Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/fs/namespace.c
4 : *
5 : * (C) Copyright Al Viro 2000, 2001
6 : *
7 : * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 : * Heavily rewritten.
9 : */
10 :
11 : #include <linux/syscalls.h>
12 : #include <linux/export.h>
13 : #include <linux/capability.h>
14 : #include <linux/mnt_namespace.h>
15 : #include <linux/user_namespace.h>
16 : #include <linux/namei.h>
17 : #include <linux/security.h>
18 : #include <linux/cred.h>
19 : #include <linux/idr.h>
20 : #include <linux/init.h> /* init_rootfs */
21 : #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 : #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 : #include <linux/file.h>
24 : #include <linux/uaccess.h>
25 : #include <linux/proc_ns.h>
26 : #include <linux/magic.h>
27 : #include <linux/memblock.h>
28 : #include <linux/proc_fs.h>
29 : #include <linux/task_work.h>
30 : #include <linux/sched/task.h>
31 : #include <uapi/linux/mount.h>
32 : #include <linux/fs_context.h>
33 : #include <linux/shmem_fs.h>
34 : #include <linux/mnt_idmapping.h>
35 :
36 : #include "pnode.h"
37 : #include "internal.h"
38 :
39 : /* Maximum number of mounts in a mount namespace */
40 : static unsigned int sysctl_mount_max __read_mostly = 100000;
41 :
42 : static unsigned int m_hash_mask __read_mostly;
43 : static unsigned int m_hash_shift __read_mostly;
44 : static unsigned int mp_hash_mask __read_mostly;
45 : static unsigned int mp_hash_shift __read_mostly;
46 :
47 : static __initdata unsigned long mhash_entries;
48 0 : static int __init set_mhash_entries(char *str)
49 : {
50 0 : if (!str)
51 : return 0;
52 0 : mhash_entries = simple_strtoul(str, &str, 0);
53 0 : return 1;
54 : }
55 : __setup("mhash_entries=", set_mhash_entries);
56 :
57 : static __initdata unsigned long mphash_entries;
58 0 : static int __init set_mphash_entries(char *str)
59 : {
60 0 : if (!str)
61 : return 0;
62 0 : mphash_entries = simple_strtoul(str, &str, 0);
63 0 : return 1;
64 : }
65 : __setup("mphash_entries=", set_mphash_entries);
66 :
67 : static u64 event;
68 : static DEFINE_IDA(mnt_id_ida);
69 : static DEFINE_IDA(mnt_group_ida);
70 :
71 : static struct hlist_head *mount_hashtable __read_mostly;
72 : static struct hlist_head *mountpoint_hashtable __read_mostly;
73 : static struct kmem_cache *mnt_cache __read_mostly;
74 : static DECLARE_RWSEM(namespace_sem);
75 : static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 : static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 :
78 : struct mount_kattr {
79 : unsigned int attr_set;
80 : unsigned int attr_clr;
81 : unsigned int propagation;
82 : unsigned int lookup_flags;
83 : bool recurse;
84 : struct user_namespace *mnt_userns;
85 : };
86 :
87 : /* /sys/fs */
88 : struct kobject *fs_kobj;
89 : EXPORT_SYMBOL_GPL(fs_kobj);
90 :
91 : /*
92 : * vfsmount lock may be taken for read to prevent changes to the
93 : * vfsmount hash, ie. during mountpoint lookups or walking back
94 : * up the tree.
95 : *
96 : * It should be taken for write in all cases where the vfsmount
97 : * tree or hash is modified or when a vfsmount structure is modified.
98 : */
99 : __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100 :
101 : static inline void lock_mount_hash(void)
102 : {
103 11 : write_seqlock(&mount_lock);
104 : }
105 :
106 : static inline void unlock_mount_hash(void)
107 : {
108 11 : write_sequnlock(&mount_lock);
109 : }
110 :
111 : static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 : {
113 0 : unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 0 : tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 0 : tmp = tmp + (tmp >> m_hash_shift);
116 0 : return &mount_hashtable[tmp & m_hash_mask];
117 : }
118 :
119 : static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 : {
121 0 : unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 0 : tmp = tmp + (tmp >> mp_hash_shift);
123 0 : return &mountpoint_hashtable[tmp & mp_hash_mask];
124 : }
125 :
126 : static int mnt_alloc_id(struct mount *mnt)
127 : {
128 10 : int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129 :
130 10 : if (res < 0)
131 : return res;
132 10 : mnt->mnt_id = res;
133 : return 0;
134 : }
135 :
136 : static void mnt_free_id(struct mount *mnt)
137 : {
138 0 : ida_free(&mnt_id_ida, mnt->mnt_id);
139 : }
140 :
141 : /*
142 : * Allocate a new peer group ID
143 : */
144 : static int mnt_alloc_group_id(struct mount *mnt)
145 : {
146 0 : int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147 :
148 0 : if (res < 0)
149 : return res;
150 0 : mnt->mnt_group_id = res;
151 : return 0;
152 : }
153 :
154 : /*
155 : * Release a peer group ID
156 : */
157 0 : void mnt_release_group_id(struct mount *mnt)
158 : {
159 0 : ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 0 : mnt->mnt_group_id = 0;
161 0 : }
162 :
163 : /*
164 : * vfsmount lock must be held for read
165 : */
166 : static inline void mnt_add_count(struct mount *mnt, int n)
167 : {
168 : #ifdef CONFIG_SMP
169 : this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 : #else
171 10 : preempt_disable();
172 10 : mnt->mnt_count += n;
173 10 : preempt_enable();
174 : #endif
175 : }
176 :
177 : /*
178 : * vfsmount lock must be held for write
179 : */
180 0 : int mnt_get_count(struct mount *mnt)
181 : {
182 : #ifdef CONFIG_SMP
183 : int count = 0;
184 : int cpu;
185 :
186 : for_each_possible_cpu(cpu) {
187 : count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 : }
189 :
190 : return count;
191 : #else
192 1 : return mnt->mnt_count;
193 : #endif
194 : }
195 :
196 10 : static struct mount *alloc_vfsmnt(const char *name)
197 : {
198 20 : struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 10 : if (mnt) {
200 : int err;
201 :
202 10 : err = mnt_alloc_id(mnt);
203 10 : if (err)
204 : goto out_free_cache;
205 :
206 10 : if (name) {
207 10 : mnt->mnt_devname = kstrdup_const(name,
208 : GFP_KERNEL_ACCOUNT);
209 10 : if (!mnt->mnt_devname)
210 : goto out_free_id;
211 : }
212 :
213 : #ifdef CONFIG_SMP
214 : mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 : if (!mnt->mnt_pcp)
216 : goto out_free_devname;
217 :
218 : this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 : #else
220 10 : mnt->mnt_count = 1;
221 10 : mnt->mnt_writers = 0;
222 : #endif
223 :
224 20 : INIT_HLIST_NODE(&mnt->mnt_hash);
225 20 : INIT_LIST_HEAD(&mnt->mnt_child);
226 20 : INIT_LIST_HEAD(&mnt->mnt_mounts);
227 20 : INIT_LIST_HEAD(&mnt->mnt_list);
228 20 : INIT_LIST_HEAD(&mnt->mnt_expire);
229 20 : INIT_LIST_HEAD(&mnt->mnt_share);
230 20 : INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 20 : INIT_LIST_HEAD(&mnt->mnt_slave);
232 20 : INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 20 : INIT_LIST_HEAD(&mnt->mnt_umounting);
234 10 : INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 10 : mnt->mnt.mnt_userns = &init_user_ns;
236 : }
237 : return mnt;
238 :
239 : #ifdef CONFIG_SMP
240 : out_free_devname:
241 : kfree_const(mnt->mnt_devname);
242 : #endif
243 : out_free_id:
244 : mnt_free_id(mnt);
245 : out_free_cache:
246 0 : kmem_cache_free(mnt_cache, mnt);
247 0 : return NULL;
248 : }
249 :
250 : /*
251 : * Most r/o checks on a fs are for operations that take
252 : * discrete amounts of time, like a write() or unlink().
253 : * We must keep track of when those operations start
254 : * (for permission checks) and when they end, so that
255 : * we can determine when writes are able to occur to
256 : * a filesystem.
257 : */
258 : /*
259 : * __mnt_is_readonly: check whether a mount is read-only
260 : * @mnt: the mount to check for its write status
261 : *
262 : * This shouldn't be used directly ouside of the VFS.
263 : * It does not guarantee that the filesystem will stay
264 : * r/w, just that it is right *now*. This can not and
265 : * should not be used in place of IS_RDONLY(inode).
266 : * mnt_want/drop_write() will _keep_ the filesystem
267 : * r/w.
268 : */
269 0 : bool __mnt_is_readonly(struct vfsmount *mnt)
270 : {
271 6 : return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
272 : }
273 : EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 :
275 : static inline void mnt_inc_writers(struct mount *mnt)
276 : {
277 : #ifdef CONFIG_SMP
278 : this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 : #else
280 3 : mnt->mnt_writers++;
281 : #endif
282 : }
283 :
284 : static inline void mnt_dec_writers(struct mount *mnt)
285 : {
286 : #ifdef CONFIG_SMP
287 : this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 : #else
289 3 : mnt->mnt_writers--;
290 : #endif
291 : }
292 :
293 : static unsigned int mnt_get_writers(struct mount *mnt)
294 : {
295 : #ifdef CONFIG_SMP
296 : unsigned int count = 0;
297 : int cpu;
298 :
299 : for_each_possible_cpu(cpu) {
300 : count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 : }
302 :
303 : return count;
304 : #else
305 : return mnt->mnt_writers;
306 : #endif
307 : }
308 :
309 : static int mnt_is_readonly(struct vfsmount *mnt)
310 : {
311 3 : if (mnt->mnt_sb->s_readonly_remount)
312 : return 1;
313 : /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 3 : smp_rmb();
315 3 : return __mnt_is_readonly(mnt);
316 : }
317 :
318 : /*
319 : * Most r/o & frozen checks on a fs are for operations that take discrete
320 : * amounts of time, like a write() or unlink(). We must keep track of when
321 : * those operations start (for permission checks) and when they end, so that we
322 : * can determine when writes are able to occur to a filesystem.
323 : */
324 : /**
325 : * __mnt_want_write - get write access to a mount without freeze protection
326 : * @m: the mount on which to take a write
327 : *
328 : * This tells the low-level filesystem that a write is about to be performed to
329 : * it, and makes sure that writes are allowed (mnt it read-write) before
330 : * returning success. This operation does not protect against filesystem being
331 : * frozen. When the write operation is finished, __mnt_drop_write() must be
332 : * called. This is effectively a refcount.
333 : */
334 3 : int __mnt_want_write(struct vfsmount *m)
335 : {
336 3 : struct mount *mnt = real_mount(m);
337 3 : int ret = 0;
338 :
339 3 : preempt_disable();
340 : mnt_inc_writers(mnt);
341 : /*
342 : * The store to mnt_inc_writers must be visible before we pass
343 : * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 : * incremented count after it has set MNT_WRITE_HOLD.
345 : */
346 3 : smp_mb();
347 : might_lock(&mount_lock.lock);
348 6 : while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
349 : if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
350 : cpu_relax();
351 : } else {
352 : /*
353 : * This prevents priority inversion, if the task
354 : * setting MNT_WRITE_HOLD got preempted on a remote
355 : * CPU, and it prevents life lock if the task setting
356 : * MNT_WRITE_HOLD has a lower priority and is bound to
357 : * the same CPU as the task that is spinning here.
358 : */
359 : preempt_enable();
360 : lock_mount_hash();
361 : unlock_mount_hash();
362 : preempt_disable();
363 : }
364 : }
365 : /*
366 : * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
367 : * be set to match its requirements. So we must not load that until
368 : * MNT_WRITE_HOLD is cleared.
369 : */
370 3 : smp_rmb();
371 6 : if (mnt_is_readonly(m)) {
372 : mnt_dec_writers(mnt);
373 0 : ret = -EROFS;
374 : }
375 3 : preempt_enable();
376 :
377 3 : return ret;
378 : }
379 :
380 : /**
381 : * mnt_want_write - get write access to a mount
382 : * @m: the mount on which to take a write
383 : *
384 : * This tells the low-level filesystem that a write is about to be performed to
385 : * it, and makes sure that writes are allowed (mount is read-write, filesystem
386 : * is not frozen) before returning success. When the write operation is
387 : * finished, mnt_drop_write() must be called. This is effectively a refcount.
388 : */
389 3 : int mnt_want_write(struct vfsmount *m)
390 : {
391 : int ret;
392 :
393 6 : sb_start_write(m->mnt_sb);
394 3 : ret = __mnt_want_write(m);
395 3 : if (ret)
396 0 : sb_end_write(m->mnt_sb);
397 3 : return ret;
398 : }
399 : EXPORT_SYMBOL_GPL(mnt_want_write);
400 :
401 : /**
402 : * __mnt_want_write_file - get write access to a file's mount
403 : * @file: the file who's mount on which to take a write
404 : *
405 : * This is like __mnt_want_write, but if the file is already open for writing it
406 : * skips incrementing mnt_writers (since the open file already has a reference)
407 : * and instead only does the check for emergency r/o remounts. This must be
408 : * paired with __mnt_drop_write_file.
409 : */
410 0 : int __mnt_want_write_file(struct file *file)
411 : {
412 0 : if (file->f_mode & FMODE_WRITER) {
413 : /*
414 : * Superblock may have become readonly while there are still
415 : * writable fd's, e.g. due to a fs error with errors=remount-ro
416 : */
417 0 : if (__mnt_is_readonly(file->f_path.mnt))
418 : return -EROFS;
419 0 : return 0;
420 : }
421 0 : return __mnt_want_write(file->f_path.mnt);
422 : }
423 :
424 : /**
425 : * mnt_want_write_file - get write access to a file's mount
426 : * @file: the file who's mount on which to take a write
427 : *
428 : * This is like mnt_want_write, but if the file is already open for writing it
429 : * skips incrementing mnt_writers (since the open file already has a reference)
430 : * and instead only does the freeze protection and the check for emergency r/o
431 : * remounts. This must be paired with mnt_drop_write_file.
432 : */
433 0 : int mnt_want_write_file(struct file *file)
434 : {
435 : int ret;
436 :
437 0 : sb_start_write(file_inode(file)->i_sb);
438 0 : ret = __mnt_want_write_file(file);
439 0 : if (ret)
440 0 : sb_end_write(file_inode(file)->i_sb);
441 0 : return ret;
442 : }
443 : EXPORT_SYMBOL_GPL(mnt_want_write_file);
444 :
445 : /**
446 : * __mnt_drop_write - give up write access to a mount
447 : * @mnt: the mount on which to give up write access
448 : *
449 : * Tells the low-level filesystem that we are done
450 : * performing writes to it. Must be matched with
451 : * __mnt_want_write() call above.
452 : */
453 0 : void __mnt_drop_write(struct vfsmount *mnt)
454 : {
455 3 : preempt_disable();
456 3 : mnt_dec_writers(real_mount(mnt));
457 3 : preempt_enable();
458 0 : }
459 :
460 : /**
461 : * mnt_drop_write - give up write access to a mount
462 : * @mnt: the mount on which to give up write access
463 : *
464 : * Tells the low-level filesystem that we are done performing writes to it and
465 : * also allows filesystem to be frozen again. Must be matched with
466 : * mnt_want_write() call above.
467 : */
468 3 : void mnt_drop_write(struct vfsmount *mnt)
469 : {
470 3 : __mnt_drop_write(mnt);
471 6 : sb_end_write(mnt->mnt_sb);
472 3 : }
473 : EXPORT_SYMBOL_GPL(mnt_drop_write);
474 :
475 0 : void __mnt_drop_write_file(struct file *file)
476 : {
477 0 : if (!(file->f_mode & FMODE_WRITER))
478 0 : __mnt_drop_write(file->f_path.mnt);
479 0 : }
480 :
481 0 : void mnt_drop_write_file(struct file *file)
482 : {
483 0 : __mnt_drop_write_file(file);
484 0 : sb_end_write(file_inode(file)->i_sb);
485 0 : }
486 : EXPORT_SYMBOL(mnt_drop_write_file);
487 :
488 : /**
489 : * mnt_hold_writers - prevent write access to the given mount
490 : * @mnt: mnt to prevent write access to
491 : *
492 : * Prevents write access to @mnt if there are no active writers for @mnt.
493 : * This function needs to be called and return successfully before changing
494 : * properties of @mnt that need to remain stable for callers with write access
495 : * to @mnt.
496 : *
497 : * After this functions has been called successfully callers must pair it with
498 : * a call to mnt_unhold_writers() in order to stop preventing write access to
499 : * @mnt.
500 : *
501 : * Context: This function expects lock_mount_hash() to be held serializing
502 : * setting MNT_WRITE_HOLD.
503 : * Return: On success 0 is returned.
504 : * On error, -EBUSY is returned.
505 : */
506 : static inline int mnt_hold_writers(struct mount *mnt)
507 : {
508 0 : mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
509 : /*
510 : * After storing MNT_WRITE_HOLD, we'll read the counters. This store
511 : * should be visible before we do.
512 : */
513 0 : smp_mb();
514 :
515 : /*
516 : * With writers on hold, if this value is zero, then there are
517 : * definitely no active writers (although held writers may subsequently
518 : * increment the count, they'll have to wait, and decrement it after
519 : * seeing MNT_READONLY).
520 : *
521 : * It is OK to have counter incremented on one CPU and decremented on
522 : * another: the sum will add up correctly. The danger would be when we
523 : * sum up each counter, if we read a counter before it is incremented,
524 : * but then read another CPU's count which it has been subsequently
525 : * decremented from -- we would see more decrements than we should.
526 : * MNT_WRITE_HOLD protects against this scenario, because
527 : * mnt_want_write first increments count, then smp_mb, then spins on
528 : * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
529 : * we're counting up here.
530 : */
531 0 : if (mnt_get_writers(mnt) > 0)
532 : return -EBUSY;
533 :
534 : return 0;
535 : }
536 :
537 : /**
538 : * mnt_unhold_writers - stop preventing write access to the given mount
539 : * @mnt: mnt to stop preventing write access to
540 : *
541 : * Stop preventing write access to @mnt allowing callers to gain write access
542 : * to @mnt again.
543 : *
544 : * This function can only be called after a successful call to
545 : * mnt_hold_writers().
546 : *
547 : * Context: This function expects lock_mount_hash() to be held.
548 : */
549 : static inline void mnt_unhold_writers(struct mount *mnt)
550 : {
551 : /*
552 : * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
553 : * that become unheld will see MNT_READONLY.
554 : */
555 0 : smp_wmb();
556 0 : mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
557 : }
558 :
559 : static int mnt_make_readonly(struct mount *mnt)
560 : {
561 : int ret;
562 :
563 0 : ret = mnt_hold_writers(mnt);
564 0 : if (!ret)
565 0 : mnt->mnt.mnt_flags |= MNT_READONLY;
566 0 : mnt_unhold_writers(mnt);
567 : return ret;
568 : }
569 :
570 0 : int sb_prepare_remount_readonly(struct super_block *sb)
571 : {
572 : struct mount *mnt;
573 0 : int err = 0;
574 :
575 : /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
576 0 : if (atomic_long_read(&sb->s_remove_count))
577 : return -EBUSY;
578 :
579 : lock_mount_hash();
580 0 : list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
581 0 : if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
582 0 : err = mnt_hold_writers(mnt);
583 0 : if (err)
584 : break;
585 : }
586 : }
587 0 : if (!err && atomic_long_read(&sb->s_remove_count))
588 0 : err = -EBUSY;
589 :
590 0 : if (!err) {
591 0 : sb->s_readonly_remount = 1;
592 0 : smp_wmb();
593 : }
594 0 : list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
595 0 : if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
596 0 : mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
597 : }
598 : unlock_mount_hash();
599 :
600 0 : return err;
601 : }
602 :
603 0 : static void free_vfsmnt(struct mount *mnt)
604 : {
605 : struct user_namespace *mnt_userns;
606 :
607 0 : mnt_userns = mnt_user_ns(&mnt->mnt);
608 0 : if (!initial_idmapping(mnt_userns))
609 : put_user_ns(mnt_userns);
610 0 : kfree_const(mnt->mnt_devname);
611 : #ifdef CONFIG_SMP
612 : free_percpu(mnt->mnt_pcp);
613 : #endif
614 0 : kmem_cache_free(mnt_cache, mnt);
615 0 : }
616 :
617 0 : static void delayed_free_vfsmnt(struct rcu_head *head)
618 : {
619 0 : free_vfsmnt(container_of(head, struct mount, mnt_rcu));
620 0 : }
621 :
622 : /* call under rcu_read_lock */
623 3 : int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
624 : {
625 : struct mount *mnt;
626 3 : if (read_seqretry(&mount_lock, seq))
627 : return 1;
628 3 : if (bastard == NULL)
629 : return 0;
630 3 : mnt = real_mount(bastard);
631 6 : mnt_add_count(mnt, 1);
632 3 : smp_mb(); // see mntput_no_expire()
633 3 : if (likely(!read_seqretry(&mount_lock, seq)))
634 : return 0;
635 0 : if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
636 0 : mnt_add_count(mnt, -1);
637 0 : return 1;
638 : }
639 : lock_mount_hash();
640 0 : if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
641 0 : mnt_add_count(mnt, -1);
642 : unlock_mount_hash();
643 0 : return 1;
644 : }
645 : unlock_mount_hash();
646 : /* caller will mntput() */
647 0 : return -1;
648 : }
649 :
650 : /* call under rcu_read_lock */
651 0 : bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
652 : {
653 0 : int res = __legitimize_mnt(bastard, seq);
654 0 : if (likely(!res))
655 : return true;
656 0 : if (unlikely(res < 0)) {
657 0 : rcu_read_unlock();
658 0 : mntput(bastard);
659 : rcu_read_lock();
660 : }
661 : return false;
662 : }
663 :
664 : /*
665 : * find the first mount at @dentry on vfsmount @mnt.
666 : * call under rcu_read_lock()
667 : */
668 0 : struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
669 : {
670 0 : struct hlist_head *head = m_hash(mnt, dentry);
671 : struct mount *p;
672 :
673 0 : hlist_for_each_entry_rcu(p, head, mnt_hash)
674 0 : if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
675 : return p;
676 : return NULL;
677 : }
678 :
679 : /*
680 : * lookup_mnt - Return the first child mount mounted at path
681 : *
682 : * "First" means first mounted chronologically. If you create the
683 : * following mounts:
684 : *
685 : * mount /dev/sda1 /mnt
686 : * mount /dev/sda2 /mnt
687 : * mount /dev/sda3 /mnt
688 : *
689 : * Then lookup_mnt() on the base /mnt dentry in the root mount will
690 : * return successively the root dentry and vfsmount of /dev/sda1, then
691 : * /dev/sda2, then /dev/sda3, then NULL.
692 : *
693 : * lookup_mnt takes a reference to the found vfsmount.
694 : */
695 0 : struct vfsmount *lookup_mnt(const struct path *path)
696 : {
697 : struct mount *child_mnt;
698 : struct vfsmount *m;
699 : unsigned seq;
700 :
701 : rcu_read_lock();
702 : do {
703 0 : seq = read_seqbegin(&mount_lock);
704 0 : child_mnt = __lookup_mnt(path->mnt, path->dentry);
705 0 : m = child_mnt ? &child_mnt->mnt : NULL;
706 0 : } while (!legitimize_mnt(m, seq));
707 : rcu_read_unlock();
708 0 : return m;
709 : }
710 :
711 : static inline void lock_ns_list(struct mnt_namespace *ns)
712 : {
713 0 : spin_lock(&ns->ns_lock);
714 : }
715 :
716 : static inline void unlock_ns_list(struct mnt_namespace *ns)
717 : {
718 0 : spin_unlock(&ns->ns_lock);
719 : }
720 :
721 : static inline bool mnt_is_cursor(struct mount *mnt)
722 : {
723 0 : return mnt->mnt.mnt_flags & MNT_CURSOR;
724 : }
725 :
726 : /*
727 : * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
728 : * current mount namespace.
729 : *
730 : * The common case is dentries are not mountpoints at all and that
731 : * test is handled inline. For the slow case when we are actually
732 : * dealing with a mountpoint of some kind, walk through all of the
733 : * mounts in the current mount namespace and test to see if the dentry
734 : * is a mountpoint.
735 : *
736 : * The mount_hashtable is not usable in the context because we
737 : * need to identify all mounts that may be in the current mount
738 : * namespace not just a mount that happens to have some specified
739 : * parent mount.
740 : */
741 0 : bool __is_local_mountpoint(struct dentry *dentry)
742 : {
743 0 : struct mnt_namespace *ns = current->nsproxy->mnt_ns;
744 : struct mount *mnt;
745 0 : bool is_covered = false;
746 :
747 0 : down_read(&namespace_sem);
748 0 : lock_ns_list(ns);
749 0 : list_for_each_entry(mnt, &ns->list, mnt_list) {
750 0 : if (mnt_is_cursor(mnt))
751 0 : continue;
752 0 : is_covered = (mnt->mnt_mountpoint == dentry);
753 0 : if (is_covered)
754 : break;
755 : }
756 0 : unlock_ns_list(ns);
757 0 : up_read(&namespace_sem);
758 :
759 0 : return is_covered;
760 : }
761 :
762 0 : static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
763 : {
764 0 : struct hlist_head *chain = mp_hash(dentry);
765 : struct mountpoint *mp;
766 :
767 0 : hlist_for_each_entry(mp, chain, m_hash) {
768 0 : if (mp->m_dentry == dentry) {
769 0 : mp->m_count++;
770 0 : return mp;
771 : }
772 : }
773 : return NULL;
774 : }
775 :
776 0 : static struct mountpoint *get_mountpoint(struct dentry *dentry)
777 : {
778 0 : struct mountpoint *mp, *new = NULL;
779 : int ret;
780 :
781 0 : if (d_mountpoint(dentry)) {
782 : /* might be worth a WARN_ON() */
783 0 : if (d_unlinked(dentry))
784 : return ERR_PTR(-ENOENT);
785 : mountpoint:
786 0 : read_seqlock_excl(&mount_lock);
787 0 : mp = lookup_mountpoint(dentry);
788 0 : read_sequnlock_excl(&mount_lock);
789 0 : if (mp)
790 : goto done;
791 : }
792 :
793 0 : if (!new)
794 0 : new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
795 0 : if (!new)
796 : return ERR_PTR(-ENOMEM);
797 :
798 :
799 : /* Exactly one processes may set d_mounted */
800 0 : ret = d_set_mounted(dentry);
801 :
802 : /* Someone else set d_mounted? */
803 0 : if (ret == -EBUSY)
804 : goto mountpoint;
805 :
806 : /* The dentry is not available as a mountpoint? */
807 0 : mp = ERR_PTR(ret);
808 0 : if (ret)
809 : goto done;
810 :
811 : /* Add the new mountpoint to the hash table */
812 0 : read_seqlock_excl(&mount_lock);
813 0 : new->m_dentry = dget(dentry);
814 0 : new->m_count = 1;
815 0 : hlist_add_head(&new->m_hash, mp_hash(dentry));
816 0 : INIT_HLIST_HEAD(&new->m_list);
817 0 : read_sequnlock_excl(&mount_lock);
818 :
819 0 : mp = new;
820 0 : new = NULL;
821 : done:
822 0 : kfree(new);
823 0 : return mp;
824 : }
825 :
826 : /*
827 : * vfsmount lock must be held. Additionally, the caller is responsible
828 : * for serializing calls for given disposal list.
829 : */
830 0 : static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
831 : {
832 0 : if (!--mp->m_count) {
833 0 : struct dentry *dentry = mp->m_dentry;
834 0 : BUG_ON(!hlist_empty(&mp->m_list));
835 0 : spin_lock(&dentry->d_lock);
836 0 : dentry->d_flags &= ~DCACHE_MOUNTED;
837 0 : spin_unlock(&dentry->d_lock);
838 0 : dput_to_list(dentry, list);
839 0 : hlist_del(&mp->m_hash);
840 0 : kfree(mp);
841 : }
842 0 : }
843 :
844 : /* called with namespace_lock and vfsmount lock */
845 : static void put_mountpoint(struct mountpoint *mp)
846 : {
847 0 : __put_mountpoint(mp, &ex_mountpoints);
848 : }
849 :
850 : static inline int check_mnt(struct mount *mnt)
851 : {
852 0 : return mnt->mnt_ns == current->nsproxy->mnt_ns;
853 : }
854 :
855 : /*
856 : * vfsmount lock must be held for write
857 : */
858 0 : static void touch_mnt_namespace(struct mnt_namespace *ns)
859 : {
860 0 : if (ns) {
861 0 : ns->event = ++event;
862 0 : wake_up_interruptible(&ns->poll);
863 : }
864 0 : }
865 :
866 : /*
867 : * vfsmount lock must be held for write
868 : */
869 0 : static void __touch_mnt_namespace(struct mnt_namespace *ns)
870 : {
871 0 : if (ns && ns->event != event) {
872 0 : ns->event = event;
873 0 : wake_up_interruptible(&ns->poll);
874 : }
875 0 : }
876 :
877 : /*
878 : * vfsmount lock must be held for write
879 : */
880 0 : static struct mountpoint *unhash_mnt(struct mount *mnt)
881 : {
882 : struct mountpoint *mp;
883 0 : mnt->mnt_parent = mnt;
884 0 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
885 0 : list_del_init(&mnt->mnt_child);
886 0 : hlist_del_init_rcu(&mnt->mnt_hash);
887 0 : hlist_del_init(&mnt->mnt_mp_list);
888 0 : mp = mnt->mnt_mp;
889 0 : mnt->mnt_mp = NULL;
890 0 : return mp;
891 : }
892 :
893 : /*
894 : * vfsmount lock must be held for write
895 : */
896 : static void umount_mnt(struct mount *mnt)
897 : {
898 0 : put_mountpoint(unhash_mnt(mnt));
899 : }
900 :
901 : /*
902 : * vfsmount lock must be held for write
903 : */
904 0 : void mnt_set_mountpoint(struct mount *mnt,
905 : struct mountpoint *mp,
906 : struct mount *child_mnt)
907 : {
908 0 : mp->m_count++;
909 0 : mnt_add_count(mnt, 1); /* essentially, that's mntget */
910 0 : child_mnt->mnt_mountpoint = mp->m_dentry;
911 0 : child_mnt->mnt_parent = mnt;
912 0 : child_mnt->mnt_mp = mp;
913 0 : hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
914 0 : }
915 :
916 0 : static void __attach_mnt(struct mount *mnt, struct mount *parent)
917 : {
918 0 : hlist_add_head_rcu(&mnt->mnt_hash,
919 : m_hash(&parent->mnt, mnt->mnt_mountpoint));
920 0 : list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
921 0 : }
922 :
923 : /*
924 : * vfsmount lock must be held for write
925 : */
926 0 : static void attach_mnt(struct mount *mnt,
927 : struct mount *parent,
928 : struct mountpoint *mp)
929 : {
930 0 : mnt_set_mountpoint(parent, mp, mnt);
931 0 : __attach_mnt(mnt, parent);
932 0 : }
933 :
934 0 : void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
935 : {
936 0 : struct mountpoint *old_mp = mnt->mnt_mp;
937 0 : struct mount *old_parent = mnt->mnt_parent;
938 :
939 0 : list_del_init(&mnt->mnt_child);
940 0 : hlist_del_init(&mnt->mnt_mp_list);
941 0 : hlist_del_init_rcu(&mnt->mnt_hash);
942 :
943 0 : attach_mnt(mnt, parent, mp);
944 :
945 0 : put_mountpoint(old_mp);
946 0 : mnt_add_count(old_parent, -1);
947 0 : }
948 :
949 : /*
950 : * vfsmount lock must be held for write
951 : */
952 0 : static void commit_tree(struct mount *mnt)
953 : {
954 0 : struct mount *parent = mnt->mnt_parent;
955 : struct mount *m;
956 0 : LIST_HEAD(head);
957 0 : struct mnt_namespace *n = parent->mnt_ns;
958 :
959 0 : BUG_ON(parent == mnt);
960 :
961 0 : list_add_tail(&head, &mnt->mnt_list);
962 0 : list_for_each_entry(m, &head, mnt_list)
963 0 : m->mnt_ns = n;
964 :
965 0 : list_splice(&head, n->list.prev);
966 :
967 0 : n->mounts += n->pending_mounts;
968 0 : n->pending_mounts = 0;
969 :
970 0 : __attach_mnt(mnt, parent);
971 0 : touch_mnt_namespace(n);
972 0 : }
973 :
974 : static struct mount *next_mnt(struct mount *p, struct mount *root)
975 : {
976 0 : struct list_head *next = p->mnt_mounts.next;
977 0 : if (next == &p->mnt_mounts) {
978 : while (1) {
979 0 : if (p == root)
980 : return NULL;
981 0 : next = p->mnt_child.next;
982 0 : if (next != &p->mnt_parent->mnt_mounts)
983 : break;
984 : p = p->mnt_parent;
985 : }
986 : }
987 0 : return list_entry(next, struct mount, mnt_child);
988 : }
989 :
990 : static struct mount *skip_mnt_tree(struct mount *p)
991 : {
992 0 : struct list_head *prev = p->mnt_mounts.prev;
993 0 : while (prev != &p->mnt_mounts) {
994 0 : p = list_entry(prev, struct mount, mnt_child);
995 0 : prev = p->mnt_mounts.prev;
996 : }
997 : return p;
998 : }
999 :
1000 : /**
1001 : * vfs_create_mount - Create a mount for a configured superblock
1002 : * @fc: The configuration context with the superblock attached
1003 : *
1004 : * Create a mount to an already configured superblock. If necessary, the
1005 : * caller should invoke vfs_get_tree() before calling this.
1006 : *
1007 : * Note that this does not attach the mount to anything.
1008 : */
1009 10 : struct vfsmount *vfs_create_mount(struct fs_context *fc)
1010 : {
1011 : struct mount *mnt;
1012 : struct user_namespace *fs_userns;
1013 :
1014 10 : if (!fc->root)
1015 : return ERR_PTR(-EINVAL);
1016 :
1017 10 : mnt = alloc_vfsmnt(fc->source ?: "none");
1018 10 : if (!mnt)
1019 : return ERR_PTR(-ENOMEM);
1020 :
1021 10 : if (fc->sb_flags & SB_KERNMOUNT)
1022 9 : mnt->mnt.mnt_flags = MNT_INTERNAL;
1023 :
1024 20 : atomic_inc(&fc->root->d_sb->s_active);
1025 10 : mnt->mnt.mnt_sb = fc->root->d_sb;
1026 20 : mnt->mnt.mnt_root = dget(fc->root);
1027 10 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1028 10 : mnt->mnt_parent = mnt;
1029 :
1030 10 : fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1031 10 : if (!initial_idmapping(fs_userns))
1032 0 : mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1033 :
1034 : lock_mount_hash();
1035 20 : list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1036 : unlock_mount_hash();
1037 10 : return &mnt->mnt;
1038 : }
1039 : EXPORT_SYMBOL(vfs_create_mount);
1040 :
1041 10 : struct vfsmount *fc_mount(struct fs_context *fc)
1042 : {
1043 10 : int err = vfs_get_tree(fc);
1044 10 : if (!err) {
1045 10 : up_write(&fc->root->d_sb->s_umount);
1046 10 : return vfs_create_mount(fc);
1047 : }
1048 0 : return ERR_PTR(err);
1049 : }
1050 : EXPORT_SYMBOL(fc_mount);
1051 :
1052 10 : struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1053 : int flags, const char *name,
1054 : void *data)
1055 : {
1056 : struct fs_context *fc;
1057 : struct vfsmount *mnt;
1058 10 : int ret = 0;
1059 :
1060 10 : if (!type)
1061 : return ERR_PTR(-EINVAL);
1062 :
1063 10 : fc = fs_context_for_mount(type, flags);
1064 10 : if (IS_ERR(fc))
1065 : return ERR_CAST(fc);
1066 :
1067 10 : if (name)
1068 10 : ret = vfs_parse_fs_string(fc, "source",
1069 : name, strlen(name));
1070 10 : if (!ret)
1071 10 : ret = parse_monolithic_mount_data(fc, data);
1072 10 : if (!ret)
1073 10 : mnt = fc_mount(fc);
1074 : else
1075 0 : mnt = ERR_PTR(ret);
1076 :
1077 10 : put_fs_context(fc);
1078 10 : return mnt;
1079 : }
1080 : EXPORT_SYMBOL_GPL(vfs_kern_mount);
1081 :
1082 : struct vfsmount *
1083 0 : vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1084 : const char *name, void *data)
1085 : {
1086 : /* Until it is worked out how to pass the user namespace
1087 : * through from the parent mount to the submount don't support
1088 : * unprivileged mounts with submounts.
1089 : */
1090 0 : if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1091 : return ERR_PTR(-EPERM);
1092 :
1093 0 : return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1094 : }
1095 : EXPORT_SYMBOL_GPL(vfs_submount);
1096 :
1097 0 : static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1098 : int flag)
1099 : {
1100 0 : struct super_block *sb = old->mnt.mnt_sb;
1101 : struct mount *mnt;
1102 : int err;
1103 :
1104 0 : mnt = alloc_vfsmnt(old->mnt_devname);
1105 0 : if (!mnt)
1106 : return ERR_PTR(-ENOMEM);
1107 :
1108 0 : if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109 0 : mnt->mnt_group_id = 0; /* not a peer of original */
1110 : else
1111 0 : mnt->mnt_group_id = old->mnt_group_id;
1112 :
1113 0 : if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114 0 : err = mnt_alloc_group_id(mnt);
1115 0 : if (err)
1116 : goto out_free;
1117 : }
1118 :
1119 0 : mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120 0 : mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1121 :
1122 0 : atomic_inc(&sb->s_active);
1123 0 : mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1124 0 : if (!initial_idmapping(mnt->mnt.mnt_userns))
1125 0 : mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1126 0 : mnt->mnt.mnt_sb = sb;
1127 0 : mnt->mnt.mnt_root = dget(root);
1128 0 : mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 0 : mnt->mnt_parent = mnt;
1130 : lock_mount_hash();
1131 0 : list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132 : unlock_mount_hash();
1133 :
1134 0 : if ((flag & CL_SLAVE) ||
1135 0 : ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136 0 : list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 0 : mnt->mnt_master = old;
1138 0 : CLEAR_MNT_SHARED(mnt);
1139 0 : } else if (!(flag & CL_PRIVATE)) {
1140 0 : if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 0 : list_add(&mnt->mnt_share, &old->mnt_share);
1142 0 : if (IS_MNT_SLAVE(old))
1143 0 : list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 0 : mnt->mnt_master = old->mnt_master;
1145 : } else {
1146 0 : CLEAR_MNT_SHARED(mnt);
1147 : }
1148 0 : if (flag & CL_MAKE_SHARED)
1149 0 : set_mnt_shared(mnt);
1150 :
1151 : /* stick the duplicate mount on the same expiry list
1152 : * as the original if that was on one */
1153 0 : if (flag & CL_EXPIRE) {
1154 0 : if (!list_empty(&old->mnt_expire))
1155 0 : list_add(&mnt->mnt_expire, &old->mnt_expire);
1156 : }
1157 :
1158 : return mnt;
1159 :
1160 : out_free:
1161 0 : mnt_free_id(mnt);
1162 0 : free_vfsmnt(mnt);
1163 0 : return ERR_PTR(err);
1164 : }
1165 :
1166 0 : static void cleanup_mnt(struct mount *mnt)
1167 : {
1168 : struct hlist_node *p;
1169 : struct mount *m;
1170 : /*
1171 : * The warning here probably indicates that somebody messed
1172 : * up a mnt_want/drop_write() pair. If this happens, the
1173 : * filesystem was probably unable to make r/w->r/o transitions.
1174 : * The locking used to deal with mnt_count decrement provides barriers,
1175 : * so mnt_get_writers() below is safe.
1176 : */
1177 0 : WARN_ON(mnt_get_writers(mnt));
1178 0 : if (unlikely(mnt->mnt_pins.first))
1179 0 : mnt_pin_kill(mnt);
1180 0 : hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1181 0 : hlist_del(&m->mnt_umount);
1182 0 : mntput(&m->mnt);
1183 : }
1184 0 : fsnotify_vfsmount_delete(&mnt->mnt);
1185 0 : dput(mnt->mnt.mnt_root);
1186 0 : deactivate_super(mnt->mnt.mnt_sb);
1187 0 : mnt_free_id(mnt);
1188 0 : call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1189 0 : }
1190 :
1191 0 : static void __cleanup_mnt(struct rcu_head *head)
1192 : {
1193 0 : cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1194 0 : }
1195 :
1196 : static LLIST_HEAD(delayed_mntput_list);
1197 0 : static void delayed_mntput(struct work_struct *unused)
1198 : {
1199 0 : struct llist_node *node = llist_del_all(&delayed_mntput_list);
1200 : struct mount *m, *t;
1201 :
1202 0 : llist_for_each_entry_safe(m, t, node, mnt_llist)
1203 0 : cleanup_mnt(m);
1204 0 : }
1205 : static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1206 :
1207 4 : static void mntput_no_expire(struct mount *mnt)
1208 : {
1209 4 : LIST_HEAD(list);
1210 : int count;
1211 :
1212 : rcu_read_lock();
1213 4 : if (likely(READ_ONCE(mnt->mnt_ns))) {
1214 : /*
1215 : * Since we don't do lock_mount_hash() here,
1216 : * ->mnt_ns can change under us. However, if it's
1217 : * non-NULL, then there's a reference that won't
1218 : * be dropped until after an RCU delay done after
1219 : * turning ->mnt_ns NULL. So if we observe it
1220 : * non-NULL under rcu_read_lock(), the reference
1221 : * we are dropping is not the final one.
1222 : */
1223 6 : mnt_add_count(mnt, -1);
1224 : rcu_read_unlock();
1225 4 : return;
1226 : }
1227 : lock_mount_hash();
1228 : /*
1229 : * make sure that if __legitimize_mnt() has not seen us grab
1230 : * mount_lock, we'll see their refcount increment here.
1231 : */
1232 1 : smp_mb();
1233 2 : mnt_add_count(mnt, -1);
1234 1 : count = mnt_get_count(mnt);
1235 1 : if (count != 0) {
1236 1 : WARN_ON(count < 0);
1237 : rcu_read_unlock();
1238 : unlock_mount_hash();
1239 : return;
1240 : }
1241 0 : if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1242 : rcu_read_unlock();
1243 : unlock_mount_hash();
1244 : return;
1245 : }
1246 0 : mnt->mnt.mnt_flags |= MNT_DOOMED;
1247 : rcu_read_unlock();
1248 :
1249 0 : list_del(&mnt->mnt_instance);
1250 :
1251 0 : if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252 : struct mount *p, *tmp;
1253 0 : list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1254 0 : __put_mountpoint(unhash_mnt(p), &list);
1255 0 : hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1256 : }
1257 : }
1258 : unlock_mount_hash();
1259 0 : shrink_dentry_list(&list);
1260 :
1261 0 : if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1262 0 : struct task_struct *task = current;
1263 0 : if (likely(!(task->flags & PF_KTHREAD))) {
1264 0 : init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1265 0 : if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1266 : return;
1267 : }
1268 0 : if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1269 : schedule_delayed_work(&delayed_mntput_work, 1);
1270 : return;
1271 : }
1272 0 : cleanup_mnt(mnt);
1273 : }
1274 :
1275 7 : void mntput(struct vfsmount *mnt)
1276 : {
1277 7 : if (mnt) {
1278 4 : struct mount *m = real_mount(mnt);
1279 : /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1280 4 : if (unlikely(m->mnt_expiry_mark))
1281 0 : m->mnt_expiry_mark = 0;
1282 4 : mntput_no_expire(m);
1283 : }
1284 7 : }
1285 : EXPORT_SYMBOL(mntput);
1286 :
1287 3 : struct vfsmount *mntget(struct vfsmount *mnt)
1288 : {
1289 3 : if (mnt)
1290 3 : mnt_add_count(real_mount(mnt), 1);
1291 3 : return mnt;
1292 : }
1293 : EXPORT_SYMBOL(mntget);
1294 :
1295 : /**
1296 : * path_is_mountpoint() - Check if path is a mount in the current namespace.
1297 : * @path: path to check
1298 : *
1299 : * d_mountpoint() can only be used reliably to establish if a dentry is
1300 : * not mounted in any namespace and that common case is handled inline.
1301 : * d_mountpoint() isn't aware of the possibility there may be multiple
1302 : * mounts using a given dentry in a different namespace. This function
1303 : * checks if the passed in path is a mountpoint rather than the dentry
1304 : * alone.
1305 : */
1306 0 : bool path_is_mountpoint(const struct path *path)
1307 : {
1308 : unsigned seq;
1309 : bool res;
1310 :
1311 0 : if (!d_mountpoint(path->dentry))
1312 : return false;
1313 :
1314 : rcu_read_lock();
1315 : do {
1316 0 : seq = read_seqbegin(&mount_lock);
1317 0 : res = __path_is_mountpoint(path);
1318 0 : } while (read_seqretry(&mount_lock, seq));
1319 : rcu_read_unlock();
1320 :
1321 0 : return res;
1322 : }
1323 : EXPORT_SYMBOL(path_is_mountpoint);
1324 :
1325 0 : struct vfsmount *mnt_clone_internal(const struct path *path)
1326 : {
1327 : struct mount *p;
1328 0 : p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1329 0 : if (IS_ERR(p))
1330 : return ERR_CAST(p);
1331 0 : p->mnt.mnt_flags |= MNT_INTERNAL;
1332 0 : return &p->mnt;
1333 : }
1334 :
1335 : #ifdef CONFIG_PROC_FS
1336 : static struct mount *mnt_list_next(struct mnt_namespace *ns,
1337 : struct list_head *p)
1338 : {
1339 0 : struct mount *mnt, *ret = NULL;
1340 :
1341 0 : lock_ns_list(ns);
1342 0 : list_for_each_continue(p, &ns->list) {
1343 0 : mnt = list_entry(p, typeof(*mnt), mnt_list);
1344 0 : if (!mnt_is_cursor(mnt)) {
1345 : ret = mnt;
1346 : break;
1347 : }
1348 : }
1349 0 : unlock_ns_list(ns);
1350 :
1351 : return ret;
1352 : }
1353 :
1354 : /* iterator; we want it to have access to namespace_sem, thus here... */
1355 0 : static void *m_start(struct seq_file *m, loff_t *pos)
1356 : {
1357 0 : struct proc_mounts *p = m->private;
1358 : struct list_head *prev;
1359 :
1360 0 : down_read(&namespace_sem);
1361 0 : if (!*pos) {
1362 0 : prev = &p->ns->list;
1363 : } else {
1364 0 : prev = &p->cursor.mnt_list;
1365 :
1366 : /* Read after we'd reached the end? */
1367 0 : if (list_empty(prev))
1368 : return NULL;
1369 : }
1370 :
1371 0 : return mnt_list_next(p->ns, prev);
1372 : }
1373 :
1374 0 : static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1375 : {
1376 0 : struct proc_mounts *p = m->private;
1377 0 : struct mount *mnt = v;
1378 :
1379 0 : ++*pos;
1380 0 : return mnt_list_next(p->ns, &mnt->mnt_list);
1381 : }
1382 :
1383 0 : static void m_stop(struct seq_file *m, void *v)
1384 : {
1385 0 : struct proc_mounts *p = m->private;
1386 0 : struct mount *mnt = v;
1387 :
1388 0 : lock_ns_list(p->ns);
1389 0 : if (mnt)
1390 0 : list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1391 : else
1392 0 : list_del_init(&p->cursor.mnt_list);
1393 0 : unlock_ns_list(p->ns);
1394 0 : up_read(&namespace_sem);
1395 0 : }
1396 :
1397 0 : static int m_show(struct seq_file *m, void *v)
1398 : {
1399 0 : struct proc_mounts *p = m->private;
1400 0 : struct mount *r = v;
1401 0 : return p->show(m, &r->mnt);
1402 : }
1403 :
1404 : const struct seq_operations mounts_op = {
1405 : .start = m_start,
1406 : .next = m_next,
1407 : .stop = m_stop,
1408 : .show = m_show,
1409 : };
1410 :
1411 0 : void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1412 : {
1413 0 : down_read(&namespace_sem);
1414 0 : lock_ns_list(ns);
1415 0 : list_del(&cursor->mnt_list);
1416 0 : unlock_ns_list(ns);
1417 0 : up_read(&namespace_sem);
1418 0 : }
1419 : #endif /* CONFIG_PROC_FS */
1420 :
1421 : /**
1422 : * may_umount_tree - check if a mount tree is busy
1423 : * @m: root of mount tree
1424 : *
1425 : * This is called to check if a tree of mounts has any
1426 : * open files, pwds, chroots or sub mounts that are
1427 : * busy.
1428 : */
1429 0 : int may_umount_tree(struct vfsmount *m)
1430 : {
1431 0 : struct mount *mnt = real_mount(m);
1432 0 : int actual_refs = 0;
1433 0 : int minimum_refs = 0;
1434 : struct mount *p;
1435 0 : BUG_ON(!m);
1436 :
1437 : /* write lock needed for mnt_get_count */
1438 : lock_mount_hash();
1439 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
1440 0 : actual_refs += mnt_get_count(p);
1441 0 : minimum_refs += 2;
1442 : }
1443 : unlock_mount_hash();
1444 :
1445 0 : if (actual_refs > minimum_refs)
1446 : return 0;
1447 :
1448 0 : return 1;
1449 : }
1450 :
1451 : EXPORT_SYMBOL(may_umount_tree);
1452 :
1453 : /**
1454 : * may_umount - check if a mount point is busy
1455 : * @mnt: root of mount
1456 : *
1457 : * This is called to check if a mount point has any
1458 : * open files, pwds, chroots or sub mounts. If the
1459 : * mount has sub mounts this will return busy
1460 : * regardless of whether the sub mounts are busy.
1461 : *
1462 : * Doesn't take quota and stuff into account. IOW, in some cases it will
1463 : * give false negatives. The main reason why it's here is that we need
1464 : * a non-destructive way to look for easily umountable filesystems.
1465 : */
1466 0 : int may_umount(struct vfsmount *mnt)
1467 : {
1468 0 : int ret = 1;
1469 0 : down_read(&namespace_sem);
1470 0 : lock_mount_hash();
1471 0 : if (propagate_mount_busy(real_mount(mnt), 2))
1472 0 : ret = 0;
1473 : unlock_mount_hash();
1474 0 : up_read(&namespace_sem);
1475 0 : return ret;
1476 : }
1477 :
1478 : EXPORT_SYMBOL(may_umount);
1479 :
1480 0 : static void namespace_unlock(void)
1481 : {
1482 : struct hlist_head head;
1483 : struct hlist_node *p;
1484 : struct mount *m;
1485 0 : LIST_HEAD(list);
1486 :
1487 0 : hlist_move_list(&unmounted, &head);
1488 0 : list_splice_init(&ex_mountpoints, &list);
1489 :
1490 0 : up_write(&namespace_sem);
1491 :
1492 0 : shrink_dentry_list(&list);
1493 :
1494 0 : if (likely(hlist_empty(&head)))
1495 0 : return;
1496 :
1497 : synchronize_rcu_expedited();
1498 :
1499 0 : hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1500 0 : hlist_del(&m->mnt_umount);
1501 0 : mntput(&m->mnt);
1502 : }
1503 : }
1504 :
1505 : static inline void namespace_lock(void)
1506 : {
1507 0 : down_write(&namespace_sem);
1508 : }
1509 :
1510 : enum umount_tree_flags {
1511 : UMOUNT_SYNC = 1,
1512 : UMOUNT_PROPAGATE = 2,
1513 : UMOUNT_CONNECTED = 4,
1514 : };
1515 :
1516 : static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1517 : {
1518 : /* Leaving mounts connected is only valid for lazy umounts */
1519 0 : if (how & UMOUNT_SYNC)
1520 : return true;
1521 :
1522 : /* A mount without a parent has nothing to be connected to */
1523 0 : if (!mnt_has_parent(mnt))
1524 : return true;
1525 :
1526 : /* Because the reference counting rules change when mounts are
1527 : * unmounted and connected, umounted mounts may not be
1528 : * connected to mounted mounts.
1529 : */
1530 0 : if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1531 : return true;
1532 :
1533 : /* Has it been requested that the mount remain connected? */
1534 0 : if (how & UMOUNT_CONNECTED)
1535 : return false;
1536 :
1537 : /* Is the mount locked such that it needs to remain connected? */
1538 0 : if (IS_MNT_LOCKED(mnt))
1539 : return false;
1540 :
1541 : /* By default disconnect the mount */
1542 : return true;
1543 : }
1544 :
1545 : /*
1546 : * mount_lock must be held
1547 : * namespace_sem must be held for write
1548 : */
1549 0 : static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1550 : {
1551 0 : LIST_HEAD(tmp_list);
1552 : struct mount *p;
1553 :
1554 0 : if (how & UMOUNT_PROPAGATE)
1555 0 : propagate_mount_unlock(mnt);
1556 :
1557 : /* Gather the mounts to umount */
1558 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
1559 0 : p->mnt.mnt_flags |= MNT_UMOUNT;
1560 0 : list_move(&p->mnt_list, &tmp_list);
1561 : }
1562 :
1563 : /* Hide the mounts from mnt_mounts */
1564 0 : list_for_each_entry(p, &tmp_list, mnt_list) {
1565 0 : list_del_init(&p->mnt_child);
1566 : }
1567 :
1568 : /* Add propogated mounts to the tmp_list */
1569 0 : if (how & UMOUNT_PROPAGATE)
1570 0 : propagate_umount(&tmp_list);
1571 :
1572 0 : while (!list_empty(&tmp_list)) {
1573 : struct mnt_namespace *ns;
1574 : bool disconnect;
1575 0 : p = list_first_entry(&tmp_list, struct mount, mnt_list);
1576 0 : list_del_init(&p->mnt_expire);
1577 0 : list_del_init(&p->mnt_list);
1578 0 : ns = p->mnt_ns;
1579 0 : if (ns) {
1580 0 : ns->mounts--;
1581 0 : __touch_mnt_namespace(ns);
1582 : }
1583 0 : p->mnt_ns = NULL;
1584 0 : if (how & UMOUNT_SYNC)
1585 0 : p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1586 :
1587 0 : disconnect = disconnect_mount(p, how);
1588 0 : if (mnt_has_parent(p)) {
1589 0 : mnt_add_count(p->mnt_parent, -1);
1590 0 : if (!disconnect) {
1591 : /* Don't forget about p */
1592 0 : list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1593 : } else {
1594 : umount_mnt(p);
1595 : }
1596 : }
1597 0 : change_mnt_propagation(p, MS_PRIVATE);
1598 0 : if (disconnect)
1599 0 : hlist_add_head(&p->mnt_umount, &unmounted);
1600 : }
1601 0 : }
1602 :
1603 : static void shrink_submounts(struct mount *mnt);
1604 :
1605 0 : static int do_umount_root(struct super_block *sb)
1606 : {
1607 0 : int ret = 0;
1608 :
1609 0 : down_write(&sb->s_umount);
1610 0 : if (!sb_rdonly(sb)) {
1611 : struct fs_context *fc;
1612 :
1613 0 : fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1614 : SB_RDONLY);
1615 0 : if (IS_ERR(fc)) {
1616 0 : ret = PTR_ERR(fc);
1617 : } else {
1618 0 : ret = parse_monolithic_mount_data(fc, NULL);
1619 0 : if (!ret)
1620 0 : ret = reconfigure_super(fc);
1621 0 : put_fs_context(fc);
1622 : }
1623 : }
1624 0 : up_write(&sb->s_umount);
1625 0 : return ret;
1626 : }
1627 :
1628 0 : static int do_umount(struct mount *mnt, int flags)
1629 : {
1630 0 : struct super_block *sb = mnt->mnt.mnt_sb;
1631 : int retval;
1632 :
1633 0 : retval = security_sb_umount(&mnt->mnt, flags);
1634 : if (retval)
1635 : return retval;
1636 :
1637 : /*
1638 : * Allow userspace to request a mountpoint be expired rather than
1639 : * unmounting unconditionally. Unmount only happens if:
1640 : * (1) the mark is already set (the mark is cleared by mntput())
1641 : * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1642 : */
1643 0 : if (flags & MNT_EXPIRE) {
1644 0 : if (&mnt->mnt == current->fs->root.mnt ||
1645 0 : flags & (MNT_FORCE | MNT_DETACH))
1646 : return -EINVAL;
1647 :
1648 : /*
1649 : * probably don't strictly need the lock here if we examined
1650 : * all race cases, but it's a slowpath.
1651 : */
1652 0 : lock_mount_hash();
1653 0 : if (mnt_get_count(mnt) != 2) {
1654 : unlock_mount_hash();
1655 0 : return -EBUSY;
1656 : }
1657 : unlock_mount_hash();
1658 :
1659 0 : if (!xchg(&mnt->mnt_expiry_mark, 1))
1660 : return -EAGAIN;
1661 : }
1662 :
1663 : /*
1664 : * If we may have to abort operations to get out of this
1665 : * mount, and they will themselves hold resources we must
1666 : * allow the fs to do things. In the Unix tradition of
1667 : * 'Gee thats tricky lets do it in userspace' the umount_begin
1668 : * might fail to complete on the first run through as other tasks
1669 : * must return, and the like. Thats for the mount program to worry
1670 : * about for the moment.
1671 : */
1672 :
1673 0 : if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1674 0 : sb->s_op->umount_begin(sb);
1675 : }
1676 :
1677 : /*
1678 : * No sense to grab the lock for this test, but test itself looks
1679 : * somewhat bogus. Suggestions for better replacement?
1680 : * Ho-hum... In principle, we might treat that as umount + switch
1681 : * to rootfs. GC would eventually take care of the old vfsmount.
1682 : * Actually it makes sense, especially if rootfs would contain a
1683 : * /reboot - static binary that would close all descriptors and
1684 : * call reboot(9). Then init(8) could umount root and exec /reboot.
1685 : */
1686 0 : if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1687 : /*
1688 : * Special case for "unmounting" root ...
1689 : * we just try to remount it readonly.
1690 : */
1691 0 : if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1692 : return -EPERM;
1693 0 : return do_umount_root(sb);
1694 : }
1695 :
1696 : namespace_lock();
1697 : lock_mount_hash();
1698 :
1699 : /* Recheck MNT_LOCKED with the locks held */
1700 0 : retval = -EINVAL;
1701 0 : if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702 : goto out;
1703 :
1704 0 : event++;
1705 0 : if (flags & MNT_DETACH) {
1706 0 : if (!list_empty(&mnt->mnt_list))
1707 0 : umount_tree(mnt, UMOUNT_PROPAGATE);
1708 : retval = 0;
1709 : } else {
1710 0 : shrink_submounts(mnt);
1711 0 : retval = -EBUSY;
1712 0 : if (!propagate_mount_busy(mnt, 2)) {
1713 0 : if (!list_empty(&mnt->mnt_list))
1714 0 : umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1715 : retval = 0;
1716 : }
1717 : }
1718 : out:
1719 : unlock_mount_hash();
1720 0 : namespace_unlock();
1721 0 : return retval;
1722 : }
1723 :
1724 : /*
1725 : * __detach_mounts - lazily unmount all mounts on the specified dentry
1726 : *
1727 : * During unlink, rmdir, and d_drop it is possible to loose the path
1728 : * to an existing mountpoint, and wind up leaking the mount.
1729 : * detach_mounts allows lazily unmounting those mounts instead of
1730 : * leaking them.
1731 : *
1732 : * The caller may hold dentry->d_inode->i_mutex.
1733 : */
1734 0 : void __detach_mounts(struct dentry *dentry)
1735 : {
1736 : struct mountpoint *mp;
1737 : struct mount *mnt;
1738 :
1739 : namespace_lock();
1740 : lock_mount_hash();
1741 0 : mp = lookup_mountpoint(dentry);
1742 0 : if (!mp)
1743 : goto out_unlock;
1744 :
1745 0 : event++;
1746 0 : while (!hlist_empty(&mp->m_list)) {
1747 0 : mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1748 0 : if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1749 0 : umount_mnt(mnt);
1750 0 : hlist_add_head(&mnt->mnt_umount, &unmounted);
1751 : }
1752 0 : else umount_tree(mnt, UMOUNT_CONNECTED);
1753 : }
1754 : put_mountpoint(mp);
1755 : out_unlock:
1756 : unlock_mount_hash();
1757 0 : namespace_unlock();
1758 0 : }
1759 :
1760 : /*
1761 : * Is the caller allowed to modify his namespace?
1762 : */
1763 : static inline bool may_mount(void)
1764 : {
1765 0 : return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1766 : }
1767 :
1768 : static void warn_mandlock(void)
1769 : {
1770 0 : pr_warn_once("=======================================================\n"
1771 : "WARNING: The mand mount option has been deprecated and\n"
1772 : " and is ignored by this kernel. Remove the mand\n"
1773 : " option from the mount to silence this warning.\n"
1774 : "=======================================================\n");
1775 : }
1776 :
1777 0 : static int can_umount(const struct path *path, int flags)
1778 : {
1779 0 : struct mount *mnt = real_mount(path->mnt);
1780 :
1781 0 : if (!may_mount())
1782 : return -EPERM;
1783 0 : if (path->dentry != path->mnt->mnt_root)
1784 : return -EINVAL;
1785 0 : if (!check_mnt(mnt))
1786 : return -EINVAL;
1787 0 : if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1788 : return -EINVAL;
1789 0 : if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1790 : return -EPERM;
1791 : return 0;
1792 : }
1793 :
1794 : // caller is responsible for flags being sane
1795 0 : int path_umount(struct path *path, int flags)
1796 : {
1797 0 : struct mount *mnt = real_mount(path->mnt);
1798 : int ret;
1799 :
1800 0 : ret = can_umount(path, flags);
1801 0 : if (!ret)
1802 0 : ret = do_umount(mnt, flags);
1803 :
1804 : /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1805 0 : dput(path->dentry);
1806 0 : mntput_no_expire(mnt);
1807 0 : return ret;
1808 : }
1809 :
1810 0 : static int ksys_umount(char __user *name, int flags)
1811 : {
1812 0 : int lookup_flags = LOOKUP_MOUNTPOINT;
1813 : struct path path;
1814 : int ret;
1815 :
1816 : // basic validity checks done first
1817 0 : if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1818 : return -EINVAL;
1819 :
1820 0 : if (!(flags & UMOUNT_NOFOLLOW))
1821 0 : lookup_flags |= LOOKUP_FOLLOW;
1822 0 : ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1823 0 : if (ret)
1824 : return ret;
1825 0 : return path_umount(&path, flags);
1826 : }
1827 :
1828 0 : SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1829 : {
1830 0 : return ksys_umount(name, flags);
1831 : }
1832 :
1833 : #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1834 :
1835 : /*
1836 : * The 2.0 compatible umount. No flags.
1837 : */
1838 0 : SYSCALL_DEFINE1(oldumount, char __user *, name)
1839 : {
1840 0 : return ksys_umount(name, 0);
1841 : }
1842 :
1843 : #endif
1844 :
1845 : static bool is_mnt_ns_file(struct dentry *dentry)
1846 : {
1847 : /* Is this a proxy for a mount namespace? */
1848 0 : return dentry->d_op == &ns_dentry_operations &&
1849 0 : dentry->d_fsdata == &mntns_operations;
1850 : }
1851 :
1852 : static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1853 : {
1854 0 : return container_of(ns, struct mnt_namespace, ns);
1855 : }
1856 :
1857 0 : struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1858 : {
1859 0 : return &mnt->ns;
1860 : }
1861 :
1862 : static bool mnt_ns_loop(struct dentry *dentry)
1863 : {
1864 : /* Could bind mounting the mount namespace inode cause a
1865 : * mount namespace loop?
1866 : */
1867 : struct mnt_namespace *mnt_ns;
1868 0 : if (!is_mnt_ns_file(dentry))
1869 : return false;
1870 :
1871 0 : mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1872 0 : return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1873 : }
1874 :
1875 0 : struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1876 : int flag)
1877 : {
1878 : struct mount *res, *p, *q, *r, *parent;
1879 :
1880 0 : if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1881 : return ERR_PTR(-EINVAL);
1882 :
1883 0 : if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1884 : return ERR_PTR(-EINVAL);
1885 :
1886 0 : res = q = clone_mnt(mnt, dentry, flag);
1887 0 : if (IS_ERR(q))
1888 : return q;
1889 :
1890 0 : q->mnt_mountpoint = mnt->mnt_mountpoint;
1891 :
1892 0 : p = mnt;
1893 0 : list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1894 : struct mount *s;
1895 0 : if (!is_subdir(r->mnt_mountpoint, dentry))
1896 0 : continue;
1897 :
1898 0 : for (s = r; s; s = next_mnt(s, r)) {
1899 0 : if (!(flag & CL_COPY_UNBINDABLE) &&
1900 0 : IS_MNT_UNBINDABLE(s)) {
1901 0 : if (s->mnt.mnt_flags & MNT_LOCKED) {
1902 : /* Both unbindable and locked. */
1903 : q = ERR_PTR(-EPERM);
1904 : goto out;
1905 : } else {
1906 0 : s = skip_mnt_tree(s);
1907 0 : continue;
1908 : }
1909 : }
1910 0 : if (!(flag & CL_COPY_MNT_NS_FILE) &&
1911 0 : is_mnt_ns_file(s->mnt.mnt_root)) {
1912 0 : s = skip_mnt_tree(s);
1913 0 : continue;
1914 : }
1915 0 : while (p != s->mnt_parent) {
1916 0 : p = p->mnt_parent;
1917 0 : q = q->mnt_parent;
1918 : }
1919 0 : p = s;
1920 0 : parent = q;
1921 0 : q = clone_mnt(p, p->mnt.mnt_root, flag);
1922 0 : if (IS_ERR(q))
1923 : goto out;
1924 : lock_mount_hash();
1925 0 : list_add_tail(&q->mnt_list, &res->mnt_list);
1926 0 : attach_mnt(q, parent, p->mnt_mp);
1927 : unlock_mount_hash();
1928 : }
1929 : }
1930 : return res;
1931 : out:
1932 0 : if (res) {
1933 : lock_mount_hash();
1934 0 : umount_tree(res, UMOUNT_SYNC);
1935 : unlock_mount_hash();
1936 : }
1937 : return q;
1938 : }
1939 :
1940 : /* Caller should check returned pointer for errors */
1941 :
1942 0 : struct vfsmount *collect_mounts(const struct path *path)
1943 : {
1944 : struct mount *tree;
1945 : namespace_lock();
1946 0 : if (!check_mnt(real_mount(path->mnt)))
1947 : tree = ERR_PTR(-EINVAL);
1948 : else
1949 0 : tree = copy_tree(real_mount(path->mnt), path->dentry,
1950 : CL_COPY_ALL | CL_PRIVATE);
1951 0 : namespace_unlock();
1952 0 : if (IS_ERR(tree))
1953 : return ERR_CAST(tree);
1954 0 : return &tree->mnt;
1955 : }
1956 :
1957 : static void free_mnt_ns(struct mnt_namespace *);
1958 : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1959 :
1960 0 : void dissolve_on_fput(struct vfsmount *mnt)
1961 : {
1962 : struct mnt_namespace *ns;
1963 : namespace_lock();
1964 0 : lock_mount_hash();
1965 0 : ns = real_mount(mnt)->mnt_ns;
1966 0 : if (ns) {
1967 0 : if (is_anon_ns(ns))
1968 0 : umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1969 : else
1970 : ns = NULL;
1971 : }
1972 : unlock_mount_hash();
1973 0 : namespace_unlock();
1974 0 : if (ns)
1975 0 : free_mnt_ns(ns);
1976 0 : }
1977 :
1978 0 : void drop_collected_mounts(struct vfsmount *mnt)
1979 : {
1980 : namespace_lock();
1981 0 : lock_mount_hash();
1982 0 : umount_tree(real_mount(mnt), 0);
1983 : unlock_mount_hash();
1984 0 : namespace_unlock();
1985 0 : }
1986 :
1987 0 : static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1988 : {
1989 : struct mount *child;
1990 :
1991 0 : list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1992 0 : if (!is_subdir(child->mnt_mountpoint, dentry))
1993 0 : continue;
1994 :
1995 0 : if (child->mnt.mnt_flags & MNT_LOCKED)
1996 : return true;
1997 : }
1998 : return false;
1999 : }
2000 :
2001 : /**
2002 : * clone_private_mount - create a private clone of a path
2003 : * @path: path to clone
2004 : *
2005 : * This creates a new vfsmount, which will be the clone of @path. The new mount
2006 : * will not be attached anywhere in the namespace and will be private (i.e.
2007 : * changes to the originating mount won't be propagated into this).
2008 : *
2009 : * Release with mntput().
2010 : */
2011 0 : struct vfsmount *clone_private_mount(const struct path *path)
2012 : {
2013 0 : struct mount *old_mnt = real_mount(path->mnt);
2014 : struct mount *new_mnt;
2015 :
2016 0 : down_read(&namespace_sem);
2017 0 : if (IS_MNT_UNBINDABLE(old_mnt))
2018 : goto invalid;
2019 :
2020 0 : if (!check_mnt(old_mnt))
2021 : goto invalid;
2022 :
2023 0 : if (has_locked_children(old_mnt, path->dentry))
2024 : goto invalid;
2025 :
2026 0 : new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2027 0 : up_read(&namespace_sem);
2028 :
2029 0 : if (IS_ERR(new_mnt))
2030 : return ERR_CAST(new_mnt);
2031 :
2032 : /* Longterm mount to be removed by kern_unmount*() */
2033 0 : new_mnt->mnt_ns = MNT_NS_INTERNAL;
2034 :
2035 0 : return &new_mnt->mnt;
2036 :
2037 : invalid:
2038 0 : up_read(&namespace_sem);
2039 0 : return ERR_PTR(-EINVAL);
2040 : }
2041 : EXPORT_SYMBOL_GPL(clone_private_mount);
2042 :
2043 0 : int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2044 : struct vfsmount *root)
2045 : {
2046 : struct mount *mnt;
2047 0 : int res = f(root, arg);
2048 0 : if (res)
2049 : return res;
2050 0 : list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2051 0 : res = f(&mnt->mnt, arg);
2052 0 : if (res)
2053 : return res;
2054 : }
2055 : return 0;
2056 : }
2057 :
2058 0 : static void lock_mnt_tree(struct mount *mnt)
2059 : {
2060 : struct mount *p;
2061 :
2062 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2063 0 : int flags = p->mnt.mnt_flags;
2064 : /* Don't allow unprivileged users to change mount flags */
2065 0 : flags |= MNT_LOCK_ATIME;
2066 :
2067 0 : if (flags & MNT_READONLY)
2068 0 : flags |= MNT_LOCK_READONLY;
2069 :
2070 0 : if (flags & MNT_NODEV)
2071 0 : flags |= MNT_LOCK_NODEV;
2072 :
2073 0 : if (flags & MNT_NOSUID)
2074 0 : flags |= MNT_LOCK_NOSUID;
2075 :
2076 0 : if (flags & MNT_NOEXEC)
2077 0 : flags |= MNT_LOCK_NOEXEC;
2078 : /* Don't allow unprivileged users to reveal what is under a mount */
2079 0 : if (list_empty(&p->mnt_expire))
2080 0 : flags |= MNT_LOCKED;
2081 0 : p->mnt.mnt_flags = flags;
2082 : }
2083 0 : }
2084 :
2085 0 : static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2086 : {
2087 : struct mount *p;
2088 :
2089 0 : for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2090 0 : if (p->mnt_group_id && !IS_MNT_SHARED(p))
2091 : mnt_release_group_id(p);
2092 : }
2093 0 : }
2094 :
2095 0 : static int invent_group_ids(struct mount *mnt, bool recurse)
2096 : {
2097 : struct mount *p;
2098 :
2099 0 : for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2100 0 : if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2101 0 : int err = mnt_alloc_group_id(p);
2102 0 : if (err) {
2103 0 : cleanup_group_ids(mnt, p);
2104 0 : return err;
2105 : }
2106 : }
2107 : }
2108 :
2109 : return 0;
2110 : }
2111 :
2112 0 : int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2113 : {
2114 0 : unsigned int max = READ_ONCE(sysctl_mount_max);
2115 0 : unsigned int mounts = 0;
2116 : struct mount *p;
2117 :
2118 0 : if (ns->mounts >= max)
2119 : return -ENOSPC;
2120 0 : max -= ns->mounts;
2121 0 : if (ns->pending_mounts >= max)
2122 : return -ENOSPC;
2123 0 : max -= ns->pending_mounts;
2124 :
2125 0 : for (p = mnt; p; p = next_mnt(p, mnt))
2126 0 : mounts++;
2127 :
2128 0 : if (mounts > max)
2129 : return -ENOSPC;
2130 :
2131 0 : ns->pending_mounts += mounts;
2132 0 : return 0;
2133 : }
2134 :
2135 : /*
2136 : * @source_mnt : mount tree to be attached
2137 : * @nd : place the mount tree @source_mnt is attached
2138 : * @parent_nd : if non-null, detach the source_mnt from its parent and
2139 : * store the parent mount and mountpoint dentry.
2140 : * (done when source_mnt is moved)
2141 : *
2142 : * NOTE: in the table below explains the semantics when a source mount
2143 : * of a given type is attached to a destination mount of a given type.
2144 : * ---------------------------------------------------------------------------
2145 : * | BIND MOUNT OPERATION |
2146 : * |**************************************************************************
2147 : * | source-->| shared | private | slave | unbindable |
2148 : * | dest | | | | |
2149 : * | | | | | | |
2150 : * | v | | | | |
2151 : * |**************************************************************************
2152 : * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2153 : * | | | | | |
2154 : * |non-shared| shared (+) | private | slave (*) | invalid |
2155 : * ***************************************************************************
2156 : * A bind operation clones the source mount and mounts the clone on the
2157 : * destination mount.
2158 : *
2159 : * (++) the cloned mount is propagated to all the mounts in the propagation
2160 : * tree of the destination mount and the cloned mount is added to
2161 : * the peer group of the source mount.
2162 : * (+) the cloned mount is created under the destination mount and is marked
2163 : * as shared. The cloned mount is added to the peer group of the source
2164 : * mount.
2165 : * (+++) the mount is propagated to all the mounts in the propagation tree
2166 : * of the destination mount and the cloned mount is made slave
2167 : * of the same master as that of the source mount. The cloned mount
2168 : * is marked as 'shared and slave'.
2169 : * (*) the cloned mount is made a slave of the same master as that of the
2170 : * source mount.
2171 : *
2172 : * ---------------------------------------------------------------------------
2173 : * | MOVE MOUNT OPERATION |
2174 : * |**************************************************************************
2175 : * | source-->| shared | private | slave | unbindable |
2176 : * | dest | | | | |
2177 : * | | | | | | |
2178 : * | v | | | | |
2179 : * |**************************************************************************
2180 : * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2181 : * | | | | | |
2182 : * |non-shared| shared (+*) | private | slave (*) | unbindable |
2183 : * ***************************************************************************
2184 : *
2185 : * (+) the mount is moved to the destination. And is then propagated to
2186 : * all the mounts in the propagation tree of the destination mount.
2187 : * (+*) the mount is moved to the destination.
2188 : * (+++) the mount is moved to the destination and is then propagated to
2189 : * all the mounts belonging to the destination mount's propagation tree.
2190 : * the mount is marked as 'shared and slave'.
2191 : * (*) the mount continues to be a slave at the new location.
2192 : *
2193 : * if the source mount is a tree, the operations explained above is
2194 : * applied to each mount in the tree.
2195 : * Must be called without spinlocks held, since this function can sleep
2196 : * in allocations.
2197 : */
2198 0 : static int attach_recursive_mnt(struct mount *source_mnt,
2199 : struct mount *dest_mnt,
2200 : struct mountpoint *dest_mp,
2201 : bool moving)
2202 : {
2203 0 : struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2204 0 : HLIST_HEAD(tree_list);
2205 0 : struct mnt_namespace *ns = dest_mnt->mnt_ns;
2206 : struct mountpoint *smp;
2207 : struct mount *child, *p;
2208 : struct hlist_node *n;
2209 : int err;
2210 :
2211 : /* Preallocate a mountpoint in case the new mounts need
2212 : * to be tucked under other mounts.
2213 : */
2214 0 : smp = get_mountpoint(source_mnt->mnt.mnt_root);
2215 0 : if (IS_ERR(smp))
2216 0 : return PTR_ERR(smp);
2217 :
2218 : /* Is there space to add these mounts to the mount namespace? */
2219 0 : if (!moving) {
2220 0 : err = count_mounts(ns, source_mnt);
2221 0 : if (err)
2222 : goto out;
2223 : }
2224 :
2225 0 : if (IS_MNT_SHARED(dest_mnt)) {
2226 0 : err = invent_group_ids(source_mnt, true);
2227 0 : if (err)
2228 : goto out;
2229 0 : err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2230 : lock_mount_hash();
2231 0 : if (err)
2232 : goto out_cleanup_ids;
2233 0 : for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2234 0 : set_mnt_shared(p);
2235 : } else {
2236 : lock_mount_hash();
2237 : }
2238 0 : if (moving) {
2239 0 : unhash_mnt(source_mnt);
2240 0 : attach_mnt(source_mnt, dest_mnt, dest_mp);
2241 0 : touch_mnt_namespace(source_mnt->mnt_ns);
2242 : } else {
2243 0 : if (source_mnt->mnt_ns) {
2244 : /* move from anon - the caller will destroy */
2245 0 : list_del_init(&source_mnt->mnt_ns->list);
2246 : }
2247 0 : mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2248 0 : commit_tree(source_mnt);
2249 : }
2250 :
2251 0 : hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2252 : struct mount *q;
2253 0 : hlist_del_init(&child->mnt_hash);
2254 0 : q = __lookup_mnt(&child->mnt_parent->mnt,
2255 : child->mnt_mountpoint);
2256 0 : if (q)
2257 0 : mnt_change_mountpoint(child, smp, q);
2258 : /* Notice when we are propagating across user namespaces */
2259 0 : if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2260 0 : lock_mnt_tree(child);
2261 0 : child->mnt.mnt_flags &= ~MNT_LOCKED;
2262 0 : commit_tree(child);
2263 : }
2264 0 : put_mountpoint(smp);
2265 : unlock_mount_hash();
2266 :
2267 0 : return 0;
2268 :
2269 : out_cleanup_ids:
2270 0 : while (!hlist_empty(&tree_list)) {
2271 0 : child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2272 0 : child->mnt_parent->mnt_ns->pending_mounts = 0;
2273 0 : umount_tree(child, UMOUNT_SYNC);
2274 : }
2275 : unlock_mount_hash();
2276 0 : cleanup_group_ids(source_mnt, NULL);
2277 : out:
2278 0 : ns->pending_mounts = 0;
2279 :
2280 0 : read_seqlock_excl(&mount_lock);
2281 0 : put_mountpoint(smp);
2282 0 : read_sequnlock_excl(&mount_lock);
2283 :
2284 0 : return err;
2285 : }
2286 :
2287 0 : static struct mountpoint *lock_mount(struct path *path)
2288 : {
2289 : struct vfsmount *mnt;
2290 0 : struct dentry *dentry = path->dentry;
2291 : retry:
2292 0 : inode_lock(dentry->d_inode);
2293 0 : if (unlikely(cant_mount(dentry))) {
2294 0 : inode_unlock(dentry->d_inode);
2295 0 : return ERR_PTR(-ENOENT);
2296 : }
2297 : namespace_lock();
2298 0 : mnt = lookup_mnt(path);
2299 0 : if (likely(!mnt)) {
2300 0 : struct mountpoint *mp = get_mountpoint(dentry);
2301 0 : if (IS_ERR(mp)) {
2302 0 : namespace_unlock();
2303 0 : inode_unlock(dentry->d_inode);
2304 0 : return mp;
2305 : }
2306 : return mp;
2307 : }
2308 0 : namespace_unlock();
2309 0 : inode_unlock(path->dentry->d_inode);
2310 0 : path_put(path);
2311 0 : path->mnt = mnt;
2312 0 : dentry = path->dentry = dget(mnt->mnt_root);
2313 0 : goto retry;
2314 : }
2315 :
2316 0 : static void unlock_mount(struct mountpoint *where)
2317 : {
2318 0 : struct dentry *dentry = where->m_dentry;
2319 :
2320 0 : read_seqlock_excl(&mount_lock);
2321 0 : put_mountpoint(where);
2322 0 : read_sequnlock_excl(&mount_lock);
2323 :
2324 0 : namespace_unlock();
2325 0 : inode_unlock(dentry->d_inode);
2326 0 : }
2327 :
2328 0 : static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2329 : {
2330 0 : if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2331 : return -EINVAL;
2332 :
2333 0 : if (d_is_dir(mp->m_dentry) !=
2334 0 : d_is_dir(mnt->mnt.mnt_root))
2335 : return -ENOTDIR;
2336 :
2337 0 : return attach_recursive_mnt(mnt, p, mp, false);
2338 : }
2339 :
2340 : /*
2341 : * Sanity check the flags to change_mnt_propagation.
2342 : */
2343 :
2344 : static int flags_to_propagation_type(int ms_flags)
2345 : {
2346 0 : int type = ms_flags & ~(MS_REC | MS_SILENT);
2347 :
2348 : /* Fail if any non-propagation flags are set */
2349 0 : if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2350 : return 0;
2351 : /* Only one propagation flag should be set */
2352 0 : if (!is_power_of_2(type))
2353 : return 0;
2354 : return type;
2355 : }
2356 :
2357 : /*
2358 : * recursively change the type of the mountpoint.
2359 : */
2360 0 : static int do_change_type(struct path *path, int ms_flags)
2361 : {
2362 : struct mount *m;
2363 0 : struct mount *mnt = real_mount(path->mnt);
2364 0 : int recurse = ms_flags & MS_REC;
2365 : int type;
2366 0 : int err = 0;
2367 :
2368 0 : if (path->dentry != path->mnt->mnt_root)
2369 : return -EINVAL;
2370 :
2371 0 : type = flags_to_propagation_type(ms_flags);
2372 0 : if (!type)
2373 : return -EINVAL;
2374 :
2375 : namespace_lock();
2376 0 : if (type == MS_SHARED) {
2377 0 : err = invent_group_ids(mnt, recurse);
2378 0 : if (err)
2379 : goto out_unlock;
2380 : }
2381 :
2382 : lock_mount_hash();
2383 0 : for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2384 0 : change_mnt_propagation(m, type);
2385 : unlock_mount_hash();
2386 :
2387 : out_unlock:
2388 0 : namespace_unlock();
2389 0 : return err;
2390 : }
2391 :
2392 0 : static struct mount *__do_loopback(struct path *old_path, int recurse)
2393 : {
2394 0 : struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2395 :
2396 0 : if (IS_MNT_UNBINDABLE(old))
2397 : return mnt;
2398 :
2399 0 : if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2400 : return mnt;
2401 :
2402 0 : if (!recurse && has_locked_children(old, old_path->dentry))
2403 : return mnt;
2404 :
2405 0 : if (recurse)
2406 0 : mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2407 : else
2408 0 : mnt = clone_mnt(old, old_path->dentry, 0);
2409 :
2410 0 : if (!IS_ERR(mnt))
2411 0 : mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2412 :
2413 : return mnt;
2414 : }
2415 :
2416 : /*
2417 : * do loopback mount.
2418 : */
2419 0 : static int do_loopback(struct path *path, const char *old_name,
2420 : int recurse)
2421 : {
2422 : struct path old_path;
2423 0 : struct mount *mnt = NULL, *parent;
2424 : struct mountpoint *mp;
2425 : int err;
2426 0 : if (!old_name || !*old_name)
2427 : return -EINVAL;
2428 0 : err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2429 0 : if (err)
2430 : return err;
2431 :
2432 0 : err = -EINVAL;
2433 0 : if (mnt_ns_loop(old_path.dentry))
2434 : goto out;
2435 :
2436 0 : mp = lock_mount(path);
2437 0 : if (IS_ERR(mp)) {
2438 0 : err = PTR_ERR(mp);
2439 0 : goto out;
2440 : }
2441 :
2442 0 : parent = real_mount(path->mnt);
2443 0 : if (!check_mnt(parent))
2444 : goto out2;
2445 :
2446 0 : mnt = __do_loopback(&old_path, recurse);
2447 0 : if (IS_ERR(mnt)) {
2448 0 : err = PTR_ERR(mnt);
2449 0 : goto out2;
2450 : }
2451 :
2452 0 : err = graft_tree(mnt, parent, mp);
2453 0 : if (err) {
2454 : lock_mount_hash();
2455 0 : umount_tree(mnt, UMOUNT_SYNC);
2456 : unlock_mount_hash();
2457 : }
2458 : out2:
2459 0 : unlock_mount(mp);
2460 : out:
2461 0 : path_put(&old_path);
2462 0 : return err;
2463 : }
2464 :
2465 0 : static struct file *open_detached_copy(struct path *path, bool recursive)
2466 : {
2467 0 : struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2468 0 : struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2469 : struct mount *mnt, *p;
2470 : struct file *file;
2471 :
2472 0 : if (IS_ERR(ns))
2473 : return ERR_CAST(ns);
2474 :
2475 : namespace_lock();
2476 0 : mnt = __do_loopback(path, recursive);
2477 0 : if (IS_ERR(mnt)) {
2478 0 : namespace_unlock();
2479 0 : free_mnt_ns(ns);
2480 0 : return ERR_CAST(mnt);
2481 : }
2482 :
2483 : lock_mount_hash();
2484 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2485 0 : p->mnt_ns = ns;
2486 0 : ns->mounts++;
2487 : }
2488 0 : ns->root = mnt;
2489 0 : list_add_tail(&ns->list, &mnt->mnt_list);
2490 0 : mntget(&mnt->mnt);
2491 : unlock_mount_hash();
2492 0 : namespace_unlock();
2493 :
2494 0 : mntput(path->mnt);
2495 0 : path->mnt = &mnt->mnt;
2496 0 : file = dentry_open(path, O_PATH, current_cred());
2497 0 : if (IS_ERR(file))
2498 0 : dissolve_on_fput(path->mnt);
2499 : else
2500 0 : file->f_mode |= FMODE_NEED_UNMOUNT;
2501 : return file;
2502 : }
2503 :
2504 0 : SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2505 : {
2506 : struct file *file;
2507 : struct path path;
2508 0 : int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2509 0 : bool detached = flags & OPEN_TREE_CLONE;
2510 : int error;
2511 : int fd;
2512 :
2513 : BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2514 :
2515 0 : if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2516 : AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2517 : OPEN_TREE_CLOEXEC))
2518 : return -EINVAL;
2519 :
2520 0 : if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2521 : return -EINVAL;
2522 :
2523 0 : if (flags & AT_NO_AUTOMOUNT)
2524 0 : lookup_flags &= ~LOOKUP_AUTOMOUNT;
2525 0 : if (flags & AT_SYMLINK_NOFOLLOW)
2526 0 : lookup_flags &= ~LOOKUP_FOLLOW;
2527 0 : if (flags & AT_EMPTY_PATH)
2528 0 : lookup_flags |= LOOKUP_EMPTY;
2529 :
2530 0 : if (detached && !may_mount())
2531 : return -EPERM;
2532 :
2533 0 : fd = get_unused_fd_flags(flags & O_CLOEXEC);
2534 0 : if (fd < 0)
2535 0 : return fd;
2536 :
2537 0 : error = user_path_at(dfd, filename, lookup_flags, &path);
2538 0 : if (unlikely(error)) {
2539 0 : file = ERR_PTR(error);
2540 : } else {
2541 0 : if (detached)
2542 0 : file = open_detached_copy(&path, flags & AT_RECURSIVE);
2543 : else
2544 0 : file = dentry_open(&path, O_PATH, current_cred());
2545 0 : path_put(&path);
2546 : }
2547 0 : if (IS_ERR(file)) {
2548 0 : put_unused_fd(fd);
2549 0 : return PTR_ERR(file);
2550 : }
2551 0 : fd_install(fd, file);
2552 0 : return fd;
2553 : }
2554 :
2555 : /*
2556 : * Don't allow locked mount flags to be cleared.
2557 : *
2558 : * No locks need to be held here while testing the various MNT_LOCK
2559 : * flags because those flags can never be cleared once they are set.
2560 : */
2561 0 : static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2562 : {
2563 0 : unsigned int fl = mnt->mnt.mnt_flags;
2564 :
2565 0 : if ((fl & MNT_LOCK_READONLY) &&
2566 0 : !(mnt_flags & MNT_READONLY))
2567 : return false;
2568 :
2569 0 : if ((fl & MNT_LOCK_NODEV) &&
2570 0 : !(mnt_flags & MNT_NODEV))
2571 : return false;
2572 :
2573 0 : if ((fl & MNT_LOCK_NOSUID) &&
2574 0 : !(mnt_flags & MNT_NOSUID))
2575 : return false;
2576 :
2577 0 : if ((fl & MNT_LOCK_NOEXEC) &&
2578 0 : !(mnt_flags & MNT_NOEXEC))
2579 : return false;
2580 :
2581 0 : if ((fl & MNT_LOCK_ATIME) &&
2582 0 : ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2583 : return false;
2584 :
2585 : return true;
2586 : }
2587 :
2588 0 : static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2589 : {
2590 0 : bool readonly_request = (mnt_flags & MNT_READONLY);
2591 :
2592 0 : if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2593 : return 0;
2594 :
2595 0 : if (readonly_request)
2596 0 : return mnt_make_readonly(mnt);
2597 :
2598 0 : mnt->mnt.mnt_flags &= ~MNT_READONLY;
2599 0 : return 0;
2600 : }
2601 :
2602 : static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2603 : {
2604 0 : mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2605 0 : mnt->mnt.mnt_flags = mnt_flags;
2606 0 : touch_mnt_namespace(mnt->mnt_ns);
2607 : }
2608 :
2609 0 : static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2610 : {
2611 0 : struct super_block *sb = mnt->mnt_sb;
2612 :
2613 0 : if (!__mnt_is_readonly(mnt) &&
2614 0 : (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2615 0 : (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2616 0 : char *buf = (char *)__get_free_page(GFP_KERNEL);
2617 0 : char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2618 : struct tm tm;
2619 :
2620 0 : time64_to_tm(sb->s_time_max, 0, &tm);
2621 :
2622 0 : pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2623 : sb->s_type->name,
2624 : is_mounted(mnt) ? "remounted" : "mounted",
2625 : mntpath,
2626 : tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2627 :
2628 0 : free_page((unsigned long)buf);
2629 0 : sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2630 : }
2631 0 : }
2632 :
2633 : /*
2634 : * Handle reconfiguration of the mountpoint only without alteration of the
2635 : * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2636 : * to mount(2).
2637 : */
2638 0 : static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2639 : {
2640 0 : struct super_block *sb = path->mnt->mnt_sb;
2641 0 : struct mount *mnt = real_mount(path->mnt);
2642 : int ret;
2643 :
2644 0 : if (!check_mnt(mnt))
2645 : return -EINVAL;
2646 :
2647 0 : if (path->dentry != mnt->mnt.mnt_root)
2648 : return -EINVAL;
2649 :
2650 0 : if (!can_change_locked_flags(mnt, mnt_flags))
2651 : return -EPERM;
2652 :
2653 : /*
2654 : * We're only checking whether the superblock is read-only not
2655 : * changing it, so only take down_read(&sb->s_umount).
2656 : */
2657 0 : down_read(&sb->s_umount);
2658 : lock_mount_hash();
2659 0 : ret = change_mount_ro_state(mnt, mnt_flags);
2660 0 : if (ret == 0)
2661 0 : set_mount_attributes(mnt, mnt_flags);
2662 : unlock_mount_hash();
2663 0 : up_read(&sb->s_umount);
2664 :
2665 0 : mnt_warn_timestamp_expiry(path, &mnt->mnt);
2666 :
2667 0 : return ret;
2668 : }
2669 :
2670 : /*
2671 : * change filesystem flags. dir should be a physical root of filesystem.
2672 : * If you've mounted a non-root directory somewhere and want to do remount
2673 : * on it - tough luck.
2674 : */
2675 0 : static int do_remount(struct path *path, int ms_flags, int sb_flags,
2676 : int mnt_flags, void *data)
2677 : {
2678 : int err;
2679 0 : struct super_block *sb = path->mnt->mnt_sb;
2680 0 : struct mount *mnt = real_mount(path->mnt);
2681 : struct fs_context *fc;
2682 :
2683 0 : if (!check_mnt(mnt))
2684 : return -EINVAL;
2685 :
2686 0 : if (path->dentry != path->mnt->mnt_root)
2687 : return -EINVAL;
2688 :
2689 0 : if (!can_change_locked_flags(mnt, mnt_flags))
2690 : return -EPERM;
2691 :
2692 0 : fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2693 0 : if (IS_ERR(fc))
2694 0 : return PTR_ERR(fc);
2695 :
2696 0 : fc->oldapi = true;
2697 0 : err = parse_monolithic_mount_data(fc, data);
2698 0 : if (!err) {
2699 0 : down_write(&sb->s_umount);
2700 0 : err = -EPERM;
2701 0 : if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2702 0 : err = reconfigure_super(fc);
2703 0 : if (!err) {
2704 : lock_mount_hash();
2705 0 : set_mount_attributes(mnt, mnt_flags);
2706 : unlock_mount_hash();
2707 : }
2708 : }
2709 0 : up_write(&sb->s_umount);
2710 : }
2711 :
2712 0 : mnt_warn_timestamp_expiry(path, &mnt->mnt);
2713 :
2714 0 : put_fs_context(fc);
2715 : return err;
2716 : }
2717 :
2718 : static inline int tree_contains_unbindable(struct mount *mnt)
2719 : {
2720 : struct mount *p;
2721 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
2722 0 : if (IS_MNT_UNBINDABLE(p))
2723 : return 1;
2724 : }
2725 : return 0;
2726 : }
2727 :
2728 : /*
2729 : * Check that there aren't references to earlier/same mount namespaces in the
2730 : * specified subtree. Such references can act as pins for mount namespaces
2731 : * that aren't checked by the mount-cycle checking code, thereby allowing
2732 : * cycles to be made.
2733 : */
2734 0 : static bool check_for_nsfs_mounts(struct mount *subtree)
2735 : {
2736 : struct mount *p;
2737 0 : bool ret = false;
2738 :
2739 : lock_mount_hash();
2740 0 : for (p = subtree; p; p = next_mnt(p, subtree))
2741 0 : if (mnt_ns_loop(p->mnt.mnt_root))
2742 : goto out;
2743 :
2744 : ret = true;
2745 : out:
2746 : unlock_mount_hash();
2747 0 : return ret;
2748 : }
2749 :
2750 0 : static int do_set_group(struct path *from_path, struct path *to_path)
2751 : {
2752 : struct mount *from, *to;
2753 : int err;
2754 :
2755 0 : from = real_mount(from_path->mnt);
2756 0 : to = real_mount(to_path->mnt);
2757 :
2758 : namespace_lock();
2759 :
2760 0 : err = -EINVAL;
2761 : /* To and From must be mounted */
2762 0 : if (!is_mounted(&from->mnt))
2763 : goto out;
2764 0 : if (!is_mounted(&to->mnt))
2765 : goto out;
2766 :
2767 0 : err = -EPERM;
2768 : /* We should be allowed to modify mount namespaces of both mounts */
2769 0 : if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2770 : goto out;
2771 0 : if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772 : goto out;
2773 :
2774 0 : err = -EINVAL;
2775 : /* To and From paths should be mount roots */
2776 0 : if (from_path->dentry != from_path->mnt->mnt_root)
2777 : goto out;
2778 0 : if (to_path->dentry != to_path->mnt->mnt_root)
2779 : goto out;
2780 :
2781 : /* Setting sharing groups is only allowed across same superblock */
2782 0 : if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2783 : goto out;
2784 :
2785 : /* From mount root should be wider than To mount root */
2786 0 : if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2787 : goto out;
2788 :
2789 : /* From mount should not have locked children in place of To's root */
2790 0 : if (has_locked_children(from, to->mnt.mnt_root))
2791 : goto out;
2792 :
2793 : /* Setting sharing groups is only allowed on private mounts */
2794 0 : if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2795 : goto out;
2796 :
2797 : /* From should not be private */
2798 0 : if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2799 : goto out;
2800 :
2801 0 : if (IS_MNT_SLAVE(from)) {
2802 0 : struct mount *m = from->mnt_master;
2803 :
2804 0 : list_add(&to->mnt_slave, &m->mnt_slave_list);
2805 0 : to->mnt_master = m;
2806 : }
2807 :
2808 0 : if (IS_MNT_SHARED(from)) {
2809 0 : to->mnt_group_id = from->mnt_group_id;
2810 0 : list_add(&to->mnt_share, &from->mnt_share);
2811 : lock_mount_hash();
2812 : set_mnt_shared(to);
2813 : unlock_mount_hash();
2814 : }
2815 :
2816 : err = 0;
2817 : out:
2818 0 : namespace_unlock();
2819 0 : return err;
2820 : }
2821 :
2822 0 : static int do_move_mount(struct path *old_path, struct path *new_path)
2823 : {
2824 : struct mnt_namespace *ns;
2825 : struct mount *p;
2826 : struct mount *old;
2827 : struct mount *parent;
2828 : struct mountpoint *mp, *old_mp;
2829 : int err;
2830 : bool attached;
2831 :
2832 0 : mp = lock_mount(new_path);
2833 0 : if (IS_ERR(mp))
2834 0 : return PTR_ERR(mp);
2835 :
2836 0 : old = real_mount(old_path->mnt);
2837 0 : p = real_mount(new_path->mnt);
2838 0 : parent = old->mnt_parent;
2839 0 : attached = mnt_has_parent(old);
2840 0 : old_mp = old->mnt_mp;
2841 0 : ns = old->mnt_ns;
2842 :
2843 0 : err = -EINVAL;
2844 : /* The mountpoint must be in our namespace. */
2845 0 : if (!check_mnt(p))
2846 : goto out;
2847 :
2848 : /* The thing moved must be mounted... */
2849 0 : if (!is_mounted(&old->mnt))
2850 : goto out;
2851 :
2852 : /* ... and either ours or the root of anon namespace */
2853 0 : if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2854 : goto out;
2855 :
2856 0 : if (old->mnt.mnt_flags & MNT_LOCKED)
2857 : goto out;
2858 :
2859 0 : if (old_path->dentry != old_path->mnt->mnt_root)
2860 : goto out;
2861 :
2862 0 : if (d_is_dir(new_path->dentry) !=
2863 0 : d_is_dir(old_path->dentry))
2864 : goto out;
2865 : /*
2866 : * Don't move a mount residing in a shared parent.
2867 : */
2868 0 : if (attached && IS_MNT_SHARED(parent))
2869 : goto out;
2870 : /*
2871 : * Don't move a mount tree containing unbindable mounts to a destination
2872 : * mount which is shared.
2873 : */
2874 0 : if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2875 : goto out;
2876 0 : err = -ELOOP;
2877 0 : if (!check_for_nsfs_mounts(old))
2878 : goto out;
2879 0 : for (; mnt_has_parent(p); p = p->mnt_parent)
2880 0 : if (p == old)
2881 : goto out;
2882 :
2883 0 : err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2884 : attached);
2885 0 : if (err)
2886 : goto out;
2887 :
2888 : /* if the mount is moved, it should no longer be expire
2889 : * automatically */
2890 0 : list_del_init(&old->mnt_expire);
2891 0 : if (attached)
2892 : put_mountpoint(old_mp);
2893 : out:
2894 0 : unlock_mount(mp);
2895 0 : if (!err) {
2896 0 : if (attached)
2897 0 : mntput_no_expire(parent);
2898 : else
2899 0 : free_mnt_ns(ns);
2900 : }
2901 : return err;
2902 : }
2903 :
2904 0 : static int do_move_mount_old(struct path *path, const char *old_name)
2905 : {
2906 : struct path old_path;
2907 : int err;
2908 :
2909 0 : if (!old_name || !*old_name)
2910 : return -EINVAL;
2911 :
2912 0 : err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2913 0 : if (err)
2914 : return err;
2915 :
2916 0 : err = do_move_mount(&old_path, path);
2917 0 : path_put(&old_path);
2918 0 : return err;
2919 : }
2920 :
2921 : /*
2922 : * add a mount into a namespace's mount tree
2923 : */
2924 0 : static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2925 : const struct path *path, int mnt_flags)
2926 : {
2927 0 : struct mount *parent = real_mount(path->mnt);
2928 :
2929 0 : mnt_flags &= ~MNT_INTERNAL_FLAGS;
2930 :
2931 0 : if (unlikely(!check_mnt(parent))) {
2932 : /* that's acceptable only for automounts done in private ns */
2933 0 : if (!(mnt_flags & MNT_SHRINKABLE))
2934 : return -EINVAL;
2935 : /* ... and for those we'd better have mountpoint still alive */
2936 0 : if (!parent->mnt_ns)
2937 : return -EINVAL;
2938 : }
2939 :
2940 : /* Refuse the same filesystem on the same mount point */
2941 0 : if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2942 0 : path->mnt->mnt_root == path->dentry)
2943 : return -EBUSY;
2944 :
2945 0 : if (d_is_symlink(newmnt->mnt.mnt_root))
2946 : return -EINVAL;
2947 :
2948 0 : newmnt->mnt.mnt_flags = mnt_flags;
2949 0 : return graft_tree(newmnt, parent, mp);
2950 : }
2951 :
2952 : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2953 :
2954 : /*
2955 : * Create a new mount using a superblock configuration and request it
2956 : * be added to the namespace tree.
2957 : */
2958 0 : static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2959 : unsigned int mnt_flags)
2960 : {
2961 : struct vfsmount *mnt;
2962 : struct mountpoint *mp;
2963 0 : struct super_block *sb = fc->root->d_sb;
2964 : int error;
2965 :
2966 0 : error = security_sb_kern_mount(sb);
2967 0 : if (!error && mount_too_revealing(sb, &mnt_flags))
2968 0 : error = -EPERM;
2969 :
2970 0 : if (unlikely(error)) {
2971 0 : fc_drop_locked(fc);
2972 0 : return error;
2973 : }
2974 :
2975 0 : up_write(&sb->s_umount);
2976 :
2977 0 : mnt = vfs_create_mount(fc);
2978 0 : if (IS_ERR(mnt))
2979 0 : return PTR_ERR(mnt);
2980 :
2981 0 : mnt_warn_timestamp_expiry(mountpoint, mnt);
2982 :
2983 0 : mp = lock_mount(mountpoint);
2984 0 : if (IS_ERR(mp)) {
2985 0 : mntput(mnt);
2986 0 : return PTR_ERR(mp);
2987 : }
2988 0 : error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2989 0 : unlock_mount(mp);
2990 0 : if (error < 0)
2991 : mntput(mnt);
2992 : return error;
2993 : }
2994 :
2995 : /*
2996 : * create a new mount for userspace and request it to be added into the
2997 : * namespace's tree
2998 : */
2999 0 : static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3000 : int mnt_flags, const char *name, void *data)
3001 : {
3002 : struct file_system_type *type;
3003 : struct fs_context *fc;
3004 0 : const char *subtype = NULL;
3005 0 : int err = 0;
3006 :
3007 0 : if (!fstype)
3008 : return -EINVAL;
3009 :
3010 0 : type = get_fs_type(fstype);
3011 0 : if (!type)
3012 : return -ENODEV;
3013 :
3014 0 : if (type->fs_flags & FS_HAS_SUBTYPE) {
3015 0 : subtype = strchr(fstype, '.');
3016 0 : if (subtype) {
3017 0 : subtype++;
3018 0 : if (!*subtype) {
3019 0 : put_filesystem(type);
3020 0 : return -EINVAL;
3021 : }
3022 : }
3023 : }
3024 :
3025 0 : fc = fs_context_for_mount(type, sb_flags);
3026 0 : put_filesystem(type);
3027 0 : if (IS_ERR(fc))
3028 0 : return PTR_ERR(fc);
3029 :
3030 0 : if (subtype)
3031 0 : err = vfs_parse_fs_string(fc, "subtype",
3032 : subtype, strlen(subtype));
3033 0 : if (!err && name)
3034 0 : err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3035 0 : if (!err)
3036 0 : err = parse_monolithic_mount_data(fc, data);
3037 0 : if (!err && !mount_capable(fc))
3038 0 : err = -EPERM;
3039 0 : if (!err)
3040 0 : err = vfs_get_tree(fc);
3041 0 : if (!err)
3042 0 : err = do_new_mount_fc(fc, path, mnt_flags);
3043 :
3044 0 : put_fs_context(fc);
3045 0 : return err;
3046 : }
3047 :
3048 0 : int finish_automount(struct vfsmount *m, const struct path *path)
3049 : {
3050 0 : struct dentry *dentry = path->dentry;
3051 : struct mountpoint *mp;
3052 : struct mount *mnt;
3053 : int err;
3054 :
3055 0 : if (!m)
3056 : return 0;
3057 0 : if (IS_ERR(m))
3058 0 : return PTR_ERR(m);
3059 :
3060 0 : mnt = real_mount(m);
3061 : /* The new mount record should have at least 2 refs to prevent it being
3062 : * expired before we get a chance to add it
3063 : */
3064 0 : BUG_ON(mnt_get_count(mnt) < 2);
3065 :
3066 0 : if (m->mnt_sb == path->mnt->mnt_sb &&
3067 0 : m->mnt_root == dentry) {
3068 : err = -ELOOP;
3069 : goto discard;
3070 : }
3071 :
3072 : /*
3073 : * we don't want to use lock_mount() - in this case finding something
3074 : * that overmounts our mountpoint to be means "quitely drop what we've
3075 : * got", not "try to mount it on top".
3076 : */
3077 0 : inode_lock(dentry->d_inode);
3078 : namespace_lock();
3079 0 : if (unlikely(cant_mount(dentry))) {
3080 : err = -ENOENT;
3081 : goto discard_locked;
3082 : }
3083 : rcu_read_lock();
3084 0 : if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3085 : rcu_read_unlock();
3086 0 : err = 0;
3087 0 : goto discard_locked;
3088 : }
3089 : rcu_read_unlock();
3090 0 : mp = get_mountpoint(dentry);
3091 0 : if (IS_ERR(mp)) {
3092 0 : err = PTR_ERR(mp);
3093 0 : goto discard_locked;
3094 : }
3095 :
3096 0 : err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3097 0 : unlock_mount(mp);
3098 0 : if (unlikely(err))
3099 : goto discard;
3100 0 : mntput(m);
3101 0 : return 0;
3102 :
3103 : discard_locked:
3104 0 : namespace_unlock();
3105 0 : inode_unlock(dentry->d_inode);
3106 : discard:
3107 : /* remove m from any expiration list it may be on */
3108 0 : if (!list_empty(&mnt->mnt_expire)) {
3109 : namespace_lock();
3110 0 : list_del_init(&mnt->mnt_expire);
3111 0 : namespace_unlock();
3112 : }
3113 0 : mntput(m);
3114 0 : mntput(m);
3115 0 : return err;
3116 : }
3117 :
3118 : /**
3119 : * mnt_set_expiry - Put a mount on an expiration list
3120 : * @mnt: The mount to list.
3121 : * @expiry_list: The list to add the mount to.
3122 : */
3123 0 : void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3124 : {
3125 0 : namespace_lock();
3126 :
3127 0 : list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3128 :
3129 0 : namespace_unlock();
3130 0 : }
3131 : EXPORT_SYMBOL(mnt_set_expiry);
3132 :
3133 : /*
3134 : * process a list of expirable mountpoints with the intent of discarding any
3135 : * mountpoints that aren't in use and haven't been touched since last we came
3136 : * here
3137 : */
3138 0 : void mark_mounts_for_expiry(struct list_head *mounts)
3139 : {
3140 : struct mount *mnt, *next;
3141 0 : LIST_HEAD(graveyard);
3142 :
3143 0 : if (list_empty(mounts))
3144 0 : return;
3145 :
3146 : namespace_lock();
3147 : lock_mount_hash();
3148 :
3149 : /* extract from the expiration list every vfsmount that matches the
3150 : * following criteria:
3151 : * - only referenced by its parent vfsmount
3152 : * - still marked for expiry (marked on the last call here; marks are
3153 : * cleared by mntput())
3154 : */
3155 0 : list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3156 0 : if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3157 0 : propagate_mount_busy(mnt, 1))
3158 0 : continue;
3159 0 : list_move(&mnt->mnt_expire, &graveyard);
3160 : }
3161 0 : while (!list_empty(&graveyard)) {
3162 0 : mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3163 0 : touch_mnt_namespace(mnt->mnt_ns);
3164 0 : umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3165 : }
3166 : unlock_mount_hash();
3167 0 : namespace_unlock();
3168 : }
3169 :
3170 : EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3171 :
3172 : /*
3173 : * Ripoff of 'select_parent()'
3174 : *
3175 : * search the list of submounts for a given mountpoint, and move any
3176 : * shrinkable submounts to the 'graveyard' list.
3177 : */
3178 0 : static int select_submounts(struct mount *parent, struct list_head *graveyard)
3179 : {
3180 0 : struct mount *this_parent = parent;
3181 : struct list_head *next;
3182 0 : int found = 0;
3183 :
3184 : repeat:
3185 0 : next = this_parent->mnt_mounts.next;
3186 : resume:
3187 0 : while (next != &this_parent->mnt_mounts) {
3188 0 : struct list_head *tmp = next;
3189 0 : struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3190 :
3191 0 : next = tmp->next;
3192 0 : if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3193 0 : continue;
3194 : /*
3195 : * Descend a level if the d_mounts list is non-empty.
3196 : */
3197 0 : if (!list_empty(&mnt->mnt_mounts)) {
3198 : this_parent = mnt;
3199 : goto repeat;
3200 : }
3201 :
3202 0 : if (!propagate_mount_busy(mnt, 1)) {
3203 0 : list_move_tail(&mnt->mnt_expire, graveyard);
3204 0 : found++;
3205 : }
3206 : }
3207 : /*
3208 : * All done at this level ... ascend and resume the search
3209 : */
3210 0 : if (this_parent != parent) {
3211 0 : next = this_parent->mnt_child.next;
3212 0 : this_parent = this_parent->mnt_parent;
3213 0 : goto resume;
3214 : }
3215 0 : return found;
3216 : }
3217 :
3218 : /*
3219 : * process a list of expirable mountpoints with the intent of discarding any
3220 : * submounts of a specific parent mountpoint
3221 : *
3222 : * mount_lock must be held for write
3223 : */
3224 0 : static void shrink_submounts(struct mount *mnt)
3225 : {
3226 0 : LIST_HEAD(graveyard);
3227 : struct mount *m;
3228 :
3229 : /* extract submounts of 'mountpoint' from the expiration list */
3230 0 : while (select_submounts(mnt, &graveyard)) {
3231 0 : while (!list_empty(&graveyard)) {
3232 0 : m = list_first_entry(&graveyard, struct mount,
3233 : mnt_expire);
3234 0 : touch_mnt_namespace(m->mnt_ns);
3235 0 : umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3236 : }
3237 : }
3238 0 : }
3239 :
3240 0 : static void *copy_mount_options(const void __user * data)
3241 : {
3242 : char *copy;
3243 : unsigned left, offset;
3244 :
3245 0 : if (!data)
3246 : return NULL;
3247 :
3248 0 : copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3249 0 : if (!copy)
3250 : return ERR_PTR(-ENOMEM);
3251 :
3252 0 : left = copy_from_user(copy, data, PAGE_SIZE);
3253 :
3254 : /*
3255 : * Not all architectures have an exact copy_from_user(). Resort to
3256 : * byte at a time.
3257 : */
3258 0 : offset = PAGE_SIZE - left;
3259 0 : while (left) {
3260 : char c;
3261 0 : if (get_user(c, (const char __user *)data + offset))
3262 : break;
3263 0 : copy[offset] = c;
3264 0 : left--;
3265 0 : offset++;
3266 : }
3267 :
3268 0 : if (left == PAGE_SIZE) {
3269 0 : kfree(copy);
3270 0 : return ERR_PTR(-EFAULT);
3271 : }
3272 :
3273 : return copy;
3274 : }
3275 :
3276 : static char *copy_mount_string(const void __user *data)
3277 : {
3278 0 : return data ? strndup_user(data, PATH_MAX) : NULL;
3279 : }
3280 :
3281 : /*
3282 : * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3283 : * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3284 : *
3285 : * data is a (void *) that can point to any structure up to
3286 : * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3287 : * information (or be NULL).
3288 : *
3289 : * Pre-0.97 versions of mount() didn't have a flags word.
3290 : * When the flags word was introduced its top half was required
3291 : * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3292 : * Therefore, if this magic number is present, it carries no information
3293 : * and must be discarded.
3294 : */
3295 0 : int path_mount(const char *dev_name, struct path *path,
3296 : const char *type_page, unsigned long flags, void *data_page)
3297 : {
3298 0 : unsigned int mnt_flags = 0, sb_flags;
3299 : int ret;
3300 :
3301 : /* Discard magic */
3302 0 : if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3303 0 : flags &= ~MS_MGC_MSK;
3304 :
3305 : /* Basic sanity checks */
3306 0 : if (data_page)
3307 0 : ((char *)data_page)[PAGE_SIZE - 1] = 0;
3308 :
3309 0 : if (flags & MS_NOUSER)
3310 : return -EINVAL;
3311 :
3312 0 : ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3313 : if (ret)
3314 : return ret;
3315 0 : if (!may_mount())
3316 : return -EPERM;
3317 0 : if (flags & SB_MANDLOCK)
3318 : warn_mandlock();
3319 :
3320 : /* Default to relatime unless overriden */
3321 0 : if (!(flags & MS_NOATIME))
3322 0 : mnt_flags |= MNT_RELATIME;
3323 :
3324 : /* Separate the per-mountpoint flags */
3325 0 : if (flags & MS_NOSUID)
3326 0 : mnt_flags |= MNT_NOSUID;
3327 0 : if (flags & MS_NODEV)
3328 0 : mnt_flags |= MNT_NODEV;
3329 0 : if (flags & MS_NOEXEC)
3330 0 : mnt_flags |= MNT_NOEXEC;
3331 0 : if (flags & MS_NOATIME)
3332 0 : mnt_flags |= MNT_NOATIME;
3333 0 : if (flags & MS_NODIRATIME)
3334 0 : mnt_flags |= MNT_NODIRATIME;
3335 0 : if (flags & MS_STRICTATIME)
3336 0 : mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3337 0 : if (flags & MS_RDONLY)
3338 0 : mnt_flags |= MNT_READONLY;
3339 0 : if (flags & MS_NOSYMFOLLOW)
3340 0 : mnt_flags |= MNT_NOSYMFOLLOW;
3341 :
3342 : /* The default atime for remount is preservation */
3343 0 : if ((flags & MS_REMOUNT) &&
3344 : ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3345 : MS_STRICTATIME)) == 0)) {
3346 0 : mnt_flags &= ~MNT_ATIME_MASK;
3347 0 : mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3348 : }
3349 :
3350 0 : sb_flags = flags & (SB_RDONLY |
3351 : SB_SYNCHRONOUS |
3352 : SB_MANDLOCK |
3353 : SB_DIRSYNC |
3354 : SB_SILENT |
3355 : SB_POSIXACL |
3356 : SB_LAZYTIME |
3357 : SB_I_VERSION);
3358 :
3359 0 : if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3360 0 : return do_reconfigure_mnt(path, mnt_flags);
3361 0 : if (flags & MS_REMOUNT)
3362 0 : return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3363 0 : if (flags & MS_BIND)
3364 0 : return do_loopback(path, dev_name, flags & MS_REC);
3365 0 : if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3366 0 : return do_change_type(path, flags);
3367 0 : if (flags & MS_MOVE)
3368 0 : return do_move_mount_old(path, dev_name);
3369 :
3370 0 : return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3371 : data_page);
3372 : }
3373 :
3374 0 : long do_mount(const char *dev_name, const char __user *dir_name,
3375 : const char *type_page, unsigned long flags, void *data_page)
3376 : {
3377 : struct path path;
3378 : int ret;
3379 :
3380 0 : ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3381 0 : if (ret)
3382 0 : return ret;
3383 0 : ret = path_mount(dev_name, &path, type_page, flags, data_page);
3384 0 : path_put(&path);
3385 0 : return ret;
3386 : }
3387 :
3388 : static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3389 : {
3390 1 : return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3391 : }
3392 :
3393 : static void dec_mnt_namespaces(struct ucounts *ucounts)
3394 : {
3395 0 : dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3396 : }
3397 :
3398 0 : static void free_mnt_ns(struct mnt_namespace *ns)
3399 : {
3400 0 : if (!is_anon_ns(ns))
3401 0 : ns_free_inum(&ns->ns);
3402 0 : dec_mnt_namespaces(ns->ucounts);
3403 0 : put_user_ns(ns->user_ns);
3404 0 : kfree(ns);
3405 0 : }
3406 :
3407 : /*
3408 : * Assign a sequence number so we can detect when we attempt to bind
3409 : * mount a reference to an older mount namespace into the current
3410 : * mount namespace, preventing reference counting loops. A 64bit
3411 : * number incrementing at 10Ghz will take 12,427 years to wrap which
3412 : * is effectively never, so we can ignore the possibility.
3413 : */
3414 : static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3415 :
3416 1 : static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3417 : {
3418 : struct mnt_namespace *new_ns;
3419 : struct ucounts *ucounts;
3420 : int ret;
3421 :
3422 1 : ucounts = inc_mnt_namespaces(user_ns);
3423 1 : if (!ucounts)
3424 : return ERR_PTR(-ENOSPC);
3425 :
3426 1 : new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3427 1 : if (!new_ns) {
3428 0 : dec_mnt_namespaces(ucounts);
3429 0 : return ERR_PTR(-ENOMEM);
3430 : }
3431 1 : if (!anon) {
3432 2 : ret = ns_alloc_inum(&new_ns->ns);
3433 1 : if (ret) {
3434 0 : kfree(new_ns);
3435 0 : dec_mnt_namespaces(ucounts);
3436 0 : return ERR_PTR(ret);
3437 : }
3438 : }
3439 1 : new_ns->ns.ops = &mntns_operations;
3440 1 : if (!anon)
3441 1 : new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3442 2 : refcount_set(&new_ns->ns.count, 1);
3443 2 : INIT_LIST_HEAD(&new_ns->list);
3444 1 : init_waitqueue_head(&new_ns->poll);
3445 1 : spin_lock_init(&new_ns->ns_lock);
3446 1 : new_ns->user_ns = get_user_ns(user_ns);
3447 1 : new_ns->ucounts = ucounts;
3448 1 : return new_ns;
3449 : }
3450 :
3451 : __latent_entropy
3452 0 : struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3453 : struct user_namespace *user_ns, struct fs_struct *new_fs)
3454 : {
3455 : struct mnt_namespace *new_ns;
3456 0 : struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3457 : struct mount *p, *q;
3458 : struct mount *old;
3459 : struct mount *new;
3460 : int copy_flags;
3461 :
3462 0 : BUG_ON(!ns);
3463 :
3464 0 : if (likely(!(flags & CLONE_NEWNS))) {
3465 0 : get_mnt_ns(ns);
3466 0 : return ns;
3467 : }
3468 :
3469 0 : old = ns->root;
3470 :
3471 0 : new_ns = alloc_mnt_ns(user_ns, false);
3472 0 : if (IS_ERR(new_ns))
3473 : return new_ns;
3474 :
3475 : namespace_lock();
3476 : /* First pass: copy the tree topology */
3477 0 : copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3478 0 : if (user_ns != ns->user_ns)
3479 0 : copy_flags |= CL_SHARED_TO_SLAVE;
3480 0 : new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3481 0 : if (IS_ERR(new)) {
3482 0 : namespace_unlock();
3483 0 : free_mnt_ns(new_ns);
3484 0 : return ERR_CAST(new);
3485 : }
3486 0 : if (user_ns != ns->user_ns) {
3487 : lock_mount_hash();
3488 0 : lock_mnt_tree(new);
3489 : unlock_mount_hash();
3490 : }
3491 0 : new_ns->root = new;
3492 0 : list_add_tail(&new_ns->list, &new->mnt_list);
3493 :
3494 : /*
3495 : * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3496 : * as belonging to new namespace. We have already acquired a private
3497 : * fs_struct, so tsk->fs->lock is not needed.
3498 : */
3499 0 : p = old;
3500 0 : q = new;
3501 0 : while (p) {
3502 0 : q->mnt_ns = new_ns;
3503 0 : new_ns->mounts++;
3504 0 : if (new_fs) {
3505 0 : if (&p->mnt == new_fs->root.mnt) {
3506 0 : new_fs->root.mnt = mntget(&q->mnt);
3507 0 : rootmnt = &p->mnt;
3508 : }
3509 0 : if (&p->mnt == new_fs->pwd.mnt) {
3510 0 : new_fs->pwd.mnt = mntget(&q->mnt);
3511 0 : pwdmnt = &p->mnt;
3512 : }
3513 : }
3514 0 : p = next_mnt(p, old);
3515 0 : q = next_mnt(q, new);
3516 0 : if (!q)
3517 : break;
3518 0 : while (p->mnt.mnt_root != q->mnt.mnt_root)
3519 : p = next_mnt(p, old);
3520 : }
3521 0 : namespace_unlock();
3522 :
3523 0 : if (rootmnt)
3524 : mntput(rootmnt);
3525 0 : if (pwdmnt)
3526 : mntput(pwdmnt);
3527 :
3528 : return new_ns;
3529 : }
3530 :
3531 0 : struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532 : {
3533 0 : struct mount *mnt = real_mount(m);
3534 : struct mnt_namespace *ns;
3535 : struct super_block *s;
3536 : struct path path;
3537 : int err;
3538 :
3539 0 : ns = alloc_mnt_ns(&init_user_ns, true);
3540 0 : if (IS_ERR(ns)) {
3541 : mntput(m);
3542 : return ERR_CAST(ns);
3543 : }
3544 0 : mnt->mnt_ns = ns;
3545 0 : ns->root = mnt;
3546 0 : ns->mounts++;
3547 0 : list_add(&mnt->mnt_list, &ns->list);
3548 :
3549 0 : err = vfs_path_lookup(m->mnt_root, m,
3550 : name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551 :
3552 0 : put_mnt_ns(ns);
3553 :
3554 0 : if (err)
3555 0 : return ERR_PTR(err);
3556 :
3557 : /* trade a vfsmount reference for active sb one */
3558 0 : s = path.mnt->mnt_sb;
3559 0 : atomic_inc(&s->s_active);
3560 0 : mntput(path.mnt);
3561 : /* lock the sucker */
3562 0 : down_write(&s->s_umount);
3563 : /* ... and return the root of (sub)tree on it */
3564 0 : return path.dentry;
3565 : }
3566 : EXPORT_SYMBOL(mount_subtree);
3567 :
3568 0 : SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569 : char __user *, type, unsigned long, flags, void __user *, data)
3570 : {
3571 : int ret;
3572 : char *kernel_type;
3573 : char *kernel_dev;
3574 : void *options;
3575 :
3576 0 : kernel_type = copy_mount_string(type);
3577 0 : ret = PTR_ERR(kernel_type);
3578 0 : if (IS_ERR(kernel_type))
3579 : goto out_type;
3580 :
3581 0 : kernel_dev = copy_mount_string(dev_name);
3582 0 : ret = PTR_ERR(kernel_dev);
3583 0 : if (IS_ERR(kernel_dev))
3584 : goto out_dev;
3585 :
3586 0 : options = copy_mount_options(data);
3587 0 : ret = PTR_ERR(options);
3588 0 : if (IS_ERR(options))
3589 : goto out_data;
3590 :
3591 0 : ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3592 :
3593 0 : kfree(options);
3594 : out_data:
3595 0 : kfree(kernel_dev);
3596 : out_dev:
3597 0 : kfree(kernel_type);
3598 : out_type:
3599 0 : return ret;
3600 : }
3601 :
3602 : #define FSMOUNT_VALID_FLAGS \
3603 : (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3604 : MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3605 : MOUNT_ATTR_NOSYMFOLLOW)
3606 :
3607 : #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608 :
3609 : #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610 : (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611 :
3612 0 : static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613 : {
3614 0 : unsigned int mnt_flags = 0;
3615 :
3616 0 : if (attr_flags & MOUNT_ATTR_RDONLY)
3617 0 : mnt_flags |= MNT_READONLY;
3618 0 : if (attr_flags & MOUNT_ATTR_NOSUID)
3619 0 : mnt_flags |= MNT_NOSUID;
3620 0 : if (attr_flags & MOUNT_ATTR_NODEV)
3621 0 : mnt_flags |= MNT_NODEV;
3622 0 : if (attr_flags & MOUNT_ATTR_NOEXEC)
3623 0 : mnt_flags |= MNT_NOEXEC;
3624 0 : if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625 0 : mnt_flags |= MNT_NODIRATIME;
3626 0 : if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627 0 : mnt_flags |= MNT_NOSYMFOLLOW;
3628 :
3629 0 : return mnt_flags;
3630 : }
3631 :
3632 : /*
3633 : * Create a kernel mount representation for a new, prepared superblock
3634 : * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635 : */
3636 0 : SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637 : unsigned int, attr_flags)
3638 : {
3639 : struct mnt_namespace *ns;
3640 : struct fs_context *fc;
3641 : struct file *file;
3642 : struct path newmount;
3643 : struct mount *mnt;
3644 : struct fd f;
3645 0 : unsigned int mnt_flags = 0;
3646 : long ret;
3647 :
3648 0 : if (!may_mount())
3649 : return -EPERM;
3650 :
3651 0 : if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652 : return -EINVAL;
3653 :
3654 0 : if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3655 : return -EINVAL;
3656 :
3657 0 : mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658 :
3659 0 : switch (attr_flags & MOUNT_ATTR__ATIME) {
3660 : case MOUNT_ATTR_STRICTATIME:
3661 : break;
3662 : case MOUNT_ATTR_NOATIME:
3663 0 : mnt_flags |= MNT_NOATIME;
3664 0 : break;
3665 : case MOUNT_ATTR_RELATIME:
3666 0 : mnt_flags |= MNT_RELATIME;
3667 0 : break;
3668 : default:
3669 : return -EINVAL;
3670 : }
3671 :
3672 0 : f = fdget(fs_fd);
3673 0 : if (!f.file)
3674 : return -EBADF;
3675 :
3676 0 : ret = -EINVAL;
3677 0 : if (f.file->f_op != &fscontext_fops)
3678 : goto err_fsfd;
3679 :
3680 0 : fc = f.file->private_data;
3681 :
3682 0 : ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683 0 : if (ret < 0)
3684 : goto err_fsfd;
3685 :
3686 : /* There must be a valid superblock or we can't mount it */
3687 0 : ret = -EINVAL;
3688 0 : if (!fc->root)
3689 : goto err_unlock;
3690 :
3691 0 : ret = -EPERM;
3692 0 : if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693 0 : pr_warn("VFS: Mount too revealing\n");
3694 0 : goto err_unlock;
3695 : }
3696 :
3697 0 : ret = -EBUSY;
3698 0 : if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699 : goto err_unlock;
3700 :
3701 0 : if (fc->sb_flags & SB_MANDLOCK)
3702 : warn_mandlock();
3703 :
3704 0 : newmount.mnt = vfs_create_mount(fc);
3705 0 : if (IS_ERR(newmount.mnt)) {
3706 0 : ret = PTR_ERR(newmount.mnt);
3707 0 : goto err_unlock;
3708 : }
3709 0 : newmount.dentry = dget(fc->root);
3710 0 : newmount.mnt->mnt_flags = mnt_flags;
3711 :
3712 : /* We've done the mount bit - now move the file context into more or
3713 : * less the same state as if we'd done an fspick(). We don't want to
3714 : * do any memory allocation or anything like that at this point as we
3715 : * don't want to have to handle any errors incurred.
3716 : */
3717 0 : vfs_clean_context(fc);
3718 :
3719 0 : ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720 0 : if (IS_ERR(ns)) {
3721 0 : ret = PTR_ERR(ns);
3722 0 : goto err_path;
3723 : }
3724 0 : mnt = real_mount(newmount.mnt);
3725 0 : mnt->mnt_ns = ns;
3726 0 : ns->root = mnt;
3727 0 : ns->mounts = 1;
3728 0 : list_add(&mnt->mnt_list, &ns->list);
3729 0 : mntget(newmount.mnt);
3730 :
3731 : /* Attach to an apparent O_PATH fd with a note that we need to unmount
3732 : * it, not just simply put it.
3733 : */
3734 0 : file = dentry_open(&newmount, O_PATH, fc->cred);
3735 0 : if (IS_ERR(file)) {
3736 0 : dissolve_on_fput(newmount.mnt);
3737 0 : ret = PTR_ERR(file);
3738 0 : goto err_path;
3739 : }
3740 0 : file->f_mode |= FMODE_NEED_UNMOUNT;
3741 :
3742 0 : ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743 0 : if (ret >= 0)
3744 0 : fd_install(ret, file);
3745 : else
3746 0 : fput(file);
3747 :
3748 : err_path:
3749 0 : path_put(&newmount);
3750 : err_unlock:
3751 0 : mutex_unlock(&fc->uapi_mutex);
3752 : err_fsfd:
3753 0 : fdput(f);
3754 : return ret;
3755 : }
3756 :
3757 : /*
3758 : * Move a mount from one place to another. In combination with
3759 : * fsopen()/fsmount() this is used to install a new mount and in combination
3760 : * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761 : * a mount subtree.
3762 : *
3763 : * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764 : */
3765 0 : SYSCALL_DEFINE5(move_mount,
3766 : int, from_dfd, const char __user *, from_pathname,
3767 : int, to_dfd, const char __user *, to_pathname,
3768 : unsigned int, flags)
3769 : {
3770 : struct path from_path, to_path;
3771 : unsigned int lflags;
3772 0 : int ret = 0;
3773 :
3774 0 : if (!may_mount())
3775 : return -EPERM;
3776 :
3777 0 : if (flags & ~MOVE_MOUNT__MASK)
3778 : return -EINVAL;
3779 :
3780 : /* If someone gives a pathname, they aren't permitted to move
3781 : * from an fd that requires unmount as we can't get at the flag
3782 : * to clear it afterwards.
3783 : */
3784 0 : lflags = 0;
3785 0 : if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3786 0 : if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3787 0 : if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3788 :
3789 0 : ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790 0 : if (ret < 0)
3791 0 : return ret;
3792 :
3793 0 : lflags = 0;
3794 0 : if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3795 0 : if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3796 0 : if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3797 :
3798 0 : ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799 0 : if (ret < 0)
3800 : goto out_from;
3801 :
3802 0 : ret = security_move_mount(&from_path, &to_path);
3803 : if (ret < 0)
3804 : goto out_to;
3805 :
3806 0 : if (flags & MOVE_MOUNT_SET_GROUP)
3807 0 : ret = do_set_group(&from_path, &to_path);
3808 : else
3809 0 : ret = do_move_mount(&from_path, &to_path);
3810 :
3811 : out_to:
3812 0 : path_put(&to_path);
3813 : out_from:
3814 0 : path_put(&from_path);
3815 0 : return ret;
3816 : }
3817 :
3818 : /*
3819 : * Return true if path is reachable from root
3820 : *
3821 : * namespace_sem or mount_lock is held
3822 : */
3823 0 : bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3824 : const struct path *root)
3825 : {
3826 0 : while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3827 0 : dentry = mnt->mnt_mountpoint;
3828 0 : mnt = mnt->mnt_parent;
3829 : }
3830 0 : return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3831 : }
3832 :
3833 0 : bool path_is_under(const struct path *path1, const struct path *path2)
3834 : {
3835 : bool res;
3836 0 : read_seqlock_excl(&mount_lock);
3837 0 : res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3838 0 : read_sequnlock_excl(&mount_lock);
3839 0 : return res;
3840 : }
3841 : EXPORT_SYMBOL(path_is_under);
3842 :
3843 : /*
3844 : * pivot_root Semantics:
3845 : * Moves the root file system of the current process to the directory put_old,
3846 : * makes new_root as the new root file system of the current process, and sets
3847 : * root/cwd of all processes which had them on the current root to new_root.
3848 : *
3849 : * Restrictions:
3850 : * The new_root and put_old must be directories, and must not be on the
3851 : * same file system as the current process root. The put_old must be
3852 : * underneath new_root, i.e. adding a non-zero number of /.. to the string
3853 : * pointed to by put_old must yield the same directory as new_root. No other
3854 : * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855 : *
3856 : * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3857 : * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3858 : * in this situation.
3859 : *
3860 : * Notes:
3861 : * - we don't move root/cwd if they are not at the root (reason: if something
3862 : * cared enough to change them, it's probably wrong to force them elsewhere)
3863 : * - it's okay to pick a root that isn't the root of a file system, e.g.
3864 : * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865 : * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866 : * first.
3867 : */
3868 0 : SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869 : const char __user *, put_old)
3870 : {
3871 : struct path new, old, root;
3872 : struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3873 : struct mountpoint *old_mp, *root_mp;
3874 : int error;
3875 :
3876 0 : if (!may_mount())
3877 : return -EPERM;
3878 :
3879 0 : error = user_path_at(AT_FDCWD, new_root,
3880 : LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3881 0 : if (error)
3882 : goto out0;
3883 :
3884 0 : error = user_path_at(AT_FDCWD, put_old,
3885 : LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3886 0 : if (error)
3887 : goto out1;
3888 :
3889 0 : error = security_sb_pivotroot(&old, &new);
3890 : if (error)
3891 : goto out2;
3892 :
3893 0 : get_fs_root(current->fs, &root);
3894 0 : old_mp = lock_mount(&old);
3895 0 : error = PTR_ERR(old_mp);
3896 0 : if (IS_ERR(old_mp))
3897 : goto out3;
3898 :
3899 0 : error = -EINVAL;
3900 0 : new_mnt = real_mount(new.mnt);
3901 0 : root_mnt = real_mount(root.mnt);
3902 0 : old_mnt = real_mount(old.mnt);
3903 0 : ex_parent = new_mnt->mnt_parent;
3904 0 : root_parent = root_mnt->mnt_parent;
3905 0 : if (IS_MNT_SHARED(old_mnt) ||
3906 0 : IS_MNT_SHARED(ex_parent) ||
3907 0 : IS_MNT_SHARED(root_parent))
3908 : goto out4;
3909 0 : if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910 : goto out4;
3911 0 : if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912 : goto out4;
3913 0 : error = -ENOENT;
3914 0 : if (d_unlinked(new.dentry))
3915 : goto out4;
3916 0 : error = -EBUSY;
3917 0 : if (new_mnt == root_mnt || old_mnt == root_mnt)
3918 : goto out4; /* loop, on the same file system */
3919 0 : error = -EINVAL;
3920 0 : if (root.mnt->mnt_root != root.dentry)
3921 : goto out4; /* not a mountpoint */
3922 0 : if (!mnt_has_parent(root_mnt))
3923 : goto out4; /* not attached */
3924 0 : if (new.mnt->mnt_root != new.dentry)
3925 : goto out4; /* not a mountpoint */
3926 0 : if (!mnt_has_parent(new_mnt))
3927 : goto out4; /* not attached */
3928 : /* make sure we can reach put_old from new_root */
3929 0 : if (!is_path_reachable(old_mnt, old.dentry, &new))
3930 : goto out4;
3931 : /* make certain new is below the root */
3932 0 : if (!is_path_reachable(new_mnt, new.dentry, &root))
3933 : goto out4;
3934 0 : lock_mount_hash();
3935 0 : umount_mnt(new_mnt);
3936 0 : root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3937 0 : if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938 0 : new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939 0 : root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940 : }
3941 : /* mount old root on put_old */
3942 0 : attach_mnt(root_mnt, old_mnt, old_mp);
3943 : /* mount new_root on / */
3944 0 : attach_mnt(new_mnt, root_parent, root_mp);
3945 0 : mnt_add_count(root_parent, -1);
3946 0 : touch_mnt_namespace(current->nsproxy->mnt_ns);
3947 : /* A moved mount should not expire automatically */
3948 0 : list_del_init(&new_mnt->mnt_expire);
3949 0 : put_mountpoint(root_mp);
3950 : unlock_mount_hash();
3951 0 : chroot_fs_refs(&root, &new);
3952 0 : error = 0;
3953 : out4:
3954 0 : unlock_mount(old_mp);
3955 0 : if (!error)
3956 0 : mntput_no_expire(ex_parent);
3957 : out3:
3958 0 : path_put(&root);
3959 : out2:
3960 0 : path_put(&old);
3961 : out1:
3962 0 : path_put(&new);
3963 : out0:
3964 0 : return error;
3965 : }
3966 :
3967 : static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968 : {
3969 0 : unsigned int flags = mnt->mnt.mnt_flags;
3970 :
3971 : /* flags to clear */
3972 0 : flags &= ~kattr->attr_clr;
3973 : /* flags to raise */
3974 0 : flags |= kattr->attr_set;
3975 :
3976 : return flags;
3977 : }
3978 :
3979 0 : static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980 : {
3981 0 : struct vfsmount *m = &mnt->mnt;
3982 0 : struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983 :
3984 0 : if (!kattr->mnt_userns)
3985 : return 0;
3986 :
3987 : /*
3988 : * Creating an idmapped mount with the filesystem wide idmapping
3989 : * doesn't make sense so block that. We don't allow mushy semantics.
3990 : */
3991 0 : if (kattr->mnt_userns == fs_userns)
3992 : return -EINVAL;
3993 :
3994 : /*
3995 : * Once a mount has been idmapped we don't allow it to change its
3996 : * mapping. It makes things simpler and callers can just create
3997 : * another bind-mount they can idmap if they want to.
3998 : */
3999 0 : if (is_idmapped_mnt(m))
4000 : return -EPERM;
4001 :
4002 : /* The underlying filesystem doesn't support idmapped mounts yet. */
4003 0 : if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004 : return -EINVAL;
4005 :
4006 : /* We're not controlling the superblock. */
4007 0 : if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4008 : return -EPERM;
4009 :
4010 : /* Mount has already been visible in the filesystem hierarchy. */
4011 0 : if (!is_anon_ns(mnt->mnt_ns))
4012 : return -EINVAL;
4013 :
4014 : return 0;
4015 : }
4016 :
4017 : /**
4018 : * mnt_allow_writers() - check whether the attribute change allows writers
4019 : * @kattr: the new mount attributes
4020 : * @mnt: the mount to which @kattr will be applied
4021 : *
4022 : * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023 : *
4024 : * Return: true if writers need to be held, false if not
4025 : */
4026 : static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027 : const struct mount *mnt)
4028 : {
4029 0 : return !(kattr->attr_set & MNT_READONLY) ||
4030 0 : (mnt->mnt.mnt_flags & MNT_READONLY);
4031 : }
4032 :
4033 0 : static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4034 : {
4035 : struct mount *m;
4036 : int err;
4037 :
4038 0 : for (m = mnt; m; m = next_mnt(m, mnt)) {
4039 0 : if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4040 : err = -EPERM;
4041 : break;
4042 : }
4043 :
4044 0 : err = can_idmap_mount(kattr, m);
4045 0 : if (err)
4046 : break;
4047 :
4048 0 : if (!mnt_allow_writers(kattr, m)) {
4049 0 : err = mnt_hold_writers(m);
4050 0 : if (err)
4051 : break;
4052 : }
4053 :
4054 0 : if (!kattr->recurse)
4055 : return 0;
4056 : }
4057 :
4058 0 : if (err) {
4059 : struct mount *p;
4060 :
4061 : /*
4062 : * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4063 : * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4064 : * mounts and needs to take care to include the first mount.
4065 : */
4066 0 : for (p = mnt; p; p = next_mnt(p, mnt)) {
4067 : /* If we had to hold writers unblock them. */
4068 0 : if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4069 0 : mnt_unhold_writers(p);
4070 :
4071 : /*
4072 : * We're done once the first mount we changed got
4073 : * MNT_WRITE_HOLD unset.
4074 : */
4075 0 : if (p == m)
4076 : break;
4077 : }
4078 : }
4079 : return err;
4080 : }
4081 :
4082 : static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4083 : {
4084 : struct user_namespace *mnt_userns, *old_mnt_userns;
4085 :
4086 0 : if (!kattr->mnt_userns)
4087 : return;
4088 :
4089 : /*
4090 : * We're the only ones able to change the mount's idmapping. So
4091 : * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4092 : */
4093 0 : old_mnt_userns = mnt->mnt.mnt_userns;
4094 :
4095 0 : mnt_userns = get_user_ns(kattr->mnt_userns);
4096 : /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4097 0 : smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4098 :
4099 : /*
4100 : * If this is an idmapped filesystem drop the reference we've taken
4101 : * in vfs_create_mount() before.
4102 : */
4103 0 : if (!initial_idmapping(old_mnt_userns))
4104 : put_user_ns(old_mnt_userns);
4105 : }
4106 :
4107 0 : static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4108 : {
4109 : struct mount *m;
4110 :
4111 0 : for (m = mnt; m; m = next_mnt(m, mnt)) {
4112 : unsigned int flags;
4113 :
4114 0 : do_idmap_mount(kattr, m);
4115 0 : flags = recalc_flags(kattr, m);
4116 0 : WRITE_ONCE(m->mnt.mnt_flags, flags);
4117 :
4118 : /* If we had to hold writers unblock them. */
4119 0 : if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4120 0 : mnt_unhold_writers(m);
4121 :
4122 0 : if (kattr->propagation)
4123 0 : change_mnt_propagation(m, kattr->propagation);
4124 0 : if (!kattr->recurse)
4125 : break;
4126 : }
4127 0 : touch_mnt_namespace(mnt->mnt_ns);
4128 0 : }
4129 :
4130 0 : static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4131 : {
4132 0 : struct mount *mnt = real_mount(path->mnt);
4133 0 : int err = 0;
4134 :
4135 0 : if (path->dentry != mnt->mnt.mnt_root)
4136 : return -EINVAL;
4137 :
4138 0 : if (kattr->propagation) {
4139 : /*
4140 : * Only take namespace_lock() if we're actually changing
4141 : * propagation.
4142 : */
4143 : namespace_lock();
4144 0 : if (kattr->propagation == MS_SHARED) {
4145 0 : err = invent_group_ids(mnt, kattr->recurse);
4146 0 : if (err) {
4147 0 : namespace_unlock();
4148 0 : return err;
4149 : }
4150 : }
4151 : }
4152 :
4153 0 : err = -EINVAL;
4154 : lock_mount_hash();
4155 :
4156 : /* Ensure that this isn't anything purely vfs internal. */
4157 0 : if (!is_mounted(&mnt->mnt))
4158 : goto out;
4159 :
4160 : /*
4161 : * If this is an attached mount make sure it's located in the callers
4162 : * mount namespace. If it's not don't let the caller interact with it.
4163 : * If this is a detached mount make sure it has an anonymous mount
4164 : * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4165 : */
4166 0 : if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4167 : goto out;
4168 :
4169 : /*
4170 : * First, we get the mount tree in a shape where we can change mount
4171 : * properties without failure. If we succeeded to do so we commit all
4172 : * changes and if we failed we clean up.
4173 : */
4174 0 : err = mount_setattr_prepare(kattr, mnt);
4175 0 : if (!err)
4176 0 : mount_setattr_commit(kattr, mnt);
4177 :
4178 : out:
4179 : unlock_mount_hash();
4180 :
4181 0 : if (kattr->propagation) {
4182 0 : namespace_unlock();
4183 0 : if (err)
4184 0 : cleanup_group_ids(mnt, NULL);
4185 : }
4186 :
4187 : return err;
4188 : }
4189 :
4190 0 : static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4191 : struct mount_kattr *kattr, unsigned int flags)
4192 : {
4193 0 : int err = 0;
4194 : struct ns_common *ns;
4195 : struct user_namespace *mnt_userns;
4196 : struct file *file;
4197 :
4198 0 : if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4199 : return 0;
4200 :
4201 : /*
4202 : * We currently do not support clearing an idmapped mount. If this ever
4203 : * is a use-case we can revisit this but for now let's keep it simple
4204 : * and not allow it.
4205 : */
4206 0 : if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4207 : return -EINVAL;
4208 :
4209 0 : if (attr->userns_fd > INT_MAX)
4210 : return -EINVAL;
4211 :
4212 0 : file = fget(attr->userns_fd);
4213 0 : if (!file)
4214 : return -EBADF;
4215 :
4216 0 : if (!proc_ns_file(file)) {
4217 : err = -EINVAL;
4218 : goto out_fput;
4219 : }
4220 :
4221 0 : ns = get_proc_ns(file_inode(file));
4222 0 : if (ns->ops->type != CLONE_NEWUSER) {
4223 : err = -EINVAL;
4224 : goto out_fput;
4225 : }
4226 :
4227 : /*
4228 : * The initial idmapping cannot be used to create an idmapped
4229 : * mount. We use the initial idmapping as an indicator of a mount
4230 : * that is not idmapped. It can simply be passed into helpers that
4231 : * are aware of idmapped mounts as a convenient shortcut. A user
4232 : * can just create a dedicated identity mapping to achieve the same
4233 : * result.
4234 : */
4235 0 : mnt_userns = container_of(ns, struct user_namespace, ns);
4236 0 : if (initial_idmapping(mnt_userns)) {
4237 : err = -EPERM;
4238 : goto out_fput;
4239 : }
4240 0 : kattr->mnt_userns = get_user_ns(mnt_userns);
4241 :
4242 : out_fput:
4243 0 : fput(file);
4244 : return err;
4245 : }
4246 :
4247 0 : static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4248 : struct mount_kattr *kattr, unsigned int flags)
4249 : {
4250 0 : unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4251 :
4252 0 : if (flags & AT_NO_AUTOMOUNT)
4253 0 : lookup_flags &= ~LOOKUP_AUTOMOUNT;
4254 0 : if (flags & AT_SYMLINK_NOFOLLOW)
4255 0 : lookup_flags &= ~LOOKUP_FOLLOW;
4256 0 : if (flags & AT_EMPTY_PATH)
4257 0 : lookup_flags |= LOOKUP_EMPTY;
4258 :
4259 0 : *kattr = (struct mount_kattr) {
4260 : .lookup_flags = lookup_flags,
4261 0 : .recurse = !!(flags & AT_RECURSIVE),
4262 : };
4263 :
4264 0 : if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4265 : return -EINVAL;
4266 0 : if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4267 : return -EINVAL;
4268 0 : kattr->propagation = attr->propagation;
4269 :
4270 0 : if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4271 : return -EINVAL;
4272 :
4273 0 : kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4274 0 : kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4275 :
4276 : /*
4277 : * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4278 : * users wanting to transition to a different atime setting cannot
4279 : * simply specify the atime setting in @attr_set, but must also
4280 : * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4281 : * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4282 : * @attr_clr and that @attr_set can't have any atime bits set if
4283 : * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4284 : */
4285 0 : if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4286 0 : if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4287 : return -EINVAL;
4288 :
4289 : /*
4290 : * Clear all previous time settings as they are mutually
4291 : * exclusive.
4292 : */
4293 0 : kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4294 0 : switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4295 : case MOUNT_ATTR_RELATIME:
4296 0 : kattr->attr_set |= MNT_RELATIME;
4297 : break;
4298 : case MOUNT_ATTR_NOATIME:
4299 0 : kattr->attr_set |= MNT_NOATIME;
4300 : break;
4301 : case MOUNT_ATTR_STRICTATIME:
4302 : break;
4303 : default:
4304 : return -EINVAL;
4305 : }
4306 : } else {
4307 0 : if (attr->attr_set & MOUNT_ATTR__ATIME)
4308 : return -EINVAL;
4309 : }
4310 :
4311 0 : return build_mount_idmapped(attr, usize, kattr, flags);
4312 : }
4313 :
4314 : static void finish_mount_kattr(struct mount_kattr *kattr)
4315 : {
4316 0 : put_user_ns(kattr->mnt_userns);
4317 : kattr->mnt_userns = NULL;
4318 : }
4319 :
4320 0 : SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4321 : unsigned int, flags, struct mount_attr __user *, uattr,
4322 : size_t, usize)
4323 : {
4324 : int err;
4325 : struct path target;
4326 : struct mount_attr attr;
4327 : struct mount_kattr kattr;
4328 :
4329 : BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4330 :
4331 0 : if (flags & ~(AT_EMPTY_PATH |
4332 : AT_RECURSIVE |
4333 : AT_SYMLINK_NOFOLLOW |
4334 : AT_NO_AUTOMOUNT))
4335 : return -EINVAL;
4336 :
4337 0 : if (unlikely(usize > PAGE_SIZE))
4338 : return -E2BIG;
4339 0 : if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4340 : return -EINVAL;
4341 :
4342 0 : if (!may_mount())
4343 : return -EPERM;
4344 :
4345 0 : err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4346 0 : if (err)
4347 0 : return err;
4348 :
4349 : /* Don't bother walking through the mounts if this is a nop. */
4350 0 : if (attr.attr_set == 0 &&
4351 0 : attr.attr_clr == 0 &&
4352 0 : attr.propagation == 0)
4353 : return 0;
4354 :
4355 0 : err = build_mount_kattr(&attr, usize, &kattr, flags);
4356 0 : if (err)
4357 0 : return err;
4358 :
4359 0 : err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4360 0 : if (!err) {
4361 0 : err = do_mount_setattr(&target, &kattr);
4362 0 : path_put(&target);
4363 : }
4364 0 : finish_mount_kattr(&kattr);
4365 0 : return err;
4366 : }
4367 :
4368 1 : static void __init init_mount_tree(void)
4369 : {
4370 : struct vfsmount *mnt;
4371 : struct mount *m;
4372 : struct mnt_namespace *ns;
4373 : struct path root;
4374 :
4375 1 : mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4376 1 : if (IS_ERR(mnt))
4377 0 : panic("Can't create rootfs");
4378 :
4379 1 : ns = alloc_mnt_ns(&init_user_ns, false);
4380 1 : if (IS_ERR(ns))
4381 0 : panic("Can't allocate initial namespace");
4382 1 : m = real_mount(mnt);
4383 1 : m->mnt_ns = ns;
4384 1 : ns->root = m;
4385 1 : ns->mounts = 1;
4386 2 : list_add(&m->mnt_list, &ns->list);
4387 1 : init_task.nsproxy->mnt_ns = ns;
4388 1 : get_mnt_ns(ns);
4389 :
4390 1 : root.mnt = mnt;
4391 1 : root.dentry = mnt->mnt_root;
4392 1 : mnt->mnt_flags |= MNT_LOCKED;
4393 :
4394 1 : set_fs_pwd(current->fs, &root);
4395 1 : set_fs_root(current->fs, &root);
4396 1 : }
4397 :
4398 1 : void __init mnt_init(void)
4399 : {
4400 : int err;
4401 :
4402 1 : mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4403 : 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4404 :
4405 1 : mount_hashtable = alloc_large_system_hash("Mount-cache",
4406 : sizeof(struct hlist_head),
4407 : mhash_entries, 19,
4408 : HASH_ZERO,
4409 : &m_hash_shift, &m_hash_mask, 0, 0);
4410 1 : mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4411 : sizeof(struct hlist_head),
4412 : mphash_entries, 19,
4413 : HASH_ZERO,
4414 : &mp_hash_shift, &mp_hash_mask, 0, 0);
4415 :
4416 1 : if (!mount_hashtable || !mountpoint_hashtable)
4417 0 : panic("Failed to allocate mount hash table\n");
4418 :
4419 1 : kernfs_init();
4420 :
4421 1 : err = sysfs_init();
4422 1 : if (err)
4423 0 : printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4424 : __func__, err);
4425 1 : fs_kobj = kobject_create_and_add("fs", NULL);
4426 1 : if (!fs_kobj)
4427 0 : printk(KERN_WARNING "%s: kobj create error\n", __func__);
4428 1 : shmem_init();
4429 1 : init_rootfs();
4430 1 : init_mount_tree();
4431 1 : }
4432 :
4433 0 : void put_mnt_ns(struct mnt_namespace *ns)
4434 : {
4435 0 : if (!refcount_dec_and_test(&ns->ns.count))
4436 : return;
4437 0 : drop_collected_mounts(&ns->root->mnt);
4438 0 : free_mnt_ns(ns);
4439 : }
4440 :
4441 8 : struct vfsmount *kern_mount(struct file_system_type *type)
4442 : {
4443 : struct vfsmount *mnt;
4444 8 : mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4445 8 : if (!IS_ERR(mnt)) {
4446 : /*
4447 : * it is a longterm mount, don't release mnt until
4448 : * we unmount before file sys is unregistered
4449 : */
4450 8 : real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4451 : }
4452 8 : return mnt;
4453 : }
4454 : EXPORT_SYMBOL_GPL(kern_mount);
4455 :
4456 0 : void kern_unmount(struct vfsmount *mnt)
4457 : {
4458 : /* release long term mount so mount point can be released */
4459 0 : if (!IS_ERR_OR_NULL(mnt)) {
4460 0 : real_mount(mnt)->mnt_ns = NULL;
4461 0 : synchronize_rcu(); /* yecchhh... */
4462 : mntput(mnt);
4463 : }
4464 0 : }
4465 : EXPORT_SYMBOL(kern_unmount);
4466 :
4467 0 : void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4468 : {
4469 : unsigned int i;
4470 :
4471 0 : for (i = 0; i < num; i++)
4472 0 : if (mnt[i])
4473 0 : real_mount(mnt[i])->mnt_ns = NULL;
4474 : synchronize_rcu_expedited();
4475 0 : for (i = 0; i < num; i++)
4476 0 : mntput(mnt[i]);
4477 0 : }
4478 : EXPORT_SYMBOL(kern_unmount_array);
4479 :
4480 0 : bool our_mnt(struct vfsmount *mnt)
4481 : {
4482 0 : return check_mnt(real_mount(mnt));
4483 : }
4484 :
4485 0 : bool current_chrooted(void)
4486 : {
4487 : /* Does the current process have a non-standard root */
4488 : struct path ns_root;
4489 : struct path fs_root;
4490 : bool chrooted;
4491 :
4492 : /* Find the namespace root */
4493 0 : ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4494 0 : ns_root.dentry = ns_root.mnt->mnt_root;
4495 0 : path_get(&ns_root);
4496 0 : while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4497 : ;
4498 :
4499 0 : get_fs_root(current->fs, &fs_root);
4500 :
4501 0 : chrooted = !path_equal(&fs_root, &ns_root);
4502 :
4503 0 : path_put(&fs_root);
4504 0 : path_put(&ns_root);
4505 :
4506 0 : return chrooted;
4507 : }
4508 :
4509 0 : static bool mnt_already_visible(struct mnt_namespace *ns,
4510 : const struct super_block *sb,
4511 : int *new_mnt_flags)
4512 : {
4513 0 : int new_flags = *new_mnt_flags;
4514 : struct mount *mnt;
4515 0 : bool visible = false;
4516 :
4517 0 : down_read(&namespace_sem);
4518 0 : lock_ns_list(ns);
4519 0 : list_for_each_entry(mnt, &ns->list, mnt_list) {
4520 : struct mount *child;
4521 : int mnt_flags;
4522 :
4523 0 : if (mnt_is_cursor(mnt))
4524 0 : continue;
4525 :
4526 0 : if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4527 0 : continue;
4528 :
4529 : /* This mount is not fully visible if it's root directory
4530 : * is not the root directory of the filesystem.
4531 : */
4532 0 : if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4533 0 : continue;
4534 :
4535 : /* A local view of the mount flags */
4536 0 : mnt_flags = mnt->mnt.mnt_flags;
4537 :
4538 : /* Don't miss readonly hidden in the superblock flags */
4539 0 : if (sb_rdonly(mnt->mnt.mnt_sb))
4540 0 : mnt_flags |= MNT_LOCK_READONLY;
4541 :
4542 : /* Verify the mount flags are equal to or more permissive
4543 : * than the proposed new mount.
4544 : */
4545 0 : if ((mnt_flags & MNT_LOCK_READONLY) &&
4546 0 : !(new_flags & MNT_READONLY))
4547 0 : continue;
4548 0 : if ((mnt_flags & MNT_LOCK_ATIME) &&
4549 0 : ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4550 0 : continue;
4551 :
4552 : /* This mount is not fully visible if there are any
4553 : * locked child mounts that cover anything except for
4554 : * empty directories.
4555 : */
4556 0 : list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4557 0 : struct inode *inode = child->mnt_mountpoint->d_inode;
4558 : /* Only worry about locked mounts */
4559 0 : if (!(child->mnt.mnt_flags & MNT_LOCKED))
4560 0 : continue;
4561 : /* Is the directory permanetly empty? */
4562 0 : if (!is_empty_dir_inode(inode))
4563 : goto next;
4564 : }
4565 : /* Preserve the locked attributes */
4566 0 : *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4567 : MNT_LOCK_ATIME);
4568 0 : visible = true;
4569 : goto found;
4570 : next: ;
4571 : }
4572 : found:
4573 0 : unlock_ns_list(ns);
4574 0 : up_read(&namespace_sem);
4575 0 : return visible;
4576 : }
4577 :
4578 0 : static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4579 : {
4580 0 : const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4581 0 : struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4582 : unsigned long s_iflags;
4583 :
4584 0 : if (ns->user_ns == &init_user_ns)
4585 : return false;
4586 :
4587 : /* Can this filesystem be too revealing? */
4588 0 : s_iflags = sb->s_iflags;
4589 0 : if (!(s_iflags & SB_I_USERNS_VISIBLE))
4590 : return false;
4591 :
4592 0 : if ((s_iflags & required_iflags) != required_iflags) {
4593 0 : WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4594 : required_iflags);
4595 : return true;
4596 : }
4597 :
4598 0 : return !mnt_already_visible(ns, sb, new_mnt_flags);
4599 : }
4600 :
4601 0 : bool mnt_may_suid(struct vfsmount *mnt)
4602 : {
4603 : /*
4604 : * Foreign mounts (accessed via fchdir or through /proc
4605 : * symlinks) are always treated as if they are nosuid. This
4606 : * prevents namespaces from trusting potentially unsafe
4607 : * suid/sgid bits, file caps, or security labels that originate
4608 : * in other namespaces.
4609 : */
4610 0 : return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4611 0 : current_in_userns(mnt->mnt_sb->s_user_ns);
4612 : }
4613 :
4614 0 : static struct ns_common *mntns_get(struct task_struct *task)
4615 : {
4616 0 : struct ns_common *ns = NULL;
4617 : struct nsproxy *nsproxy;
4618 :
4619 0 : task_lock(task);
4620 0 : nsproxy = task->nsproxy;
4621 0 : if (nsproxy) {
4622 0 : ns = &nsproxy->mnt_ns->ns;
4623 0 : get_mnt_ns(to_mnt_ns(ns));
4624 : }
4625 0 : task_unlock(task);
4626 :
4627 0 : return ns;
4628 : }
4629 :
4630 0 : static void mntns_put(struct ns_common *ns)
4631 : {
4632 0 : put_mnt_ns(to_mnt_ns(ns));
4633 0 : }
4634 :
4635 0 : static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4636 : {
4637 0 : struct nsproxy *nsproxy = nsset->nsproxy;
4638 0 : struct fs_struct *fs = nsset->fs;
4639 0 : struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4640 0 : struct user_namespace *user_ns = nsset->cred->user_ns;
4641 : struct path root;
4642 : int err;
4643 :
4644 0 : if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4645 0 : !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4646 0 : !ns_capable(user_ns, CAP_SYS_ADMIN))
4647 : return -EPERM;
4648 :
4649 0 : if (is_anon_ns(mnt_ns))
4650 : return -EINVAL;
4651 :
4652 0 : if (fs->users != 1)
4653 : return -EINVAL;
4654 :
4655 0 : get_mnt_ns(mnt_ns);
4656 0 : old_mnt_ns = nsproxy->mnt_ns;
4657 0 : nsproxy->mnt_ns = mnt_ns;
4658 :
4659 : /* Find the root */
4660 0 : err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4661 : "/", LOOKUP_DOWN, &root);
4662 0 : if (err) {
4663 : /* revert to old namespace */
4664 0 : nsproxy->mnt_ns = old_mnt_ns;
4665 0 : put_mnt_ns(mnt_ns);
4666 0 : return err;
4667 : }
4668 :
4669 0 : put_mnt_ns(old_mnt_ns);
4670 :
4671 : /* Update the pwd and root */
4672 0 : set_fs_pwd(fs, &root);
4673 0 : set_fs_root(fs, &root);
4674 :
4675 0 : path_put(&root);
4676 0 : return 0;
4677 : }
4678 :
4679 0 : static struct user_namespace *mntns_owner(struct ns_common *ns)
4680 : {
4681 0 : return to_mnt_ns(ns)->user_ns;
4682 : }
4683 :
4684 : const struct proc_ns_operations mntns_operations = {
4685 : .name = "mnt",
4686 : .type = CLONE_NEWNS,
4687 : .get = mntns_get,
4688 : .put = mntns_put,
4689 : .install = mntns_install,
4690 : .owner = mntns_owner,
4691 : };
4692 :
4693 : #ifdef CONFIG_SYSCTL
4694 : static struct ctl_table fs_namespace_sysctls[] = {
4695 : {
4696 : .procname = "mount-max",
4697 : .data = &sysctl_mount_max,
4698 : .maxlen = sizeof(unsigned int),
4699 : .mode = 0644,
4700 : .proc_handler = proc_dointvec_minmax,
4701 : .extra1 = SYSCTL_ONE,
4702 : },
4703 : { }
4704 : };
4705 :
4706 1 : static int __init init_fs_namespace_sysctls(void)
4707 : {
4708 1 : register_sysctl_init("fs", fs_namespace_sysctls);
4709 1 : return 0;
4710 : }
4711 : fs_initcall(init_fs_namespace_sysctls);
4712 :
4713 : #endif /* CONFIG_SYSCTL */
|