LCOV - code coverage report
Current view: top level - fs - namespace.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 178 1825 9.8 %
Date: 2022-12-09 01:23:36 Functions: 16 144 11.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/fs/namespace.c
       4             :  *
       5             :  * (C) Copyright Al Viro 2000, 2001
       6             :  *
       7             :  * Based on code from fs/super.c, copyright Linus Torvalds and others.
       8             :  * Heavily rewritten.
       9             :  */
      10             : 
      11             : #include <linux/syscalls.h>
      12             : #include <linux/export.h>
      13             : #include <linux/capability.h>
      14             : #include <linux/mnt_namespace.h>
      15             : #include <linux/user_namespace.h>
      16             : #include <linux/namei.h>
      17             : #include <linux/security.h>
      18             : #include <linux/cred.h>
      19             : #include <linux/idr.h>
      20             : #include <linux/init.h>           /* init_rootfs */
      21             : #include <linux/fs_struct.h>      /* get_fs_root et.al. */
      22             : #include <linux/fsnotify.h>       /* fsnotify_vfsmount_delete */
      23             : #include <linux/file.h>
      24             : #include <linux/uaccess.h>
      25             : #include <linux/proc_ns.h>
      26             : #include <linux/magic.h>
      27             : #include <linux/memblock.h>
      28             : #include <linux/proc_fs.h>
      29             : #include <linux/task_work.h>
      30             : #include <linux/sched/task.h>
      31             : #include <uapi/linux/mount.h>
      32             : #include <linux/fs_context.h>
      33             : #include <linux/shmem_fs.h>
      34             : #include <linux/mnt_idmapping.h>
      35             : 
      36             : #include "pnode.h"
      37             : #include "internal.h"
      38             : 
      39             : /* Maximum number of mounts in a mount namespace */
      40             : static unsigned int sysctl_mount_max __read_mostly = 100000;
      41             : 
      42             : static unsigned int m_hash_mask __read_mostly;
      43             : static unsigned int m_hash_shift __read_mostly;
      44             : static unsigned int mp_hash_mask __read_mostly;
      45             : static unsigned int mp_hash_shift __read_mostly;
      46             : 
      47             : static __initdata unsigned long mhash_entries;
      48           0 : static int __init set_mhash_entries(char *str)
      49             : {
      50           0 :         if (!str)
      51             :                 return 0;
      52           0 :         mhash_entries = simple_strtoul(str, &str, 0);
      53           0 :         return 1;
      54             : }
      55             : __setup("mhash_entries=", set_mhash_entries);
      56             : 
      57             : static __initdata unsigned long mphash_entries;
      58           0 : static int __init set_mphash_entries(char *str)
      59             : {
      60           0 :         if (!str)
      61             :                 return 0;
      62           0 :         mphash_entries = simple_strtoul(str, &str, 0);
      63           0 :         return 1;
      64             : }
      65             : __setup("mphash_entries=", set_mphash_entries);
      66             : 
      67             : static u64 event;
      68             : static DEFINE_IDA(mnt_id_ida);
      69             : static DEFINE_IDA(mnt_group_ida);
      70             : 
      71             : static struct hlist_head *mount_hashtable __read_mostly;
      72             : static struct hlist_head *mountpoint_hashtable __read_mostly;
      73             : static struct kmem_cache *mnt_cache __read_mostly;
      74             : static DECLARE_RWSEM(namespace_sem);
      75             : static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
      76             : static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
      77             : 
      78             : struct mount_kattr {
      79             :         unsigned int attr_set;
      80             :         unsigned int attr_clr;
      81             :         unsigned int propagation;
      82             :         unsigned int lookup_flags;
      83             :         bool recurse;
      84             :         struct user_namespace *mnt_userns;
      85             : };
      86             : 
      87             : /* /sys/fs */
      88             : struct kobject *fs_kobj;
      89             : EXPORT_SYMBOL_GPL(fs_kobj);
      90             : 
      91             : /*
      92             :  * vfsmount lock may be taken for read to prevent changes to the
      93             :  * vfsmount hash, ie. during mountpoint lookups or walking back
      94             :  * up the tree.
      95             :  *
      96             :  * It should be taken for write in all cases where the vfsmount
      97             :  * tree or hash is modified or when a vfsmount structure is modified.
      98             :  */
      99             : __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
     100             : 
     101             : static inline void lock_mount_hash(void)
     102             : {
     103          11 :         write_seqlock(&mount_lock);
     104             : }
     105             : 
     106             : static inline void unlock_mount_hash(void)
     107             : {
     108          11 :         write_sequnlock(&mount_lock);
     109             : }
     110             : 
     111             : static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
     112             : {
     113           0 :         unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
     114           0 :         tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
     115           0 :         tmp = tmp + (tmp >> m_hash_shift);
     116           0 :         return &mount_hashtable[tmp & m_hash_mask];
     117             : }
     118             : 
     119             : static inline struct hlist_head *mp_hash(struct dentry *dentry)
     120             : {
     121           0 :         unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
     122           0 :         tmp = tmp + (tmp >> mp_hash_shift);
     123           0 :         return &mountpoint_hashtable[tmp & mp_hash_mask];
     124             : }
     125             : 
     126             : static int mnt_alloc_id(struct mount *mnt)
     127             : {
     128          10 :         int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
     129             : 
     130          10 :         if (res < 0)
     131             :                 return res;
     132          10 :         mnt->mnt_id = res;
     133             :         return 0;
     134             : }
     135             : 
     136             : static void mnt_free_id(struct mount *mnt)
     137             : {
     138           0 :         ida_free(&mnt_id_ida, mnt->mnt_id);
     139             : }
     140             : 
     141             : /*
     142             :  * Allocate a new peer group ID
     143             :  */
     144             : static int mnt_alloc_group_id(struct mount *mnt)
     145             : {
     146           0 :         int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
     147             : 
     148           0 :         if (res < 0)
     149             :                 return res;
     150           0 :         mnt->mnt_group_id = res;
     151             :         return 0;
     152             : }
     153             : 
     154             : /*
     155             :  * Release a peer group ID
     156             :  */
     157           0 : void mnt_release_group_id(struct mount *mnt)
     158             : {
     159           0 :         ida_free(&mnt_group_ida, mnt->mnt_group_id);
     160           0 :         mnt->mnt_group_id = 0;
     161           0 : }
     162             : 
     163             : /*
     164             :  * vfsmount lock must be held for read
     165             :  */
     166             : static inline void mnt_add_count(struct mount *mnt, int n)
     167             : {
     168             : #ifdef CONFIG_SMP
     169             :         this_cpu_add(mnt->mnt_pcp->mnt_count, n);
     170             : #else
     171          10 :         preempt_disable();
     172          10 :         mnt->mnt_count += n;
     173          10 :         preempt_enable();
     174             : #endif
     175             : }
     176             : 
     177             : /*
     178             :  * vfsmount lock must be held for write
     179             :  */
     180           0 : int mnt_get_count(struct mount *mnt)
     181             : {
     182             : #ifdef CONFIG_SMP
     183             :         int count = 0;
     184             :         int cpu;
     185             : 
     186             :         for_each_possible_cpu(cpu) {
     187             :                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
     188             :         }
     189             : 
     190             :         return count;
     191             : #else
     192           1 :         return mnt->mnt_count;
     193             : #endif
     194             : }
     195             : 
     196          10 : static struct mount *alloc_vfsmnt(const char *name)
     197             : {
     198          20 :         struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
     199          10 :         if (mnt) {
     200             :                 int err;
     201             : 
     202          10 :                 err = mnt_alloc_id(mnt);
     203          10 :                 if (err)
     204             :                         goto out_free_cache;
     205             : 
     206          10 :                 if (name) {
     207          10 :                         mnt->mnt_devname = kstrdup_const(name,
     208             :                                                          GFP_KERNEL_ACCOUNT);
     209          10 :                         if (!mnt->mnt_devname)
     210             :                                 goto out_free_id;
     211             :                 }
     212             : 
     213             : #ifdef CONFIG_SMP
     214             :                 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
     215             :                 if (!mnt->mnt_pcp)
     216             :                         goto out_free_devname;
     217             : 
     218             :                 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
     219             : #else
     220          10 :                 mnt->mnt_count = 1;
     221          10 :                 mnt->mnt_writers = 0;
     222             : #endif
     223             : 
     224          20 :                 INIT_HLIST_NODE(&mnt->mnt_hash);
     225          20 :                 INIT_LIST_HEAD(&mnt->mnt_child);
     226          20 :                 INIT_LIST_HEAD(&mnt->mnt_mounts);
     227          20 :                 INIT_LIST_HEAD(&mnt->mnt_list);
     228          20 :                 INIT_LIST_HEAD(&mnt->mnt_expire);
     229          20 :                 INIT_LIST_HEAD(&mnt->mnt_share);
     230          20 :                 INIT_LIST_HEAD(&mnt->mnt_slave_list);
     231          20 :                 INIT_LIST_HEAD(&mnt->mnt_slave);
     232          20 :                 INIT_HLIST_NODE(&mnt->mnt_mp_list);
     233          20 :                 INIT_LIST_HEAD(&mnt->mnt_umounting);
     234          10 :                 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
     235          10 :                 mnt->mnt.mnt_userns = &init_user_ns;
     236             :         }
     237             :         return mnt;
     238             : 
     239             : #ifdef CONFIG_SMP
     240             : out_free_devname:
     241             :         kfree_const(mnt->mnt_devname);
     242             : #endif
     243             : out_free_id:
     244             :         mnt_free_id(mnt);
     245             : out_free_cache:
     246           0 :         kmem_cache_free(mnt_cache, mnt);
     247           0 :         return NULL;
     248             : }
     249             : 
     250             : /*
     251             :  * Most r/o checks on a fs are for operations that take
     252             :  * discrete amounts of time, like a write() or unlink().
     253             :  * We must keep track of when those operations start
     254             :  * (for permission checks) and when they end, so that
     255             :  * we can determine when writes are able to occur to
     256             :  * a filesystem.
     257             :  */
     258             : /*
     259             :  * __mnt_is_readonly: check whether a mount is read-only
     260             :  * @mnt: the mount to check for its write status
     261             :  *
     262             :  * This shouldn't be used directly ouside of the VFS.
     263             :  * It does not guarantee that the filesystem will stay
     264             :  * r/w, just that it is right *now*.  This can not and
     265             :  * should not be used in place of IS_RDONLY(inode).
     266             :  * mnt_want/drop_write() will _keep_ the filesystem
     267             :  * r/w.
     268             :  */
     269           0 : bool __mnt_is_readonly(struct vfsmount *mnt)
     270             : {
     271           6 :         return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
     272             : }
     273             : EXPORT_SYMBOL_GPL(__mnt_is_readonly);
     274             : 
     275             : static inline void mnt_inc_writers(struct mount *mnt)
     276             : {
     277             : #ifdef CONFIG_SMP
     278             :         this_cpu_inc(mnt->mnt_pcp->mnt_writers);
     279             : #else
     280           3 :         mnt->mnt_writers++;
     281             : #endif
     282             : }
     283             : 
     284             : static inline void mnt_dec_writers(struct mount *mnt)
     285             : {
     286             : #ifdef CONFIG_SMP
     287             :         this_cpu_dec(mnt->mnt_pcp->mnt_writers);
     288             : #else
     289           3 :         mnt->mnt_writers--;
     290             : #endif
     291             : }
     292             : 
     293             : static unsigned int mnt_get_writers(struct mount *mnt)
     294             : {
     295             : #ifdef CONFIG_SMP
     296             :         unsigned int count = 0;
     297             :         int cpu;
     298             : 
     299             :         for_each_possible_cpu(cpu) {
     300             :                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
     301             :         }
     302             : 
     303             :         return count;
     304             : #else
     305             :         return mnt->mnt_writers;
     306             : #endif
     307             : }
     308             : 
     309             : static int mnt_is_readonly(struct vfsmount *mnt)
     310             : {
     311           3 :         if (mnt->mnt_sb->s_readonly_remount)
     312             :                 return 1;
     313             :         /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
     314           3 :         smp_rmb();
     315           3 :         return __mnt_is_readonly(mnt);
     316             : }
     317             : 
     318             : /*
     319             :  * Most r/o & frozen checks on a fs are for operations that take discrete
     320             :  * amounts of time, like a write() or unlink().  We must keep track of when
     321             :  * those operations start (for permission checks) and when they end, so that we
     322             :  * can determine when writes are able to occur to a filesystem.
     323             :  */
     324             : /**
     325             :  * __mnt_want_write - get write access to a mount without freeze protection
     326             :  * @m: the mount on which to take a write
     327             :  *
     328             :  * This tells the low-level filesystem that a write is about to be performed to
     329             :  * it, and makes sure that writes are allowed (mnt it read-write) before
     330             :  * returning success. This operation does not protect against filesystem being
     331             :  * frozen. When the write operation is finished, __mnt_drop_write() must be
     332             :  * called. This is effectively a refcount.
     333             :  */
     334           3 : int __mnt_want_write(struct vfsmount *m)
     335             : {
     336           3 :         struct mount *mnt = real_mount(m);
     337           3 :         int ret = 0;
     338             : 
     339           3 :         preempt_disable();
     340             :         mnt_inc_writers(mnt);
     341             :         /*
     342             :          * The store to mnt_inc_writers must be visible before we pass
     343             :          * MNT_WRITE_HOLD loop below, so that the slowpath can see our
     344             :          * incremented count after it has set MNT_WRITE_HOLD.
     345             :          */
     346           3 :         smp_mb();
     347             :         might_lock(&mount_lock.lock);
     348           6 :         while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
     349             :                 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
     350             :                         cpu_relax();
     351             :                 } else {
     352             :                         /*
     353             :                          * This prevents priority inversion, if the task
     354             :                          * setting MNT_WRITE_HOLD got preempted on a remote
     355             :                          * CPU, and it prevents life lock if the task setting
     356             :                          * MNT_WRITE_HOLD has a lower priority and is bound to
     357             :                          * the same CPU as the task that is spinning here.
     358             :                          */
     359             :                         preempt_enable();
     360             :                         lock_mount_hash();
     361             :                         unlock_mount_hash();
     362             :                         preempt_disable();
     363             :                 }
     364             :         }
     365             :         /*
     366             :          * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
     367             :          * be set to match its requirements. So we must not load that until
     368             :          * MNT_WRITE_HOLD is cleared.
     369             :          */
     370           3 :         smp_rmb();
     371           6 :         if (mnt_is_readonly(m)) {
     372             :                 mnt_dec_writers(mnt);
     373           0 :                 ret = -EROFS;
     374             :         }
     375           3 :         preempt_enable();
     376             : 
     377           3 :         return ret;
     378             : }
     379             : 
     380             : /**
     381             :  * mnt_want_write - get write access to a mount
     382             :  * @m: the mount on which to take a write
     383             :  *
     384             :  * This tells the low-level filesystem that a write is about to be performed to
     385             :  * it, and makes sure that writes are allowed (mount is read-write, filesystem
     386             :  * is not frozen) before returning success.  When the write operation is
     387             :  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
     388             :  */
     389           3 : int mnt_want_write(struct vfsmount *m)
     390             : {
     391             :         int ret;
     392             : 
     393           6 :         sb_start_write(m->mnt_sb);
     394           3 :         ret = __mnt_want_write(m);
     395           3 :         if (ret)
     396           0 :                 sb_end_write(m->mnt_sb);
     397           3 :         return ret;
     398             : }
     399             : EXPORT_SYMBOL_GPL(mnt_want_write);
     400             : 
     401             : /**
     402             :  * __mnt_want_write_file - get write access to a file's mount
     403             :  * @file: the file who's mount on which to take a write
     404             :  *
     405             :  * This is like __mnt_want_write, but if the file is already open for writing it
     406             :  * skips incrementing mnt_writers (since the open file already has a reference)
     407             :  * and instead only does the check for emergency r/o remounts.  This must be
     408             :  * paired with __mnt_drop_write_file.
     409             :  */
     410           0 : int __mnt_want_write_file(struct file *file)
     411             : {
     412           0 :         if (file->f_mode & FMODE_WRITER) {
     413             :                 /*
     414             :                  * Superblock may have become readonly while there are still
     415             :                  * writable fd's, e.g. due to a fs error with errors=remount-ro
     416             :                  */
     417           0 :                 if (__mnt_is_readonly(file->f_path.mnt))
     418             :                         return -EROFS;
     419           0 :                 return 0;
     420             :         }
     421           0 :         return __mnt_want_write(file->f_path.mnt);
     422             : }
     423             : 
     424             : /**
     425             :  * mnt_want_write_file - get write access to a file's mount
     426             :  * @file: the file who's mount on which to take a write
     427             :  *
     428             :  * This is like mnt_want_write, but if the file is already open for writing it
     429             :  * skips incrementing mnt_writers (since the open file already has a reference)
     430             :  * and instead only does the freeze protection and the check for emergency r/o
     431             :  * remounts.  This must be paired with mnt_drop_write_file.
     432             :  */
     433           0 : int mnt_want_write_file(struct file *file)
     434             : {
     435             :         int ret;
     436             : 
     437           0 :         sb_start_write(file_inode(file)->i_sb);
     438           0 :         ret = __mnt_want_write_file(file);
     439           0 :         if (ret)
     440           0 :                 sb_end_write(file_inode(file)->i_sb);
     441           0 :         return ret;
     442             : }
     443             : EXPORT_SYMBOL_GPL(mnt_want_write_file);
     444             : 
     445             : /**
     446             :  * __mnt_drop_write - give up write access to a mount
     447             :  * @mnt: the mount on which to give up write access
     448             :  *
     449             :  * Tells the low-level filesystem that we are done
     450             :  * performing writes to it.  Must be matched with
     451             :  * __mnt_want_write() call above.
     452             :  */
     453           0 : void __mnt_drop_write(struct vfsmount *mnt)
     454             : {
     455           3 :         preempt_disable();
     456           3 :         mnt_dec_writers(real_mount(mnt));
     457           3 :         preempt_enable();
     458           0 : }
     459             : 
     460             : /**
     461             :  * mnt_drop_write - give up write access to a mount
     462             :  * @mnt: the mount on which to give up write access
     463             :  *
     464             :  * Tells the low-level filesystem that we are done performing writes to it and
     465             :  * also allows filesystem to be frozen again.  Must be matched with
     466             :  * mnt_want_write() call above.
     467             :  */
     468           3 : void mnt_drop_write(struct vfsmount *mnt)
     469             : {
     470           3 :         __mnt_drop_write(mnt);
     471           6 :         sb_end_write(mnt->mnt_sb);
     472           3 : }
     473             : EXPORT_SYMBOL_GPL(mnt_drop_write);
     474             : 
     475           0 : void __mnt_drop_write_file(struct file *file)
     476             : {
     477           0 :         if (!(file->f_mode & FMODE_WRITER))
     478           0 :                 __mnt_drop_write(file->f_path.mnt);
     479           0 : }
     480             : 
     481           0 : void mnt_drop_write_file(struct file *file)
     482             : {
     483           0 :         __mnt_drop_write_file(file);
     484           0 :         sb_end_write(file_inode(file)->i_sb);
     485           0 : }
     486             : EXPORT_SYMBOL(mnt_drop_write_file);
     487             : 
     488             : /**
     489             :  * mnt_hold_writers - prevent write access to the given mount
     490             :  * @mnt: mnt to prevent write access to
     491             :  *
     492             :  * Prevents write access to @mnt if there are no active writers for @mnt.
     493             :  * This function needs to be called and return successfully before changing
     494             :  * properties of @mnt that need to remain stable for callers with write access
     495             :  * to @mnt.
     496             :  *
     497             :  * After this functions has been called successfully callers must pair it with
     498             :  * a call to mnt_unhold_writers() in order to stop preventing write access to
     499             :  * @mnt.
     500             :  *
     501             :  * Context: This function expects lock_mount_hash() to be held serializing
     502             :  *          setting MNT_WRITE_HOLD.
     503             :  * Return: On success 0 is returned.
     504             :  *         On error, -EBUSY is returned.
     505             :  */
     506             : static inline int mnt_hold_writers(struct mount *mnt)
     507             : {
     508           0 :         mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
     509             :         /*
     510             :          * After storing MNT_WRITE_HOLD, we'll read the counters. This store
     511             :          * should be visible before we do.
     512             :          */
     513           0 :         smp_mb();
     514             : 
     515             :         /*
     516             :          * With writers on hold, if this value is zero, then there are
     517             :          * definitely no active writers (although held writers may subsequently
     518             :          * increment the count, they'll have to wait, and decrement it after
     519             :          * seeing MNT_READONLY).
     520             :          *
     521             :          * It is OK to have counter incremented on one CPU and decremented on
     522             :          * another: the sum will add up correctly. The danger would be when we
     523             :          * sum up each counter, if we read a counter before it is incremented,
     524             :          * but then read another CPU's count which it has been subsequently
     525             :          * decremented from -- we would see more decrements than we should.
     526             :          * MNT_WRITE_HOLD protects against this scenario, because
     527             :          * mnt_want_write first increments count, then smp_mb, then spins on
     528             :          * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
     529             :          * we're counting up here.
     530             :          */
     531           0 :         if (mnt_get_writers(mnt) > 0)
     532             :                 return -EBUSY;
     533             : 
     534             :         return 0;
     535             : }
     536             : 
     537             : /**
     538             :  * mnt_unhold_writers - stop preventing write access to the given mount
     539             :  * @mnt: mnt to stop preventing write access to
     540             :  *
     541             :  * Stop preventing write access to @mnt allowing callers to gain write access
     542             :  * to @mnt again.
     543             :  *
     544             :  * This function can only be called after a successful call to
     545             :  * mnt_hold_writers().
     546             :  *
     547             :  * Context: This function expects lock_mount_hash() to be held.
     548             :  */
     549             : static inline void mnt_unhold_writers(struct mount *mnt)
     550             : {
     551             :         /*
     552             :          * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
     553             :          * that become unheld will see MNT_READONLY.
     554             :          */
     555           0 :         smp_wmb();
     556           0 :         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
     557             : }
     558             : 
     559             : static int mnt_make_readonly(struct mount *mnt)
     560             : {
     561             :         int ret;
     562             : 
     563           0 :         ret = mnt_hold_writers(mnt);
     564           0 :         if (!ret)
     565           0 :                 mnt->mnt.mnt_flags |= MNT_READONLY;
     566           0 :         mnt_unhold_writers(mnt);
     567             :         return ret;
     568             : }
     569             : 
     570           0 : int sb_prepare_remount_readonly(struct super_block *sb)
     571             : {
     572             :         struct mount *mnt;
     573           0 :         int err = 0;
     574             : 
     575             :         /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
     576           0 :         if (atomic_long_read(&sb->s_remove_count))
     577             :                 return -EBUSY;
     578             : 
     579             :         lock_mount_hash();
     580           0 :         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
     581           0 :                 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
     582           0 :                         err = mnt_hold_writers(mnt);
     583           0 :                         if (err)
     584             :                                 break;
     585             :                 }
     586             :         }
     587           0 :         if (!err && atomic_long_read(&sb->s_remove_count))
     588           0 :                 err = -EBUSY;
     589             : 
     590           0 :         if (!err) {
     591           0 :                 sb->s_readonly_remount = 1;
     592           0 :                 smp_wmb();
     593             :         }
     594           0 :         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
     595           0 :                 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
     596           0 :                         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
     597             :         }
     598             :         unlock_mount_hash();
     599             : 
     600           0 :         return err;
     601             : }
     602             : 
     603           0 : static void free_vfsmnt(struct mount *mnt)
     604             : {
     605             :         struct user_namespace *mnt_userns;
     606             : 
     607           0 :         mnt_userns = mnt_user_ns(&mnt->mnt);
     608           0 :         if (!initial_idmapping(mnt_userns))
     609             :                 put_user_ns(mnt_userns);
     610           0 :         kfree_const(mnt->mnt_devname);
     611             : #ifdef CONFIG_SMP
     612             :         free_percpu(mnt->mnt_pcp);
     613             : #endif
     614           0 :         kmem_cache_free(mnt_cache, mnt);
     615           0 : }
     616             : 
     617           0 : static void delayed_free_vfsmnt(struct rcu_head *head)
     618             : {
     619           0 :         free_vfsmnt(container_of(head, struct mount, mnt_rcu));
     620           0 : }
     621             : 
     622             : /* call under rcu_read_lock */
     623           3 : int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
     624             : {
     625             :         struct mount *mnt;
     626           3 :         if (read_seqretry(&mount_lock, seq))
     627             :                 return 1;
     628           3 :         if (bastard == NULL)
     629             :                 return 0;
     630           3 :         mnt = real_mount(bastard);
     631           6 :         mnt_add_count(mnt, 1);
     632           3 :         smp_mb();                       // see mntput_no_expire()
     633           3 :         if (likely(!read_seqretry(&mount_lock, seq)))
     634             :                 return 0;
     635           0 :         if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
     636           0 :                 mnt_add_count(mnt, -1);
     637           0 :                 return 1;
     638             :         }
     639             :         lock_mount_hash();
     640           0 :         if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
     641           0 :                 mnt_add_count(mnt, -1);
     642             :                 unlock_mount_hash();
     643           0 :                 return 1;
     644             :         }
     645             :         unlock_mount_hash();
     646             :         /* caller will mntput() */
     647           0 :         return -1;
     648             : }
     649             : 
     650             : /* call under rcu_read_lock */
     651           0 : bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
     652             : {
     653           0 :         int res = __legitimize_mnt(bastard, seq);
     654           0 :         if (likely(!res))
     655             :                 return true;
     656           0 :         if (unlikely(res < 0)) {
     657           0 :                 rcu_read_unlock();
     658           0 :                 mntput(bastard);
     659             :                 rcu_read_lock();
     660             :         }
     661             :         return false;
     662             : }
     663             : 
     664             : /*
     665             :  * find the first mount at @dentry on vfsmount @mnt.
     666             :  * call under rcu_read_lock()
     667             :  */
     668           0 : struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
     669             : {
     670           0 :         struct hlist_head *head = m_hash(mnt, dentry);
     671             :         struct mount *p;
     672             : 
     673           0 :         hlist_for_each_entry_rcu(p, head, mnt_hash)
     674           0 :                 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
     675             :                         return p;
     676             :         return NULL;
     677             : }
     678             : 
     679             : /*
     680             :  * lookup_mnt - Return the first child mount mounted at path
     681             :  *
     682             :  * "First" means first mounted chronologically.  If you create the
     683             :  * following mounts:
     684             :  *
     685             :  * mount /dev/sda1 /mnt
     686             :  * mount /dev/sda2 /mnt
     687             :  * mount /dev/sda3 /mnt
     688             :  *
     689             :  * Then lookup_mnt() on the base /mnt dentry in the root mount will
     690             :  * return successively the root dentry and vfsmount of /dev/sda1, then
     691             :  * /dev/sda2, then /dev/sda3, then NULL.
     692             :  *
     693             :  * lookup_mnt takes a reference to the found vfsmount.
     694             :  */
     695           0 : struct vfsmount *lookup_mnt(const struct path *path)
     696             : {
     697             :         struct mount *child_mnt;
     698             :         struct vfsmount *m;
     699             :         unsigned seq;
     700             : 
     701             :         rcu_read_lock();
     702             :         do {
     703           0 :                 seq = read_seqbegin(&mount_lock);
     704           0 :                 child_mnt = __lookup_mnt(path->mnt, path->dentry);
     705           0 :                 m = child_mnt ? &child_mnt->mnt : NULL;
     706           0 :         } while (!legitimize_mnt(m, seq));
     707             :         rcu_read_unlock();
     708           0 :         return m;
     709             : }
     710             : 
     711             : static inline void lock_ns_list(struct mnt_namespace *ns)
     712             : {
     713           0 :         spin_lock(&ns->ns_lock);
     714             : }
     715             : 
     716             : static inline void unlock_ns_list(struct mnt_namespace *ns)
     717             : {
     718           0 :         spin_unlock(&ns->ns_lock);
     719             : }
     720             : 
     721             : static inline bool mnt_is_cursor(struct mount *mnt)
     722             : {
     723           0 :         return mnt->mnt.mnt_flags & MNT_CURSOR;
     724             : }
     725             : 
     726             : /*
     727             :  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
     728             :  *                         current mount namespace.
     729             :  *
     730             :  * The common case is dentries are not mountpoints at all and that
     731             :  * test is handled inline.  For the slow case when we are actually
     732             :  * dealing with a mountpoint of some kind, walk through all of the
     733             :  * mounts in the current mount namespace and test to see if the dentry
     734             :  * is a mountpoint.
     735             :  *
     736             :  * The mount_hashtable is not usable in the context because we
     737             :  * need to identify all mounts that may be in the current mount
     738             :  * namespace not just a mount that happens to have some specified
     739             :  * parent mount.
     740             :  */
     741           0 : bool __is_local_mountpoint(struct dentry *dentry)
     742             : {
     743           0 :         struct mnt_namespace *ns = current->nsproxy->mnt_ns;
     744             :         struct mount *mnt;
     745           0 :         bool is_covered = false;
     746             : 
     747           0 :         down_read(&namespace_sem);
     748           0 :         lock_ns_list(ns);
     749           0 :         list_for_each_entry(mnt, &ns->list, mnt_list) {
     750           0 :                 if (mnt_is_cursor(mnt))
     751           0 :                         continue;
     752           0 :                 is_covered = (mnt->mnt_mountpoint == dentry);
     753           0 :                 if (is_covered)
     754             :                         break;
     755             :         }
     756           0 :         unlock_ns_list(ns);
     757           0 :         up_read(&namespace_sem);
     758             : 
     759           0 :         return is_covered;
     760             : }
     761             : 
     762           0 : static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
     763             : {
     764           0 :         struct hlist_head *chain = mp_hash(dentry);
     765             :         struct mountpoint *mp;
     766             : 
     767           0 :         hlist_for_each_entry(mp, chain, m_hash) {
     768           0 :                 if (mp->m_dentry == dentry) {
     769           0 :                         mp->m_count++;
     770           0 :                         return mp;
     771             :                 }
     772             :         }
     773             :         return NULL;
     774             : }
     775             : 
     776           0 : static struct mountpoint *get_mountpoint(struct dentry *dentry)
     777             : {
     778           0 :         struct mountpoint *mp, *new = NULL;
     779             :         int ret;
     780             : 
     781           0 :         if (d_mountpoint(dentry)) {
     782             :                 /* might be worth a WARN_ON() */
     783           0 :                 if (d_unlinked(dentry))
     784             :                         return ERR_PTR(-ENOENT);
     785             : mountpoint:
     786           0 :                 read_seqlock_excl(&mount_lock);
     787           0 :                 mp = lookup_mountpoint(dentry);
     788           0 :                 read_sequnlock_excl(&mount_lock);
     789           0 :                 if (mp)
     790             :                         goto done;
     791             :         }
     792             : 
     793           0 :         if (!new)
     794           0 :                 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
     795           0 :         if (!new)
     796             :                 return ERR_PTR(-ENOMEM);
     797             : 
     798             : 
     799             :         /* Exactly one processes may set d_mounted */
     800           0 :         ret = d_set_mounted(dentry);
     801             : 
     802             :         /* Someone else set d_mounted? */
     803           0 :         if (ret == -EBUSY)
     804             :                 goto mountpoint;
     805             : 
     806             :         /* The dentry is not available as a mountpoint? */
     807           0 :         mp = ERR_PTR(ret);
     808           0 :         if (ret)
     809             :                 goto done;
     810             : 
     811             :         /* Add the new mountpoint to the hash table */
     812           0 :         read_seqlock_excl(&mount_lock);
     813           0 :         new->m_dentry = dget(dentry);
     814           0 :         new->m_count = 1;
     815           0 :         hlist_add_head(&new->m_hash, mp_hash(dentry));
     816           0 :         INIT_HLIST_HEAD(&new->m_list);
     817           0 :         read_sequnlock_excl(&mount_lock);
     818             : 
     819           0 :         mp = new;
     820           0 :         new = NULL;
     821             : done:
     822           0 :         kfree(new);
     823           0 :         return mp;
     824             : }
     825             : 
     826             : /*
     827             :  * vfsmount lock must be held.  Additionally, the caller is responsible
     828             :  * for serializing calls for given disposal list.
     829             :  */
     830           0 : static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
     831             : {
     832           0 :         if (!--mp->m_count) {
     833           0 :                 struct dentry *dentry = mp->m_dentry;
     834           0 :                 BUG_ON(!hlist_empty(&mp->m_list));
     835           0 :                 spin_lock(&dentry->d_lock);
     836           0 :                 dentry->d_flags &= ~DCACHE_MOUNTED;
     837           0 :                 spin_unlock(&dentry->d_lock);
     838           0 :                 dput_to_list(dentry, list);
     839           0 :                 hlist_del(&mp->m_hash);
     840           0 :                 kfree(mp);
     841             :         }
     842           0 : }
     843             : 
     844             : /* called with namespace_lock and vfsmount lock */
     845             : static void put_mountpoint(struct mountpoint *mp)
     846             : {
     847           0 :         __put_mountpoint(mp, &ex_mountpoints);
     848             : }
     849             : 
     850             : static inline int check_mnt(struct mount *mnt)
     851             : {
     852           0 :         return mnt->mnt_ns == current->nsproxy->mnt_ns;
     853             : }
     854             : 
     855             : /*
     856             :  * vfsmount lock must be held for write
     857             :  */
     858           0 : static void touch_mnt_namespace(struct mnt_namespace *ns)
     859             : {
     860           0 :         if (ns) {
     861           0 :                 ns->event = ++event;
     862           0 :                 wake_up_interruptible(&ns->poll);
     863             :         }
     864           0 : }
     865             : 
     866             : /*
     867             :  * vfsmount lock must be held for write
     868             :  */
     869           0 : static void __touch_mnt_namespace(struct mnt_namespace *ns)
     870             : {
     871           0 :         if (ns && ns->event != event) {
     872           0 :                 ns->event = event;
     873           0 :                 wake_up_interruptible(&ns->poll);
     874             :         }
     875           0 : }
     876             : 
     877             : /*
     878             :  * vfsmount lock must be held for write
     879             :  */
     880           0 : static struct mountpoint *unhash_mnt(struct mount *mnt)
     881             : {
     882             :         struct mountpoint *mp;
     883           0 :         mnt->mnt_parent = mnt;
     884           0 :         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
     885           0 :         list_del_init(&mnt->mnt_child);
     886           0 :         hlist_del_init_rcu(&mnt->mnt_hash);
     887           0 :         hlist_del_init(&mnt->mnt_mp_list);
     888           0 :         mp = mnt->mnt_mp;
     889           0 :         mnt->mnt_mp = NULL;
     890           0 :         return mp;
     891             : }
     892             : 
     893             : /*
     894             :  * vfsmount lock must be held for write
     895             :  */
     896             : static void umount_mnt(struct mount *mnt)
     897             : {
     898           0 :         put_mountpoint(unhash_mnt(mnt));
     899             : }
     900             : 
     901             : /*
     902             :  * vfsmount lock must be held for write
     903             :  */
     904           0 : void mnt_set_mountpoint(struct mount *mnt,
     905             :                         struct mountpoint *mp,
     906             :                         struct mount *child_mnt)
     907             : {
     908           0 :         mp->m_count++;
     909           0 :         mnt_add_count(mnt, 1);  /* essentially, that's mntget */
     910           0 :         child_mnt->mnt_mountpoint = mp->m_dentry;
     911           0 :         child_mnt->mnt_parent = mnt;
     912           0 :         child_mnt->mnt_mp = mp;
     913           0 :         hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
     914           0 : }
     915             : 
     916           0 : static void __attach_mnt(struct mount *mnt, struct mount *parent)
     917             : {
     918           0 :         hlist_add_head_rcu(&mnt->mnt_hash,
     919             :                            m_hash(&parent->mnt, mnt->mnt_mountpoint));
     920           0 :         list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
     921           0 : }
     922             : 
     923             : /*
     924             :  * vfsmount lock must be held for write
     925             :  */
     926           0 : static void attach_mnt(struct mount *mnt,
     927             :                         struct mount *parent,
     928             :                         struct mountpoint *mp)
     929             : {
     930           0 :         mnt_set_mountpoint(parent, mp, mnt);
     931           0 :         __attach_mnt(mnt, parent);
     932           0 : }
     933             : 
     934           0 : void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
     935             : {
     936           0 :         struct mountpoint *old_mp = mnt->mnt_mp;
     937           0 :         struct mount *old_parent = mnt->mnt_parent;
     938             : 
     939           0 :         list_del_init(&mnt->mnt_child);
     940           0 :         hlist_del_init(&mnt->mnt_mp_list);
     941           0 :         hlist_del_init_rcu(&mnt->mnt_hash);
     942             : 
     943           0 :         attach_mnt(mnt, parent, mp);
     944             : 
     945           0 :         put_mountpoint(old_mp);
     946           0 :         mnt_add_count(old_parent, -1);
     947           0 : }
     948             : 
     949             : /*
     950             :  * vfsmount lock must be held for write
     951             :  */
     952           0 : static void commit_tree(struct mount *mnt)
     953             : {
     954           0 :         struct mount *parent = mnt->mnt_parent;
     955             :         struct mount *m;
     956           0 :         LIST_HEAD(head);
     957           0 :         struct mnt_namespace *n = parent->mnt_ns;
     958             : 
     959           0 :         BUG_ON(parent == mnt);
     960             : 
     961           0 :         list_add_tail(&head, &mnt->mnt_list);
     962           0 :         list_for_each_entry(m, &head, mnt_list)
     963           0 :                 m->mnt_ns = n;
     964             : 
     965           0 :         list_splice(&head, n->list.prev);
     966             : 
     967           0 :         n->mounts += n->pending_mounts;
     968           0 :         n->pending_mounts = 0;
     969             : 
     970           0 :         __attach_mnt(mnt, parent);
     971           0 :         touch_mnt_namespace(n);
     972           0 : }
     973             : 
     974             : static struct mount *next_mnt(struct mount *p, struct mount *root)
     975             : {
     976           0 :         struct list_head *next = p->mnt_mounts.next;
     977           0 :         if (next == &p->mnt_mounts) {
     978             :                 while (1) {
     979           0 :                         if (p == root)
     980             :                                 return NULL;
     981           0 :                         next = p->mnt_child.next;
     982           0 :                         if (next != &p->mnt_parent->mnt_mounts)
     983             :                                 break;
     984             :                         p = p->mnt_parent;
     985             :                 }
     986             :         }
     987           0 :         return list_entry(next, struct mount, mnt_child);
     988             : }
     989             : 
     990             : static struct mount *skip_mnt_tree(struct mount *p)
     991             : {
     992           0 :         struct list_head *prev = p->mnt_mounts.prev;
     993           0 :         while (prev != &p->mnt_mounts) {
     994           0 :                 p = list_entry(prev, struct mount, mnt_child);
     995           0 :                 prev = p->mnt_mounts.prev;
     996             :         }
     997             :         return p;
     998             : }
     999             : 
    1000             : /**
    1001             :  * vfs_create_mount - Create a mount for a configured superblock
    1002             :  * @fc: The configuration context with the superblock attached
    1003             :  *
    1004             :  * Create a mount to an already configured superblock.  If necessary, the
    1005             :  * caller should invoke vfs_get_tree() before calling this.
    1006             :  *
    1007             :  * Note that this does not attach the mount to anything.
    1008             :  */
    1009          10 : struct vfsmount *vfs_create_mount(struct fs_context *fc)
    1010             : {
    1011             :         struct mount *mnt;
    1012             :         struct user_namespace *fs_userns;
    1013             : 
    1014          10 :         if (!fc->root)
    1015             :                 return ERR_PTR(-EINVAL);
    1016             : 
    1017          10 :         mnt = alloc_vfsmnt(fc->source ?: "none");
    1018          10 :         if (!mnt)
    1019             :                 return ERR_PTR(-ENOMEM);
    1020             : 
    1021          10 :         if (fc->sb_flags & SB_KERNMOUNT)
    1022           9 :                 mnt->mnt.mnt_flags = MNT_INTERNAL;
    1023             : 
    1024          20 :         atomic_inc(&fc->root->d_sb->s_active);
    1025          10 :         mnt->mnt.mnt_sb              = fc->root->d_sb;
    1026          20 :         mnt->mnt.mnt_root    = dget(fc->root);
    1027          10 :         mnt->mnt_mountpoint  = mnt->mnt.mnt_root;
    1028          10 :         mnt->mnt_parent              = mnt;
    1029             : 
    1030          10 :         fs_userns = mnt->mnt.mnt_sb->s_user_ns;
    1031          10 :         if (!initial_idmapping(fs_userns))
    1032           0 :                 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
    1033             : 
    1034             :         lock_mount_hash();
    1035          20 :         list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
    1036             :         unlock_mount_hash();
    1037          10 :         return &mnt->mnt;
    1038             : }
    1039             : EXPORT_SYMBOL(vfs_create_mount);
    1040             : 
    1041          10 : struct vfsmount *fc_mount(struct fs_context *fc)
    1042             : {
    1043          10 :         int err = vfs_get_tree(fc);
    1044          10 :         if (!err) {
    1045          10 :                 up_write(&fc->root->d_sb->s_umount);
    1046          10 :                 return vfs_create_mount(fc);
    1047             :         }
    1048           0 :         return ERR_PTR(err);
    1049             : }
    1050             : EXPORT_SYMBOL(fc_mount);
    1051             : 
    1052          10 : struct vfsmount *vfs_kern_mount(struct file_system_type *type,
    1053             :                                 int flags, const char *name,
    1054             :                                 void *data)
    1055             : {
    1056             :         struct fs_context *fc;
    1057             :         struct vfsmount *mnt;
    1058          10 :         int ret = 0;
    1059             : 
    1060          10 :         if (!type)
    1061             :                 return ERR_PTR(-EINVAL);
    1062             : 
    1063          10 :         fc = fs_context_for_mount(type, flags);
    1064          10 :         if (IS_ERR(fc))
    1065             :                 return ERR_CAST(fc);
    1066             : 
    1067          10 :         if (name)
    1068          10 :                 ret = vfs_parse_fs_string(fc, "source",
    1069             :                                           name, strlen(name));
    1070          10 :         if (!ret)
    1071          10 :                 ret = parse_monolithic_mount_data(fc, data);
    1072          10 :         if (!ret)
    1073          10 :                 mnt = fc_mount(fc);
    1074             :         else
    1075           0 :                 mnt = ERR_PTR(ret);
    1076             : 
    1077          10 :         put_fs_context(fc);
    1078          10 :         return mnt;
    1079             : }
    1080             : EXPORT_SYMBOL_GPL(vfs_kern_mount);
    1081             : 
    1082             : struct vfsmount *
    1083           0 : vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
    1084             :              const char *name, void *data)
    1085             : {
    1086             :         /* Until it is worked out how to pass the user namespace
    1087             :          * through from the parent mount to the submount don't support
    1088             :          * unprivileged mounts with submounts.
    1089             :          */
    1090           0 :         if (mountpoint->d_sb->s_user_ns != &init_user_ns)
    1091             :                 return ERR_PTR(-EPERM);
    1092             : 
    1093           0 :         return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
    1094             : }
    1095             : EXPORT_SYMBOL_GPL(vfs_submount);
    1096             : 
    1097           0 : static struct mount *clone_mnt(struct mount *old, struct dentry *root,
    1098             :                                         int flag)
    1099             : {
    1100           0 :         struct super_block *sb = old->mnt.mnt_sb;
    1101             :         struct mount *mnt;
    1102             :         int err;
    1103             : 
    1104           0 :         mnt = alloc_vfsmnt(old->mnt_devname);
    1105           0 :         if (!mnt)
    1106             :                 return ERR_PTR(-ENOMEM);
    1107             : 
    1108           0 :         if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
    1109           0 :                 mnt->mnt_group_id = 0; /* not a peer of original */
    1110             :         else
    1111           0 :                 mnt->mnt_group_id = old->mnt_group_id;
    1112             : 
    1113           0 :         if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
    1114           0 :                 err = mnt_alloc_group_id(mnt);
    1115           0 :                 if (err)
    1116             :                         goto out_free;
    1117             :         }
    1118             : 
    1119           0 :         mnt->mnt.mnt_flags = old->mnt.mnt_flags;
    1120           0 :         mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
    1121             : 
    1122           0 :         atomic_inc(&sb->s_active);
    1123           0 :         mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
    1124           0 :         if (!initial_idmapping(mnt->mnt.mnt_userns))
    1125           0 :                 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
    1126           0 :         mnt->mnt.mnt_sb = sb;
    1127           0 :         mnt->mnt.mnt_root = dget(root);
    1128           0 :         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
    1129           0 :         mnt->mnt_parent = mnt;
    1130             :         lock_mount_hash();
    1131           0 :         list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
    1132             :         unlock_mount_hash();
    1133             : 
    1134           0 :         if ((flag & CL_SLAVE) ||
    1135           0 :             ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
    1136           0 :                 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
    1137           0 :                 mnt->mnt_master = old;
    1138           0 :                 CLEAR_MNT_SHARED(mnt);
    1139           0 :         } else if (!(flag & CL_PRIVATE)) {
    1140           0 :                 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
    1141           0 :                         list_add(&mnt->mnt_share, &old->mnt_share);
    1142           0 :                 if (IS_MNT_SLAVE(old))
    1143           0 :                         list_add(&mnt->mnt_slave, &old->mnt_slave);
    1144           0 :                 mnt->mnt_master = old->mnt_master;
    1145             :         } else {
    1146           0 :                 CLEAR_MNT_SHARED(mnt);
    1147             :         }
    1148           0 :         if (flag & CL_MAKE_SHARED)
    1149           0 :                 set_mnt_shared(mnt);
    1150             : 
    1151             :         /* stick the duplicate mount on the same expiry list
    1152             :          * as the original if that was on one */
    1153           0 :         if (flag & CL_EXPIRE) {
    1154           0 :                 if (!list_empty(&old->mnt_expire))
    1155           0 :                         list_add(&mnt->mnt_expire, &old->mnt_expire);
    1156             :         }
    1157             : 
    1158             :         return mnt;
    1159             : 
    1160             :  out_free:
    1161           0 :         mnt_free_id(mnt);
    1162           0 :         free_vfsmnt(mnt);
    1163           0 :         return ERR_PTR(err);
    1164             : }
    1165             : 
    1166           0 : static void cleanup_mnt(struct mount *mnt)
    1167             : {
    1168             :         struct hlist_node *p;
    1169             :         struct mount *m;
    1170             :         /*
    1171             :          * The warning here probably indicates that somebody messed
    1172             :          * up a mnt_want/drop_write() pair.  If this happens, the
    1173             :          * filesystem was probably unable to make r/w->r/o transitions.
    1174             :          * The locking used to deal with mnt_count decrement provides barriers,
    1175             :          * so mnt_get_writers() below is safe.
    1176             :          */
    1177           0 :         WARN_ON(mnt_get_writers(mnt));
    1178           0 :         if (unlikely(mnt->mnt_pins.first))
    1179           0 :                 mnt_pin_kill(mnt);
    1180           0 :         hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
    1181           0 :                 hlist_del(&m->mnt_umount);
    1182           0 :                 mntput(&m->mnt);
    1183             :         }
    1184           0 :         fsnotify_vfsmount_delete(&mnt->mnt);
    1185           0 :         dput(mnt->mnt.mnt_root);
    1186           0 :         deactivate_super(mnt->mnt.mnt_sb);
    1187           0 :         mnt_free_id(mnt);
    1188           0 :         call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
    1189           0 : }
    1190             : 
    1191           0 : static void __cleanup_mnt(struct rcu_head *head)
    1192             : {
    1193           0 :         cleanup_mnt(container_of(head, struct mount, mnt_rcu));
    1194           0 : }
    1195             : 
    1196             : static LLIST_HEAD(delayed_mntput_list);
    1197           0 : static void delayed_mntput(struct work_struct *unused)
    1198             : {
    1199           0 :         struct llist_node *node = llist_del_all(&delayed_mntput_list);
    1200             :         struct mount *m, *t;
    1201             : 
    1202           0 :         llist_for_each_entry_safe(m, t, node, mnt_llist)
    1203           0 :                 cleanup_mnt(m);
    1204           0 : }
    1205             : static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
    1206             : 
    1207           4 : static void mntput_no_expire(struct mount *mnt)
    1208             : {
    1209           4 :         LIST_HEAD(list);
    1210             :         int count;
    1211             : 
    1212             :         rcu_read_lock();
    1213           4 :         if (likely(READ_ONCE(mnt->mnt_ns))) {
    1214             :                 /*
    1215             :                  * Since we don't do lock_mount_hash() here,
    1216             :                  * ->mnt_ns can change under us.  However, if it's
    1217             :                  * non-NULL, then there's a reference that won't
    1218             :                  * be dropped until after an RCU delay done after
    1219             :                  * turning ->mnt_ns NULL.  So if we observe it
    1220             :                  * non-NULL under rcu_read_lock(), the reference
    1221             :                  * we are dropping is not the final one.
    1222             :                  */
    1223           6 :                 mnt_add_count(mnt, -1);
    1224             :                 rcu_read_unlock();
    1225           4 :                 return;
    1226             :         }
    1227             :         lock_mount_hash();
    1228             :         /*
    1229             :          * make sure that if __legitimize_mnt() has not seen us grab
    1230             :          * mount_lock, we'll see their refcount increment here.
    1231             :          */
    1232           1 :         smp_mb();
    1233           2 :         mnt_add_count(mnt, -1);
    1234           1 :         count = mnt_get_count(mnt);
    1235           1 :         if (count != 0) {
    1236           1 :                 WARN_ON(count < 0);
    1237             :                 rcu_read_unlock();
    1238             :                 unlock_mount_hash();
    1239             :                 return;
    1240             :         }
    1241           0 :         if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
    1242             :                 rcu_read_unlock();
    1243             :                 unlock_mount_hash();
    1244             :                 return;
    1245             :         }
    1246           0 :         mnt->mnt.mnt_flags |= MNT_DOOMED;
    1247             :         rcu_read_unlock();
    1248             : 
    1249           0 :         list_del(&mnt->mnt_instance);
    1250             : 
    1251           0 :         if (unlikely(!list_empty(&mnt->mnt_mounts))) {
    1252             :                 struct mount *p, *tmp;
    1253           0 :                 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
    1254           0 :                         __put_mountpoint(unhash_mnt(p), &list);
    1255           0 :                         hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
    1256             :                 }
    1257             :         }
    1258             :         unlock_mount_hash();
    1259           0 :         shrink_dentry_list(&list);
    1260             : 
    1261           0 :         if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
    1262           0 :                 struct task_struct *task = current;
    1263           0 :                 if (likely(!(task->flags & PF_KTHREAD))) {
    1264           0 :                         init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
    1265           0 :                         if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
    1266             :                                 return;
    1267             :                 }
    1268           0 :                 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
    1269             :                         schedule_delayed_work(&delayed_mntput_work, 1);
    1270             :                 return;
    1271             :         }
    1272           0 :         cleanup_mnt(mnt);
    1273             : }
    1274             : 
    1275           7 : void mntput(struct vfsmount *mnt)
    1276             : {
    1277           7 :         if (mnt) {
    1278           4 :                 struct mount *m = real_mount(mnt);
    1279             :                 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
    1280           4 :                 if (unlikely(m->mnt_expiry_mark))
    1281           0 :                         m->mnt_expiry_mark = 0;
    1282           4 :                 mntput_no_expire(m);
    1283             :         }
    1284           7 : }
    1285             : EXPORT_SYMBOL(mntput);
    1286             : 
    1287           3 : struct vfsmount *mntget(struct vfsmount *mnt)
    1288             : {
    1289           3 :         if (mnt)
    1290           3 :                 mnt_add_count(real_mount(mnt), 1);
    1291           3 :         return mnt;
    1292             : }
    1293             : EXPORT_SYMBOL(mntget);
    1294             : 
    1295             : /**
    1296             :  * path_is_mountpoint() - Check if path is a mount in the current namespace.
    1297             :  * @path: path to check
    1298             :  *
    1299             :  *  d_mountpoint() can only be used reliably to establish if a dentry is
    1300             :  *  not mounted in any namespace and that common case is handled inline.
    1301             :  *  d_mountpoint() isn't aware of the possibility there may be multiple
    1302             :  *  mounts using a given dentry in a different namespace. This function
    1303             :  *  checks if the passed in path is a mountpoint rather than the dentry
    1304             :  *  alone.
    1305             :  */
    1306           0 : bool path_is_mountpoint(const struct path *path)
    1307             : {
    1308             :         unsigned seq;
    1309             :         bool res;
    1310             : 
    1311           0 :         if (!d_mountpoint(path->dentry))
    1312             :                 return false;
    1313             : 
    1314             :         rcu_read_lock();
    1315             :         do {
    1316           0 :                 seq = read_seqbegin(&mount_lock);
    1317           0 :                 res = __path_is_mountpoint(path);
    1318           0 :         } while (read_seqretry(&mount_lock, seq));
    1319             :         rcu_read_unlock();
    1320             : 
    1321           0 :         return res;
    1322             : }
    1323             : EXPORT_SYMBOL(path_is_mountpoint);
    1324             : 
    1325           0 : struct vfsmount *mnt_clone_internal(const struct path *path)
    1326             : {
    1327             :         struct mount *p;
    1328           0 :         p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
    1329           0 :         if (IS_ERR(p))
    1330             :                 return ERR_CAST(p);
    1331           0 :         p->mnt.mnt_flags |= MNT_INTERNAL;
    1332           0 :         return &p->mnt;
    1333             : }
    1334             : 
    1335             : #ifdef CONFIG_PROC_FS
    1336             : static struct mount *mnt_list_next(struct mnt_namespace *ns,
    1337             :                                    struct list_head *p)
    1338             : {
    1339           0 :         struct mount *mnt, *ret = NULL;
    1340             : 
    1341           0 :         lock_ns_list(ns);
    1342           0 :         list_for_each_continue(p, &ns->list) {
    1343           0 :                 mnt = list_entry(p, typeof(*mnt), mnt_list);
    1344           0 :                 if (!mnt_is_cursor(mnt)) {
    1345             :                         ret = mnt;
    1346             :                         break;
    1347             :                 }
    1348             :         }
    1349           0 :         unlock_ns_list(ns);
    1350             : 
    1351             :         return ret;
    1352             : }
    1353             : 
    1354             : /* iterator; we want it to have access to namespace_sem, thus here... */
    1355           0 : static void *m_start(struct seq_file *m, loff_t *pos)
    1356             : {
    1357           0 :         struct proc_mounts *p = m->private;
    1358             :         struct list_head *prev;
    1359             : 
    1360           0 :         down_read(&namespace_sem);
    1361           0 :         if (!*pos) {
    1362           0 :                 prev = &p->ns->list;
    1363             :         } else {
    1364           0 :                 prev = &p->cursor.mnt_list;
    1365             : 
    1366             :                 /* Read after we'd reached the end? */
    1367           0 :                 if (list_empty(prev))
    1368             :                         return NULL;
    1369             :         }
    1370             : 
    1371           0 :         return mnt_list_next(p->ns, prev);
    1372             : }
    1373             : 
    1374           0 : static void *m_next(struct seq_file *m, void *v, loff_t *pos)
    1375             : {
    1376           0 :         struct proc_mounts *p = m->private;
    1377           0 :         struct mount *mnt = v;
    1378             : 
    1379           0 :         ++*pos;
    1380           0 :         return mnt_list_next(p->ns, &mnt->mnt_list);
    1381             : }
    1382             : 
    1383           0 : static void m_stop(struct seq_file *m, void *v)
    1384             : {
    1385           0 :         struct proc_mounts *p = m->private;
    1386           0 :         struct mount *mnt = v;
    1387             : 
    1388           0 :         lock_ns_list(p->ns);
    1389           0 :         if (mnt)
    1390           0 :                 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
    1391             :         else
    1392           0 :                 list_del_init(&p->cursor.mnt_list);
    1393           0 :         unlock_ns_list(p->ns);
    1394           0 :         up_read(&namespace_sem);
    1395           0 : }
    1396             : 
    1397           0 : static int m_show(struct seq_file *m, void *v)
    1398             : {
    1399           0 :         struct proc_mounts *p = m->private;
    1400           0 :         struct mount *r = v;
    1401           0 :         return p->show(m, &r->mnt);
    1402             : }
    1403             : 
    1404             : const struct seq_operations mounts_op = {
    1405             :         .start  = m_start,
    1406             :         .next   = m_next,
    1407             :         .stop   = m_stop,
    1408             :         .show   = m_show,
    1409             : };
    1410             : 
    1411           0 : void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
    1412             : {
    1413           0 :         down_read(&namespace_sem);
    1414           0 :         lock_ns_list(ns);
    1415           0 :         list_del(&cursor->mnt_list);
    1416           0 :         unlock_ns_list(ns);
    1417           0 :         up_read(&namespace_sem);
    1418           0 : }
    1419             : #endif  /* CONFIG_PROC_FS */
    1420             : 
    1421             : /**
    1422             :  * may_umount_tree - check if a mount tree is busy
    1423             :  * @m: root of mount tree
    1424             :  *
    1425             :  * This is called to check if a tree of mounts has any
    1426             :  * open files, pwds, chroots or sub mounts that are
    1427             :  * busy.
    1428             :  */
    1429           0 : int may_umount_tree(struct vfsmount *m)
    1430             : {
    1431           0 :         struct mount *mnt = real_mount(m);
    1432           0 :         int actual_refs = 0;
    1433           0 :         int minimum_refs = 0;
    1434             :         struct mount *p;
    1435           0 :         BUG_ON(!m);
    1436             : 
    1437             :         /* write lock needed for mnt_get_count */
    1438             :         lock_mount_hash();
    1439           0 :         for (p = mnt; p; p = next_mnt(p, mnt)) {
    1440           0 :                 actual_refs += mnt_get_count(p);
    1441           0 :                 minimum_refs += 2;
    1442             :         }
    1443             :         unlock_mount_hash();
    1444             : 
    1445           0 :         if (actual_refs > minimum_refs)
    1446             :                 return 0;
    1447             : 
    1448           0 :         return 1;
    1449             : }
    1450             : 
    1451             : EXPORT_SYMBOL(may_umount_tree);
    1452             : 
    1453             : /**
    1454             :  * may_umount - check if a mount point is busy
    1455             :  * @mnt: root of mount
    1456             :  *
    1457             :  * This is called to check if a mount point has any
    1458             :  * open files, pwds, chroots or sub mounts. If the
    1459             :  * mount has sub mounts this will return busy
    1460             :  * regardless of whether the sub mounts are busy.
    1461             :  *
    1462             :  * Doesn't take quota and stuff into account. IOW, in some cases it will
    1463             :  * give false negatives. The main reason why it's here is that we need
    1464             :  * a non-destructive way to look for easily umountable filesystems.
    1465             :  */
    1466           0 : int may_umount(struct vfsmount *mnt)
    1467             : {
    1468           0 :         int ret = 1;
    1469           0 :         down_read(&namespace_sem);
    1470           0 :         lock_mount_hash();
    1471           0 :         if (propagate_mount_busy(real_mount(mnt), 2))
    1472           0 :                 ret = 0;
    1473             :         unlock_mount_hash();
    1474           0 :         up_read(&namespace_sem);
    1475           0 :         return ret;
    1476             : }
    1477             : 
    1478             : EXPORT_SYMBOL(may_umount);
    1479             : 
    1480           0 : static void namespace_unlock(void)
    1481             : {
    1482             :         struct hlist_head head;
    1483             :         struct hlist_node *p;
    1484             :         struct mount *m;
    1485           0 :         LIST_HEAD(list);
    1486             : 
    1487           0 :         hlist_move_list(&unmounted, &head);
    1488           0 :         list_splice_init(&ex_mountpoints, &list);
    1489             : 
    1490           0 :         up_write(&namespace_sem);
    1491             : 
    1492           0 :         shrink_dentry_list(&list);
    1493             : 
    1494           0 :         if (likely(hlist_empty(&head)))
    1495           0 :                 return;
    1496             : 
    1497             :         synchronize_rcu_expedited();
    1498             : 
    1499           0 :         hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
    1500           0 :                 hlist_del(&m->mnt_umount);
    1501           0 :                 mntput(&m->mnt);
    1502             :         }
    1503             : }
    1504             : 
    1505             : static inline void namespace_lock(void)
    1506             : {
    1507           0 :         down_write(&namespace_sem);
    1508             : }
    1509             : 
    1510             : enum umount_tree_flags {
    1511             :         UMOUNT_SYNC = 1,
    1512             :         UMOUNT_PROPAGATE = 2,
    1513             :         UMOUNT_CONNECTED = 4,
    1514             : };
    1515             : 
    1516             : static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
    1517             : {
    1518             :         /* Leaving mounts connected is only valid for lazy umounts */
    1519           0 :         if (how & UMOUNT_SYNC)
    1520             :                 return true;
    1521             : 
    1522             :         /* A mount without a parent has nothing to be connected to */
    1523           0 :         if (!mnt_has_parent(mnt))
    1524             :                 return true;
    1525             : 
    1526             :         /* Because the reference counting rules change when mounts are
    1527             :          * unmounted and connected, umounted mounts may not be
    1528             :          * connected to mounted mounts.
    1529             :          */
    1530           0 :         if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
    1531             :                 return true;
    1532             : 
    1533             :         /* Has it been requested that the mount remain connected? */
    1534           0 :         if (how & UMOUNT_CONNECTED)
    1535             :                 return false;
    1536             : 
    1537             :         /* Is the mount locked such that it needs to remain connected? */
    1538           0 :         if (IS_MNT_LOCKED(mnt))
    1539             :                 return false;
    1540             : 
    1541             :         /* By default disconnect the mount */
    1542             :         return true;
    1543             : }
    1544             : 
    1545             : /*
    1546             :  * mount_lock must be held
    1547             :  * namespace_sem must be held for write
    1548             :  */
    1549           0 : static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
    1550             : {
    1551           0 :         LIST_HEAD(tmp_list);
    1552             :         struct mount *p;
    1553             : 
    1554           0 :         if (how & UMOUNT_PROPAGATE)
    1555           0 :                 propagate_mount_unlock(mnt);
    1556             : 
    1557             :         /* Gather the mounts to umount */
    1558           0 :         for (p = mnt; p; p = next_mnt(p, mnt)) {
    1559           0 :                 p->mnt.mnt_flags |= MNT_UMOUNT;
    1560           0 :                 list_move(&p->mnt_list, &tmp_list);
    1561             :         }
    1562             : 
    1563             :         /* Hide the mounts from mnt_mounts */
    1564           0 :         list_for_each_entry(p, &tmp_list, mnt_list) {
    1565           0 :                 list_del_init(&p->mnt_child);
    1566             :         }
    1567             : 
    1568             :         /* Add propogated mounts to the tmp_list */
    1569           0 :         if (how & UMOUNT_PROPAGATE)
    1570           0 :                 propagate_umount(&tmp_list);
    1571             : 
    1572           0 :         while (!list_empty(&tmp_list)) {
    1573             :                 struct mnt_namespace *ns;
    1574             :                 bool disconnect;
    1575           0 :                 p = list_first_entry(&tmp_list, struct mount, mnt_list);
    1576           0 :                 list_del_init(&p->mnt_expire);
    1577           0 :                 list_del_init(&p->mnt_list);
    1578           0 :                 ns = p->mnt_ns;
    1579           0 :                 if (ns) {
    1580           0 :                         ns->mounts--;
    1581           0 :                         __touch_mnt_namespace(ns);
    1582             :                 }
    1583           0 :                 p->mnt_ns = NULL;
    1584           0 :                 if (how & UMOUNT_SYNC)
    1585           0 :                         p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
    1586             : 
    1587           0 :                 disconnect = disconnect_mount(p, how);
    1588           0 :                 if (mnt_has_parent(p)) {
    1589           0 :                         mnt_add_count(p->mnt_parent, -1);
    1590           0 :                         if (!disconnect) {
    1591             :                                 /* Don't forget about p */
    1592           0 :                                 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
    1593             :                         } else {
    1594             :                                 umount_mnt(p);
    1595             :                         }
    1596             :                 }
    1597           0 :                 change_mnt_propagation(p, MS_PRIVATE);
    1598           0 :                 if (disconnect)
    1599           0 :                         hlist_add_head(&p->mnt_umount, &unmounted);
    1600             :         }
    1601           0 : }
    1602             : 
    1603             : static void shrink_submounts(struct mount *mnt);
    1604             : 
    1605           0 : static int do_umount_root(struct super_block *sb)
    1606             : {
    1607           0 :         int ret = 0;
    1608             : 
    1609           0 :         down_write(&sb->s_umount);
    1610           0 :         if (!sb_rdonly(sb)) {
    1611             :                 struct fs_context *fc;
    1612             : 
    1613           0 :                 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
    1614             :                                                 SB_RDONLY);
    1615           0 :                 if (IS_ERR(fc)) {
    1616           0 :                         ret = PTR_ERR(fc);
    1617             :                 } else {
    1618           0 :                         ret = parse_monolithic_mount_data(fc, NULL);
    1619           0 :                         if (!ret)
    1620           0 :                                 ret = reconfigure_super(fc);
    1621           0 :                         put_fs_context(fc);
    1622             :                 }
    1623             :         }
    1624           0 :         up_write(&sb->s_umount);
    1625           0 :         return ret;
    1626             : }
    1627             : 
    1628           0 : static int do_umount(struct mount *mnt, int flags)
    1629             : {
    1630           0 :         struct super_block *sb = mnt->mnt.mnt_sb;
    1631             :         int retval;
    1632             : 
    1633           0 :         retval = security_sb_umount(&mnt->mnt, flags);
    1634             :         if (retval)
    1635             :                 return retval;
    1636             : 
    1637             :         /*
    1638             :          * Allow userspace to request a mountpoint be expired rather than
    1639             :          * unmounting unconditionally. Unmount only happens if:
    1640             :          *  (1) the mark is already set (the mark is cleared by mntput())
    1641             :          *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
    1642             :          */
    1643           0 :         if (flags & MNT_EXPIRE) {
    1644           0 :                 if (&mnt->mnt == current->fs->root.mnt ||
    1645           0 :                     flags & (MNT_FORCE | MNT_DETACH))
    1646             :                         return -EINVAL;
    1647             : 
    1648             :                 /*
    1649             :                  * probably don't strictly need the lock here if we examined
    1650             :                  * all race cases, but it's a slowpath.
    1651             :                  */
    1652           0 :                 lock_mount_hash();
    1653           0 :                 if (mnt_get_count(mnt) != 2) {
    1654             :                         unlock_mount_hash();
    1655           0 :                         return -EBUSY;
    1656             :                 }
    1657             :                 unlock_mount_hash();
    1658             : 
    1659           0 :                 if (!xchg(&mnt->mnt_expiry_mark, 1))
    1660             :                         return -EAGAIN;
    1661             :         }
    1662             : 
    1663             :         /*
    1664             :          * If we may have to abort operations to get out of this
    1665             :          * mount, and they will themselves hold resources we must
    1666             :          * allow the fs to do things. In the Unix tradition of
    1667             :          * 'Gee thats tricky lets do it in userspace' the umount_begin
    1668             :          * might fail to complete on the first run through as other tasks
    1669             :          * must return, and the like. Thats for the mount program to worry
    1670             :          * about for the moment.
    1671             :          */
    1672             : 
    1673           0 :         if (flags & MNT_FORCE && sb->s_op->umount_begin) {
    1674           0 :                 sb->s_op->umount_begin(sb);
    1675             :         }
    1676             : 
    1677             :         /*
    1678             :          * No sense to grab the lock for this test, but test itself looks
    1679             :          * somewhat bogus. Suggestions for better replacement?
    1680             :          * Ho-hum... In principle, we might treat that as umount + switch
    1681             :          * to rootfs. GC would eventually take care of the old vfsmount.
    1682             :          * Actually it makes sense, especially if rootfs would contain a
    1683             :          * /reboot - static binary that would close all descriptors and
    1684             :          * call reboot(9). Then init(8) could umount root and exec /reboot.
    1685             :          */
    1686           0 :         if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
    1687             :                 /*
    1688             :                  * Special case for "unmounting" root ...
    1689             :                  * we just try to remount it readonly.
    1690             :                  */
    1691           0 :                 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
    1692             :                         return -EPERM;
    1693           0 :                 return do_umount_root(sb);
    1694             :         }
    1695             : 
    1696             :         namespace_lock();
    1697             :         lock_mount_hash();
    1698             : 
    1699             :         /* Recheck MNT_LOCKED with the locks held */
    1700           0 :         retval = -EINVAL;
    1701           0 :         if (mnt->mnt.mnt_flags & MNT_LOCKED)
    1702             :                 goto out;
    1703             : 
    1704           0 :         event++;
    1705           0 :         if (flags & MNT_DETACH) {
    1706           0 :                 if (!list_empty(&mnt->mnt_list))
    1707           0 :                         umount_tree(mnt, UMOUNT_PROPAGATE);
    1708             :                 retval = 0;
    1709             :         } else {
    1710           0 :                 shrink_submounts(mnt);
    1711           0 :                 retval = -EBUSY;
    1712           0 :                 if (!propagate_mount_busy(mnt, 2)) {
    1713           0 :                         if (!list_empty(&mnt->mnt_list))
    1714           0 :                                 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    1715             :                         retval = 0;
    1716             :                 }
    1717             :         }
    1718             : out:
    1719             :         unlock_mount_hash();
    1720           0 :         namespace_unlock();
    1721           0 :         return retval;
    1722             : }
    1723             : 
    1724             : /*
    1725             :  * __detach_mounts - lazily unmount all mounts on the specified dentry
    1726             :  *
    1727             :  * During unlink, rmdir, and d_drop it is possible to loose the path
    1728             :  * to an existing mountpoint, and wind up leaking the mount.
    1729             :  * detach_mounts allows lazily unmounting those mounts instead of
    1730             :  * leaking them.
    1731             :  *
    1732             :  * The caller may hold dentry->d_inode->i_mutex.
    1733             :  */
    1734           0 : void __detach_mounts(struct dentry *dentry)
    1735             : {
    1736             :         struct mountpoint *mp;
    1737             :         struct mount *mnt;
    1738             : 
    1739             :         namespace_lock();
    1740             :         lock_mount_hash();
    1741           0 :         mp = lookup_mountpoint(dentry);
    1742           0 :         if (!mp)
    1743             :                 goto out_unlock;
    1744             : 
    1745           0 :         event++;
    1746           0 :         while (!hlist_empty(&mp->m_list)) {
    1747           0 :                 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
    1748           0 :                 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
    1749           0 :                         umount_mnt(mnt);
    1750           0 :                         hlist_add_head(&mnt->mnt_umount, &unmounted);
    1751             :                 }
    1752           0 :                 else umount_tree(mnt, UMOUNT_CONNECTED);
    1753             :         }
    1754             :         put_mountpoint(mp);
    1755             : out_unlock:
    1756             :         unlock_mount_hash();
    1757           0 :         namespace_unlock();
    1758           0 : }
    1759             : 
    1760             : /*
    1761             :  * Is the caller allowed to modify his namespace?
    1762             :  */
    1763             : static inline bool may_mount(void)
    1764             : {
    1765           0 :         return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
    1766             : }
    1767             : 
    1768             : static void warn_mandlock(void)
    1769             : {
    1770           0 :         pr_warn_once("=======================================================\n"
    1771             :                      "WARNING: The mand mount option has been deprecated and\n"
    1772             :                      "         and is ignored by this kernel. Remove the mand\n"
    1773             :                      "         option from the mount to silence this warning.\n"
    1774             :                      "=======================================================\n");
    1775             : }
    1776             : 
    1777           0 : static int can_umount(const struct path *path, int flags)
    1778             : {
    1779           0 :         struct mount *mnt = real_mount(path->mnt);
    1780             : 
    1781           0 :         if (!may_mount())
    1782             :                 return -EPERM;
    1783           0 :         if (path->dentry != path->mnt->mnt_root)
    1784             :                 return -EINVAL;
    1785           0 :         if (!check_mnt(mnt))
    1786             :                 return -EINVAL;
    1787           0 :         if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
    1788             :                 return -EINVAL;
    1789           0 :         if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
    1790             :                 return -EPERM;
    1791             :         return 0;
    1792             : }
    1793             : 
    1794             : // caller is responsible for flags being sane
    1795           0 : int path_umount(struct path *path, int flags)
    1796             : {
    1797           0 :         struct mount *mnt = real_mount(path->mnt);
    1798             :         int ret;
    1799             : 
    1800           0 :         ret = can_umount(path, flags);
    1801           0 :         if (!ret)
    1802           0 :                 ret = do_umount(mnt, flags);
    1803             : 
    1804             :         /* we mustn't call path_put() as that would clear mnt_expiry_mark */
    1805           0 :         dput(path->dentry);
    1806           0 :         mntput_no_expire(mnt);
    1807           0 :         return ret;
    1808             : }
    1809             : 
    1810           0 : static int ksys_umount(char __user *name, int flags)
    1811             : {
    1812           0 :         int lookup_flags = LOOKUP_MOUNTPOINT;
    1813             :         struct path path;
    1814             :         int ret;
    1815             : 
    1816             :         // basic validity checks done first
    1817           0 :         if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
    1818             :                 return -EINVAL;
    1819             : 
    1820           0 :         if (!(flags & UMOUNT_NOFOLLOW))
    1821           0 :                 lookup_flags |= LOOKUP_FOLLOW;
    1822           0 :         ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
    1823           0 :         if (ret)
    1824             :                 return ret;
    1825           0 :         return path_umount(&path, flags);
    1826             : }
    1827             : 
    1828           0 : SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
    1829             : {
    1830           0 :         return ksys_umount(name, flags);
    1831             : }
    1832             : 
    1833             : #ifdef __ARCH_WANT_SYS_OLDUMOUNT
    1834             : 
    1835             : /*
    1836             :  *      The 2.0 compatible umount. No flags.
    1837             :  */
    1838           0 : SYSCALL_DEFINE1(oldumount, char __user *, name)
    1839             : {
    1840           0 :         return ksys_umount(name, 0);
    1841             : }
    1842             : 
    1843             : #endif
    1844             : 
    1845             : static bool is_mnt_ns_file(struct dentry *dentry)
    1846             : {
    1847             :         /* Is this a proxy for a mount namespace? */
    1848           0 :         return dentry->d_op == &ns_dentry_operations &&
    1849           0 :                dentry->d_fsdata == &mntns_operations;
    1850             : }
    1851             : 
    1852             : static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
    1853             : {
    1854           0 :         return container_of(ns, struct mnt_namespace, ns);
    1855             : }
    1856             : 
    1857           0 : struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
    1858             : {
    1859           0 :         return &mnt->ns;
    1860             : }
    1861             : 
    1862             : static bool mnt_ns_loop(struct dentry *dentry)
    1863             : {
    1864             :         /* Could bind mounting the mount namespace inode cause a
    1865             :          * mount namespace loop?
    1866             :          */
    1867             :         struct mnt_namespace *mnt_ns;
    1868           0 :         if (!is_mnt_ns_file(dentry))
    1869             :                 return false;
    1870             : 
    1871           0 :         mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
    1872           0 :         return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
    1873             : }
    1874             : 
    1875           0 : struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
    1876             :                                         int flag)
    1877             : {
    1878             :         struct mount *res, *p, *q, *r, *parent;
    1879             : 
    1880           0 :         if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
    1881             :                 return ERR_PTR(-EINVAL);
    1882             : 
    1883           0 :         if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
    1884             :                 return ERR_PTR(-EINVAL);
    1885             : 
    1886           0 :         res = q = clone_mnt(mnt, dentry, flag);
    1887           0 :         if (IS_ERR(q))
    1888             :                 return q;
    1889             : 
    1890           0 :         q->mnt_mountpoint = mnt->mnt_mountpoint;
    1891             : 
    1892           0 :         p = mnt;
    1893           0 :         list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
    1894             :                 struct mount *s;
    1895           0 :                 if (!is_subdir(r->mnt_mountpoint, dentry))
    1896           0 :                         continue;
    1897             : 
    1898           0 :                 for (s = r; s; s = next_mnt(s, r)) {
    1899           0 :                         if (!(flag & CL_COPY_UNBINDABLE) &&
    1900           0 :                             IS_MNT_UNBINDABLE(s)) {
    1901           0 :                                 if (s->mnt.mnt_flags & MNT_LOCKED) {
    1902             :                                         /* Both unbindable and locked. */
    1903             :                                         q = ERR_PTR(-EPERM);
    1904             :                                         goto out;
    1905             :                                 } else {
    1906           0 :                                         s = skip_mnt_tree(s);
    1907           0 :                                         continue;
    1908             :                                 }
    1909             :                         }
    1910           0 :                         if (!(flag & CL_COPY_MNT_NS_FILE) &&
    1911           0 :                             is_mnt_ns_file(s->mnt.mnt_root)) {
    1912           0 :                                 s = skip_mnt_tree(s);
    1913           0 :                                 continue;
    1914             :                         }
    1915           0 :                         while (p != s->mnt_parent) {
    1916           0 :                                 p = p->mnt_parent;
    1917           0 :                                 q = q->mnt_parent;
    1918             :                         }
    1919           0 :                         p = s;
    1920           0 :                         parent = q;
    1921           0 :                         q = clone_mnt(p, p->mnt.mnt_root, flag);
    1922           0 :                         if (IS_ERR(q))
    1923             :                                 goto out;
    1924             :                         lock_mount_hash();
    1925           0 :                         list_add_tail(&q->mnt_list, &res->mnt_list);
    1926           0 :                         attach_mnt(q, parent, p->mnt_mp);
    1927             :                         unlock_mount_hash();
    1928             :                 }
    1929             :         }
    1930             :         return res;
    1931             : out:
    1932           0 :         if (res) {
    1933             :                 lock_mount_hash();
    1934           0 :                 umount_tree(res, UMOUNT_SYNC);
    1935             :                 unlock_mount_hash();
    1936             :         }
    1937             :         return q;
    1938             : }
    1939             : 
    1940             : /* Caller should check returned pointer for errors */
    1941             : 
    1942           0 : struct vfsmount *collect_mounts(const struct path *path)
    1943             : {
    1944             :         struct mount *tree;
    1945             :         namespace_lock();
    1946           0 :         if (!check_mnt(real_mount(path->mnt)))
    1947             :                 tree = ERR_PTR(-EINVAL);
    1948             :         else
    1949           0 :                 tree = copy_tree(real_mount(path->mnt), path->dentry,
    1950             :                                  CL_COPY_ALL | CL_PRIVATE);
    1951           0 :         namespace_unlock();
    1952           0 :         if (IS_ERR(tree))
    1953             :                 return ERR_CAST(tree);
    1954           0 :         return &tree->mnt;
    1955             : }
    1956             : 
    1957             : static void free_mnt_ns(struct mnt_namespace *);
    1958             : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
    1959             : 
    1960           0 : void dissolve_on_fput(struct vfsmount *mnt)
    1961             : {
    1962             :         struct mnt_namespace *ns;
    1963             :         namespace_lock();
    1964           0 :         lock_mount_hash();
    1965           0 :         ns = real_mount(mnt)->mnt_ns;
    1966           0 :         if (ns) {
    1967           0 :                 if (is_anon_ns(ns))
    1968           0 :                         umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
    1969             :                 else
    1970             :                         ns = NULL;
    1971             :         }
    1972             :         unlock_mount_hash();
    1973           0 :         namespace_unlock();
    1974           0 :         if (ns)
    1975           0 :                 free_mnt_ns(ns);
    1976           0 : }
    1977             : 
    1978           0 : void drop_collected_mounts(struct vfsmount *mnt)
    1979             : {
    1980             :         namespace_lock();
    1981           0 :         lock_mount_hash();
    1982           0 :         umount_tree(real_mount(mnt), 0);
    1983             :         unlock_mount_hash();
    1984           0 :         namespace_unlock();
    1985           0 : }
    1986             : 
    1987           0 : static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
    1988             : {
    1989             :         struct mount *child;
    1990             : 
    1991           0 :         list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
    1992           0 :                 if (!is_subdir(child->mnt_mountpoint, dentry))
    1993           0 :                         continue;
    1994             : 
    1995           0 :                 if (child->mnt.mnt_flags & MNT_LOCKED)
    1996             :                         return true;
    1997             :         }
    1998             :         return false;
    1999             : }
    2000             : 
    2001             : /**
    2002             :  * clone_private_mount - create a private clone of a path
    2003             :  * @path: path to clone
    2004             :  *
    2005             :  * This creates a new vfsmount, which will be the clone of @path.  The new mount
    2006             :  * will not be attached anywhere in the namespace and will be private (i.e.
    2007             :  * changes to the originating mount won't be propagated into this).
    2008             :  *
    2009             :  * Release with mntput().
    2010             :  */
    2011           0 : struct vfsmount *clone_private_mount(const struct path *path)
    2012             : {
    2013           0 :         struct mount *old_mnt = real_mount(path->mnt);
    2014             :         struct mount *new_mnt;
    2015             : 
    2016           0 :         down_read(&namespace_sem);
    2017           0 :         if (IS_MNT_UNBINDABLE(old_mnt))
    2018             :                 goto invalid;
    2019             : 
    2020           0 :         if (!check_mnt(old_mnt))
    2021             :                 goto invalid;
    2022             : 
    2023           0 :         if (has_locked_children(old_mnt, path->dentry))
    2024             :                 goto invalid;
    2025             : 
    2026           0 :         new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
    2027           0 :         up_read(&namespace_sem);
    2028             : 
    2029           0 :         if (IS_ERR(new_mnt))
    2030             :                 return ERR_CAST(new_mnt);
    2031             : 
    2032             :         /* Longterm mount to be removed by kern_unmount*() */
    2033           0 :         new_mnt->mnt_ns = MNT_NS_INTERNAL;
    2034             : 
    2035           0 :         return &new_mnt->mnt;
    2036             : 
    2037             : invalid:
    2038           0 :         up_read(&namespace_sem);
    2039           0 :         return ERR_PTR(-EINVAL);
    2040             : }
    2041             : EXPORT_SYMBOL_GPL(clone_private_mount);
    2042             : 
    2043           0 : int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
    2044             :                    struct vfsmount *root)
    2045             : {
    2046             :         struct mount *mnt;
    2047           0 :         int res = f(root, arg);
    2048           0 :         if (res)
    2049             :                 return res;
    2050           0 :         list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
    2051           0 :                 res = f(&mnt->mnt, arg);
    2052           0 :                 if (res)
    2053             :                         return res;
    2054             :         }
    2055             :         return 0;
    2056             : }
    2057             : 
    2058           0 : static void lock_mnt_tree(struct mount *mnt)
    2059             : {
    2060             :         struct mount *p;
    2061             : 
    2062           0 :         for (p = mnt; p; p = next_mnt(p, mnt)) {
    2063           0 :                 int flags = p->mnt.mnt_flags;
    2064             :                 /* Don't allow unprivileged users to change mount flags */
    2065           0 :                 flags |= MNT_LOCK_ATIME;
    2066             : 
    2067           0 :                 if (flags & MNT_READONLY)
    2068           0 :                         flags |= MNT_LOCK_READONLY;
    2069             : 
    2070           0 :                 if (flags & MNT_NODEV)
    2071           0 :                         flags |= MNT_LOCK_NODEV;
    2072             : 
    2073           0 :                 if (flags & MNT_NOSUID)
    2074           0 :                         flags |= MNT_LOCK_NOSUID;
    2075             : 
    2076           0 :                 if (flags & MNT_NOEXEC)
    2077           0 :                         flags |= MNT_LOCK_NOEXEC;
    2078             :                 /* Don't allow unprivileged users to reveal what is under a mount */
    2079           0 :                 if (list_empty(&p->mnt_expire))
    2080           0 :                         flags |= MNT_LOCKED;
    2081           0 :                 p->mnt.mnt_flags = flags;
    2082             :         }
    2083           0 : }
    2084             : 
    2085           0 : static void cleanup_group_ids(struct mount *mnt, struct mount *end)
    2086             : {
    2087             :         struct mount *p;
    2088             : 
    2089           0 :         for (p = mnt; p != end; p = next_mnt(p, mnt)) {
    2090           0 :                 if (p->mnt_group_id && !IS_MNT_SHARED(p))
    2091             :                         mnt_release_group_id(p);
    2092             :         }
    2093           0 : }
    2094             : 
    2095           0 : static int invent_group_ids(struct mount *mnt, bool recurse)
    2096             : {
    2097             :         struct mount *p;
    2098             : 
    2099           0 :         for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
    2100           0 :                 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
    2101           0 :                         int err = mnt_alloc_group_id(p);
    2102           0 :                         if (err) {
    2103           0 :                                 cleanup_group_ids(mnt, p);
    2104           0 :                                 return err;
    2105             :                         }
    2106             :                 }
    2107             :         }
    2108             : 
    2109             :         return 0;
    2110             : }
    2111             : 
    2112           0 : int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
    2113             : {
    2114           0 :         unsigned int max = READ_ONCE(sysctl_mount_max);
    2115           0 :         unsigned int mounts = 0;
    2116             :         struct mount *p;
    2117             : 
    2118           0 :         if (ns->mounts >= max)
    2119             :                 return -ENOSPC;
    2120           0 :         max -= ns->mounts;
    2121           0 :         if (ns->pending_mounts >= max)
    2122             :                 return -ENOSPC;
    2123           0 :         max -= ns->pending_mounts;
    2124             : 
    2125           0 :         for (p = mnt; p; p = next_mnt(p, mnt))
    2126           0 :                 mounts++;
    2127             : 
    2128           0 :         if (mounts > max)
    2129             :                 return -ENOSPC;
    2130             : 
    2131           0 :         ns->pending_mounts += mounts;
    2132           0 :         return 0;
    2133             : }
    2134             : 
    2135             : /*
    2136             :  *  @source_mnt : mount tree to be attached
    2137             :  *  @nd         : place the mount tree @source_mnt is attached
    2138             :  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
    2139             :  *                 store the parent mount and mountpoint dentry.
    2140             :  *                 (done when source_mnt is moved)
    2141             :  *
    2142             :  *  NOTE: in the table below explains the semantics when a source mount
    2143             :  *  of a given type is attached to a destination mount of a given type.
    2144             :  * ---------------------------------------------------------------------------
    2145             :  * |         BIND MOUNT OPERATION                                            |
    2146             :  * |**************************************************************************
    2147             :  * | source-->| shared        |       private  |       slave    | unbindable |
    2148             :  * | dest     |               |                |                |            |
    2149             :  * |   |      |               |                |                |            |
    2150             :  * |   v      |               |                |                |            |
    2151             :  * |**************************************************************************
    2152             :  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
    2153             :  * |          |               |                |                |            |
    2154             :  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
    2155             :  * ***************************************************************************
    2156             :  * A bind operation clones the source mount and mounts the clone on the
    2157             :  * destination mount.
    2158             :  *
    2159             :  * (++)  the cloned mount is propagated to all the mounts in the propagation
    2160             :  *       tree of the destination mount and the cloned mount is added to
    2161             :  *       the peer group of the source mount.
    2162             :  * (+)   the cloned mount is created under the destination mount and is marked
    2163             :  *       as shared. The cloned mount is added to the peer group of the source
    2164             :  *       mount.
    2165             :  * (+++) the mount is propagated to all the mounts in the propagation tree
    2166             :  *       of the destination mount and the cloned mount is made slave
    2167             :  *       of the same master as that of the source mount. The cloned mount
    2168             :  *       is marked as 'shared and slave'.
    2169             :  * (*)   the cloned mount is made a slave of the same master as that of the
    2170             :  *       source mount.
    2171             :  *
    2172             :  * ---------------------------------------------------------------------------
    2173             :  * |                    MOVE MOUNT OPERATION                                 |
    2174             :  * |**************************************************************************
    2175             :  * | source-->| shared        |       private  |       slave    | unbindable |
    2176             :  * | dest     |               |                |                |            |
    2177             :  * |   |      |               |                |                |            |
    2178             :  * |   v      |               |                |                |            |
    2179             :  * |**************************************************************************
    2180             :  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
    2181             :  * |          |               |                |                |            |
    2182             :  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
    2183             :  * ***************************************************************************
    2184             :  *
    2185             :  * (+)  the mount is moved to the destination. And is then propagated to
    2186             :  *      all the mounts in the propagation tree of the destination mount.
    2187             :  * (+*)  the mount is moved to the destination.
    2188             :  * (+++)  the mount is moved to the destination and is then propagated to
    2189             :  *      all the mounts belonging to the destination mount's propagation tree.
    2190             :  *      the mount is marked as 'shared and slave'.
    2191             :  * (*)  the mount continues to be a slave at the new location.
    2192             :  *
    2193             :  * if the source mount is a tree, the operations explained above is
    2194             :  * applied to each mount in the tree.
    2195             :  * Must be called without spinlocks held, since this function can sleep
    2196             :  * in allocations.
    2197             :  */
    2198           0 : static int attach_recursive_mnt(struct mount *source_mnt,
    2199             :                         struct mount *dest_mnt,
    2200             :                         struct mountpoint *dest_mp,
    2201             :                         bool moving)
    2202             : {
    2203           0 :         struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
    2204           0 :         HLIST_HEAD(tree_list);
    2205           0 :         struct mnt_namespace *ns = dest_mnt->mnt_ns;
    2206             :         struct mountpoint *smp;
    2207             :         struct mount *child, *p;
    2208             :         struct hlist_node *n;
    2209             :         int err;
    2210             : 
    2211             :         /* Preallocate a mountpoint in case the new mounts need
    2212             :          * to be tucked under other mounts.
    2213             :          */
    2214           0 :         smp = get_mountpoint(source_mnt->mnt.mnt_root);
    2215           0 :         if (IS_ERR(smp))
    2216           0 :                 return PTR_ERR(smp);
    2217             : 
    2218             :         /* Is there space to add these mounts to the mount namespace? */
    2219           0 :         if (!moving) {
    2220           0 :                 err = count_mounts(ns, source_mnt);
    2221           0 :                 if (err)
    2222             :                         goto out;
    2223             :         }
    2224             : 
    2225           0 :         if (IS_MNT_SHARED(dest_mnt)) {
    2226           0 :                 err = invent_group_ids(source_mnt, true);
    2227           0 :                 if (err)
    2228             :                         goto out;
    2229           0 :                 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
    2230             :                 lock_mount_hash();
    2231           0 :                 if (err)
    2232             :                         goto out_cleanup_ids;
    2233           0 :                 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
    2234           0 :                         set_mnt_shared(p);
    2235             :         } else {
    2236             :                 lock_mount_hash();
    2237             :         }
    2238           0 :         if (moving) {
    2239           0 :                 unhash_mnt(source_mnt);
    2240           0 :                 attach_mnt(source_mnt, dest_mnt, dest_mp);
    2241           0 :                 touch_mnt_namespace(source_mnt->mnt_ns);
    2242             :         } else {
    2243           0 :                 if (source_mnt->mnt_ns) {
    2244             :                         /* move from anon - the caller will destroy */
    2245           0 :                         list_del_init(&source_mnt->mnt_ns->list);
    2246             :                 }
    2247           0 :                 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
    2248           0 :                 commit_tree(source_mnt);
    2249             :         }
    2250             : 
    2251           0 :         hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
    2252             :                 struct mount *q;
    2253           0 :                 hlist_del_init(&child->mnt_hash);
    2254           0 :                 q = __lookup_mnt(&child->mnt_parent->mnt,
    2255             :                                  child->mnt_mountpoint);
    2256           0 :                 if (q)
    2257           0 :                         mnt_change_mountpoint(child, smp, q);
    2258             :                 /* Notice when we are propagating across user namespaces */
    2259           0 :                 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
    2260           0 :                         lock_mnt_tree(child);
    2261           0 :                 child->mnt.mnt_flags &= ~MNT_LOCKED;
    2262           0 :                 commit_tree(child);
    2263             :         }
    2264           0 :         put_mountpoint(smp);
    2265             :         unlock_mount_hash();
    2266             : 
    2267           0 :         return 0;
    2268             : 
    2269             :  out_cleanup_ids:
    2270           0 :         while (!hlist_empty(&tree_list)) {
    2271           0 :                 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
    2272           0 :                 child->mnt_parent->mnt_ns->pending_mounts = 0;
    2273           0 :                 umount_tree(child, UMOUNT_SYNC);
    2274             :         }
    2275             :         unlock_mount_hash();
    2276           0 :         cleanup_group_ids(source_mnt, NULL);
    2277             :  out:
    2278           0 :         ns->pending_mounts = 0;
    2279             : 
    2280           0 :         read_seqlock_excl(&mount_lock);
    2281           0 :         put_mountpoint(smp);
    2282           0 :         read_sequnlock_excl(&mount_lock);
    2283             : 
    2284           0 :         return err;
    2285             : }
    2286             : 
    2287           0 : static struct mountpoint *lock_mount(struct path *path)
    2288             : {
    2289             :         struct vfsmount *mnt;
    2290           0 :         struct dentry *dentry = path->dentry;
    2291             : retry:
    2292           0 :         inode_lock(dentry->d_inode);
    2293           0 :         if (unlikely(cant_mount(dentry))) {
    2294           0 :                 inode_unlock(dentry->d_inode);
    2295           0 :                 return ERR_PTR(-ENOENT);
    2296             :         }
    2297             :         namespace_lock();
    2298           0 :         mnt = lookup_mnt(path);
    2299           0 :         if (likely(!mnt)) {
    2300           0 :                 struct mountpoint *mp = get_mountpoint(dentry);
    2301           0 :                 if (IS_ERR(mp)) {
    2302           0 :                         namespace_unlock();
    2303           0 :                         inode_unlock(dentry->d_inode);
    2304           0 :                         return mp;
    2305             :                 }
    2306             :                 return mp;
    2307             :         }
    2308           0 :         namespace_unlock();
    2309           0 :         inode_unlock(path->dentry->d_inode);
    2310           0 :         path_put(path);
    2311           0 :         path->mnt = mnt;
    2312           0 :         dentry = path->dentry = dget(mnt->mnt_root);
    2313           0 :         goto retry;
    2314             : }
    2315             : 
    2316           0 : static void unlock_mount(struct mountpoint *where)
    2317             : {
    2318           0 :         struct dentry *dentry = where->m_dentry;
    2319             : 
    2320           0 :         read_seqlock_excl(&mount_lock);
    2321           0 :         put_mountpoint(where);
    2322           0 :         read_sequnlock_excl(&mount_lock);
    2323             : 
    2324           0 :         namespace_unlock();
    2325           0 :         inode_unlock(dentry->d_inode);
    2326           0 : }
    2327             : 
    2328           0 : static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
    2329             : {
    2330           0 :         if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
    2331             :                 return -EINVAL;
    2332             : 
    2333           0 :         if (d_is_dir(mp->m_dentry) !=
    2334           0 :               d_is_dir(mnt->mnt.mnt_root))
    2335             :                 return -ENOTDIR;
    2336             : 
    2337           0 :         return attach_recursive_mnt(mnt, p, mp, false);
    2338             : }
    2339             : 
    2340             : /*
    2341             :  * Sanity check the flags to change_mnt_propagation.
    2342             :  */
    2343             : 
    2344             : static int flags_to_propagation_type(int ms_flags)
    2345             : {
    2346           0 :         int type = ms_flags & ~(MS_REC | MS_SILENT);
    2347             : 
    2348             :         /* Fail if any non-propagation flags are set */
    2349           0 :         if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
    2350             :                 return 0;
    2351             :         /* Only one propagation flag should be set */
    2352           0 :         if (!is_power_of_2(type))
    2353             :                 return 0;
    2354             :         return type;
    2355             : }
    2356             : 
    2357             : /*
    2358             :  * recursively change the type of the mountpoint.
    2359             :  */
    2360           0 : static int do_change_type(struct path *path, int ms_flags)
    2361             : {
    2362             :         struct mount *m;
    2363           0 :         struct mount *mnt = real_mount(path->mnt);
    2364           0 :         int recurse = ms_flags & MS_REC;
    2365             :         int type;
    2366           0 :         int err = 0;
    2367             : 
    2368           0 :         if (path->dentry != path->mnt->mnt_root)
    2369             :                 return -EINVAL;
    2370             : 
    2371           0 :         type = flags_to_propagation_type(ms_flags);
    2372           0 :         if (!type)
    2373             :                 return -EINVAL;
    2374             : 
    2375             :         namespace_lock();
    2376           0 :         if (type == MS_SHARED) {
    2377           0 :                 err = invent_group_ids(mnt, recurse);
    2378           0 :                 if (err)
    2379             :                         goto out_unlock;
    2380             :         }
    2381             : 
    2382             :         lock_mount_hash();
    2383           0 :         for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
    2384           0 :                 change_mnt_propagation(m, type);
    2385             :         unlock_mount_hash();
    2386             : 
    2387             :  out_unlock:
    2388           0 :         namespace_unlock();
    2389           0 :         return err;
    2390             : }
    2391             : 
    2392           0 : static struct mount *__do_loopback(struct path *old_path, int recurse)
    2393             : {
    2394           0 :         struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
    2395             : 
    2396           0 :         if (IS_MNT_UNBINDABLE(old))
    2397             :                 return mnt;
    2398             : 
    2399           0 :         if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
    2400             :                 return mnt;
    2401             : 
    2402           0 :         if (!recurse && has_locked_children(old, old_path->dentry))
    2403             :                 return mnt;
    2404             : 
    2405           0 :         if (recurse)
    2406           0 :                 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
    2407             :         else
    2408           0 :                 mnt = clone_mnt(old, old_path->dentry, 0);
    2409             : 
    2410           0 :         if (!IS_ERR(mnt))
    2411           0 :                 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
    2412             : 
    2413             :         return mnt;
    2414             : }
    2415             : 
    2416             : /*
    2417             :  * do loopback mount.
    2418             :  */
    2419           0 : static int do_loopback(struct path *path, const char *old_name,
    2420             :                                 int recurse)
    2421             : {
    2422             :         struct path old_path;
    2423           0 :         struct mount *mnt = NULL, *parent;
    2424             :         struct mountpoint *mp;
    2425             :         int err;
    2426           0 :         if (!old_name || !*old_name)
    2427             :                 return -EINVAL;
    2428           0 :         err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
    2429           0 :         if (err)
    2430             :                 return err;
    2431             : 
    2432           0 :         err = -EINVAL;
    2433           0 :         if (mnt_ns_loop(old_path.dentry))
    2434             :                 goto out;
    2435             : 
    2436           0 :         mp = lock_mount(path);
    2437           0 :         if (IS_ERR(mp)) {
    2438           0 :                 err = PTR_ERR(mp);
    2439           0 :                 goto out;
    2440             :         }
    2441             : 
    2442           0 :         parent = real_mount(path->mnt);
    2443           0 :         if (!check_mnt(parent))
    2444             :                 goto out2;
    2445             : 
    2446           0 :         mnt = __do_loopback(&old_path, recurse);
    2447           0 :         if (IS_ERR(mnt)) {
    2448           0 :                 err = PTR_ERR(mnt);
    2449           0 :                 goto out2;
    2450             :         }
    2451             : 
    2452           0 :         err = graft_tree(mnt, parent, mp);
    2453           0 :         if (err) {
    2454             :                 lock_mount_hash();
    2455           0 :                 umount_tree(mnt, UMOUNT_SYNC);
    2456             :                 unlock_mount_hash();
    2457             :         }
    2458             : out2:
    2459           0 :         unlock_mount(mp);
    2460             : out:
    2461           0 :         path_put(&old_path);
    2462           0 :         return err;
    2463             : }
    2464             : 
    2465           0 : static struct file *open_detached_copy(struct path *path, bool recursive)
    2466             : {
    2467           0 :         struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
    2468           0 :         struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
    2469             :         struct mount *mnt, *p;
    2470             :         struct file *file;
    2471             : 
    2472           0 :         if (IS_ERR(ns))
    2473             :                 return ERR_CAST(ns);
    2474             : 
    2475             :         namespace_lock();
    2476           0 :         mnt = __do_loopback(path, recursive);
    2477           0 :         if (IS_ERR(mnt)) {
    2478           0 :                 namespace_unlock();
    2479           0 :                 free_mnt_ns(ns);
    2480           0 :                 return ERR_CAST(mnt);
    2481             :         }
    2482             : 
    2483             :         lock_mount_hash();
    2484           0 :         for (p = mnt; p; p = next_mnt(p, mnt)) {
    2485           0 :                 p->mnt_ns = ns;
    2486           0 :                 ns->mounts++;
    2487             :         }
    2488           0 :         ns->root = mnt;
    2489           0 :         list_add_tail(&ns->list, &mnt->mnt_list);
    2490           0 :         mntget(&mnt->mnt);
    2491             :         unlock_mount_hash();
    2492           0 :         namespace_unlock();
    2493             : 
    2494           0 :         mntput(path->mnt);
    2495           0 :         path->mnt = &mnt->mnt;
    2496           0 :         file = dentry_open(path, O_PATH, current_cred());
    2497           0 :         if (IS_ERR(file))
    2498           0 :                 dissolve_on_fput(path->mnt);
    2499             :         else
    2500           0 :                 file->f_mode |= FMODE_NEED_UNMOUNT;
    2501             :         return file;
    2502             : }
    2503             : 
    2504           0 : SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
    2505             : {
    2506             :         struct file *file;
    2507             :         struct path path;
    2508           0 :         int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
    2509           0 :         bool detached = flags & OPEN_TREE_CLONE;
    2510             :         int error;
    2511             :         int fd;
    2512             : 
    2513             :         BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
    2514             : 
    2515           0 :         if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
    2516             :                       AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
    2517             :                       OPEN_TREE_CLOEXEC))
    2518             :                 return -EINVAL;
    2519             : 
    2520           0 :         if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
    2521             :                 return -EINVAL;
    2522             : 
    2523           0 :         if (flags & AT_NO_AUTOMOUNT)
    2524           0 :                 lookup_flags &= ~LOOKUP_AUTOMOUNT;
    2525           0 :         if (flags & AT_SYMLINK_NOFOLLOW)
    2526           0 :                 lookup_flags &= ~LOOKUP_FOLLOW;
    2527           0 :         if (flags & AT_EMPTY_PATH)
    2528           0 :                 lookup_flags |= LOOKUP_EMPTY;
    2529             : 
    2530           0 :         if (detached && !may_mount())
    2531             :                 return -EPERM;
    2532             : 
    2533           0 :         fd = get_unused_fd_flags(flags & O_CLOEXEC);
    2534           0 :         if (fd < 0)
    2535           0 :                 return fd;
    2536             : 
    2537           0 :         error = user_path_at(dfd, filename, lookup_flags, &path);
    2538           0 :         if (unlikely(error)) {
    2539           0 :                 file = ERR_PTR(error);
    2540             :         } else {
    2541           0 :                 if (detached)
    2542           0 :                         file = open_detached_copy(&path, flags & AT_RECURSIVE);
    2543             :                 else
    2544           0 :                         file = dentry_open(&path, O_PATH, current_cred());
    2545           0 :                 path_put(&path);
    2546             :         }
    2547           0 :         if (IS_ERR(file)) {
    2548           0 :                 put_unused_fd(fd);
    2549           0 :                 return PTR_ERR(file);
    2550             :         }
    2551           0 :         fd_install(fd, file);
    2552           0 :         return fd;
    2553             : }
    2554             : 
    2555             : /*
    2556             :  * Don't allow locked mount flags to be cleared.
    2557             :  *
    2558             :  * No locks need to be held here while testing the various MNT_LOCK
    2559             :  * flags because those flags can never be cleared once they are set.
    2560             :  */
    2561           0 : static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
    2562             : {
    2563           0 :         unsigned int fl = mnt->mnt.mnt_flags;
    2564             : 
    2565           0 :         if ((fl & MNT_LOCK_READONLY) &&
    2566           0 :             !(mnt_flags & MNT_READONLY))
    2567             :                 return false;
    2568             : 
    2569           0 :         if ((fl & MNT_LOCK_NODEV) &&
    2570           0 :             !(mnt_flags & MNT_NODEV))
    2571             :                 return false;
    2572             : 
    2573           0 :         if ((fl & MNT_LOCK_NOSUID) &&
    2574           0 :             !(mnt_flags & MNT_NOSUID))
    2575             :                 return false;
    2576             : 
    2577           0 :         if ((fl & MNT_LOCK_NOEXEC) &&
    2578           0 :             !(mnt_flags & MNT_NOEXEC))
    2579             :                 return false;
    2580             : 
    2581           0 :         if ((fl & MNT_LOCK_ATIME) &&
    2582           0 :             ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
    2583             :                 return false;
    2584             : 
    2585             :         return true;
    2586             : }
    2587             : 
    2588           0 : static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
    2589             : {
    2590           0 :         bool readonly_request = (mnt_flags & MNT_READONLY);
    2591             : 
    2592           0 :         if (readonly_request == __mnt_is_readonly(&mnt->mnt))
    2593             :                 return 0;
    2594             : 
    2595           0 :         if (readonly_request)
    2596           0 :                 return mnt_make_readonly(mnt);
    2597             : 
    2598           0 :         mnt->mnt.mnt_flags &= ~MNT_READONLY;
    2599           0 :         return 0;
    2600             : }
    2601             : 
    2602             : static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
    2603             : {
    2604           0 :         mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
    2605           0 :         mnt->mnt.mnt_flags = mnt_flags;
    2606           0 :         touch_mnt_namespace(mnt->mnt_ns);
    2607             : }
    2608             : 
    2609           0 : static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
    2610             : {
    2611           0 :         struct super_block *sb = mnt->mnt_sb;
    2612             : 
    2613           0 :         if (!__mnt_is_readonly(mnt) &&
    2614           0 :            (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
    2615           0 :            (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
    2616           0 :                 char *buf = (char *)__get_free_page(GFP_KERNEL);
    2617           0 :                 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
    2618             :                 struct tm tm;
    2619             : 
    2620           0 :                 time64_to_tm(sb->s_time_max, 0, &tm);
    2621             : 
    2622           0 :                 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
    2623             :                         sb->s_type->name,
    2624             :                         is_mounted(mnt) ? "remounted" : "mounted",
    2625             :                         mntpath,
    2626             :                         tm.tm_year+1900, (unsigned long long)sb->s_time_max);
    2627             : 
    2628           0 :                 free_page((unsigned long)buf);
    2629           0 :                 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
    2630             :         }
    2631           0 : }
    2632             : 
    2633             : /*
    2634             :  * Handle reconfiguration of the mountpoint only without alteration of the
    2635             :  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
    2636             :  * to mount(2).
    2637             :  */
    2638           0 : static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
    2639             : {
    2640           0 :         struct super_block *sb = path->mnt->mnt_sb;
    2641           0 :         struct mount *mnt = real_mount(path->mnt);
    2642             :         int ret;
    2643             : 
    2644           0 :         if (!check_mnt(mnt))
    2645             :                 return -EINVAL;
    2646             : 
    2647           0 :         if (path->dentry != mnt->mnt.mnt_root)
    2648             :                 return -EINVAL;
    2649             : 
    2650           0 :         if (!can_change_locked_flags(mnt, mnt_flags))
    2651             :                 return -EPERM;
    2652             : 
    2653             :         /*
    2654             :          * We're only checking whether the superblock is read-only not
    2655             :          * changing it, so only take down_read(&sb->s_umount).
    2656             :          */
    2657           0 :         down_read(&sb->s_umount);
    2658             :         lock_mount_hash();
    2659           0 :         ret = change_mount_ro_state(mnt, mnt_flags);
    2660           0 :         if (ret == 0)
    2661           0 :                 set_mount_attributes(mnt, mnt_flags);
    2662             :         unlock_mount_hash();
    2663           0 :         up_read(&sb->s_umount);
    2664             : 
    2665           0 :         mnt_warn_timestamp_expiry(path, &mnt->mnt);
    2666             : 
    2667           0 :         return ret;
    2668             : }
    2669             : 
    2670             : /*
    2671             :  * change filesystem flags. dir should be a physical root of filesystem.
    2672             :  * If you've mounted a non-root directory somewhere and want to do remount
    2673             :  * on it - tough luck.
    2674             :  */
    2675           0 : static int do_remount(struct path *path, int ms_flags, int sb_flags,
    2676             :                       int mnt_flags, void *data)
    2677             : {
    2678             :         int err;
    2679           0 :         struct super_block *sb = path->mnt->mnt_sb;
    2680           0 :         struct mount *mnt = real_mount(path->mnt);
    2681             :         struct fs_context *fc;
    2682             : 
    2683           0 :         if (!check_mnt(mnt))
    2684             :                 return -EINVAL;
    2685             : 
    2686           0 :         if (path->dentry != path->mnt->mnt_root)
    2687             :                 return -EINVAL;
    2688             : 
    2689           0 :         if (!can_change_locked_flags(mnt, mnt_flags))
    2690             :                 return -EPERM;
    2691             : 
    2692           0 :         fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
    2693           0 :         if (IS_ERR(fc))
    2694           0 :                 return PTR_ERR(fc);
    2695             : 
    2696           0 :         fc->oldapi = true;
    2697           0 :         err = parse_monolithic_mount_data(fc, data);
    2698           0 :         if (!err) {
    2699           0 :                 down_write(&sb->s_umount);
    2700           0 :                 err = -EPERM;
    2701           0 :                 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
    2702           0 :                         err = reconfigure_super(fc);
    2703           0 :                         if (!err) {
    2704             :                                 lock_mount_hash();
    2705           0 :                                 set_mount_attributes(mnt, mnt_flags);
    2706             :                                 unlock_mount_hash();
    2707             :                         }
    2708             :                 }
    2709           0 :                 up_write(&sb->s_umount);
    2710             :         }
    2711             : 
    2712           0 :         mnt_warn_timestamp_expiry(path, &mnt->mnt);
    2713             : 
    2714           0 :         put_fs_context(fc);
    2715             :         return err;
    2716             : }
    2717             : 
    2718             : static inline int tree_contains_unbindable(struct mount *mnt)
    2719             : {
    2720             :         struct mount *p;
    2721           0 :         for (p = mnt; p; p = next_mnt(p, mnt)) {
    2722           0 :                 if (IS_MNT_UNBINDABLE(p))
    2723             :                         return 1;
    2724             :         }
    2725             :         return 0;
    2726             : }
    2727             : 
    2728             : /*
    2729             :  * Check that there aren't references to earlier/same mount namespaces in the
    2730             :  * specified subtree.  Such references can act as pins for mount namespaces
    2731             :  * that aren't checked by the mount-cycle checking code, thereby allowing
    2732             :  * cycles to be made.
    2733             :  */
    2734           0 : static bool check_for_nsfs_mounts(struct mount *subtree)
    2735             : {
    2736             :         struct mount *p;
    2737           0 :         bool ret = false;
    2738             : 
    2739             :         lock_mount_hash();
    2740           0 :         for (p = subtree; p; p = next_mnt(p, subtree))
    2741           0 :                 if (mnt_ns_loop(p->mnt.mnt_root))
    2742             :                         goto out;
    2743             : 
    2744             :         ret = true;
    2745             : out:
    2746             :         unlock_mount_hash();
    2747           0 :         return ret;
    2748             : }
    2749             : 
    2750           0 : static int do_set_group(struct path *from_path, struct path *to_path)
    2751             : {
    2752             :         struct mount *from, *to;
    2753             :         int err;
    2754             : 
    2755           0 :         from = real_mount(from_path->mnt);
    2756           0 :         to = real_mount(to_path->mnt);
    2757             : 
    2758             :         namespace_lock();
    2759             : 
    2760           0 :         err = -EINVAL;
    2761             :         /* To and From must be mounted */
    2762           0 :         if (!is_mounted(&from->mnt))
    2763             :                 goto out;
    2764           0 :         if (!is_mounted(&to->mnt))
    2765             :                 goto out;
    2766             : 
    2767           0 :         err = -EPERM;
    2768             :         /* We should be allowed to modify mount namespaces of both mounts */
    2769           0 :         if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
    2770             :                 goto out;
    2771           0 :         if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
    2772             :                 goto out;
    2773             : 
    2774           0 :         err = -EINVAL;
    2775             :         /* To and From paths should be mount roots */
    2776           0 :         if (from_path->dentry != from_path->mnt->mnt_root)
    2777             :                 goto out;
    2778           0 :         if (to_path->dentry != to_path->mnt->mnt_root)
    2779             :                 goto out;
    2780             : 
    2781             :         /* Setting sharing groups is only allowed across same superblock */
    2782           0 :         if (from->mnt.mnt_sb != to->mnt.mnt_sb)
    2783             :                 goto out;
    2784             : 
    2785             :         /* From mount root should be wider than To mount root */
    2786           0 :         if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
    2787             :                 goto out;
    2788             : 
    2789             :         /* From mount should not have locked children in place of To's root */
    2790           0 :         if (has_locked_children(from, to->mnt.mnt_root))
    2791             :                 goto out;
    2792             : 
    2793             :         /* Setting sharing groups is only allowed on private mounts */
    2794           0 :         if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
    2795             :                 goto out;
    2796             : 
    2797             :         /* From should not be private */
    2798           0 :         if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
    2799             :                 goto out;
    2800             : 
    2801           0 :         if (IS_MNT_SLAVE(from)) {
    2802           0 :                 struct mount *m = from->mnt_master;
    2803             : 
    2804           0 :                 list_add(&to->mnt_slave, &m->mnt_slave_list);
    2805           0 :                 to->mnt_master = m;
    2806             :         }
    2807             : 
    2808           0 :         if (IS_MNT_SHARED(from)) {
    2809           0 :                 to->mnt_group_id = from->mnt_group_id;
    2810           0 :                 list_add(&to->mnt_share, &from->mnt_share);
    2811             :                 lock_mount_hash();
    2812             :                 set_mnt_shared(to);
    2813             :                 unlock_mount_hash();
    2814             :         }
    2815             : 
    2816             :         err = 0;
    2817             : out:
    2818           0 :         namespace_unlock();
    2819           0 :         return err;
    2820             : }
    2821             : 
    2822           0 : static int do_move_mount(struct path *old_path, struct path *new_path)
    2823             : {
    2824             :         struct mnt_namespace *ns;
    2825             :         struct mount *p;
    2826             :         struct mount *old;
    2827             :         struct mount *parent;
    2828             :         struct mountpoint *mp, *old_mp;
    2829             :         int err;
    2830             :         bool attached;
    2831             : 
    2832           0 :         mp = lock_mount(new_path);
    2833           0 :         if (IS_ERR(mp))
    2834           0 :                 return PTR_ERR(mp);
    2835             : 
    2836           0 :         old = real_mount(old_path->mnt);
    2837           0 :         p = real_mount(new_path->mnt);
    2838           0 :         parent = old->mnt_parent;
    2839           0 :         attached = mnt_has_parent(old);
    2840           0 :         old_mp = old->mnt_mp;
    2841           0 :         ns = old->mnt_ns;
    2842             : 
    2843           0 :         err = -EINVAL;
    2844             :         /* The mountpoint must be in our namespace. */
    2845           0 :         if (!check_mnt(p))
    2846             :                 goto out;
    2847             : 
    2848             :         /* The thing moved must be mounted... */
    2849           0 :         if (!is_mounted(&old->mnt))
    2850             :                 goto out;
    2851             : 
    2852             :         /* ... and either ours or the root of anon namespace */
    2853           0 :         if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
    2854             :                 goto out;
    2855             : 
    2856           0 :         if (old->mnt.mnt_flags & MNT_LOCKED)
    2857             :                 goto out;
    2858             : 
    2859           0 :         if (old_path->dentry != old_path->mnt->mnt_root)
    2860             :                 goto out;
    2861             : 
    2862           0 :         if (d_is_dir(new_path->dentry) !=
    2863           0 :             d_is_dir(old_path->dentry))
    2864             :                 goto out;
    2865             :         /*
    2866             :          * Don't move a mount residing in a shared parent.
    2867             :          */
    2868           0 :         if (attached && IS_MNT_SHARED(parent))
    2869             :                 goto out;
    2870             :         /*
    2871             :          * Don't move a mount tree containing unbindable mounts to a destination
    2872             :          * mount which is shared.
    2873             :          */
    2874           0 :         if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
    2875             :                 goto out;
    2876           0 :         err = -ELOOP;
    2877           0 :         if (!check_for_nsfs_mounts(old))
    2878             :                 goto out;
    2879           0 :         for (; mnt_has_parent(p); p = p->mnt_parent)
    2880           0 :                 if (p == old)
    2881             :                         goto out;
    2882             : 
    2883           0 :         err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
    2884             :                                    attached);
    2885           0 :         if (err)
    2886             :                 goto out;
    2887             : 
    2888             :         /* if the mount is moved, it should no longer be expire
    2889             :          * automatically */
    2890           0 :         list_del_init(&old->mnt_expire);
    2891           0 :         if (attached)
    2892             :                 put_mountpoint(old_mp);
    2893             : out:
    2894           0 :         unlock_mount(mp);
    2895           0 :         if (!err) {
    2896           0 :                 if (attached)
    2897           0 :                         mntput_no_expire(parent);
    2898             :                 else
    2899           0 :                         free_mnt_ns(ns);
    2900             :         }
    2901             :         return err;
    2902             : }
    2903             : 
    2904           0 : static int do_move_mount_old(struct path *path, const char *old_name)
    2905             : {
    2906             :         struct path old_path;
    2907             :         int err;
    2908             : 
    2909           0 :         if (!old_name || !*old_name)
    2910             :                 return -EINVAL;
    2911             : 
    2912           0 :         err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
    2913           0 :         if (err)
    2914             :                 return err;
    2915             : 
    2916           0 :         err = do_move_mount(&old_path, path);
    2917           0 :         path_put(&old_path);
    2918           0 :         return err;
    2919             : }
    2920             : 
    2921             : /*
    2922             :  * add a mount into a namespace's mount tree
    2923             :  */
    2924           0 : static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
    2925             :                         const struct path *path, int mnt_flags)
    2926             : {
    2927           0 :         struct mount *parent = real_mount(path->mnt);
    2928             : 
    2929           0 :         mnt_flags &= ~MNT_INTERNAL_FLAGS;
    2930             : 
    2931           0 :         if (unlikely(!check_mnt(parent))) {
    2932             :                 /* that's acceptable only for automounts done in private ns */
    2933           0 :                 if (!(mnt_flags & MNT_SHRINKABLE))
    2934             :                         return -EINVAL;
    2935             :                 /* ... and for those we'd better have mountpoint still alive */
    2936           0 :                 if (!parent->mnt_ns)
    2937             :                         return -EINVAL;
    2938             :         }
    2939             : 
    2940             :         /* Refuse the same filesystem on the same mount point */
    2941           0 :         if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
    2942           0 :             path->mnt->mnt_root == path->dentry)
    2943             :                 return -EBUSY;
    2944             : 
    2945           0 :         if (d_is_symlink(newmnt->mnt.mnt_root))
    2946             :                 return -EINVAL;
    2947             : 
    2948           0 :         newmnt->mnt.mnt_flags = mnt_flags;
    2949           0 :         return graft_tree(newmnt, parent, mp);
    2950             : }
    2951             : 
    2952             : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
    2953             : 
    2954             : /*
    2955             :  * Create a new mount using a superblock configuration and request it
    2956             :  * be added to the namespace tree.
    2957             :  */
    2958           0 : static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
    2959             :                            unsigned int mnt_flags)
    2960             : {
    2961             :         struct vfsmount *mnt;
    2962             :         struct mountpoint *mp;
    2963           0 :         struct super_block *sb = fc->root->d_sb;
    2964             :         int error;
    2965             : 
    2966           0 :         error = security_sb_kern_mount(sb);
    2967           0 :         if (!error && mount_too_revealing(sb, &mnt_flags))
    2968           0 :                 error = -EPERM;
    2969             : 
    2970           0 :         if (unlikely(error)) {
    2971           0 :                 fc_drop_locked(fc);
    2972           0 :                 return error;
    2973             :         }
    2974             : 
    2975           0 :         up_write(&sb->s_umount);
    2976             : 
    2977           0 :         mnt = vfs_create_mount(fc);
    2978           0 :         if (IS_ERR(mnt))
    2979           0 :                 return PTR_ERR(mnt);
    2980             : 
    2981           0 :         mnt_warn_timestamp_expiry(mountpoint, mnt);
    2982             : 
    2983           0 :         mp = lock_mount(mountpoint);
    2984           0 :         if (IS_ERR(mp)) {
    2985           0 :                 mntput(mnt);
    2986           0 :                 return PTR_ERR(mp);
    2987             :         }
    2988           0 :         error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
    2989           0 :         unlock_mount(mp);
    2990           0 :         if (error < 0)
    2991             :                 mntput(mnt);
    2992             :         return error;
    2993             : }
    2994             : 
    2995             : /*
    2996             :  * create a new mount for userspace and request it to be added into the
    2997             :  * namespace's tree
    2998             :  */
    2999           0 : static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
    3000             :                         int mnt_flags, const char *name, void *data)
    3001             : {
    3002             :         struct file_system_type *type;
    3003             :         struct fs_context *fc;
    3004           0 :         const char *subtype = NULL;
    3005           0 :         int err = 0;
    3006             : 
    3007           0 :         if (!fstype)
    3008             :                 return -EINVAL;
    3009             : 
    3010           0 :         type = get_fs_type(fstype);
    3011           0 :         if (!type)
    3012             :                 return -ENODEV;
    3013             : 
    3014           0 :         if (type->fs_flags & FS_HAS_SUBTYPE) {
    3015           0 :                 subtype = strchr(fstype, '.');
    3016           0 :                 if (subtype) {
    3017           0 :                         subtype++;
    3018           0 :                         if (!*subtype) {
    3019           0 :                                 put_filesystem(type);
    3020           0 :                                 return -EINVAL;
    3021             :                         }
    3022             :                 }
    3023             :         }
    3024             : 
    3025           0 :         fc = fs_context_for_mount(type, sb_flags);
    3026           0 :         put_filesystem(type);
    3027           0 :         if (IS_ERR(fc))
    3028           0 :                 return PTR_ERR(fc);
    3029             : 
    3030           0 :         if (subtype)
    3031           0 :                 err = vfs_parse_fs_string(fc, "subtype",
    3032             :                                           subtype, strlen(subtype));
    3033           0 :         if (!err && name)
    3034           0 :                 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
    3035           0 :         if (!err)
    3036           0 :                 err = parse_monolithic_mount_data(fc, data);
    3037           0 :         if (!err && !mount_capable(fc))
    3038           0 :                 err = -EPERM;
    3039           0 :         if (!err)
    3040           0 :                 err = vfs_get_tree(fc);
    3041           0 :         if (!err)
    3042           0 :                 err = do_new_mount_fc(fc, path, mnt_flags);
    3043             : 
    3044           0 :         put_fs_context(fc);
    3045           0 :         return err;
    3046             : }
    3047             : 
    3048           0 : int finish_automount(struct vfsmount *m, const struct path *path)
    3049             : {
    3050           0 :         struct dentry *dentry = path->dentry;
    3051             :         struct mountpoint *mp;
    3052             :         struct mount *mnt;
    3053             :         int err;
    3054             : 
    3055           0 :         if (!m)
    3056             :                 return 0;
    3057           0 :         if (IS_ERR(m))
    3058           0 :                 return PTR_ERR(m);
    3059             : 
    3060           0 :         mnt = real_mount(m);
    3061             :         /* The new mount record should have at least 2 refs to prevent it being
    3062             :          * expired before we get a chance to add it
    3063             :          */
    3064           0 :         BUG_ON(mnt_get_count(mnt) < 2);
    3065             : 
    3066           0 :         if (m->mnt_sb == path->mnt->mnt_sb &&
    3067           0 :             m->mnt_root == dentry) {
    3068             :                 err = -ELOOP;
    3069             :                 goto discard;
    3070             :         }
    3071             : 
    3072             :         /*
    3073             :          * we don't want to use lock_mount() - in this case finding something
    3074             :          * that overmounts our mountpoint to be means "quitely drop what we've
    3075             :          * got", not "try to mount it on top".
    3076             :          */
    3077           0 :         inode_lock(dentry->d_inode);
    3078             :         namespace_lock();
    3079           0 :         if (unlikely(cant_mount(dentry))) {
    3080             :                 err = -ENOENT;
    3081             :                 goto discard_locked;
    3082             :         }
    3083             :         rcu_read_lock();
    3084           0 :         if (unlikely(__lookup_mnt(path->mnt, dentry))) {
    3085             :                 rcu_read_unlock();
    3086           0 :                 err = 0;
    3087           0 :                 goto discard_locked;
    3088             :         }
    3089             :         rcu_read_unlock();
    3090           0 :         mp = get_mountpoint(dentry);
    3091           0 :         if (IS_ERR(mp)) {
    3092           0 :                 err = PTR_ERR(mp);
    3093           0 :                 goto discard_locked;
    3094             :         }
    3095             : 
    3096           0 :         err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
    3097           0 :         unlock_mount(mp);
    3098           0 :         if (unlikely(err))
    3099             :                 goto discard;
    3100           0 :         mntput(m);
    3101           0 :         return 0;
    3102             : 
    3103             : discard_locked:
    3104           0 :         namespace_unlock();
    3105           0 :         inode_unlock(dentry->d_inode);
    3106             : discard:
    3107             :         /* remove m from any expiration list it may be on */
    3108           0 :         if (!list_empty(&mnt->mnt_expire)) {
    3109             :                 namespace_lock();
    3110           0 :                 list_del_init(&mnt->mnt_expire);
    3111           0 :                 namespace_unlock();
    3112             :         }
    3113           0 :         mntput(m);
    3114           0 :         mntput(m);
    3115           0 :         return err;
    3116             : }
    3117             : 
    3118             : /**
    3119             :  * mnt_set_expiry - Put a mount on an expiration list
    3120             :  * @mnt: The mount to list.
    3121             :  * @expiry_list: The list to add the mount to.
    3122             :  */
    3123           0 : void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
    3124             : {
    3125           0 :         namespace_lock();
    3126             : 
    3127           0 :         list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
    3128             : 
    3129           0 :         namespace_unlock();
    3130           0 : }
    3131             : EXPORT_SYMBOL(mnt_set_expiry);
    3132             : 
    3133             : /*
    3134             :  * process a list of expirable mountpoints with the intent of discarding any
    3135             :  * mountpoints that aren't in use and haven't been touched since last we came
    3136             :  * here
    3137             :  */
    3138           0 : void mark_mounts_for_expiry(struct list_head *mounts)
    3139             : {
    3140             :         struct mount *mnt, *next;
    3141           0 :         LIST_HEAD(graveyard);
    3142             : 
    3143           0 :         if (list_empty(mounts))
    3144           0 :                 return;
    3145             : 
    3146             :         namespace_lock();
    3147             :         lock_mount_hash();
    3148             : 
    3149             :         /* extract from the expiration list every vfsmount that matches the
    3150             :          * following criteria:
    3151             :          * - only referenced by its parent vfsmount
    3152             :          * - still marked for expiry (marked on the last call here; marks are
    3153             :          *   cleared by mntput())
    3154             :          */
    3155           0 :         list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
    3156           0 :                 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
    3157           0 :                         propagate_mount_busy(mnt, 1))
    3158           0 :                         continue;
    3159           0 :                 list_move(&mnt->mnt_expire, &graveyard);
    3160             :         }
    3161           0 :         while (!list_empty(&graveyard)) {
    3162           0 :                 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
    3163           0 :                 touch_mnt_namespace(mnt->mnt_ns);
    3164           0 :                 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    3165             :         }
    3166             :         unlock_mount_hash();
    3167           0 :         namespace_unlock();
    3168             : }
    3169             : 
    3170             : EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
    3171             : 
    3172             : /*
    3173             :  * Ripoff of 'select_parent()'
    3174             :  *
    3175             :  * search the list of submounts for a given mountpoint, and move any
    3176             :  * shrinkable submounts to the 'graveyard' list.
    3177             :  */
    3178           0 : static int select_submounts(struct mount *parent, struct list_head *graveyard)
    3179             : {
    3180           0 :         struct mount *this_parent = parent;
    3181             :         struct list_head *next;
    3182           0 :         int found = 0;
    3183             : 
    3184             : repeat:
    3185           0 :         next = this_parent->mnt_mounts.next;
    3186             : resume:
    3187           0 :         while (next != &this_parent->mnt_mounts) {
    3188           0 :                 struct list_head *tmp = next;
    3189           0 :                 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
    3190             : 
    3191           0 :                 next = tmp->next;
    3192           0 :                 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
    3193           0 :                         continue;
    3194             :                 /*
    3195             :                  * Descend a level if the d_mounts list is non-empty.
    3196             :                  */
    3197           0 :                 if (!list_empty(&mnt->mnt_mounts)) {
    3198             :                         this_parent = mnt;
    3199             :                         goto repeat;
    3200             :                 }
    3201             : 
    3202           0 :                 if (!propagate_mount_busy(mnt, 1)) {
    3203           0 :                         list_move_tail(&mnt->mnt_expire, graveyard);
    3204           0 :                         found++;
    3205             :                 }
    3206             :         }
    3207             :         /*
    3208             :          * All done at this level ... ascend and resume the search
    3209             :          */
    3210           0 :         if (this_parent != parent) {
    3211           0 :                 next = this_parent->mnt_child.next;
    3212           0 :                 this_parent = this_parent->mnt_parent;
    3213           0 :                 goto resume;
    3214             :         }
    3215           0 :         return found;
    3216             : }
    3217             : 
    3218             : /*
    3219             :  * process a list of expirable mountpoints with the intent of discarding any
    3220             :  * submounts of a specific parent mountpoint
    3221             :  *
    3222             :  * mount_lock must be held for write
    3223             :  */
    3224           0 : static void shrink_submounts(struct mount *mnt)
    3225             : {
    3226           0 :         LIST_HEAD(graveyard);
    3227             :         struct mount *m;
    3228             : 
    3229             :         /* extract submounts of 'mountpoint' from the expiration list */
    3230           0 :         while (select_submounts(mnt, &graveyard)) {
    3231           0 :                 while (!list_empty(&graveyard)) {
    3232           0 :                         m = list_first_entry(&graveyard, struct mount,
    3233             :                                                 mnt_expire);
    3234           0 :                         touch_mnt_namespace(m->mnt_ns);
    3235           0 :                         umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
    3236             :                 }
    3237             :         }
    3238           0 : }
    3239             : 
    3240           0 : static void *copy_mount_options(const void __user * data)
    3241             : {
    3242             :         char *copy;
    3243             :         unsigned left, offset;
    3244             : 
    3245           0 :         if (!data)
    3246             :                 return NULL;
    3247             : 
    3248           0 :         copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
    3249           0 :         if (!copy)
    3250             :                 return ERR_PTR(-ENOMEM);
    3251             : 
    3252           0 :         left = copy_from_user(copy, data, PAGE_SIZE);
    3253             : 
    3254             :         /*
    3255             :          * Not all architectures have an exact copy_from_user(). Resort to
    3256             :          * byte at a time.
    3257             :          */
    3258           0 :         offset = PAGE_SIZE - left;
    3259           0 :         while (left) {
    3260             :                 char c;
    3261           0 :                 if (get_user(c, (const char __user *)data + offset))
    3262             :                         break;
    3263           0 :                 copy[offset] = c;
    3264           0 :                 left--;
    3265           0 :                 offset++;
    3266             :         }
    3267             : 
    3268           0 :         if (left == PAGE_SIZE) {
    3269           0 :                 kfree(copy);
    3270           0 :                 return ERR_PTR(-EFAULT);
    3271             :         }
    3272             : 
    3273             :         return copy;
    3274             : }
    3275             : 
    3276             : static char *copy_mount_string(const void __user *data)
    3277             : {
    3278           0 :         return data ? strndup_user(data, PATH_MAX) : NULL;
    3279             : }
    3280             : 
    3281             : /*
    3282             :  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
    3283             :  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
    3284             :  *
    3285             :  * data is a (void *) that can point to any structure up to
    3286             :  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
    3287             :  * information (or be NULL).
    3288             :  *
    3289             :  * Pre-0.97 versions of mount() didn't have a flags word.
    3290             :  * When the flags word was introduced its top half was required
    3291             :  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
    3292             :  * Therefore, if this magic number is present, it carries no information
    3293             :  * and must be discarded.
    3294             :  */
    3295           0 : int path_mount(const char *dev_name, struct path *path,
    3296             :                 const char *type_page, unsigned long flags, void *data_page)
    3297             : {
    3298           0 :         unsigned int mnt_flags = 0, sb_flags;
    3299             :         int ret;
    3300             : 
    3301             :         /* Discard magic */
    3302           0 :         if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
    3303           0 :                 flags &= ~MS_MGC_MSK;
    3304             : 
    3305             :         /* Basic sanity checks */
    3306           0 :         if (data_page)
    3307           0 :                 ((char *)data_page)[PAGE_SIZE - 1] = 0;
    3308             : 
    3309           0 :         if (flags & MS_NOUSER)
    3310             :                 return -EINVAL;
    3311             : 
    3312           0 :         ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
    3313             :         if (ret)
    3314             :                 return ret;
    3315           0 :         if (!may_mount())
    3316             :                 return -EPERM;
    3317           0 :         if (flags & SB_MANDLOCK)
    3318             :                 warn_mandlock();
    3319             : 
    3320             :         /* Default to relatime unless overriden */
    3321           0 :         if (!(flags & MS_NOATIME))
    3322           0 :                 mnt_flags |= MNT_RELATIME;
    3323             : 
    3324             :         /* Separate the per-mountpoint flags */
    3325           0 :         if (flags & MS_NOSUID)
    3326           0 :                 mnt_flags |= MNT_NOSUID;
    3327           0 :         if (flags & MS_NODEV)
    3328           0 :                 mnt_flags |= MNT_NODEV;
    3329           0 :         if (flags & MS_NOEXEC)
    3330           0 :                 mnt_flags |= MNT_NOEXEC;
    3331           0 :         if (flags & MS_NOATIME)
    3332           0 :                 mnt_flags |= MNT_NOATIME;
    3333           0 :         if (flags & MS_NODIRATIME)
    3334           0 :                 mnt_flags |= MNT_NODIRATIME;
    3335           0 :         if (flags & MS_STRICTATIME)
    3336           0 :                 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
    3337           0 :         if (flags & MS_RDONLY)
    3338           0 :                 mnt_flags |= MNT_READONLY;
    3339           0 :         if (flags & MS_NOSYMFOLLOW)
    3340           0 :                 mnt_flags |= MNT_NOSYMFOLLOW;
    3341             : 
    3342             :         /* The default atime for remount is preservation */
    3343           0 :         if ((flags & MS_REMOUNT) &&
    3344             :             ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
    3345             :                        MS_STRICTATIME)) == 0)) {
    3346           0 :                 mnt_flags &= ~MNT_ATIME_MASK;
    3347           0 :                 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
    3348             :         }
    3349             : 
    3350           0 :         sb_flags = flags & (SB_RDONLY |
    3351             :                             SB_SYNCHRONOUS |
    3352             :                             SB_MANDLOCK |
    3353             :                             SB_DIRSYNC |
    3354             :                             SB_SILENT |
    3355             :                             SB_POSIXACL |
    3356             :                             SB_LAZYTIME |
    3357             :                             SB_I_VERSION);
    3358             : 
    3359           0 :         if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
    3360           0 :                 return do_reconfigure_mnt(path, mnt_flags);
    3361           0 :         if (flags & MS_REMOUNT)
    3362           0 :                 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
    3363           0 :         if (flags & MS_BIND)
    3364           0 :                 return do_loopback(path, dev_name, flags & MS_REC);
    3365           0 :         if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
    3366           0 :                 return do_change_type(path, flags);
    3367           0 :         if (flags & MS_MOVE)
    3368           0 :                 return do_move_mount_old(path, dev_name);
    3369             : 
    3370           0 :         return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
    3371             :                             data_page);
    3372             : }
    3373             : 
    3374           0 : long do_mount(const char *dev_name, const char __user *dir_name,
    3375             :                 const char *type_page, unsigned long flags, void *data_page)
    3376             : {
    3377             :         struct path path;
    3378             :         int ret;
    3379             : 
    3380           0 :         ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
    3381           0 :         if (ret)
    3382           0 :                 return ret;
    3383           0 :         ret = path_mount(dev_name, &path, type_page, flags, data_page);
    3384           0 :         path_put(&path);
    3385           0 :         return ret;
    3386             : }
    3387             : 
    3388             : static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
    3389             : {
    3390           1 :         return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
    3391             : }
    3392             : 
    3393             : static void dec_mnt_namespaces(struct ucounts *ucounts)
    3394             : {
    3395           0 :         dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
    3396             : }
    3397             : 
    3398           0 : static void free_mnt_ns(struct mnt_namespace *ns)
    3399             : {
    3400           0 :         if (!is_anon_ns(ns))
    3401           0 :                 ns_free_inum(&ns->ns);
    3402           0 :         dec_mnt_namespaces(ns->ucounts);
    3403           0 :         put_user_ns(ns->user_ns);
    3404           0 :         kfree(ns);
    3405           0 : }
    3406             : 
    3407             : /*
    3408             :  * Assign a sequence number so we can detect when we attempt to bind
    3409             :  * mount a reference to an older mount namespace into the current
    3410             :  * mount namespace, preventing reference counting loops.  A 64bit
    3411             :  * number incrementing at 10Ghz will take 12,427 years to wrap which
    3412             :  * is effectively never, so we can ignore the possibility.
    3413             :  */
    3414             : static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
    3415             : 
    3416           1 : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
    3417             : {
    3418             :         struct mnt_namespace *new_ns;
    3419             :         struct ucounts *ucounts;
    3420             :         int ret;
    3421             : 
    3422           1 :         ucounts = inc_mnt_namespaces(user_ns);
    3423           1 :         if (!ucounts)
    3424             :                 return ERR_PTR(-ENOSPC);
    3425             : 
    3426           1 :         new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
    3427           1 :         if (!new_ns) {
    3428           0 :                 dec_mnt_namespaces(ucounts);
    3429           0 :                 return ERR_PTR(-ENOMEM);
    3430             :         }
    3431           1 :         if (!anon) {
    3432           2 :                 ret = ns_alloc_inum(&new_ns->ns);
    3433           1 :                 if (ret) {
    3434           0 :                         kfree(new_ns);
    3435           0 :                         dec_mnt_namespaces(ucounts);
    3436           0 :                         return ERR_PTR(ret);
    3437             :                 }
    3438             :         }
    3439           1 :         new_ns->ns.ops = &mntns_operations;
    3440           1 :         if (!anon)
    3441           1 :                 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
    3442           2 :         refcount_set(&new_ns->ns.count, 1);
    3443           2 :         INIT_LIST_HEAD(&new_ns->list);
    3444           1 :         init_waitqueue_head(&new_ns->poll);
    3445           1 :         spin_lock_init(&new_ns->ns_lock);
    3446           1 :         new_ns->user_ns = get_user_ns(user_ns);
    3447           1 :         new_ns->ucounts = ucounts;
    3448           1 :         return new_ns;
    3449             : }
    3450             : 
    3451             : __latent_entropy
    3452           0 : struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
    3453             :                 struct user_namespace *user_ns, struct fs_struct *new_fs)
    3454             : {
    3455             :         struct mnt_namespace *new_ns;
    3456           0 :         struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
    3457             :         struct mount *p, *q;
    3458             :         struct mount *old;
    3459             :         struct mount *new;
    3460             :         int copy_flags;
    3461             : 
    3462           0 :         BUG_ON(!ns);
    3463             : 
    3464           0 :         if (likely(!(flags & CLONE_NEWNS))) {
    3465           0 :                 get_mnt_ns(ns);
    3466           0 :                 return ns;
    3467             :         }
    3468             : 
    3469           0 :         old = ns->root;
    3470             : 
    3471           0 :         new_ns = alloc_mnt_ns(user_ns, false);
    3472           0 :         if (IS_ERR(new_ns))
    3473             :                 return new_ns;
    3474             : 
    3475             :         namespace_lock();
    3476             :         /* First pass: copy the tree topology */
    3477           0 :         copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
    3478           0 :         if (user_ns != ns->user_ns)
    3479           0 :                 copy_flags |= CL_SHARED_TO_SLAVE;
    3480           0 :         new = copy_tree(old, old->mnt.mnt_root, copy_flags);
    3481           0 :         if (IS_ERR(new)) {
    3482           0 :                 namespace_unlock();
    3483           0 :                 free_mnt_ns(new_ns);
    3484           0 :                 return ERR_CAST(new);
    3485             :         }
    3486           0 :         if (user_ns != ns->user_ns) {
    3487             :                 lock_mount_hash();
    3488           0 :                 lock_mnt_tree(new);
    3489             :                 unlock_mount_hash();
    3490             :         }
    3491           0 :         new_ns->root = new;
    3492           0 :         list_add_tail(&new_ns->list, &new->mnt_list);
    3493             : 
    3494             :         /*
    3495             :          * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
    3496             :          * as belonging to new namespace.  We have already acquired a private
    3497             :          * fs_struct, so tsk->fs->lock is not needed.
    3498             :          */
    3499           0 :         p = old;
    3500           0 :         q = new;
    3501           0 :         while (p) {
    3502           0 :                 q->mnt_ns = new_ns;
    3503           0 :                 new_ns->mounts++;
    3504           0 :                 if (new_fs) {
    3505           0 :                         if (&p->mnt == new_fs->root.mnt) {
    3506           0 :                                 new_fs->root.mnt = mntget(&q->mnt);
    3507           0 :                                 rootmnt = &p->mnt;
    3508             :                         }
    3509           0 :                         if (&p->mnt == new_fs->pwd.mnt) {
    3510           0 :                                 new_fs->pwd.mnt = mntget(&q->mnt);
    3511           0 :                                 pwdmnt = &p->mnt;
    3512             :                         }
    3513             :                 }
    3514           0 :                 p = next_mnt(p, old);
    3515           0 :                 q = next_mnt(q, new);
    3516           0 :                 if (!q)
    3517             :                         break;
    3518           0 :                 while (p->mnt.mnt_root != q->mnt.mnt_root)
    3519             :                         p = next_mnt(p, old);
    3520             :         }
    3521           0 :         namespace_unlock();
    3522             : 
    3523           0 :         if (rootmnt)
    3524             :                 mntput(rootmnt);
    3525           0 :         if (pwdmnt)
    3526             :                 mntput(pwdmnt);
    3527             : 
    3528             :         return new_ns;
    3529             : }
    3530             : 
    3531           0 : struct dentry *mount_subtree(struct vfsmount *m, const char *name)
    3532             : {
    3533           0 :         struct mount *mnt = real_mount(m);
    3534             :         struct mnt_namespace *ns;
    3535             :         struct super_block *s;
    3536             :         struct path path;
    3537             :         int err;
    3538             : 
    3539           0 :         ns = alloc_mnt_ns(&init_user_ns, true);
    3540           0 :         if (IS_ERR(ns)) {
    3541             :                 mntput(m);
    3542             :                 return ERR_CAST(ns);
    3543             :         }
    3544           0 :         mnt->mnt_ns = ns;
    3545           0 :         ns->root = mnt;
    3546           0 :         ns->mounts++;
    3547           0 :         list_add(&mnt->mnt_list, &ns->list);
    3548             : 
    3549           0 :         err = vfs_path_lookup(m->mnt_root, m,
    3550             :                         name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
    3551             : 
    3552           0 :         put_mnt_ns(ns);
    3553             : 
    3554           0 :         if (err)
    3555           0 :                 return ERR_PTR(err);
    3556             : 
    3557             :         /* trade a vfsmount reference for active sb one */
    3558           0 :         s = path.mnt->mnt_sb;
    3559           0 :         atomic_inc(&s->s_active);
    3560           0 :         mntput(path.mnt);
    3561             :         /* lock the sucker */
    3562           0 :         down_write(&s->s_umount);
    3563             :         /* ... and return the root of (sub)tree on it */
    3564           0 :         return path.dentry;
    3565             : }
    3566             : EXPORT_SYMBOL(mount_subtree);
    3567             : 
    3568           0 : SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
    3569             :                 char __user *, type, unsigned long, flags, void __user *, data)
    3570             : {
    3571             :         int ret;
    3572             :         char *kernel_type;
    3573             :         char *kernel_dev;
    3574             :         void *options;
    3575             : 
    3576           0 :         kernel_type = copy_mount_string(type);
    3577           0 :         ret = PTR_ERR(kernel_type);
    3578           0 :         if (IS_ERR(kernel_type))
    3579             :                 goto out_type;
    3580             : 
    3581           0 :         kernel_dev = copy_mount_string(dev_name);
    3582           0 :         ret = PTR_ERR(kernel_dev);
    3583           0 :         if (IS_ERR(kernel_dev))
    3584             :                 goto out_dev;
    3585             : 
    3586           0 :         options = copy_mount_options(data);
    3587           0 :         ret = PTR_ERR(options);
    3588           0 :         if (IS_ERR(options))
    3589             :                 goto out_data;
    3590             : 
    3591           0 :         ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
    3592             : 
    3593           0 :         kfree(options);
    3594             : out_data:
    3595           0 :         kfree(kernel_dev);
    3596             : out_dev:
    3597           0 :         kfree(kernel_type);
    3598             : out_type:
    3599           0 :         return ret;
    3600             : }
    3601             : 
    3602             : #define FSMOUNT_VALID_FLAGS                                                    \
    3603             :         (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
    3604             :          MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
    3605             :          MOUNT_ATTR_NOSYMFOLLOW)
    3606             : 
    3607             : #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
    3608             : 
    3609             : #define MOUNT_SETATTR_PROPAGATION_FLAGS \
    3610             :         (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
    3611             : 
    3612           0 : static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
    3613             : {
    3614           0 :         unsigned int mnt_flags = 0;
    3615             : 
    3616           0 :         if (attr_flags & MOUNT_ATTR_RDONLY)
    3617           0 :                 mnt_flags |= MNT_READONLY;
    3618           0 :         if (attr_flags & MOUNT_ATTR_NOSUID)
    3619           0 :                 mnt_flags |= MNT_NOSUID;
    3620           0 :         if (attr_flags & MOUNT_ATTR_NODEV)
    3621           0 :                 mnt_flags |= MNT_NODEV;
    3622           0 :         if (attr_flags & MOUNT_ATTR_NOEXEC)
    3623           0 :                 mnt_flags |= MNT_NOEXEC;
    3624           0 :         if (attr_flags & MOUNT_ATTR_NODIRATIME)
    3625           0 :                 mnt_flags |= MNT_NODIRATIME;
    3626           0 :         if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
    3627           0 :                 mnt_flags |= MNT_NOSYMFOLLOW;
    3628             : 
    3629           0 :         return mnt_flags;
    3630             : }
    3631             : 
    3632             : /*
    3633             :  * Create a kernel mount representation for a new, prepared superblock
    3634             :  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
    3635             :  */
    3636           0 : SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
    3637             :                 unsigned int, attr_flags)
    3638             : {
    3639             :         struct mnt_namespace *ns;
    3640             :         struct fs_context *fc;
    3641             :         struct file *file;
    3642             :         struct path newmount;
    3643             :         struct mount *mnt;
    3644             :         struct fd f;
    3645           0 :         unsigned int mnt_flags = 0;
    3646             :         long ret;
    3647             : 
    3648           0 :         if (!may_mount())
    3649             :                 return -EPERM;
    3650             : 
    3651           0 :         if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
    3652             :                 return -EINVAL;
    3653             : 
    3654           0 :         if (attr_flags & ~FSMOUNT_VALID_FLAGS)
    3655             :                 return -EINVAL;
    3656             : 
    3657           0 :         mnt_flags = attr_flags_to_mnt_flags(attr_flags);
    3658             : 
    3659           0 :         switch (attr_flags & MOUNT_ATTR__ATIME) {
    3660             :         case MOUNT_ATTR_STRICTATIME:
    3661             :                 break;
    3662             :         case MOUNT_ATTR_NOATIME:
    3663           0 :                 mnt_flags |= MNT_NOATIME;
    3664           0 :                 break;
    3665             :         case MOUNT_ATTR_RELATIME:
    3666           0 :                 mnt_flags |= MNT_RELATIME;
    3667           0 :                 break;
    3668             :         default:
    3669             :                 return -EINVAL;
    3670             :         }
    3671             : 
    3672           0 :         f = fdget(fs_fd);
    3673           0 :         if (!f.file)
    3674             :                 return -EBADF;
    3675             : 
    3676           0 :         ret = -EINVAL;
    3677           0 :         if (f.file->f_op != &fscontext_fops)
    3678             :                 goto err_fsfd;
    3679             : 
    3680           0 :         fc = f.file->private_data;
    3681             : 
    3682           0 :         ret = mutex_lock_interruptible(&fc->uapi_mutex);
    3683           0 :         if (ret < 0)
    3684             :                 goto err_fsfd;
    3685             : 
    3686             :         /* There must be a valid superblock or we can't mount it */
    3687           0 :         ret = -EINVAL;
    3688           0 :         if (!fc->root)
    3689             :                 goto err_unlock;
    3690             : 
    3691           0 :         ret = -EPERM;
    3692           0 :         if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
    3693           0 :                 pr_warn("VFS: Mount too revealing\n");
    3694           0 :                 goto err_unlock;
    3695             :         }
    3696             : 
    3697           0 :         ret = -EBUSY;
    3698           0 :         if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
    3699             :                 goto err_unlock;
    3700             : 
    3701           0 :         if (fc->sb_flags & SB_MANDLOCK)
    3702             :                 warn_mandlock();
    3703             : 
    3704           0 :         newmount.mnt = vfs_create_mount(fc);
    3705           0 :         if (IS_ERR(newmount.mnt)) {
    3706           0 :                 ret = PTR_ERR(newmount.mnt);
    3707           0 :                 goto err_unlock;
    3708             :         }
    3709           0 :         newmount.dentry = dget(fc->root);
    3710           0 :         newmount.mnt->mnt_flags = mnt_flags;
    3711             : 
    3712             :         /* We've done the mount bit - now move the file context into more or
    3713             :          * less the same state as if we'd done an fspick().  We don't want to
    3714             :          * do any memory allocation or anything like that at this point as we
    3715             :          * don't want to have to handle any errors incurred.
    3716             :          */
    3717           0 :         vfs_clean_context(fc);
    3718             : 
    3719           0 :         ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
    3720           0 :         if (IS_ERR(ns)) {
    3721           0 :                 ret = PTR_ERR(ns);
    3722           0 :                 goto err_path;
    3723             :         }
    3724           0 :         mnt = real_mount(newmount.mnt);
    3725           0 :         mnt->mnt_ns = ns;
    3726           0 :         ns->root = mnt;
    3727           0 :         ns->mounts = 1;
    3728           0 :         list_add(&mnt->mnt_list, &ns->list);
    3729           0 :         mntget(newmount.mnt);
    3730             : 
    3731             :         /* Attach to an apparent O_PATH fd with a note that we need to unmount
    3732             :          * it, not just simply put it.
    3733             :          */
    3734           0 :         file = dentry_open(&newmount, O_PATH, fc->cred);
    3735           0 :         if (IS_ERR(file)) {
    3736           0 :                 dissolve_on_fput(newmount.mnt);
    3737           0 :                 ret = PTR_ERR(file);
    3738           0 :                 goto err_path;
    3739             :         }
    3740           0 :         file->f_mode |= FMODE_NEED_UNMOUNT;
    3741             : 
    3742           0 :         ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
    3743           0 :         if (ret >= 0)
    3744           0 :                 fd_install(ret, file);
    3745             :         else
    3746           0 :                 fput(file);
    3747             : 
    3748             : err_path:
    3749           0 :         path_put(&newmount);
    3750             : err_unlock:
    3751           0 :         mutex_unlock(&fc->uapi_mutex);
    3752             : err_fsfd:
    3753           0 :         fdput(f);
    3754             :         return ret;
    3755             : }
    3756             : 
    3757             : /*
    3758             :  * Move a mount from one place to another.  In combination with
    3759             :  * fsopen()/fsmount() this is used to install a new mount and in combination
    3760             :  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
    3761             :  * a mount subtree.
    3762             :  *
    3763             :  * Note the flags value is a combination of MOVE_MOUNT_* flags.
    3764             :  */
    3765           0 : SYSCALL_DEFINE5(move_mount,
    3766             :                 int, from_dfd, const char __user *, from_pathname,
    3767             :                 int, to_dfd, const char __user *, to_pathname,
    3768             :                 unsigned int, flags)
    3769             : {
    3770             :         struct path from_path, to_path;
    3771             :         unsigned int lflags;
    3772           0 :         int ret = 0;
    3773             : 
    3774           0 :         if (!may_mount())
    3775             :                 return -EPERM;
    3776             : 
    3777           0 :         if (flags & ~MOVE_MOUNT__MASK)
    3778             :                 return -EINVAL;
    3779             : 
    3780             :         /* If someone gives a pathname, they aren't permitted to move
    3781             :          * from an fd that requires unmount as we can't get at the flag
    3782             :          * to clear it afterwards.
    3783             :          */
    3784           0 :         lflags = 0;
    3785           0 :         if (flags & MOVE_MOUNT_F_SYMLINKS)  lflags |= LOOKUP_FOLLOW;
    3786           0 :         if (flags & MOVE_MOUNT_F_AUTOMOUNTS)        lflags |= LOOKUP_AUTOMOUNT;
    3787           0 :         if (flags & MOVE_MOUNT_F_EMPTY_PATH)        lflags |= LOOKUP_EMPTY;
    3788             : 
    3789           0 :         ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
    3790           0 :         if (ret < 0)
    3791           0 :                 return ret;
    3792             : 
    3793           0 :         lflags = 0;
    3794           0 :         if (flags & MOVE_MOUNT_T_SYMLINKS)  lflags |= LOOKUP_FOLLOW;
    3795           0 :         if (flags & MOVE_MOUNT_T_AUTOMOUNTS)        lflags |= LOOKUP_AUTOMOUNT;
    3796           0 :         if (flags & MOVE_MOUNT_T_EMPTY_PATH)        lflags |= LOOKUP_EMPTY;
    3797             : 
    3798           0 :         ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
    3799           0 :         if (ret < 0)
    3800             :                 goto out_from;
    3801             : 
    3802           0 :         ret = security_move_mount(&from_path, &to_path);
    3803             :         if (ret < 0)
    3804             :                 goto out_to;
    3805             : 
    3806           0 :         if (flags & MOVE_MOUNT_SET_GROUP)
    3807           0 :                 ret = do_set_group(&from_path, &to_path);
    3808             :         else
    3809           0 :                 ret = do_move_mount(&from_path, &to_path);
    3810             : 
    3811             : out_to:
    3812           0 :         path_put(&to_path);
    3813             : out_from:
    3814           0 :         path_put(&from_path);
    3815           0 :         return ret;
    3816             : }
    3817             : 
    3818             : /*
    3819             :  * Return true if path is reachable from root
    3820             :  *
    3821             :  * namespace_sem or mount_lock is held
    3822             :  */
    3823           0 : bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
    3824             :                          const struct path *root)
    3825             : {
    3826           0 :         while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
    3827           0 :                 dentry = mnt->mnt_mountpoint;
    3828           0 :                 mnt = mnt->mnt_parent;
    3829             :         }
    3830           0 :         return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
    3831             : }
    3832             : 
    3833           0 : bool path_is_under(const struct path *path1, const struct path *path2)
    3834             : {
    3835             :         bool res;
    3836           0 :         read_seqlock_excl(&mount_lock);
    3837           0 :         res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
    3838           0 :         read_sequnlock_excl(&mount_lock);
    3839           0 :         return res;
    3840             : }
    3841             : EXPORT_SYMBOL(path_is_under);
    3842             : 
    3843             : /*
    3844             :  * pivot_root Semantics:
    3845             :  * Moves the root file system of the current process to the directory put_old,
    3846             :  * makes new_root as the new root file system of the current process, and sets
    3847             :  * root/cwd of all processes which had them on the current root to new_root.
    3848             :  *
    3849             :  * Restrictions:
    3850             :  * The new_root and put_old must be directories, and  must not be on the
    3851             :  * same file  system as the current process root. The put_old  must  be
    3852             :  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
    3853             :  * pointed to by put_old must yield the same directory as new_root. No other
    3854             :  * file system may be mounted on put_old. After all, new_root is a mountpoint.
    3855             :  *
    3856             :  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
    3857             :  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
    3858             :  * in this situation.
    3859             :  *
    3860             :  * Notes:
    3861             :  *  - we don't move root/cwd if they are not at the root (reason: if something
    3862             :  *    cared enough to change them, it's probably wrong to force them elsewhere)
    3863             :  *  - it's okay to pick a root that isn't the root of a file system, e.g.
    3864             :  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
    3865             :  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
    3866             :  *    first.
    3867             :  */
    3868           0 : SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
    3869             :                 const char __user *, put_old)
    3870             : {
    3871             :         struct path new, old, root;
    3872             :         struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
    3873             :         struct mountpoint *old_mp, *root_mp;
    3874             :         int error;
    3875             : 
    3876           0 :         if (!may_mount())
    3877             :                 return -EPERM;
    3878             : 
    3879           0 :         error = user_path_at(AT_FDCWD, new_root,
    3880             :                              LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
    3881           0 :         if (error)
    3882             :                 goto out0;
    3883             : 
    3884           0 :         error = user_path_at(AT_FDCWD, put_old,
    3885             :                              LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
    3886           0 :         if (error)
    3887             :                 goto out1;
    3888             : 
    3889           0 :         error = security_sb_pivotroot(&old, &new);
    3890             :         if (error)
    3891             :                 goto out2;
    3892             : 
    3893           0 :         get_fs_root(current->fs, &root);
    3894           0 :         old_mp = lock_mount(&old);
    3895           0 :         error = PTR_ERR(old_mp);
    3896           0 :         if (IS_ERR(old_mp))
    3897             :                 goto out3;
    3898             : 
    3899           0 :         error = -EINVAL;
    3900           0 :         new_mnt = real_mount(new.mnt);
    3901           0 :         root_mnt = real_mount(root.mnt);
    3902           0 :         old_mnt = real_mount(old.mnt);
    3903           0 :         ex_parent = new_mnt->mnt_parent;
    3904           0 :         root_parent = root_mnt->mnt_parent;
    3905           0 :         if (IS_MNT_SHARED(old_mnt) ||
    3906           0 :                 IS_MNT_SHARED(ex_parent) ||
    3907           0 :                 IS_MNT_SHARED(root_parent))
    3908             :                 goto out4;
    3909           0 :         if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
    3910             :                 goto out4;
    3911           0 :         if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
    3912             :                 goto out4;
    3913           0 :         error = -ENOENT;
    3914           0 :         if (d_unlinked(new.dentry))
    3915             :                 goto out4;
    3916           0 :         error = -EBUSY;
    3917           0 :         if (new_mnt == root_mnt || old_mnt == root_mnt)
    3918             :                 goto out4; /* loop, on the same file system  */
    3919           0 :         error = -EINVAL;
    3920           0 :         if (root.mnt->mnt_root != root.dentry)
    3921             :                 goto out4; /* not a mountpoint */
    3922           0 :         if (!mnt_has_parent(root_mnt))
    3923             :                 goto out4; /* not attached */
    3924           0 :         if (new.mnt->mnt_root != new.dentry)
    3925             :                 goto out4; /* not a mountpoint */
    3926           0 :         if (!mnt_has_parent(new_mnt))
    3927             :                 goto out4; /* not attached */
    3928             :         /* make sure we can reach put_old from new_root */
    3929           0 :         if (!is_path_reachable(old_mnt, old.dentry, &new))
    3930             :                 goto out4;
    3931             :         /* make certain new is below the root */
    3932           0 :         if (!is_path_reachable(new_mnt, new.dentry, &root))
    3933             :                 goto out4;
    3934           0 :         lock_mount_hash();
    3935           0 :         umount_mnt(new_mnt);
    3936           0 :         root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
    3937           0 :         if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
    3938           0 :                 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
    3939           0 :                 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
    3940             :         }
    3941             :         /* mount old root on put_old */
    3942           0 :         attach_mnt(root_mnt, old_mnt, old_mp);
    3943             :         /* mount new_root on / */
    3944           0 :         attach_mnt(new_mnt, root_parent, root_mp);
    3945           0 :         mnt_add_count(root_parent, -1);
    3946           0 :         touch_mnt_namespace(current->nsproxy->mnt_ns);
    3947             :         /* A moved mount should not expire automatically */
    3948           0 :         list_del_init(&new_mnt->mnt_expire);
    3949           0 :         put_mountpoint(root_mp);
    3950             :         unlock_mount_hash();
    3951           0 :         chroot_fs_refs(&root, &new);
    3952           0 :         error = 0;
    3953             : out4:
    3954           0 :         unlock_mount(old_mp);
    3955           0 :         if (!error)
    3956           0 :                 mntput_no_expire(ex_parent);
    3957             : out3:
    3958           0 :         path_put(&root);
    3959             : out2:
    3960           0 :         path_put(&old);
    3961             : out1:
    3962           0 :         path_put(&new);
    3963             : out0:
    3964           0 :         return error;
    3965             : }
    3966             : 
    3967             : static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
    3968             : {
    3969           0 :         unsigned int flags = mnt->mnt.mnt_flags;
    3970             : 
    3971             :         /*  flags to clear */
    3972           0 :         flags &= ~kattr->attr_clr;
    3973             :         /* flags to raise */
    3974           0 :         flags |= kattr->attr_set;
    3975             : 
    3976             :         return flags;
    3977             : }
    3978             : 
    3979           0 : static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
    3980             : {
    3981           0 :         struct vfsmount *m = &mnt->mnt;
    3982           0 :         struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
    3983             : 
    3984           0 :         if (!kattr->mnt_userns)
    3985             :                 return 0;
    3986             : 
    3987             :         /*
    3988             :          * Creating an idmapped mount with the filesystem wide idmapping
    3989             :          * doesn't make sense so block that. We don't allow mushy semantics.
    3990             :          */
    3991           0 :         if (kattr->mnt_userns == fs_userns)
    3992             :                 return -EINVAL;
    3993             : 
    3994             :         /*
    3995             :          * Once a mount has been idmapped we don't allow it to change its
    3996             :          * mapping. It makes things simpler and callers can just create
    3997             :          * another bind-mount they can idmap if they want to.
    3998             :          */
    3999           0 :         if (is_idmapped_mnt(m))
    4000             :                 return -EPERM;
    4001             : 
    4002             :         /* The underlying filesystem doesn't support idmapped mounts yet. */
    4003           0 :         if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
    4004             :                 return -EINVAL;
    4005             : 
    4006             :         /* We're not controlling the superblock. */
    4007           0 :         if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
    4008             :                 return -EPERM;
    4009             : 
    4010             :         /* Mount has already been visible in the filesystem hierarchy. */
    4011           0 :         if (!is_anon_ns(mnt->mnt_ns))
    4012             :                 return -EINVAL;
    4013             : 
    4014             :         return 0;
    4015             : }
    4016             : 
    4017             : /**
    4018             :  * mnt_allow_writers() - check whether the attribute change allows writers
    4019             :  * @kattr: the new mount attributes
    4020             :  * @mnt: the mount to which @kattr will be applied
    4021             :  *
    4022             :  * Check whether thew new mount attributes in @kattr allow concurrent writers.
    4023             :  *
    4024             :  * Return: true if writers need to be held, false if not
    4025             :  */
    4026             : static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
    4027             :                                      const struct mount *mnt)
    4028             : {
    4029           0 :         return !(kattr->attr_set & MNT_READONLY) ||
    4030           0 :                (mnt->mnt.mnt_flags & MNT_READONLY);
    4031             : }
    4032             : 
    4033           0 : static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
    4034             : {
    4035             :         struct mount *m;
    4036             :         int err;
    4037             : 
    4038           0 :         for (m = mnt; m; m = next_mnt(m, mnt)) {
    4039           0 :                 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
    4040             :                         err = -EPERM;
    4041             :                         break;
    4042             :                 }
    4043             : 
    4044           0 :                 err = can_idmap_mount(kattr, m);
    4045           0 :                 if (err)
    4046             :                         break;
    4047             : 
    4048           0 :                 if (!mnt_allow_writers(kattr, m)) {
    4049           0 :                         err = mnt_hold_writers(m);
    4050           0 :                         if (err)
    4051             :                                 break;
    4052             :                 }
    4053             : 
    4054           0 :                 if (!kattr->recurse)
    4055             :                         return 0;
    4056             :         }
    4057             : 
    4058           0 :         if (err) {
    4059             :                 struct mount *p;
    4060             : 
    4061             :                 /*
    4062             :                  * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
    4063             :                  * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
    4064             :                  * mounts and needs to take care to include the first mount.
    4065             :                  */
    4066           0 :                 for (p = mnt; p; p = next_mnt(p, mnt)) {
    4067             :                         /* If we had to hold writers unblock them. */
    4068           0 :                         if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
    4069           0 :                                 mnt_unhold_writers(p);
    4070             : 
    4071             :                         /*
    4072             :                          * We're done once the first mount we changed got
    4073             :                          * MNT_WRITE_HOLD unset.
    4074             :                          */
    4075           0 :                         if (p == m)
    4076             :                                 break;
    4077             :                 }
    4078             :         }
    4079             :         return err;
    4080             : }
    4081             : 
    4082             : static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
    4083             : {
    4084             :         struct user_namespace *mnt_userns, *old_mnt_userns;
    4085             : 
    4086           0 :         if (!kattr->mnt_userns)
    4087             :                 return;
    4088             : 
    4089             :         /*
    4090             :          * We're the only ones able to change the mount's idmapping. So
    4091             :          * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
    4092             :          */
    4093           0 :         old_mnt_userns = mnt->mnt.mnt_userns;
    4094             : 
    4095           0 :         mnt_userns = get_user_ns(kattr->mnt_userns);
    4096             :         /* Pairs with smp_load_acquire() in mnt_user_ns(). */
    4097           0 :         smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
    4098             : 
    4099             :         /*
    4100             :          * If this is an idmapped filesystem drop the reference we've taken
    4101             :          * in vfs_create_mount() before.
    4102             :          */
    4103           0 :         if (!initial_idmapping(old_mnt_userns))
    4104             :                 put_user_ns(old_mnt_userns);
    4105             : }
    4106             : 
    4107           0 : static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
    4108             : {
    4109             :         struct mount *m;
    4110             : 
    4111           0 :         for (m = mnt; m; m = next_mnt(m, mnt)) {
    4112             :                 unsigned int flags;
    4113             : 
    4114           0 :                 do_idmap_mount(kattr, m);
    4115           0 :                 flags = recalc_flags(kattr, m);
    4116           0 :                 WRITE_ONCE(m->mnt.mnt_flags, flags);
    4117             : 
    4118             :                 /* If we had to hold writers unblock them. */
    4119           0 :                 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
    4120           0 :                         mnt_unhold_writers(m);
    4121             : 
    4122           0 :                 if (kattr->propagation)
    4123           0 :                         change_mnt_propagation(m, kattr->propagation);
    4124           0 :                 if (!kattr->recurse)
    4125             :                         break;
    4126             :         }
    4127           0 :         touch_mnt_namespace(mnt->mnt_ns);
    4128           0 : }
    4129             : 
    4130           0 : static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
    4131             : {
    4132           0 :         struct mount *mnt = real_mount(path->mnt);
    4133           0 :         int err = 0;
    4134             : 
    4135           0 :         if (path->dentry != mnt->mnt.mnt_root)
    4136             :                 return -EINVAL;
    4137             : 
    4138           0 :         if (kattr->propagation) {
    4139             :                 /*
    4140             :                  * Only take namespace_lock() if we're actually changing
    4141             :                  * propagation.
    4142             :                  */
    4143             :                 namespace_lock();
    4144           0 :                 if (kattr->propagation == MS_SHARED) {
    4145           0 :                         err = invent_group_ids(mnt, kattr->recurse);
    4146           0 :                         if (err) {
    4147           0 :                                 namespace_unlock();
    4148           0 :                                 return err;
    4149             :                         }
    4150             :                 }
    4151             :         }
    4152             : 
    4153           0 :         err = -EINVAL;
    4154             :         lock_mount_hash();
    4155             : 
    4156             :         /* Ensure that this isn't anything purely vfs internal. */
    4157           0 :         if (!is_mounted(&mnt->mnt))
    4158             :                 goto out;
    4159             : 
    4160             :         /*
    4161             :          * If this is an attached mount make sure it's located in the callers
    4162             :          * mount namespace. If it's not don't let the caller interact with it.
    4163             :          * If this is a detached mount make sure it has an anonymous mount
    4164             :          * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
    4165             :          */
    4166           0 :         if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
    4167             :                 goto out;
    4168             : 
    4169             :         /*
    4170             :          * First, we get the mount tree in a shape where we can change mount
    4171             :          * properties without failure. If we succeeded to do so we commit all
    4172             :          * changes and if we failed we clean up.
    4173             :          */
    4174           0 :         err = mount_setattr_prepare(kattr, mnt);
    4175           0 :         if (!err)
    4176           0 :                 mount_setattr_commit(kattr, mnt);
    4177             : 
    4178             : out:
    4179             :         unlock_mount_hash();
    4180             : 
    4181           0 :         if (kattr->propagation) {
    4182           0 :                 namespace_unlock();
    4183           0 :                 if (err)
    4184           0 :                         cleanup_group_ids(mnt, NULL);
    4185             :         }
    4186             : 
    4187             :         return err;
    4188             : }
    4189             : 
    4190           0 : static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
    4191             :                                 struct mount_kattr *kattr, unsigned int flags)
    4192             : {
    4193           0 :         int err = 0;
    4194             :         struct ns_common *ns;
    4195             :         struct user_namespace *mnt_userns;
    4196             :         struct file *file;
    4197             : 
    4198           0 :         if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
    4199             :                 return 0;
    4200             : 
    4201             :         /*
    4202             :          * We currently do not support clearing an idmapped mount. If this ever
    4203             :          * is a use-case we can revisit this but for now let's keep it simple
    4204             :          * and not allow it.
    4205             :          */
    4206           0 :         if (attr->attr_clr & MOUNT_ATTR_IDMAP)
    4207             :                 return -EINVAL;
    4208             : 
    4209           0 :         if (attr->userns_fd > INT_MAX)
    4210             :                 return -EINVAL;
    4211             : 
    4212           0 :         file = fget(attr->userns_fd);
    4213           0 :         if (!file)
    4214             :                 return -EBADF;
    4215             : 
    4216           0 :         if (!proc_ns_file(file)) {
    4217             :                 err = -EINVAL;
    4218             :                 goto out_fput;
    4219             :         }
    4220             : 
    4221           0 :         ns = get_proc_ns(file_inode(file));
    4222           0 :         if (ns->ops->type != CLONE_NEWUSER) {
    4223             :                 err = -EINVAL;
    4224             :                 goto out_fput;
    4225             :         }
    4226             : 
    4227             :         /*
    4228             :          * The initial idmapping cannot be used to create an idmapped
    4229             :          * mount. We use the initial idmapping as an indicator of a mount
    4230             :          * that is not idmapped. It can simply be passed into helpers that
    4231             :          * are aware of idmapped mounts as a convenient shortcut. A user
    4232             :          * can just create a dedicated identity mapping to achieve the same
    4233             :          * result.
    4234             :          */
    4235           0 :         mnt_userns = container_of(ns, struct user_namespace, ns);
    4236           0 :         if (initial_idmapping(mnt_userns)) {
    4237             :                 err = -EPERM;
    4238             :                 goto out_fput;
    4239             :         }
    4240           0 :         kattr->mnt_userns = get_user_ns(mnt_userns);
    4241             : 
    4242             : out_fput:
    4243           0 :         fput(file);
    4244             :         return err;
    4245             : }
    4246             : 
    4247           0 : static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
    4248             :                              struct mount_kattr *kattr, unsigned int flags)
    4249             : {
    4250           0 :         unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
    4251             : 
    4252           0 :         if (flags & AT_NO_AUTOMOUNT)
    4253           0 :                 lookup_flags &= ~LOOKUP_AUTOMOUNT;
    4254           0 :         if (flags & AT_SYMLINK_NOFOLLOW)
    4255           0 :                 lookup_flags &= ~LOOKUP_FOLLOW;
    4256           0 :         if (flags & AT_EMPTY_PATH)
    4257           0 :                 lookup_flags |= LOOKUP_EMPTY;
    4258             : 
    4259           0 :         *kattr = (struct mount_kattr) {
    4260             :                 .lookup_flags   = lookup_flags,
    4261           0 :                 .recurse        = !!(flags & AT_RECURSIVE),
    4262             :         };
    4263             : 
    4264           0 :         if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
    4265             :                 return -EINVAL;
    4266           0 :         if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
    4267             :                 return -EINVAL;
    4268           0 :         kattr->propagation = attr->propagation;
    4269             : 
    4270           0 :         if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
    4271             :                 return -EINVAL;
    4272             : 
    4273           0 :         kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
    4274           0 :         kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
    4275             : 
    4276             :         /*
    4277             :          * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
    4278             :          * users wanting to transition to a different atime setting cannot
    4279             :          * simply specify the atime setting in @attr_set, but must also
    4280             :          * specify MOUNT_ATTR__ATIME in the @attr_clr field.
    4281             :          * So ensure that MOUNT_ATTR__ATIME can't be partially set in
    4282             :          * @attr_clr and that @attr_set can't have any atime bits set if
    4283             :          * MOUNT_ATTR__ATIME isn't set in @attr_clr.
    4284             :          */
    4285           0 :         if (attr->attr_clr & MOUNT_ATTR__ATIME) {
    4286           0 :                 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
    4287             :                         return -EINVAL;
    4288             : 
    4289             :                 /*
    4290             :                  * Clear all previous time settings as they are mutually
    4291             :                  * exclusive.
    4292             :                  */
    4293           0 :                 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
    4294           0 :                 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
    4295             :                 case MOUNT_ATTR_RELATIME:
    4296           0 :                         kattr->attr_set |= MNT_RELATIME;
    4297             :                         break;
    4298             :                 case MOUNT_ATTR_NOATIME:
    4299           0 :                         kattr->attr_set |= MNT_NOATIME;
    4300             :                         break;
    4301             :                 case MOUNT_ATTR_STRICTATIME:
    4302             :                         break;
    4303             :                 default:
    4304             :                         return -EINVAL;
    4305             :                 }
    4306             :         } else {
    4307           0 :                 if (attr->attr_set & MOUNT_ATTR__ATIME)
    4308             :                         return -EINVAL;
    4309             :         }
    4310             : 
    4311           0 :         return build_mount_idmapped(attr, usize, kattr, flags);
    4312             : }
    4313             : 
    4314             : static void finish_mount_kattr(struct mount_kattr *kattr)
    4315             : {
    4316           0 :         put_user_ns(kattr->mnt_userns);
    4317             :         kattr->mnt_userns = NULL;
    4318             : }
    4319             : 
    4320           0 : SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
    4321             :                 unsigned int, flags, struct mount_attr __user *, uattr,
    4322             :                 size_t, usize)
    4323             : {
    4324             :         int err;
    4325             :         struct path target;
    4326             :         struct mount_attr attr;
    4327             :         struct mount_kattr kattr;
    4328             : 
    4329             :         BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
    4330             : 
    4331           0 :         if (flags & ~(AT_EMPTY_PATH |
    4332             :                       AT_RECURSIVE |
    4333             :                       AT_SYMLINK_NOFOLLOW |
    4334             :                       AT_NO_AUTOMOUNT))
    4335             :                 return -EINVAL;
    4336             : 
    4337           0 :         if (unlikely(usize > PAGE_SIZE))
    4338             :                 return -E2BIG;
    4339           0 :         if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
    4340             :                 return -EINVAL;
    4341             : 
    4342           0 :         if (!may_mount())
    4343             :                 return -EPERM;
    4344             : 
    4345           0 :         err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
    4346           0 :         if (err)
    4347           0 :                 return err;
    4348             : 
    4349             :         /* Don't bother walking through the mounts if this is a nop. */
    4350           0 :         if (attr.attr_set == 0 &&
    4351           0 :             attr.attr_clr == 0 &&
    4352           0 :             attr.propagation == 0)
    4353             :                 return 0;
    4354             : 
    4355           0 :         err = build_mount_kattr(&attr, usize, &kattr, flags);
    4356           0 :         if (err)
    4357           0 :                 return err;
    4358             : 
    4359           0 :         err = user_path_at(dfd, path, kattr.lookup_flags, &target);
    4360           0 :         if (!err) {
    4361           0 :                 err = do_mount_setattr(&target, &kattr);
    4362           0 :                 path_put(&target);
    4363             :         }
    4364           0 :         finish_mount_kattr(&kattr);
    4365           0 :         return err;
    4366             : }
    4367             : 
    4368           1 : static void __init init_mount_tree(void)
    4369             : {
    4370             :         struct vfsmount *mnt;
    4371             :         struct mount *m;
    4372             :         struct mnt_namespace *ns;
    4373             :         struct path root;
    4374             : 
    4375           1 :         mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
    4376           1 :         if (IS_ERR(mnt))
    4377           0 :                 panic("Can't create rootfs");
    4378             : 
    4379           1 :         ns = alloc_mnt_ns(&init_user_ns, false);
    4380           1 :         if (IS_ERR(ns))
    4381           0 :                 panic("Can't allocate initial namespace");
    4382           1 :         m = real_mount(mnt);
    4383           1 :         m->mnt_ns = ns;
    4384           1 :         ns->root = m;
    4385           1 :         ns->mounts = 1;
    4386           2 :         list_add(&m->mnt_list, &ns->list);
    4387           1 :         init_task.nsproxy->mnt_ns = ns;
    4388           1 :         get_mnt_ns(ns);
    4389             : 
    4390           1 :         root.mnt = mnt;
    4391           1 :         root.dentry = mnt->mnt_root;
    4392           1 :         mnt->mnt_flags |= MNT_LOCKED;
    4393             : 
    4394           1 :         set_fs_pwd(current->fs, &root);
    4395           1 :         set_fs_root(current->fs, &root);
    4396           1 : }
    4397             : 
    4398           1 : void __init mnt_init(void)
    4399             : {
    4400             :         int err;
    4401             : 
    4402           1 :         mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
    4403             :                         0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
    4404             : 
    4405           1 :         mount_hashtable = alloc_large_system_hash("Mount-cache",
    4406             :                                 sizeof(struct hlist_head),
    4407             :                                 mhash_entries, 19,
    4408             :                                 HASH_ZERO,
    4409             :                                 &m_hash_shift, &m_hash_mask, 0, 0);
    4410           1 :         mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
    4411             :                                 sizeof(struct hlist_head),
    4412             :                                 mphash_entries, 19,
    4413             :                                 HASH_ZERO,
    4414             :                                 &mp_hash_shift, &mp_hash_mask, 0, 0);
    4415             : 
    4416           1 :         if (!mount_hashtable || !mountpoint_hashtable)
    4417           0 :                 panic("Failed to allocate mount hash table\n");
    4418             : 
    4419           1 :         kernfs_init();
    4420             : 
    4421           1 :         err = sysfs_init();
    4422           1 :         if (err)
    4423           0 :                 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
    4424             :                         __func__, err);
    4425           1 :         fs_kobj = kobject_create_and_add("fs", NULL);
    4426           1 :         if (!fs_kobj)
    4427           0 :                 printk(KERN_WARNING "%s: kobj create error\n", __func__);
    4428           1 :         shmem_init();
    4429           1 :         init_rootfs();
    4430           1 :         init_mount_tree();
    4431           1 : }
    4432             : 
    4433           0 : void put_mnt_ns(struct mnt_namespace *ns)
    4434             : {
    4435           0 :         if (!refcount_dec_and_test(&ns->ns.count))
    4436             :                 return;
    4437           0 :         drop_collected_mounts(&ns->root->mnt);
    4438           0 :         free_mnt_ns(ns);
    4439             : }
    4440             : 
    4441           8 : struct vfsmount *kern_mount(struct file_system_type *type)
    4442             : {
    4443             :         struct vfsmount *mnt;
    4444           8 :         mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
    4445           8 :         if (!IS_ERR(mnt)) {
    4446             :                 /*
    4447             :                  * it is a longterm mount, don't release mnt until
    4448             :                  * we unmount before file sys is unregistered
    4449             :                 */
    4450           8 :                 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
    4451             :         }
    4452           8 :         return mnt;
    4453             : }
    4454             : EXPORT_SYMBOL_GPL(kern_mount);
    4455             : 
    4456           0 : void kern_unmount(struct vfsmount *mnt)
    4457             : {
    4458             :         /* release long term mount so mount point can be released */
    4459           0 :         if (!IS_ERR_OR_NULL(mnt)) {
    4460           0 :                 real_mount(mnt)->mnt_ns = NULL;
    4461           0 :                 synchronize_rcu();      /* yecchhh... */
    4462             :                 mntput(mnt);
    4463             :         }
    4464           0 : }
    4465             : EXPORT_SYMBOL(kern_unmount);
    4466             : 
    4467           0 : void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
    4468             : {
    4469             :         unsigned int i;
    4470             : 
    4471           0 :         for (i = 0; i < num; i++)
    4472           0 :                 if (mnt[i])
    4473           0 :                         real_mount(mnt[i])->mnt_ns = NULL;
    4474             :         synchronize_rcu_expedited();
    4475           0 :         for (i = 0; i < num; i++)
    4476           0 :                 mntput(mnt[i]);
    4477           0 : }
    4478             : EXPORT_SYMBOL(kern_unmount_array);
    4479             : 
    4480           0 : bool our_mnt(struct vfsmount *mnt)
    4481             : {
    4482           0 :         return check_mnt(real_mount(mnt));
    4483             : }
    4484             : 
    4485           0 : bool current_chrooted(void)
    4486             : {
    4487             :         /* Does the current process have a non-standard root */
    4488             :         struct path ns_root;
    4489             :         struct path fs_root;
    4490             :         bool chrooted;
    4491             : 
    4492             :         /* Find the namespace root */
    4493           0 :         ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
    4494           0 :         ns_root.dentry = ns_root.mnt->mnt_root;
    4495           0 :         path_get(&ns_root);
    4496           0 :         while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
    4497             :                 ;
    4498             : 
    4499           0 :         get_fs_root(current->fs, &fs_root);
    4500             : 
    4501           0 :         chrooted = !path_equal(&fs_root, &ns_root);
    4502             : 
    4503           0 :         path_put(&fs_root);
    4504           0 :         path_put(&ns_root);
    4505             : 
    4506           0 :         return chrooted;
    4507             : }
    4508             : 
    4509           0 : static bool mnt_already_visible(struct mnt_namespace *ns,
    4510             :                                 const struct super_block *sb,
    4511             :                                 int *new_mnt_flags)
    4512             : {
    4513           0 :         int new_flags = *new_mnt_flags;
    4514             :         struct mount *mnt;
    4515           0 :         bool visible = false;
    4516             : 
    4517           0 :         down_read(&namespace_sem);
    4518           0 :         lock_ns_list(ns);
    4519           0 :         list_for_each_entry(mnt, &ns->list, mnt_list) {
    4520             :                 struct mount *child;
    4521             :                 int mnt_flags;
    4522             : 
    4523           0 :                 if (mnt_is_cursor(mnt))
    4524           0 :                         continue;
    4525             : 
    4526           0 :                 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
    4527           0 :                         continue;
    4528             : 
    4529             :                 /* This mount is not fully visible if it's root directory
    4530             :                  * is not the root directory of the filesystem.
    4531             :                  */
    4532           0 :                 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
    4533           0 :                         continue;
    4534             : 
    4535             :                 /* A local view of the mount flags */
    4536           0 :                 mnt_flags = mnt->mnt.mnt_flags;
    4537             : 
    4538             :                 /* Don't miss readonly hidden in the superblock flags */
    4539           0 :                 if (sb_rdonly(mnt->mnt.mnt_sb))
    4540           0 :                         mnt_flags |= MNT_LOCK_READONLY;
    4541             : 
    4542             :                 /* Verify the mount flags are equal to or more permissive
    4543             :                  * than the proposed new mount.
    4544             :                  */
    4545           0 :                 if ((mnt_flags & MNT_LOCK_READONLY) &&
    4546           0 :                     !(new_flags & MNT_READONLY))
    4547           0 :                         continue;
    4548           0 :                 if ((mnt_flags & MNT_LOCK_ATIME) &&
    4549           0 :                     ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
    4550           0 :                         continue;
    4551             : 
    4552             :                 /* This mount is not fully visible if there are any
    4553             :                  * locked child mounts that cover anything except for
    4554             :                  * empty directories.
    4555             :                  */
    4556           0 :                 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
    4557           0 :                         struct inode *inode = child->mnt_mountpoint->d_inode;
    4558             :                         /* Only worry about locked mounts */
    4559           0 :                         if (!(child->mnt.mnt_flags & MNT_LOCKED))
    4560           0 :                                 continue;
    4561             :                         /* Is the directory permanetly empty? */
    4562           0 :                         if (!is_empty_dir_inode(inode))
    4563             :                                 goto next;
    4564             :                 }
    4565             :                 /* Preserve the locked attributes */
    4566           0 :                 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
    4567             :                                                MNT_LOCK_ATIME);
    4568           0 :                 visible = true;
    4569             :                 goto found;
    4570             :         next:   ;
    4571             :         }
    4572             : found:
    4573           0 :         unlock_ns_list(ns);
    4574           0 :         up_read(&namespace_sem);
    4575           0 :         return visible;
    4576             : }
    4577             : 
    4578           0 : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
    4579             : {
    4580           0 :         const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
    4581           0 :         struct mnt_namespace *ns = current->nsproxy->mnt_ns;
    4582             :         unsigned long s_iflags;
    4583             : 
    4584           0 :         if (ns->user_ns == &init_user_ns)
    4585             :                 return false;
    4586             : 
    4587             :         /* Can this filesystem be too revealing? */
    4588           0 :         s_iflags = sb->s_iflags;
    4589           0 :         if (!(s_iflags & SB_I_USERNS_VISIBLE))
    4590             :                 return false;
    4591             : 
    4592           0 :         if ((s_iflags & required_iflags) != required_iflags) {
    4593           0 :                 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
    4594             :                           required_iflags);
    4595             :                 return true;
    4596             :         }
    4597             : 
    4598           0 :         return !mnt_already_visible(ns, sb, new_mnt_flags);
    4599             : }
    4600             : 
    4601           0 : bool mnt_may_suid(struct vfsmount *mnt)
    4602             : {
    4603             :         /*
    4604             :          * Foreign mounts (accessed via fchdir or through /proc
    4605             :          * symlinks) are always treated as if they are nosuid.  This
    4606             :          * prevents namespaces from trusting potentially unsafe
    4607             :          * suid/sgid bits, file caps, or security labels that originate
    4608             :          * in other namespaces.
    4609             :          */
    4610           0 :         return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
    4611           0 :                current_in_userns(mnt->mnt_sb->s_user_ns);
    4612             : }
    4613             : 
    4614           0 : static struct ns_common *mntns_get(struct task_struct *task)
    4615             : {
    4616           0 :         struct ns_common *ns = NULL;
    4617             :         struct nsproxy *nsproxy;
    4618             : 
    4619           0 :         task_lock(task);
    4620           0 :         nsproxy = task->nsproxy;
    4621           0 :         if (nsproxy) {
    4622           0 :                 ns = &nsproxy->mnt_ns->ns;
    4623           0 :                 get_mnt_ns(to_mnt_ns(ns));
    4624             :         }
    4625           0 :         task_unlock(task);
    4626             : 
    4627           0 :         return ns;
    4628             : }
    4629             : 
    4630           0 : static void mntns_put(struct ns_common *ns)
    4631             : {
    4632           0 :         put_mnt_ns(to_mnt_ns(ns));
    4633           0 : }
    4634             : 
    4635           0 : static int mntns_install(struct nsset *nsset, struct ns_common *ns)
    4636             : {
    4637           0 :         struct nsproxy *nsproxy = nsset->nsproxy;
    4638           0 :         struct fs_struct *fs = nsset->fs;
    4639           0 :         struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
    4640           0 :         struct user_namespace *user_ns = nsset->cred->user_ns;
    4641             :         struct path root;
    4642             :         int err;
    4643             : 
    4644           0 :         if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
    4645           0 :             !ns_capable(user_ns, CAP_SYS_CHROOT) ||
    4646           0 :             !ns_capable(user_ns, CAP_SYS_ADMIN))
    4647             :                 return -EPERM;
    4648             : 
    4649           0 :         if (is_anon_ns(mnt_ns))
    4650             :                 return -EINVAL;
    4651             : 
    4652           0 :         if (fs->users != 1)
    4653             :                 return -EINVAL;
    4654             : 
    4655           0 :         get_mnt_ns(mnt_ns);
    4656           0 :         old_mnt_ns = nsproxy->mnt_ns;
    4657           0 :         nsproxy->mnt_ns = mnt_ns;
    4658             : 
    4659             :         /* Find the root */
    4660           0 :         err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
    4661             :                                 "/", LOOKUP_DOWN, &root);
    4662           0 :         if (err) {
    4663             :                 /* revert to old namespace */
    4664           0 :                 nsproxy->mnt_ns = old_mnt_ns;
    4665           0 :                 put_mnt_ns(mnt_ns);
    4666           0 :                 return err;
    4667             :         }
    4668             : 
    4669           0 :         put_mnt_ns(old_mnt_ns);
    4670             : 
    4671             :         /* Update the pwd and root */
    4672           0 :         set_fs_pwd(fs, &root);
    4673           0 :         set_fs_root(fs, &root);
    4674             : 
    4675           0 :         path_put(&root);
    4676           0 :         return 0;
    4677             : }
    4678             : 
    4679           0 : static struct user_namespace *mntns_owner(struct ns_common *ns)
    4680             : {
    4681           0 :         return to_mnt_ns(ns)->user_ns;
    4682             : }
    4683             : 
    4684             : const struct proc_ns_operations mntns_operations = {
    4685             :         .name           = "mnt",
    4686             :         .type           = CLONE_NEWNS,
    4687             :         .get            = mntns_get,
    4688             :         .put            = mntns_put,
    4689             :         .install        = mntns_install,
    4690             :         .owner          = mntns_owner,
    4691             : };
    4692             : 
    4693             : #ifdef CONFIG_SYSCTL
    4694             : static struct ctl_table fs_namespace_sysctls[] = {
    4695             :         {
    4696             :                 .procname       = "mount-max",
    4697             :                 .data           = &sysctl_mount_max,
    4698             :                 .maxlen         = sizeof(unsigned int),
    4699             :                 .mode           = 0644,
    4700             :                 .proc_handler   = proc_dointvec_minmax,
    4701             :                 .extra1         = SYSCTL_ONE,
    4702             :         },
    4703             :         { }
    4704             : };
    4705             : 
    4706           1 : static int __init init_fs_namespace_sysctls(void)
    4707             : {
    4708           1 :         register_sysctl_init("fs", fs_namespace_sysctls);
    4709           1 :         return 0;
    4710             : }
    4711             : fs_initcall(init_fs_namespace_sysctls);
    4712             : 
    4713             : #endif /* CONFIG_SYSCTL */

Generated by: LCOV version 1.14