue *vq;
1654 : struct vring_packed_desc *ring;
1655 : struct vring_packed_desc_event *driver, *device;
1656 : dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1657 : size_t ring_size_in_bytes, event_size_in_bytes;
1658 :
1659 0 : ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1660 :
1661 0 : ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1662 : &ring_dma_addr,
1663 : GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1664 0 : if (!ring)
1665 : goto err_ring;
1666 :
1667 0 : event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1668 :
1669 0 : driver = vring_alloc_queue(vdev, event_size_in_bytes,
1670 : &driver_event_dma_addr,
1671 : GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1672 0 : if (!driver)
1673 : goto err_driver;
1674 :
1675 0 : device = vring_alloc_queue(vdev, event_size_in_bytes,
1676 : &device_event_dma_addr,
1677 : GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1678 0 : if (!device)
1679 : goto err_device;
1680 :
1681 0 : vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1682 0 : if (!vq)
1683 : goto err_vq;
1684 :
1685 0 : vq->vq.callback = callback;
1686 0 : vq->vq.vdev = vdev;
1687 0 : vq->vq.name = name;
1688 0 : vq->vq.num_free = num;
1689 0 : vq->vq.index = index;
1690 0 : vq->we_own_ring = true;
1691 0 : vq->notify = notify;
1692 0 : vq->weak_barriers = weak_barriers;
1693 0 : vq->broken = false;
1694 0 : vq->last_used_idx = 0;
1695 0 : vq->event_triggered = false;
1696 0 : vq->num_added = 0;
1697 0 : vq->packed_ring = true;
1698 0 : vq->use_dma_api = vring_use_dma_api(vdev);
1699 : #ifdef DEBUG
1700 : vq->in_use = false;
1701 : vq->last_add_time_valid = false;
1702 : #endif
1703 :
1704 0 : vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1705 : !context;
1706 0 : vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1707 :
1708 0 : if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1709 0 : vq->weak_barriers = false;
1710 :
1711 0 : vq->packed.ring_dma_addr = ring_dma_addr;
1712 0 : vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1713 0 : vq->packed.device_event_dma_addr = device_event_dma_addr;
1714 :
1715 0 : vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1716 0 : vq->packed.event_size_in_bytes = event_size_in_bytes;
1717 :
1718 0 : vq->packed.vring.num = num;
1719 0 : vq->packed.vring.desc = ring;
1720 0 : vq->packed.vring.driver = driver;
1721 0 : vq->packed.vring.device = device;
1722 :
1723 0 : vq->packed.next_avail_idx = 0;
1724 0 : vq->packed.avail_wrap_counter = 1;
1725 0 : vq->packed.used_wrap_counter = 1;
1726 0 : vq->packed.event_flags_shadow = 0;
1727 0 : vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1728 :
1729 0 : vq->packed.desc_state = kmalloc_array(num,
1730 : sizeof(struct vring_desc_state_packed),
1731 : GFP_KERNEL);
1732 0 : if (!vq->packed.desc_state)
1733 : goto err_desc_state;
1734 :
1735 0 : memset(vq->packed.desc_state, 0,
1736 : num * sizeof(struct vring_desc_state_packed));
1737 :
1738 : /* Put everything in free lists. */
1739 0 : vq->free_head = 0;
1740 :
1741 0 : vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1742 0 : if (!vq->packed.desc_extra)
1743 : goto err_desc_extra;
1744 :
1745 : /* No callback? Tell other side not to bother us. */
1746 0 : if (!callback) {
1747 0 : vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1748 0 : vq->packed.vring.driver->flags =
1749 : cpu_to_le16(vq->packed.event_flags_shadow);
1750 : }
1751 :
1752 0 : spin_lock(&vdev->vqs_list_lock);
1753 0 : list_add_tail(&vq->vq.list, &vdev->vqs);
1754 0 : spin_unlock(&vdev->vqs_list_lock);
1755 0 : return &vq->vq;
1756 :
1757 : err_desc_extra:
1758 0 : kfree(vq->packed.desc_state);
1759 : err_desc_state:
1760 0 : kfree(vq);
1761 : err_vq:
1762 0 : vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1763 : err_device:
1764 0 : vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1765 : err_driver:
1766 0 : vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1767 : err_ring:
1768 : return NULL;
1769 : }
1770 :
1771 :
1772 : /*
1773 : * Generic functions and exported symbols.
1774 : */
1775 :
1776 0 : static inline int virtqueue_add(struct virtqueue *_vq,
1777 : struct scatterlist *sgs[],
1778 : unsigned int total_sg,
1779 : unsigned int out_sgs,
1780 : unsigned int in_sgs,
1781 : void *data,
1782 : void *ctx,
1783 : gfp_t gfp)
1784 : {
1785 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1786 :
1787 0 : return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1788 0 : out_sgs, in_sgs, data, ctx, gfp) :
1789 : virtqueue_add_split(_vq, sgs, total_sg,
1790 : out_sgs, in_sgs, data, ctx, gfp);
1791 : }
1792 :
1793 : /**
1794 : * virtqueue_add_sgs - expose buffers to other end
1795 : * @_vq: the struct virtqueue we're talking about.
1796 : * @sgs: array of terminated scatterlists.
1797 : * @out_sgs: the number of scatterlists readable by other side
1798 : * @in_sgs: the number of scatterlists which are writable (after readable ones)
1799 : * @data: the token identifying the buffer.
1800 : * @gfp: how to do memory allocations (if necessary).
1801 : *
1802 : * Caller must ensure we don't call this with other virtqueue operations
1803 : * at the same time (except where noted).
1804 : *
1805 : * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1806 : */
1807 0 : int virtqueue_add_sgs(struct virtqueue *_vq,
1808 : struct scatterlist *sgs[],
1809 : unsigned int out_sgs,
1810 : unsigned int in_sgs,
1811 : void *data,
1812 : gfp_t gfp)
1813 : {
1814 0 : unsigned int i, total_sg = 0;
1815 :
1816 : /* Count them first. */
1817 0 : for (i = 0; i < out_sgs + in_sgs; i++) {
1818 : struct scatterlist *sg;
1819 :
1820 0 : for (sg = sgs[i]; sg; sg = sg_next(sg))
1821 0 : total_sg++;
1822 : }
1823 0 : return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1824 : data, NULL, gfp);
1825 : }
1826 : EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1827 :
1828 : /**
1829 : * virtqueue_add_outbuf - expose output buffers to other end
1830 : * @vq: the struct virtqueue we're talking about.
1831 : * @sg: scatterlist (must be well-formed and terminated!)
1832 : * @num: the number of entries in @sg readable by other side
1833 : * @data: the token identifying the buffer.
1834 : * @gfp: how to do memory allocations (if necessary).
1835 : *
1836 : * Caller must ensure we don't call this with other virtqueue operations
1837 : * at the same time (except where noted).
1838 : *
1839 : * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1840 : */
1841 0 : int virtqueue_add_outbuf(struct virtqueue *vq,
1842 : struct scatterlist *sg, unsigned int num,
1843 : void *data,
1844 : gfp_t gfp)
1845 : {
1846 0 : return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1847 : }
1848 : EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1849 :
1850 : /**
1851 : * virtqueue_add_inbuf - expose input buffers to other end
1852 : * @vq: the struct virtqueue we're talking about.
1853 : * @sg: scatterlist (must be well-formed and terminated!)
1854 : * @num: the number of entries in @sg writable by other side
1855 : * @data: the token identifying the buffer.
1856 : * @gfp: how to do memory allocations (if necessary).
1857 : *
1858 : * Caller must ensure we don't call this with other virtqueue operations
1859 : * at the same time (except where noted).
1860 : *
1861 : * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1862 : */
1863 0 : int virtqueue_add_inbuf(struct virtqueue *vq,
1864 : struct scatterlist *sg, unsigned int num,
1865 : void *data,
1866 : gfp_t gfp)
1867 : {
1868 0 : return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1869 : }
1870 : EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1871 :
1872 : /**
1873 : * virtqueue_add_inbuf_ctx - expose input buffers to other end
1874 : * @vq: the struct virtqueue we're talking about.
1875 : * @sg: scatterlist (must be well-formed and terminated!)
1876 : * @num: the number of entries in @sg writable by other side
1877 : * @data: the token identifying the buffer.
1878 : * @ctx: extra context for the token
1879 : * @gfp: how to do memory allocations (if necessary).
1880 : *
1881 : * Caller must ensure we don't call this with other virtqueue operations
1882 : * at the same time (except where noted).
1883 : *
1884 : * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1885 : */
1886 0 : int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1887 : struct scatterlist *sg, unsigned int num,
1888 : void *data,
1889 : void *ctx,
1890 : gfp_t gfp)
1891 : {
1892 0 : return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1893 : }
1894 : EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1895 :
1896 : /**
1897 : * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1898 : * @_vq: the struct virtqueue
1899 : *
1900 : * Instead of virtqueue_kick(), you can do:
1901 : * if (virtqueue_kick_prepare(vq))
1902 : * virtqueue_notify(vq);
1903 : *
1904 : * This is sometimes useful because the virtqueue_kick_prepare() needs
1905 : * to be serialized, but the actual virtqueue_notify() call does not.
1906 : */
1907 0 : bool virtqueue_kick_prepare(struct virtqueue *_vq)
1908 : {
1909 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1910 :
1911 0 : return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1912 0 : virtqueue_kick_prepare_split(_vq);
1913 : }
1914 : EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1915 :
1916 : /**
1917 : * virtqueue_notify - second half of split virtqueue_kick call.
1918 : * @_vq: the struct virtqueue
1919 : *
1920 : * This does not need to be serialized.
1921 : *
1922 : * Returns false if host notify failed or queue is broken, otherwise true.
1923 : */
1924 0 : bool virtqueue_notify(struct virtqueue *_vq)
1925 : {
1926 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1927 :
1928 0 : if (unlikely(vq->broken))
1929 : return false;
1930 :
1931 : /* Prod other side to tell it about changes. */
1932 0 : if (!vq->notify(_vq)) {
1933 0 : vq->broken = true;
1934 0 : return false;
1935 : }
1936 : return true;
1937 : }
1938 : EXPORT_SYMBOL_GPL(virtqueue_notify);
1939 :
1940 : /**
1941 : * virtqueue_kick - update after add_buf
1942 : * @vq: the struct virtqueue
1943 : *
1944 : * After one or more virtqueue_add_* calls, invoke this to kick
1945 : * the other side.
1946 : *
1947 : * Caller must ensure we don't call this with other virtqueue
1948 : * operations at the same time (except where noted).
1949 : *
1950 : * Returns false if kick failed, otherwise true.
1951 : */
1952 0 : bool virtqueue_kick(struct virtqueue *vq)
1953 : {
1954 0 : if (virtqueue_kick_prepare(vq))
1955 : return virtqueue_notify(vq);
1956 : return true;
1957 : }
1958 : EXPORT_SYMBOL_GPL(virtqueue_kick);
1959 :
1960 : /**
1961 : * virtqueue_get_buf_ctx - get the next used buffer
1962 : * @_vq: the struct virtqueue we're talking about.
1963 : * @len: the length written into the buffer
1964 : * @ctx: extra context for the token
1965 : *
1966 : * If the device wrote data into the buffer, @len will be set to the
1967 : * amount written. This means you don't need to clear the buffer
1968 : * beforehand to ensure there's no data leakage in the case of short
1969 : * writes.
1970 : *
1971 : * Caller must ensure we don't call this with other virtqueue
1972 : * operations at the same time (except where noted).
1973 : *
1974 : * Returns NULL if there are no used buffers, or the "data" token
1975 : * handed to virtqueue_add_*().
1976 : */
1977 0 : void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1978 : void **ctx)
1979 : {
1980 0 : struct vring_virtqueue *vq = to_vvq(_vq);
1981 :
1982 0 : return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1983 : virtqueue_get_buf_ctx_split(_vq, len, ctx);
1984 : }
1985 : EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1986 :
1987 0 : void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1988 : {
1989 0 : return virtqueue_get_buf_ctx(_vq, len, NULL);
1990 : }
1991 : EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1992 : /**
1993 : * virtqueue_disable_cb - disable callbacks
1994 : * @_vq: the struct virtqueue we're talking about.
1995 : *
1996 : * Note that this is not necessarily synchronous, hence unreliable and only
1997 : * useful as an optimization.
1998 : *
1999 : * Unlike other operations, this need not be serialized.
2000 : */
2001 0 : void virtqueue_disable_cb(struct virtqueue *_vq)
2002 : {
2003 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2004 :
2005 : /* If device triggered an event already it won't trigger one again:
2006 : * no need to disable.
2007 : */
2008 0 : if (vq->event_triggered)
2009 : return;
2010 :
2011 0 : if (vq->packed_ring)
2012 : virtqueue_disable_cb_packed(_vq);
2013 : else
2014 0 : virtqueue_disable_cb_split(_vq);
2015 : }
2016 : EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2017 :
2018 : /**
2019 : * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2020 : * @_vq: the struct virtqueue we're talking about.
2021 : *
2022 : * This re-enables callbacks; it returns current queue state
2023 : * in an opaque unsigned value. This value should be later tested by
2024 : * virtqueue_poll, to detect a possible race between the driver checking for
2025 : * more work, and enabling callbacks.
2026 : *
2027 : * Caller must ensure we don't call this with other virtqueue
2028 : * operations at the same time (except where noted).
2029 : */
2030 0 : unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2031 : {
2032 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2033 :
2034 0 : if (vq->event_triggered)
2035 0 : vq->event_triggered = false;
2036 :
2037 0 : return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2038 : virtqueue_enable_cb_prepare_split(_vq);
2039 : }
2040 : EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2041 :
2042 : /**
2043 : * virtqueue_poll - query pending used buffers
2044 : * @_vq: the struct virtqueue we're talking about.
2045 : * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2046 : *
2047 : * Returns "true" if there are pending used buffers in the queue.
2048 : *
2049 : * This does not need to be serialized.
2050 : */
2051 0 : bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2052 : {
2053 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2054 :
2055 0 : if (unlikely(vq->broken))
2056 : return false;
2057 :
2058 0 : virtio_mb(vq->weak_barriers);
2059 0 : return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2060 0 : virtqueue_poll_split(_vq, last_used_idx);
2061 : }
2062 : EXPORT_SYMBOL_GPL(virtqueue_poll);
2063 :
2064 : /**
2065 : * virtqueue_enable_cb - restart callbacks after disable_cb.
2066 : * @_vq: the struct virtqueue we're talking about.
2067 : *
2068 : * This re-enables callbacks; it returns "false" if there are pending
2069 : * buffers in the queue, to detect a possible race between the driver
2070 : * checking for more work, and enabling callbacks.
2071 : *
2072 : * Caller must ensure we don't call this with other virtqueue
2073 : * operations at the same time (except where noted).
2074 : */
2075 0 : bool virtqueue_enable_cb(struct virtqueue *_vq)
2076 : {
2077 0 : unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2078 :
2079 0 : return !virtqueue_poll(_vq, last_used_idx);
2080 : }
2081 : EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2082 :
2083 : /**
2084 : * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2085 : * @_vq: the struct virtqueue we're talking about.
2086 : *
2087 : * This re-enables callbacks but hints to the other side to delay
2088 : * interrupts until most of the available buffers have been processed;
2089 : * it returns "false" if there are many pending buffers in the queue,
2090 : * to detect a possible race between the driver checking for more work,
2091 : * and enabling callbacks.
2092 : *
2093 : * Caller must ensure we don't call this with other virtqueue
2094 : * operations at the same time (except where noted).
2095 : */
2096 0 : bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2097 : {
2098 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2099 :
2100 0 : if (vq->event_triggered)
2101 0 : vq->event_triggered = false;
2102 :
2103 0 : return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2104 0 : virtqueue_enable_cb_delayed_split(_vq);
2105 : }
2106 : EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2107 :
2108 : /**
2109 : * virtqueue_detach_unused_buf - detach first unused buffer
2110 : * @_vq: the struct virtqueue we're talking about.
2111 : *
2112 : * Returns NULL or the "data" token handed to virtqueue_add_*().
2113 : * This is not valid on an active queue; it is useful only for device
2114 : * shutdown.
2115 : */
2116 0 : void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2117 : {
2118 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2119 :
2120 0 : return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2121 : virtqueue_detach_unused_buf_split(_vq);
2122 : }
2123 : EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2124 :
2125 0 : static inline bool more_used(const struct vring_virtqueue *vq)
2126 : {
2127 0 : return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2128 : }
2129 :
2130 0 : irqreturn_t vring_interrupt(int irq, void *_vq)
2131 : {
2132 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2133 :
2134 0 : if (!more_used(vq)) {
2135 : pr_debug("virtqueue interrupt with no work for %p\n", vq);
2136 : return IRQ_NONE;
2137 : }
2138 :
2139 0 : if (unlikely(vq->broken))
2140 : return IRQ_HANDLED;
2141 :
2142 : /* Just a hint for performance: so it's ok that this can be racy! */
2143 0 : if (vq->event)
2144 0 : vq->event_triggered = true;
2145 :
2146 : pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2147 0 : if (vq->vq.callback)
2148 0 : vq->vq.callback(&vq->vq);
2149 :
2150 : return IRQ_HANDLED;
2151 : }
2152 : EXPORT_SYMBOL_GPL(vring_interrupt);
2153 :
2154 : /* Only available for split ring */
2155 0 : struct virtqueue *__vring_new_virtqueue(unsigned int index,
2156 : struct vring vring,
2157 : struct virtio_device *vdev,
2158 : bool weak_barriers,
2159 : bool context,
2160 : bool (*notify)(struct virtqueue *),
2161 : void (*callback)(struct virtqueue *),
2162 : const char *name)
2163 : {
2164 : struct vring_virtqueue *vq;
2165 :
2166 0 : if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2167 : return NULL;
2168 :
2169 0 : vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2170 0 : if (!vq)
2171 : return NULL;
2172 :
2173 0 : vq->packed_ring = false;
2174 0 : vq->vq.callback = callback;
2175 0 : vq->vq.vdev = vdev;
2176 0 : vq->vq.name = name;
2177 0 : vq->vq.num_free = vring.num;
2178 0 : vq->vq.index = index;
2179 0 : vq->we_own_ring = false;
2180 0 : vq->notify = notify;
2181 0 : vq->weak_barriers = weak_barriers;
2182 0 : vq->broken = false;
2183 0 : vq->last_used_idx = 0;
2184 0 : vq->event_triggered = false;
2185 0 : vq->num_added = 0;
2186 0 : vq->use_dma_api = vring_use_dma_api(vdev);
2187 : #ifdef DEBUG
2188 : vq->in_use = false;
2189 : vq->last_add_time_valid = false;
2190 : #endif
2191 :
2192 0 : vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2193 : !context;
2194 0 : vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2195 :
2196 0 : if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2197 0 : vq->weak_barriers = false;
2198 :
2199 0 : vq->split.queue_dma_addr = 0;
2200 0 : vq->split.queue_size_in_bytes = 0;
2201 :
2202 0 : vq->split.vring = vring;
2203 0 : vq->split.avail_flags_shadow = 0;
2204 0 : vq->split.avail_idx_shadow = 0;
2205 :
2206 : /* No callback? Tell other side not to bother us. */
2207 0 : if (!callback) {
2208 0 : vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2209 0 : if (!vq->event)
2210 0 : vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2211 : vq->split.avail_flags_shadow);
2212 : }
2213 :
2214 0 : vq->split.desc_state = kmalloc_array(vring.num,
2215 : sizeof(struct vring_desc_state_split), GFP_KERNEL);
2216 0 : if (!vq->split.desc_state)
2217 : goto err_state;
2218 :
2219 0 : vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2220 0 : if (!vq->split.desc_extra)
2221 : goto err_extra;
2222 :
2223 : /* Put everything in free lists. */
2224 0 : vq->free_head = 0;
2225 0 : memset(vq->split.desc_state, 0, vring.num *
2226 : sizeof(struct vring_desc_state_split));
2227 :
2228 0 : spin_lock(&vdev->vqs_list_lock);
2229 0 : list_add_tail(&vq->vq.list, &vdev->vqs);
2230 0 : spin_unlock(&vdev->vqs_list_lock);
2231 0 : return &vq->vq;
2232 :
2233 : err_extra:
2234 0 : kfree(vq->split.desc_state);
2235 : err_state:
2236 0 : kfree(vq);
2237 0 : return NULL;
2238 : }
2239 : EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2240 :
2241 0 : struct virtqueue *vring_create_virtqueue(
2242 : unsigned int index,
2243 : unsigned int num,
2244 : unsigned int vring_align,
2245 : struct virtio_device *vdev,
2246 : bool weak_barriers,
2247 : bool may_reduce_num,
2248 : bool context,
2249 : bool (*notify)(struct virtqueue *),
2250 : void (*callback)(struct virtqueue *),
2251 : const char *name)
2252 : {
2253 :
2254 0 : if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2255 0 : return vring_create_virtqueue_packed(index, num, vring_align,
2256 : vdev, weak_barriers, may_reduce_num,
2257 : context, notify, callback, name);
2258 :
2259 0 : return vring_create_virtqueue_split(index, num, vring_align,
2260 : vdev, weak_barriers, may_reduce_num,
2261 : context, notify, callback, name);
2262 : }
2263 : EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2264 :
2265 : /* Only available for split ring */
2266 0 : struct virtqueue *vring_new_virtqueue(unsigned int index,
2267 : unsigned int num,
2268 : unsigned int vring_align,
2269 : struct virtio_device *vdev,
2270 : bool weak_barriers,
2271 : bool context,
2272 : void *pages,
2273 : bool (*notify)(struct virtqueue *vq),
2274 : void (*callback)(struct virtqueue *vq),
2275 : const char *name)
2276 : {
2277 : struct vring vring;
2278 :
2279 0 : if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2280 : return NULL;
2281 :
2282 0 : vring_init(&vring, num, pages, vring_align);
2283 0 : return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2284 : notify, callback, name);
2285 : }
2286 : EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2287 :
2288 0 : void vring_del_virtqueue(struct virtqueue *_vq)
2289 : {
2290 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2291 :
2292 0 : spin_lock(&vq->vq.vdev->vqs_list_lock);
2293 0 : list_del(&_vq->list);
2294 0 : spin_unlock(&vq->vq.vdev->vqs_list_lock);
2295 :
2296 0 : if (vq->we_own_ring) {
2297 0 : if (vq->packed_ring) {
2298 0 : vring_free_queue(vq->vq.vdev,
2299 : vq->packed.ring_size_in_bytes,
2300 0 : vq->packed.vring.desc,
2301 : vq->packed.ring_dma_addr);
2302 :
2303 0 : vring_free_queue(vq->vq.vdev,
2304 : vq->packed.event_size_in_bytes,
2305 0 : vq->packed.vring.driver,
2306 : vq->packed.driver_event_dma_addr);
2307 :
2308 0 : vring_free_queue(vq->vq.vdev,
2309 : vq->packed.event_size_in_bytes,
2310 0 : vq->packed.vring.device,
2311 : vq->packed.device_event_dma_addr);
2312 :
2313 0 : kfree(vq->packed.desc_state);
2314 0 : kfree(vq->packed.desc_extra);
2315 : } else {
2316 0 : vring_free_queue(vq->vq.vdev,
2317 : vq->split.queue_size_in_bytes,
2318 0 : vq->split.vring.desc,
2319 : vq->split.queue_dma_addr);
2320 : }
2321 : }
2322 0 : if (!vq->packed_ring) {
2323 0 : kfree(vq->split.desc_state);
2324 0 : kfree(vq->split.desc_extra);
2325 : }
2326 0 : kfree(vq);
2327 0 : }
2328 : EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2329 :
2330 : /* Manipulates transport-specific feature bits. */
2331 0 : void vring_transport_features(struct virtio_device *vdev)
2332 : {
2333 : unsigned int i;
2334 :
2335 0 : for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2336 : switch (i) {
2337 : case VIRTIO_RING_F_INDIRECT_DESC:
2338 : break;
2339 : case VIRTIO_RING_F_EVENT_IDX:
2340 : break;
2341 : case VIRTIO_F_VERSION_1:
2342 : break;
2343 : case VIRTIO_F_ACCESS_PLATFORM:
2344 : break;
2345 : case VIRTIO_F_RING_PACKED:
2346 : break;
2347 : case VIRTIO_F_ORDER_PLATFORM:
2348 : break;
2349 : default:
2350 : /* We don't understand this bit. */
2351 0 : __virtio_clear_bit(vdev, i);
2352 : }
2353 : }
2354 0 : }
2355 : EXPORT_SYMBOL_GPL(vring_transport_features);
2356 :
2357 : /**
2358 : * virtqueue_get_vring_size - return the size of the virtqueue's vring
2359 : * @_vq: the struct virtqueue containing the vring of interest.
2360 : *
2361 : * Returns the size of the vring. This is mainly used for boasting to
2362 : * userspace. Unlike other operations, this need not be serialized.
2363 : */
2364 0 : unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2365 : {
2366 :
2367 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2368 :
2369 0 : return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2370 : }
2371 : EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2372 :
2373 0 : bool virtqueue_is_broken(struct virtqueue *_vq)
2374 : {
2375 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2376 :
2377 0 : return READ_ONCE(vq->broken);
2378 : }
2379 : EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2380 :
2381 : /*
2382 : * This should prevent the device from being used, allowing drivers to
2383 : * recover. You may need to grab appropriate locks to flush.
2384 : */
2385 0 : void virtio_break_device(struct virtio_device *dev)
2386 : {
2387 : struct virtqueue *_vq;
2388 :
2389 0 : spin_lock(&dev->vqs_list_lock);
2390 0 : list_for_each_entry(_vq, &dev->vqs, list) {
2391 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2392 :
2393 : /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2394 0 : WRITE_ONCE(vq->broken, true);
2395 : }
2396 0 : spin_unlock(&dev->vqs_list_lock);
2397 0 : }
2398 : EXPORT_SYMBOL_GPL(virtio_break_device);
2399 :
2400 0 : dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2401 : {
2402 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2403 :
2404 0 : BUG_ON(!vq->we_own_ring);
2405 :
2406 0 : if (vq->packed_ring)
2407 0 : return vq->packed.ring_dma_addr;
2408 :
2409 0 : return vq->split.queue_dma_addr;
2410 : }
2411 : EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2412 :
2413 0 : dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2414 : {
2415 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2416 :
2417 0 : BUG_ON(!vq->we_own_ring);
2418 :
2419 0 : if (vq->packed_ring)
2420 0 : return vq->packed.driver_event_dma_addr;
2421 :
2422 0 : return vq->split.queue_dma_addr +
2423 0 : ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2424 : }
2425 : EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2426 :
2427 0 : dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2428 : {
2429 0 : struct vring_virtqueue *vq = to_vvq(_vq);
2430 :
2431 0 : BUG_ON(!vq->we_own_ring);
2432 :
2433 0 : if (vq->packed_ring)
2434 0 : return vq->packed.device_event_dma_addr;
2435 :
2436 0 : return vq->split.queue_dma_addr +
2437 0 : ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2438 : }
2439 : EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2440 :
2441 : /* Only available for split ring */
2442 0 : const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2443 : {
2444 0 : return &to_vvq(vq)->split.vring;
2445 : }
2446 : EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2447 :
2448 : MODULE_LICENSE("GPL");
|