LCOV - code coverage report
Current view: top level - fs - super.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 97 719 13.5 %
Date: 2022-12-09 01:23:36 Functions: 8 61 13.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  linux/fs/super.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  *
       7             :  *  super.c contains code to handle: - mount structures
       8             :  *                                   - super-block tables
       9             :  *                                   - filesystem drivers list
      10             :  *                                   - mount system call
      11             :  *                                   - umount system call
      12             :  *                                   - ustat system call
      13             :  *
      14             :  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
      15             :  *
      16             :  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
      17             :  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
      18             :  *  Added options to /proc/mounts:
      19             :  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
      20             :  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
      21             :  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
      22             :  */
      23             : 
      24             : #include <linux/export.h>
      25             : #include <linux/slab.h>
      26             : #include <linux/blkdev.h>
      27             : #include <linux/mount.h>
      28             : #include <linux/security.h>
      29             : #include <linux/writeback.h>              /* for the emergency remount stuff */
      30             : #include <linux/idr.h>
      31             : #include <linux/mutex.h>
      32             : #include <linux/backing-dev.h>
      33             : #include <linux/rculist_bl.h>
      34             : #include <linux/fscrypt.h>
      35             : #include <linux/fsnotify.h>
      36             : #include <linux/lockdep.h>
      37             : #include <linux/user_namespace.h>
      38             : #include <linux/fs_context.h>
      39             : #include <uapi/linux/mount.h>
      40             : #include "internal.h"
      41             : 
      42             : static int thaw_super_locked(struct super_block *sb);
      43             : 
      44             : static LIST_HEAD(super_blocks);
      45             : static DEFINE_SPINLOCK(sb_lock);
      46             : 
      47             : static char *sb_writers_name[SB_FREEZE_LEVELS] = {
      48             :         "sb_writers",
      49             :         "sb_pagefaults",
      50             :         "sb_internal",
      51             : };
      52             : 
      53             : /*
      54             :  * One thing we have to be careful of with a per-sb shrinker is that we don't
      55             :  * drop the last active reference to the superblock from within the shrinker.
      56             :  * If that happens we could trigger unregistering the shrinker from within the
      57             :  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
      58             :  * take a passive reference to the superblock to avoid this from occurring.
      59             :  */
      60           0 : static unsigned long super_cache_scan(struct shrinker *shrink,
      61             :                                       struct shrink_control *sc)
      62             : {
      63             :         struct super_block *sb;
      64           0 :         long    fs_objects = 0;
      65             :         long    total_objects;
      66           0 :         long    freed = 0;
      67             :         long    dentries;
      68             :         long    inodes;
      69             : 
      70           0 :         sb = container_of(shrink, struct super_block, s_shrink);
      71             : 
      72             :         /*
      73             :          * Deadlock avoidance.  We may hold various FS locks, and we don't want
      74             :          * to recurse into the FS that called us in clear_inode() and friends..
      75             :          */
      76           0 :         if (!(sc->gfp_mask & __GFP_FS))
      77             :                 return SHRINK_STOP;
      78             : 
      79           0 :         if (!trylock_super(sb))
      80             :                 return SHRINK_STOP;
      81             : 
      82           0 :         if (sb->s_op->nr_cached_objects)
      83           0 :                 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
      84             : 
      85           0 :         inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
      86           0 :         dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
      87           0 :         total_objects = dentries + inodes + fs_objects + 1;
      88           0 :         if (!total_objects)
      89           0 :                 total_objects = 1;
      90             : 
      91             :         /* proportion the scan between the caches */
      92           0 :         dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
      93           0 :         inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
      94           0 :         fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
      95             : 
      96             :         /*
      97             :          * prune the dcache first as the icache is pinned by it, then
      98             :          * prune the icache, followed by the filesystem specific caches
      99             :          *
     100             :          * Ensure that we always scan at least one object - memcg kmem
     101             :          * accounting uses this to fully empty the caches.
     102             :          */
     103           0 :         sc->nr_to_scan = dentries + 1;
     104           0 :         freed = prune_dcache_sb(sb, sc);
     105           0 :         sc->nr_to_scan = inodes + 1;
     106           0 :         freed += prune_icache_sb(sb, sc);
     107             : 
     108           0 :         if (fs_objects) {
     109           0 :                 sc->nr_to_scan = fs_objects + 1;
     110           0 :                 freed += sb->s_op->free_cached_objects(sb, sc);
     111             :         }
     112             : 
     113           0 :         up_read(&sb->s_umount);
     114           0 :         return freed;
     115             : }
     116             : 
     117           0 : static unsigned long super_cache_count(struct shrinker *shrink,
     118             :                                        struct shrink_control *sc)
     119             : {
     120             :         struct super_block *sb;
     121           0 :         long    total_objects = 0;
     122             : 
     123           0 :         sb = container_of(shrink, struct super_block, s_shrink);
     124             : 
     125             :         /*
     126             :          * We don't call trylock_super() here as it is a scalability bottleneck,
     127             :          * so we're exposed to partial setup state. The shrinker rwsem does not
     128             :          * protect filesystem operations backing list_lru_shrink_count() or
     129             :          * s_op->nr_cached_objects(). Counts can change between
     130             :          * super_cache_count and super_cache_scan, so we really don't need locks
     131             :          * here.
     132             :          *
     133             :          * However, if we are currently mounting the superblock, the underlying
     134             :          * filesystem might be in a state of partial construction and hence it
     135             :          * is dangerous to access it.  trylock_super() uses a SB_BORN check to
     136             :          * avoid this situation, so do the same here. The memory barrier is
     137             :          * matched with the one in mount_fs() as we don't hold locks here.
     138             :          */
     139           0 :         if (!(sb->s_flags & SB_BORN))
     140             :                 return 0;
     141           0 :         smp_rmb();
     142             : 
     143           0 :         if (sb->s_op && sb->s_op->nr_cached_objects)
     144           0 :                 total_objects = sb->s_op->nr_cached_objects(sb, sc);
     145             : 
     146           0 :         total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
     147           0 :         total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
     148             : 
     149           0 :         if (!total_objects)
     150             :                 return SHRINK_EMPTY;
     151             : 
     152           0 :         total_objects = vfs_pressure_ratio(total_objects);
     153           0 :         return total_objects;
     154             : }
     155             : 
     156           0 : static void destroy_super_work(struct work_struct *work)
     157             : {
     158           0 :         struct super_block *s = container_of(work, struct super_block,
     159             :                                                         destroy_work);
     160             :         int i;
     161             : 
     162           0 :         for (i = 0; i < SB_FREEZE_LEVELS; i++)
     163           0 :                 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
     164           0 :         kfree(s);
     165           0 : }
     166             : 
     167           0 : static void destroy_super_rcu(struct rcu_head *head)
     168             : {
     169           0 :         struct super_block *s = container_of(head, struct super_block, rcu);
     170           0 :         INIT_WORK(&s->destroy_work, destroy_super_work);
     171           0 :         schedule_work(&s->destroy_work);
     172           0 : }
     173             : 
     174             : /* Free a superblock that has never been seen by anyone */
     175           0 : static void destroy_unused_super(struct super_block *s)
     176             : {
     177           0 :         if (!s)
     178             :                 return;
     179           0 :         up_write(&s->s_umount);
     180           0 :         list_lru_destroy(&s->s_dentry_lru);
     181           0 :         list_lru_destroy(&s->s_inode_lru);
     182           0 :         security_sb_free(s);
     183           0 :         put_user_ns(s->s_user_ns);
     184           0 :         kfree(s->s_subtype);
     185           0 :         free_prealloced_shrinker(&s->s_shrink);
     186             :         /* no delays needed */
     187           0 :         destroy_super_work(&s->destroy_work);
     188             : }
     189             : 
     190             : /**
     191             :  *      alloc_super     -       create new superblock
     192             :  *      @type:  filesystem type superblock should belong to
     193             :  *      @flags: the mount flags
     194             :  *      @user_ns: User namespace for the super_block
     195             :  *
     196             :  *      Allocates and initializes a new &struct super_block.  alloc_super()
     197             :  *      returns a pointer new superblock or %NULL if allocation had failed.
     198             :  */
     199          10 : static struct super_block *alloc_super(struct file_system_type *type, int flags,
     200             :                                        struct user_namespace *user_ns)
     201             : {
     202          10 :         struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
     203             :         static const struct super_operations default_op;
     204             :         int i;
     205             : 
     206          10 :         if (!s)
     207             :                 return NULL;
     208             : 
     209          20 :         INIT_LIST_HEAD(&s->s_mounts);
     210          10 :         s->s_user_ns = get_user_ns(user_ns);
     211          10 :         init_rwsem(&s->s_umount);
     212             :         lockdep_set_class(&s->s_umount, &type->s_umount_key);
     213             :         /*
     214             :          * sget() can have s_umount recursion.
     215             :          *
     216             :          * When it cannot find a suitable sb, it allocates a new
     217             :          * one (this one), and tries again to find a suitable old
     218             :          * one.
     219             :          *
     220             :          * In case that succeeds, it will acquire the s_umount
     221             :          * lock of the old one. Since these are clearly distrinct
     222             :          * locks, and this object isn't exposed yet, there's no
     223             :          * risk of deadlocks.
     224             :          *
     225             :          * Annotate this by putting this lock in a different
     226             :          * subclass.
     227             :          */
     228          10 :         down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
     229             : 
     230          10 :         if (security_sb_alloc(s))
     231             :                 goto fail;
     232             : 
     233          40 :         for (i = 0; i < SB_FREEZE_LEVELS; i++) {
     234          60 :                 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
     235          30 :                                         sb_writers_name[i],
     236             :                                         &type->s_writers_key[i]))
     237             :                         goto fail;
     238             :         }
     239          10 :         init_waitqueue_head(&s->s_writers.wait_unfrozen);
     240          10 :         s->s_bdi = &noop_backing_dev_info;
     241          10 :         s->s_flags = flags;
     242          10 :         if (s->s_user_ns != &init_user_ns)
     243           0 :                 s->s_iflags |= SB_I_NODEV;
     244          20 :         INIT_HLIST_NODE(&s->s_instances);
     245          10 :         INIT_HLIST_BL_HEAD(&s->s_roots);
     246          10 :         mutex_init(&s->s_sync_lock);
     247          20 :         INIT_LIST_HEAD(&s->s_inodes);
     248          10 :         spin_lock_init(&s->s_inode_list_lock);
     249          20 :         INIT_LIST_HEAD(&s->s_inodes_wb);
     250          10 :         spin_lock_init(&s->s_inode_wblist_lock);
     251             : 
     252          10 :         s->s_count = 1;
     253          20 :         atomic_set(&s->s_active, 1);
     254          10 :         mutex_init(&s->s_vfs_rename_mutex);
     255             :         lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
     256          10 :         init_rwsem(&s->s_dquot.dqio_sem);
     257          10 :         s->s_maxbytes = MAX_NON_LFS;
     258          10 :         s->s_op = &default_op;
     259          10 :         s->s_time_gran = 1000000000;
     260          10 :         s->s_time_min = TIME64_MIN;
     261          10 :         s->s_time_max = TIME64_MAX;
     262             : 
     263          10 :         s->s_shrink.seeks = DEFAULT_SEEKS;
     264          10 :         s->s_shrink.scan_objects = super_cache_scan;
     265          10 :         s->s_shrink.count_objects = super_cache_count;
     266          10 :         s->s_shrink.batch = 1024;
     267          10 :         s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
     268          10 :         if (prealloc_shrinker(&s->s_shrink))
     269             :                 goto fail;
     270          10 :         if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
     271             :                 goto fail;
     272          10 :         if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
     273             :                 goto fail;
     274             :         return s;
     275             : 
     276             : fail:
     277           0 :         destroy_unused_super(s);
     278             :         return NULL;
     279             : }
     280             : 
     281             : /* Superblock refcounting  */
     282             : 
     283             : /*
     284             :  * Drop a superblock's refcount.  The caller must hold sb_lock.
     285             :  */
     286           0 : static void __put_super(struct super_block *s)
     287             : {
     288           0 :         if (!--s->s_count) {
     289           0 :                 list_del_init(&s->s_list);
     290           0 :                 WARN_ON(s->s_dentry_lru.node);
     291           0 :                 WARN_ON(s->s_inode_lru.node);
     292           0 :                 WARN_ON(!list_empty(&s->s_mounts));
     293           0 :                 security_sb_free(s);
     294           0 :                 fscrypt_sb_free(s);
     295           0 :                 put_user_ns(s->s_user_ns);
     296           0 :                 kfree(s->s_subtype);
     297           0 :                 call_rcu(&s->rcu, destroy_super_rcu);
     298             :         }
     299           0 : }
     300             : 
     301             : /**
     302             :  *      put_super       -       drop a temporary reference to superblock
     303             :  *      @sb: superblock in question
     304             :  *
     305             :  *      Drops a temporary reference, frees superblock if there's no
     306             :  *      references left.
     307             :  */
     308           0 : void put_super(struct super_block *sb)
     309             : {
     310           0 :         spin_lock(&sb_lock);
     311           0 :         __put_super(sb);
     312           0 :         spin_unlock(&sb_lock);
     313           0 : }
     314             : 
     315             : 
     316             : /**
     317             :  *      deactivate_locked_super -       drop an active reference to superblock
     318             :  *      @s: superblock to deactivate
     319             :  *
     320             :  *      Drops an active reference to superblock, converting it into a temporary
     321             :  *      one if there is no other active references left.  In that case we
     322             :  *      tell fs driver to shut it down and drop the temporary reference we
     323             :  *      had just acquired.
     324             :  *
     325             :  *      Caller holds exclusive lock on superblock; that lock is released.
     326             :  */
     327           0 : void deactivate_locked_super(struct super_block *s)
     328             : {
     329           0 :         struct file_system_type *fs = s->s_type;
     330           0 :         if (atomic_dec_and_test(&s->s_active)) {
     331           0 :                 unregister_shrinker(&s->s_shrink);
     332           0 :                 fs->kill_sb(s);
     333             : 
     334             :                 /*
     335             :                  * Since list_lru_destroy() may sleep, we cannot call it from
     336             :                  * put_super(), where we hold the sb_lock. Therefore we destroy
     337             :                  * the lru lists right now.
     338             :                  */
     339           0 :                 list_lru_destroy(&s->s_dentry_lru);
     340           0 :                 list_lru_destroy(&s->s_inode_lru);
     341             : 
     342           0 :                 put_filesystem(fs);
     343             :                 put_super(s);
     344             :         } else {
     345           0 :                 up_write(&s->s_umount);
     346             :         }
     347           0 : }
     348             : 
     349             : EXPORT_SYMBOL(deactivate_locked_super);
     350             : 
     351             : /**
     352             :  *      deactivate_super        -       drop an active reference to superblock
     353             :  *      @s: superblock to deactivate
     354             :  *
     355             :  *      Variant of deactivate_locked_super(), except that superblock is *not*
     356             :  *      locked by caller.  If we are going to drop the final active reference,
     357             :  *      lock will be acquired prior to that.
     358             :  */
     359          10 : void deactivate_super(struct super_block *s)
     360             : {
     361          20 :         if (!atomic_add_unless(&s->s_active, -1, 1)) {
     362           0 :                 down_write(&s->s_umount);
     363           0 :                 deactivate_locked_super(s);
     364             :         }
     365          10 : }
     366             : 
     367             : EXPORT_SYMBOL(deactivate_super);
     368             : 
     369             : /**
     370             :  *      grab_super - acquire an active reference
     371             :  *      @s: reference we are trying to make active
     372             :  *
     373             :  *      Tries to acquire an active reference.  grab_super() is used when we
     374             :  *      had just found a superblock in super_blocks or fs_type->fs_supers
     375             :  *      and want to turn it into a full-blown active reference.  grab_super()
     376             :  *      is called with sb_lock held and drops it.  Returns 1 in case of
     377             :  *      success, 0 if we had failed (superblock contents was already dead or
     378             :  *      dying when grab_super() had been called).  Note that this is only
     379             :  *      called for superblocks not in rundown mode (== ones still on ->fs_supers
     380             :  *      of their type), so increment of ->s_count is OK here.
     381             :  */
     382           0 : static int grab_super(struct super_block *s) __releases(sb_lock)
     383             : {
     384           0 :         s->s_count++;
     385           0 :         spin_unlock(&sb_lock);
     386           0 :         down_write(&s->s_umount);
     387           0 :         if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
     388           0 :                 put_super(s);
     389           0 :                 return 1;
     390             :         }
     391           0 :         up_write(&s->s_umount);
     392           0 :         put_super(s);
     393           0 :         return 0;
     394             : }
     395             : 
     396             : /*
     397             :  *      trylock_super - try to grab ->s_umount shared
     398             :  *      @sb: reference we are trying to grab
     399             :  *
     400             :  *      Try to prevent fs shutdown.  This is used in places where we
     401             :  *      cannot take an active reference but we need to ensure that the
     402             :  *      filesystem is not shut down while we are working on it. It returns
     403             :  *      false if we cannot acquire s_umount or if we lose the race and
     404             :  *      filesystem already got into shutdown, and returns true with the s_umount
     405             :  *      lock held in read mode in case of success. On successful return,
     406             :  *      the caller must drop the s_umount lock when done.
     407             :  *
     408             :  *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
     409             :  *      The reason why it's safe is that we are OK with doing trylock instead
     410             :  *      of down_read().  There's a couple of places that are OK with that, but
     411             :  *      it's very much not a general-purpose interface.
     412             :  */
     413           0 : bool trylock_super(struct super_block *sb)
     414             : {
     415           0 :         if (down_read_trylock(&sb->s_umount)) {
     416           0 :                 if (!hlist_unhashed(&sb->s_instances) &&
     417           0 :                     sb->s_root && (sb->s_flags & SB_BORN))
     418             :                         return true;
     419           0 :                 up_read(&sb->s_umount);
     420             :         }
     421             : 
     422             :         return false;
     423             : }
     424             : 
     425             : /**
     426             :  *      generic_shutdown_super  -       common helper for ->kill_sb()
     427             :  *      @sb: superblock to kill
     428             :  *
     429             :  *      generic_shutdown_super() does all fs-independent work on superblock
     430             :  *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
     431             :  *      that need destruction out of superblock, call generic_shutdown_super()
     432             :  *      and release aforementioned objects.  Note: dentries and inodes _are_
     433             :  *      taken care of and do not need specific handling.
     434             :  *
     435             :  *      Upon calling this function, the filesystem may no longer alter or
     436             :  *      rearrange the set of dentries belonging to this super_block, nor may it
     437             :  *      change the attachments of dentries to inodes.
     438             :  */
     439           0 : void generic_shutdown_super(struct super_block *sb)
     440             : {
     441           0 :         const struct super_operations *sop = sb->s_op;
     442             : 
     443           0 :         if (sb->s_root) {
     444           0 :                 shrink_dcache_for_umount(sb);
     445           0 :                 sync_filesystem(sb);
     446           0 :                 sb->s_flags &= ~SB_ACTIVE;
     447             : 
     448             :                 cgroup_writeback_umount();
     449             : 
     450             :                 /* evict all inodes with zero refcount */
     451           0 :                 evict_inodes(sb);
     452             :                 /* only nonzero refcount inodes can have marks */
     453           0 :                 fsnotify_sb_delete(sb);
     454           0 :                 security_sb_delete(sb);
     455             : 
     456           0 :                 if (sb->s_dio_done_wq) {
     457           0 :                         destroy_workqueue(sb->s_dio_done_wq);
     458           0 :                         sb->s_dio_done_wq = NULL;
     459             :                 }
     460             : 
     461           0 :                 if (sop->put_super)
     462           0 :                         sop->put_super(sb);
     463             : 
     464           0 :                 if (!list_empty(&sb->s_inodes)) {
     465           0 :                         printk("VFS: Busy inodes after unmount of %s. "
     466             :                            "Self-destruct in 5 seconds.  Have a nice day...\n",
     467             :                            sb->s_id);
     468             :                 }
     469             :         }
     470           0 :         spin_lock(&sb_lock);
     471             :         /* should be initialized for __put_super_and_need_restart() */
     472           0 :         hlist_del_init(&sb->s_instances);
     473           0 :         spin_unlock(&sb_lock);
     474           0 :         up_write(&sb->s_umount);
     475           0 :         if (sb->s_bdi != &noop_backing_dev_info) {
     476           0 :                 if (sb->s_iflags & SB_I_PERSB_BDI)
     477           0 :                         bdi_unregister(sb->s_bdi);
     478           0 :                 bdi_put(sb->s_bdi);
     479           0 :                 sb->s_bdi = &noop_backing_dev_info;
     480             :         }
     481           0 : }
     482             : 
     483             : EXPORT_SYMBOL(generic_shutdown_super);
     484             : 
     485           0 : bool mount_capable(struct fs_context *fc)
     486             : {
     487           0 :         if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
     488           0 :                 return capable(CAP_SYS_ADMIN);
     489             :         else
     490           0 :                 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
     491             : }
     492             : 
     493             : /**
     494             :  * sget_fc - Find or create a superblock
     495             :  * @fc: Filesystem context.
     496             :  * @test: Comparison callback
     497             :  * @set: Setup callback
     498             :  *
     499             :  * Find or create a superblock using the parameters stored in the filesystem
     500             :  * context and the two callback functions.
     501             :  *
     502             :  * If an extant superblock is matched, then that will be returned with an
     503             :  * elevated reference count that the caller must transfer or discard.
     504             :  *
     505             :  * If no match is made, a new superblock will be allocated and basic
     506             :  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
     507             :  * the set() callback will be invoked), the superblock will be published and it
     508             :  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
     509             :  * as yet unset.
     510             :  */
     511          10 : struct super_block *sget_fc(struct fs_context *fc,
     512             :                             int (*test)(struct super_block *, struct fs_context *),
     513             :                             int (*set)(struct super_block *, struct fs_context *))
     514             : {
     515          10 :         struct super_block *s = NULL;
     516             :         struct super_block *old;
     517          10 :         struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
     518             :         int err;
     519             : 
     520             : retry:
     521          20 :         spin_lock(&sb_lock);
     522          20 :         if (test) {
     523           0 :                 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
     524           0 :                         if (test(old, fc))
     525             :                                 goto share_extant_sb;
     526             :                 }
     527             :         }
     528          20 :         if (!s) {
     529          10 :                 spin_unlock(&sb_lock);
     530          10 :                 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
     531          10 :                 if (!s)
     532             :                         return ERR_PTR(-ENOMEM);
     533             :                 goto retry;
     534             :         }
     535             : 
     536          10 :         s->s_fs_info = fc->s_fs_info;
     537          10 :         err = set(s, fc);
     538          10 :         if (err) {
     539           0 :                 s->s_fs_info = NULL;
     540           0 :                 spin_unlock(&sb_lock);
     541           0 :                 destroy_unused_super(s);
     542           0 :                 return ERR_PTR(err);
     543             :         }
     544          10 :         fc->s_fs_info = NULL;
     545          10 :         s->s_type = fc->fs_type;
     546          10 :         s->s_iflags |= fc->s_iflags;
     547          10 :         strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
     548          20 :         list_add_tail(&s->s_list, &super_blocks);
     549          20 :         hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
     550          10 :         spin_unlock(&sb_lock);
     551          10 :         get_filesystem(s->s_type);
     552          10 :         register_shrinker_prepared(&s->s_shrink);
     553          10 :         return s;
     554             : 
     555             : share_extant_sb:
     556           0 :         if (user_ns != old->s_user_ns) {
     557           0 :                 spin_unlock(&sb_lock);
     558           0 :                 destroy_unused_super(s);
     559           0 :                 return ERR_PTR(-EBUSY);
     560             :         }
     561           0 :         if (!grab_super(old))
     562             :                 goto retry;
     563           0 :         destroy_unused_super(s);
     564           0 :         return old;
     565             : }
     566             : EXPORT_SYMBOL(sget_fc);
     567             : 
     568             : /**
     569             :  *      sget    -       find or create a superblock
     570             :  *      @type:    filesystem type superblock should belong to
     571             :  *      @test:    comparison callback
     572             :  *      @set:     setup callback
     573             :  *      @flags:   mount flags
     574             :  *      @data:    argument to each of them
     575             :  */
     576           0 : struct super_block *sget(struct file_system_type *type,
     577             :                         int (*test)(struct super_block *,void *),
     578             :                         int (*set)(struct super_block *,void *),
     579             :                         int flags,
     580             :                         void *data)
     581             : {
     582           0 :         struct user_namespace *user_ns = current_user_ns();
     583           0 :         struct super_block *s = NULL;
     584             :         struct super_block *old;
     585             :         int err;
     586             : 
     587             :         /* We don't yet pass the user namespace of the parent
     588             :          * mount through to here so always use &init_user_ns
     589             :          * until that changes.
     590             :          */
     591             :         if (flags & SB_SUBMOUNT)
     592             :                 user_ns = &init_user_ns;
     593             : 
     594             : retry:
     595           0 :         spin_lock(&sb_lock);
     596           0 :         if (test) {
     597           0 :                 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
     598           0 :                         if (!test(old, data))
     599           0 :                                 continue;
     600           0 :                         if (user_ns != old->s_user_ns) {
     601           0 :                                 spin_unlock(&sb_lock);
     602           0 :                                 destroy_unused_super(s);
     603           0 :                                 return ERR_PTR(-EBUSY);
     604             :                         }
     605           0 :                         if (!grab_super(old))
     606             :                                 goto retry;
     607           0 :                         destroy_unused_super(s);
     608           0 :                         return old;
     609             :                 }
     610             :         }
     611           0 :         if (!s) {
     612           0 :                 spin_unlock(&sb_lock);
     613           0 :                 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
     614           0 :                 if (!s)
     615             :                         return ERR_PTR(-ENOMEM);
     616             :                 goto retry;
     617             :         }
     618             : 
     619           0 :         err = set(s, data);
     620           0 :         if (err) {
     621           0 :                 spin_unlock(&sb_lock);
     622           0 :                 destroy_unused_super(s);
     623           0 :                 return ERR_PTR(err);
     624             :         }
     625           0 :         s->s_type = type;
     626           0 :         strlcpy(s->s_id, type->name, sizeof(s->s_id));
     627           0 :         list_add_tail(&s->s_list, &super_blocks);
     628           0 :         hlist_add_head(&s->s_instances, &type->fs_supers);
     629           0 :         spin_unlock(&sb_lock);
     630           0 :         get_filesystem(type);
     631           0 :         register_shrinker_prepared(&s->s_shrink);
     632           0 :         return s;
     633             : }
     634             : EXPORT_SYMBOL(sget);
     635             : 
     636           0 : void drop_super(struct super_block *sb)
     637             : {
     638           0 :         up_read(&sb->s_umount);
     639           0 :         put_super(sb);
     640           0 : }
     641             : 
     642             : EXPORT_SYMBOL(drop_super);
     643             : 
     644           0 : void drop_super_exclusive(struct super_block *sb)
     645             : {
     646           0 :         up_write(&sb->s_umount);
     647           0 :         put_super(sb);
     648           0 : }
     649             : EXPORT_SYMBOL(drop_super_exclusive);
     650             : 
     651           0 : static void __iterate_supers(void (*f)(struct super_block *))
     652             : {
     653           0 :         struct super_block *sb, *p = NULL;
     654             : 
     655           0 :         spin_lock(&sb_lock);
     656           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     657           0 :                 if (hlist_unhashed(&sb->s_instances))
     658           0 :                         continue;
     659           0 :                 sb->s_count++;
     660           0 :                 spin_unlock(&sb_lock);
     661             : 
     662           0 :                 f(sb);
     663             : 
     664           0 :                 spin_lock(&sb_lock);
     665           0 :                 if (p)
     666           0 :                         __put_super(p);
     667             :                 p = sb;
     668             :         }
     669           0 :         if (p)
     670           0 :                 __put_super(p);
     671           0 :         spin_unlock(&sb_lock);
     672           0 : }
     673             : /**
     674             :  *      iterate_supers - call function for all active superblocks
     675             :  *      @f: function to call
     676             :  *      @arg: argument to pass to it
     677             :  *
     678             :  *      Scans the superblock list and calls given function, passing it
     679             :  *      locked superblock and given argument.
     680             :  */
     681           0 : void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
     682             : {
     683           0 :         struct super_block *sb, *p = NULL;
     684             : 
     685           0 :         spin_lock(&sb_lock);
     686           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     687           0 :                 if (hlist_unhashed(&sb->s_instances))
     688           0 :                         continue;
     689           0 :                 sb->s_count++;
     690           0 :                 spin_unlock(&sb_lock);
     691             : 
     692           0 :                 down_read(&sb->s_umount);
     693           0 :                 if (sb->s_root && (sb->s_flags & SB_BORN))
     694           0 :                         f(sb, arg);
     695           0 :                 up_read(&sb->s_umount);
     696             : 
     697           0 :                 spin_lock(&sb_lock);
     698           0 :                 if (p)
     699           0 :                         __put_super(p);
     700             :                 p = sb;
     701             :         }
     702           0 :         if (p)
     703           0 :                 __put_super(p);
     704           0 :         spin_unlock(&sb_lock);
     705           0 : }
     706             : 
     707             : /**
     708             :  *      iterate_supers_type - call function for superblocks of given type
     709             :  *      @type: fs type
     710             :  *      @f: function to call
     711             :  *      @arg: argument to pass to it
     712             :  *
     713             :  *      Scans the superblock list and calls given function, passing it
     714             :  *      locked superblock and given argument.
     715             :  */
     716           0 : void iterate_supers_type(struct file_system_type *type,
     717             :         void (*f)(struct super_block *, void *), void *arg)
     718             : {
     719           0 :         struct super_block *sb, *p = NULL;
     720             : 
     721           0 :         spin_lock(&sb_lock);
     722           0 :         hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
     723           0 :                 sb->s_count++;
     724           0 :                 spin_unlock(&sb_lock);
     725             : 
     726           0 :                 down_read(&sb->s_umount);
     727           0 :                 if (sb->s_root && (sb->s_flags & SB_BORN))
     728           0 :                         f(sb, arg);
     729           0 :                 up_read(&sb->s_umount);
     730             : 
     731           0 :                 spin_lock(&sb_lock);
     732           0 :                 if (p)
     733           0 :                         __put_super(p);
     734           0 :                 p = sb;
     735             :         }
     736           0 :         if (p)
     737           0 :                 __put_super(p);
     738           0 :         spin_unlock(&sb_lock);
     739           0 : }
     740             : 
     741             : EXPORT_SYMBOL(iterate_supers_type);
     742             : 
     743             : /**
     744             :  * get_super - get the superblock of a device
     745             :  * @bdev: device to get the superblock for
     746             :  *
     747             :  * Scans the superblock list and finds the superblock of the file system
     748             :  * mounted on the device given. %NULL is returned if no match is found.
     749             :  */
     750           0 : struct super_block *get_super(struct block_device *bdev)
     751             : {
     752             :         struct super_block *sb;
     753             : 
     754           0 :         if (!bdev)
     755             :                 return NULL;
     756             : 
     757             :         spin_lock(&sb_lock);
     758             : rescan:
     759           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     760           0 :                 if (hlist_unhashed(&sb->s_instances))
     761           0 :                         continue;
     762           0 :                 if (sb->s_bdev == bdev) {
     763           0 :                         sb->s_count++;
     764           0 :                         spin_unlock(&sb_lock);
     765           0 :                         down_read(&sb->s_umount);
     766             :                         /* still alive? */
     767           0 :                         if (sb->s_root && (sb->s_flags & SB_BORN))
     768             :                                 return sb;
     769           0 :                         up_read(&sb->s_umount);
     770             :                         /* nope, got unmounted */
     771           0 :                         spin_lock(&sb_lock);
     772           0 :                         __put_super(sb);
     773           0 :                         goto rescan;
     774             :                 }
     775             :         }
     776           0 :         spin_unlock(&sb_lock);
     777           0 :         return NULL;
     778             : }
     779             : 
     780             : /**
     781             :  * get_active_super - get an active reference to the superblock of a device
     782             :  * @bdev: device to get the superblock for
     783             :  *
     784             :  * Scans the superblock list and finds the superblock of the file system
     785             :  * mounted on the device given.  Returns the superblock with an active
     786             :  * reference or %NULL if none was found.
     787             :  */
     788           0 : struct super_block *get_active_super(struct block_device *bdev)
     789             : {
     790             :         struct super_block *sb;
     791             : 
     792           0 :         if (!bdev)
     793             :                 return NULL;
     794             : 
     795             : restart:
     796           0 :         spin_lock(&sb_lock);
     797           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     798           0 :                 if (hlist_unhashed(&sb->s_instances))
     799           0 :                         continue;
     800           0 :                 if (sb->s_bdev == bdev) {
     801           0 :                         if (!grab_super(sb))
     802             :                                 goto restart;
     803           0 :                         up_write(&sb->s_umount);
     804           0 :                         return sb;
     805             :                 }
     806             :         }
     807           0 :         spin_unlock(&sb_lock);
     808           0 :         return NULL;
     809             : }
     810             : 
     811           0 : struct super_block *user_get_super(dev_t dev, bool excl)
     812             : {
     813             :         struct super_block *sb;
     814             : 
     815             :         spin_lock(&sb_lock);
     816             : rescan:
     817           0 :         list_for_each_entry(sb, &super_blocks, s_list) {
     818           0 :                 if (hlist_unhashed(&sb->s_instances))
     819           0 :                         continue;
     820           0 :                 if (sb->s_dev ==  dev) {
     821           0 :                         sb->s_count++;
     822           0 :                         spin_unlock(&sb_lock);
     823           0 :                         if (excl)
     824           0 :                                 down_write(&sb->s_umount);
     825             :                         else
     826           0 :                                 down_read(&sb->s_umount);
     827             :                         /* still alive? */
     828           0 :                         if (sb->s_root && (sb->s_flags & SB_BORN))
     829             :                                 return sb;
     830           0 :                         if (excl)
     831           0 :                                 up_write(&sb->s_umount);
     832             :                         else
     833           0 :                                 up_read(&sb->s_umount);
     834             :                         /* nope, got unmounted */
     835           0 :                         spin_lock(&sb_lock);
     836           0 :                         __put_super(sb);
     837           0 :                         goto rescan;
     838             :                 }
     839             :         }
     840           0 :         spin_unlock(&sb_lock);
     841           0 :         return NULL;
     842             : }
     843             : 
     844             : /**
     845             :  * reconfigure_super - asks filesystem to change superblock parameters
     846             :  * @fc: The superblock and configuration
     847             :  *
     848             :  * Alters the configuration parameters of a live superblock.
     849             :  */
     850           0 : int reconfigure_super(struct fs_context *fc)
     851             : {
     852           0 :         struct super_block *sb = fc->root->d_sb;
     853             :         int retval;
     854           0 :         bool remount_ro = false;
     855           0 :         bool force = fc->sb_flags & SB_FORCE;
     856             : 
     857           0 :         if (fc->sb_flags_mask & ~MS_RMT_MASK)
     858             :                 return -EINVAL;
     859           0 :         if (sb->s_writers.frozen != SB_UNFROZEN)
     860             :                 return -EBUSY;
     861             : 
     862           0 :         retval = security_sb_remount(sb, fc->security);
     863             :         if (retval)
     864             :                 return retval;
     865             : 
     866           0 :         if (fc->sb_flags_mask & SB_RDONLY) {
     867             : #ifdef CONFIG_BLOCK
     868           0 :                 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
     869           0 :                     bdev_read_only(sb->s_bdev))
     870             :                         return -EACCES;
     871             : #endif
     872             : 
     873           0 :                 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
     874             :         }
     875             : 
     876           0 :         if (remount_ro) {
     877           0 :                 if (!hlist_empty(&sb->s_pins)) {
     878           0 :                         up_write(&sb->s_umount);
     879           0 :                         group_pin_kill(&sb->s_pins);
     880           0 :                         down_write(&sb->s_umount);
     881           0 :                         if (!sb->s_root)
     882             :                                 return 0;
     883           0 :                         if (sb->s_writers.frozen != SB_UNFROZEN)
     884             :                                 return -EBUSY;
     885           0 :                         remount_ro = !sb_rdonly(sb);
     886             :                 }
     887             :         }
     888           0 :         shrink_dcache_sb(sb);
     889             : 
     890             :         /* If we are reconfiguring to RDONLY and current sb is read/write,
     891             :          * make sure there are no files open for writing.
     892             :          */
     893           0 :         if (remount_ro) {
     894           0 :                 if (force) {
     895           0 :                         sb->s_readonly_remount = 1;
     896           0 :                         smp_wmb();
     897             :                 } else {
     898           0 :                         retval = sb_prepare_remount_readonly(sb);
     899           0 :                         if (retval)
     900             :                                 return retval;
     901             :                 }
     902             :         }
     903             : 
     904           0 :         if (fc->ops->reconfigure) {
     905           0 :                 retval = fc->ops->reconfigure(fc);
     906           0 :                 if (retval) {
     907           0 :                         if (!force)
     908             :                                 goto cancel_readonly;
     909             :                         /* If forced remount, go ahead despite any errors */
     910           0 :                         WARN(1, "forced remount of a %s fs returned %i\n",
     911             :                              sb->s_type->name, retval);
     912             :                 }
     913             :         }
     914             : 
     915           0 :         WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
     916             :                                  (fc->sb_flags & fc->sb_flags_mask)));
     917             :         /* Needs to be ordered wrt mnt_is_readonly() */
     918           0 :         smp_wmb();
     919           0 :         sb->s_readonly_remount = 0;
     920             : 
     921             :         /*
     922             :          * Some filesystems modify their metadata via some other path than the
     923             :          * bdev buffer cache (eg. use a private mapping, or directories in
     924             :          * pagecache, etc). Also file data modifications go via their own
     925             :          * mappings. So If we try to mount readonly then copy the filesystem
     926             :          * from bdev, we could get stale data, so invalidate it to give a best
     927             :          * effort at coherency.
     928             :          */
     929           0 :         if (remount_ro && sb->s_bdev)
     930           0 :                 invalidate_bdev(sb->s_bdev);
     931             :         return 0;
     932             : 
     933             : cancel_readonly:
     934           0 :         sb->s_readonly_remount = 0;
     935           0 :         return retval;
     936             : }
     937             : 
     938           0 : static void do_emergency_remount_callback(struct super_block *sb)
     939             : {
     940           0 :         down_write(&sb->s_umount);
     941           0 :         if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
     942           0 :             !sb_rdonly(sb)) {
     943             :                 struct fs_context *fc;
     944             : 
     945           0 :                 fc = fs_context_for_reconfigure(sb->s_root,
     946             :                                         SB_RDONLY | SB_FORCE, SB_RDONLY);
     947           0 :                 if (!IS_ERR(fc)) {
     948           0 :                         if (parse_monolithic_mount_data(fc, NULL) == 0)
     949           0 :                                 (void)reconfigure_super(fc);
     950           0 :                         put_fs_context(fc);
     951             :                 }
     952             :         }
     953           0 :         up_write(&sb->s_umount);
     954           0 : }
     955             : 
     956           0 : static void do_emergency_remount(struct work_struct *work)
     957             : {
     958           0 :         __iterate_supers(do_emergency_remount_callback);
     959           0 :         kfree(work);
     960           0 :         printk("Emergency Remount complete\n");
     961           0 : }
     962             : 
     963           0 : void emergency_remount(void)
     964             : {
     965             :         struct work_struct *work;
     966             : 
     967           0 :         work = kmalloc(sizeof(*work), GFP_ATOMIC);
     968           0 :         if (work) {
     969           0 :                 INIT_WORK(work, do_emergency_remount);
     970             :                 schedule_work(work);
     971             :         }
     972           0 : }
     973             : 
     974           0 : static void do_thaw_all_callback(struct super_block *sb)
     975             : {
     976           0 :         down_write(&sb->s_umount);
     977           0 :         if (sb->s_root && sb->s_flags & SB_BORN) {
     978           0 :                 emergency_thaw_bdev(sb);
     979           0 :                 thaw_super_locked(sb);
     980             :         } else {
     981           0 :                 up_write(&sb->s_umount);
     982             :         }
     983           0 : }
     984             : 
     985           0 : static void do_thaw_all(struct work_struct *work)
     986             : {
     987           0 :         __iterate_supers(do_thaw_all_callback);
     988           0 :         kfree(work);
     989           0 :         printk(KERN_WARNING "Emergency Thaw complete\n");
     990           0 : }
     991             : 
     992             : /**
     993             :  * emergency_thaw_all -- forcibly thaw every frozen filesystem
     994             :  *
     995             :  * Used for emergency unfreeze of all filesystems via SysRq
     996             :  */
     997           0 : void emergency_thaw_all(void)
     998             : {
     999             :         struct work_struct *work;
    1000             : 
    1001           0 :         work = kmalloc(sizeof(*work), GFP_ATOMIC);
    1002           0 :         if (work) {
    1003           0 :                 INIT_WORK(work, do_thaw_all);
    1004             :                 schedule_work(work);
    1005             :         }
    1006           0 : }
    1007             : 
    1008             : static DEFINE_IDA(unnamed_dev_ida);
    1009             : 
    1010             : /**
    1011             :  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
    1012             :  * @p: Pointer to a dev_t.
    1013             :  *
    1014             :  * Filesystems which don't use real block devices can call this function
    1015             :  * to allocate a virtual block device.
    1016             :  *
    1017             :  * Context: Any context.  Frequently called while holding sb_lock.
    1018             :  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
    1019             :  * or -ENOMEM if memory allocation failed.
    1020             :  */
    1021          10 : int get_anon_bdev(dev_t *p)
    1022             : {
    1023             :         int dev;
    1024             : 
    1025             :         /*
    1026             :          * Many userspace utilities consider an FSID of 0 invalid.
    1027             :          * Always return at least 1 from get_anon_bdev.
    1028             :          */
    1029          10 :         dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
    1030             :                         GFP_ATOMIC);
    1031          10 :         if (dev == -ENOSPC)
    1032           0 :                 dev = -EMFILE;
    1033          10 :         if (dev < 0)
    1034             :                 return dev;
    1035             : 
    1036          10 :         *p = MKDEV(0, dev);
    1037          10 :         return 0;
    1038             : }
    1039             : EXPORT_SYMBOL(get_anon_bdev);
    1040             : 
    1041           0 : void free_anon_bdev(dev_t dev)
    1042             : {
    1043           0 :         ida_free(&unnamed_dev_ida, MINOR(dev));
    1044           0 : }
    1045             : EXPORT_SYMBOL(free_anon_bdev);
    1046             : 
    1047           0 : int set_anon_super(struct super_block *s, void *data)
    1048             : {
    1049          10 :         return get_anon_bdev(&s->s_dev);
    1050             : }
    1051             : EXPORT_SYMBOL(set_anon_super);
    1052             : 
    1053           0 : void kill_anon_super(struct super_block *sb)
    1054             : {
    1055           0 :         dev_t dev = sb->s_dev;
    1056           0 :         generic_shutdown_super(sb);
    1057           0 :         free_anon_bdev(dev);
    1058           0 : }
    1059             : EXPORT_SYMBOL(kill_anon_super);
    1060             : 
    1061           0 : void kill_litter_super(struct super_block *sb)
    1062             : {
    1063           0 :         if (sb->s_root)
    1064           0 :                 d_genocide(sb->s_root);
    1065           0 :         kill_anon_super(sb);
    1066           0 : }
    1067             : EXPORT_SYMBOL(kill_litter_super);
    1068             : 
    1069          10 : int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
    1070             : {
    1071          10 :         return set_anon_super(sb, NULL);
    1072             : }
    1073             : EXPORT_SYMBOL(set_anon_super_fc);
    1074             : 
    1075           0 : static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
    1076             : {
    1077           0 :         return sb->s_fs_info == fc->s_fs_info;
    1078             : }
    1079             : 
    1080           0 : static int test_single_super(struct super_block *s, struct fs_context *fc)
    1081             : {
    1082           0 :         return 1;
    1083             : }
    1084             : 
    1085             : /**
    1086             :  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
    1087             :  * @fc: The filesystem context holding the parameters
    1088             :  * @keying: How to distinguish superblocks
    1089             :  * @fill_super: Helper to initialise a new superblock
    1090             :  *
    1091             :  * Search for a superblock and create a new one if not found.  The search
    1092             :  * criterion is controlled by @keying.  If the search fails, a new superblock
    1093             :  * is created and @fill_super() is called to initialise it.
    1094             :  *
    1095             :  * @keying can take one of a number of values:
    1096             :  *
    1097             :  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
    1098             :  *     system.  This is typically used for special system filesystems.
    1099             :  *
    1100             :  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
    1101             :  *     distinct keys (where the key is in s_fs_info).  Searching for the same
    1102             :  *     key again will turn up the superblock for that key.
    1103             :  *
    1104             :  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
    1105             :  *     unkeyed.  Each call will get a new superblock.
    1106             :  *
    1107             :  * A permissions check is made by sget_fc() unless we're getting a superblock
    1108             :  * for a kernel-internal mount or a submount.
    1109             :  */
    1110          10 : int vfs_get_super(struct fs_context *fc,
    1111             :                   enum vfs_get_super_keying keying,
    1112             :                   int (*fill_super)(struct super_block *sb,
    1113             :                                     struct fs_context *fc))
    1114             : {
    1115             :         int (*test)(struct super_block *, struct fs_context *);
    1116             :         struct super_block *sb;
    1117             :         int err;
    1118             : 
    1119          10 :         switch (keying) {
    1120             :         case vfs_get_single_super:
    1121             :         case vfs_get_single_reconf_super:
    1122             :                 test = test_single_super;
    1123             :                 break;
    1124             :         case vfs_get_keyed_super:
    1125           0 :                 test = test_keyed_super;
    1126           0 :                 break;
    1127             :         case vfs_get_independent_super:
    1128          10 :                 test = NULL;
    1129          10 :                 break;
    1130             :         default:
    1131           0 :                 BUG();
    1132             :         }
    1133             : 
    1134          10 :         sb = sget_fc(fc, test, set_anon_super_fc);
    1135          10 :         if (IS_ERR(sb))
    1136           0 :                 return PTR_ERR(sb);
    1137             : 
    1138          10 :         if (!sb->s_root) {
    1139          10 :                 err = fill_super(sb, fc);
    1140          10 :                 if (err)
    1141             :                         goto error;
    1142             : 
    1143          10 :                 sb->s_flags |= SB_ACTIVE;
    1144          20 :                 fc->root = dget(sb->s_root);
    1145             :         } else {
    1146           0 :                 fc->root = dget(sb->s_root);
    1147           0 :                 if (keying == vfs_get_single_reconf_super) {
    1148           0 :                         err = reconfigure_super(fc);
    1149           0 :                         if (err < 0) {
    1150           0 :                                 dput(fc->root);
    1151           0 :                                 fc->root = NULL;
    1152           0 :                                 goto error;
    1153             :                         }
    1154             :                 }
    1155             :         }
    1156             : 
    1157             :         return 0;
    1158             : 
    1159             : error:
    1160           0 :         deactivate_locked_super(sb);
    1161           0 :         return err;
    1162             : }
    1163             : EXPORT_SYMBOL(vfs_get_super);
    1164             : 
    1165          10 : int get_tree_nodev(struct fs_context *fc,
    1166             :                   int (*fill_super)(struct super_block *sb,
    1167             :                                     struct fs_context *fc))
    1168             : {
    1169          10 :         return vfs_get_super(fc, vfs_get_independent_super, fill_super);
    1170             : }
    1171             : EXPORT_SYMBOL(get_tree_nodev);
    1172             : 
    1173           0 : int get_tree_single(struct fs_context *fc,
    1174             :                   int (*fill_super)(struct super_block *sb,
    1175             :                                     struct fs_context *fc))
    1176             : {
    1177           0 :         return vfs_get_super(fc, vfs_get_single_super, fill_super);
    1178             : }
    1179             : EXPORT_SYMBOL(get_tree_single);
    1180             : 
    1181           0 : int get_tree_single_reconf(struct fs_context *fc,
    1182             :                   int (*fill_super)(struct super_block *sb,
    1183             :                                     struct fs_context *fc))
    1184             : {
    1185           0 :         return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
    1186             : }
    1187             : EXPORT_SYMBOL(get_tree_single_reconf);
    1188             : 
    1189           0 : int get_tree_keyed(struct fs_context *fc,
    1190             :                   int (*fill_super)(struct super_block *sb,
    1191             :                                     struct fs_context *fc),
    1192             :                 void *key)
    1193             : {
    1194           0 :         fc->s_fs_info = key;
    1195           0 :         return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
    1196             : }
    1197             : EXPORT_SYMBOL(get_tree_keyed);
    1198             : 
    1199             : #ifdef CONFIG_BLOCK
    1200             : 
    1201           0 : static int set_bdev_super(struct super_block *s, void *data)
    1202             : {
    1203           0 :         s->s_bdev = data;
    1204           0 :         s->s_dev = s->s_bdev->bd_dev;
    1205           0 :         s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
    1206             : 
    1207           0 :         if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
    1208           0 :                 s->s_iflags |= SB_I_STABLE_WRITES;
    1209           0 :         return 0;
    1210             : }
    1211             : 
    1212           0 : static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
    1213             : {
    1214           0 :         return set_bdev_super(s, fc->sget_key);
    1215             : }
    1216             : 
    1217           0 : static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
    1218             : {
    1219           0 :         return s->s_bdev == fc->sget_key;
    1220             : }
    1221             : 
    1222             : /**
    1223             :  * get_tree_bdev - Get a superblock based on a single block device
    1224             :  * @fc: The filesystem context holding the parameters
    1225             :  * @fill_super: Helper to initialise a new superblock
    1226             :  */
    1227           0 : int get_tree_bdev(struct fs_context *fc,
    1228             :                 int (*fill_super)(struct super_block *,
    1229             :                                   struct fs_context *))
    1230             : {
    1231             :         struct block_device *bdev;
    1232             :         struct super_block *s;
    1233           0 :         fmode_t mode = FMODE_READ | FMODE_EXCL;
    1234           0 :         int error = 0;
    1235             : 
    1236           0 :         if (!(fc->sb_flags & SB_RDONLY))
    1237           0 :                 mode |= FMODE_WRITE;
    1238             : 
    1239           0 :         if (!fc->source)
    1240           0 :                 return invalf(fc, "No source specified");
    1241             : 
    1242           0 :         bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
    1243           0 :         if (IS_ERR(bdev)) {
    1244           0 :                 errorf(fc, "%s: Can't open blockdev", fc->source);
    1245           0 :                 return PTR_ERR(bdev);
    1246             :         }
    1247             : 
    1248             :         /* Once the superblock is inserted into the list by sget_fc(), s_umount
    1249             :          * will protect the lockfs code from trying to start a snapshot while
    1250             :          * we are mounting
    1251             :          */
    1252           0 :         mutex_lock(&bdev->bd_fsfreeze_mutex);
    1253           0 :         if (bdev->bd_fsfreeze_count > 0) {
    1254           0 :                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1255           0 :                 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
    1256           0 :                 blkdev_put(bdev, mode);
    1257           0 :                 return -EBUSY;
    1258             :         }
    1259             : 
    1260           0 :         fc->sb_flags |= SB_NOSEC;
    1261           0 :         fc->sget_key = bdev;
    1262           0 :         s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
    1263           0 :         mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1264           0 :         if (IS_ERR(s)) {
    1265           0 :                 blkdev_put(bdev, mode);
    1266           0 :                 return PTR_ERR(s);
    1267             :         }
    1268             : 
    1269           0 :         if (s->s_root) {
    1270             :                 /* Don't summarily change the RO/RW state. */
    1271           0 :                 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
    1272           0 :                         warnf(fc, "%pg: Can't mount, would change RO state", bdev);
    1273           0 :                         deactivate_locked_super(s);
    1274           0 :                         blkdev_put(bdev, mode);
    1275           0 :                         return -EBUSY;
    1276             :                 }
    1277             : 
    1278             :                 /*
    1279             :                  * s_umount nests inside open_mutex during
    1280             :                  * __invalidate_device().  blkdev_put() acquires
    1281             :                  * open_mutex and can't be called under s_umount.  Drop
    1282             :                  * s_umount temporarily.  This is safe as we're
    1283             :                  * holding an active reference.
    1284             :                  */
    1285           0 :                 up_write(&s->s_umount);
    1286           0 :                 blkdev_put(bdev, mode);
    1287           0 :                 down_write(&s->s_umount);
    1288             :         } else {
    1289           0 :                 s->s_mode = mode;
    1290           0 :                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
    1291           0 :                 sb_set_blocksize(s, block_size(bdev));
    1292           0 :                 error = fill_super(s, fc);
    1293           0 :                 if (error) {
    1294           0 :                         deactivate_locked_super(s);
    1295           0 :                         return error;
    1296             :                 }
    1297             : 
    1298           0 :                 s->s_flags |= SB_ACTIVE;
    1299           0 :                 bdev->bd_super = s;
    1300             :         }
    1301             : 
    1302           0 :         BUG_ON(fc->root);
    1303           0 :         fc->root = dget(s->s_root);
    1304           0 :         return 0;
    1305             : }
    1306             : EXPORT_SYMBOL(get_tree_bdev);
    1307             : 
    1308           0 : static int test_bdev_super(struct super_block *s, void *data)
    1309             : {
    1310           0 :         return (void *)s->s_bdev == data;
    1311             : }
    1312             : 
    1313           0 : struct dentry *mount_bdev(struct file_system_type *fs_type,
    1314             :         int flags, const char *dev_name, void *data,
    1315             :         int (*fill_super)(struct super_block *, void *, int))
    1316             : {
    1317             :         struct block_device *bdev;
    1318             :         struct super_block *s;
    1319           0 :         fmode_t mode = FMODE_READ | FMODE_EXCL;
    1320           0 :         int error = 0;
    1321             : 
    1322           0 :         if (!(flags & SB_RDONLY))
    1323           0 :                 mode |= FMODE_WRITE;
    1324             : 
    1325           0 :         bdev = blkdev_get_by_path(dev_name, mode, fs_type);
    1326           0 :         if (IS_ERR(bdev))
    1327             :                 return ERR_CAST(bdev);
    1328             : 
    1329             :         /*
    1330             :          * once the super is inserted into the list by sget, s_umount
    1331             :          * will protect the lockfs code from trying to start a snapshot
    1332             :          * while we are mounting
    1333             :          */
    1334           0 :         mutex_lock(&bdev->bd_fsfreeze_mutex);
    1335           0 :         if (bdev->bd_fsfreeze_count > 0) {
    1336           0 :                 mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1337           0 :                 error = -EBUSY;
    1338           0 :                 goto error_bdev;
    1339             :         }
    1340           0 :         s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
    1341             :                  bdev);
    1342           0 :         mutex_unlock(&bdev->bd_fsfreeze_mutex);
    1343           0 :         if (IS_ERR(s))
    1344             :                 goto error_s;
    1345             : 
    1346           0 :         if (s->s_root) {
    1347           0 :                 if ((flags ^ s->s_flags) & SB_RDONLY) {
    1348           0 :                         deactivate_locked_super(s);
    1349           0 :                         error = -EBUSY;
    1350           0 :                         goto error_bdev;
    1351             :                 }
    1352             : 
    1353             :                 /*
    1354             :                  * s_umount nests inside open_mutex during
    1355             :                  * __invalidate_device().  blkdev_put() acquires
    1356             :                  * open_mutex and can't be called under s_umount.  Drop
    1357             :                  * s_umount temporarily.  This is safe as we're
    1358             :                  * holding an active reference.
    1359             :                  */
    1360           0 :                 up_write(&s->s_umount);
    1361           0 :                 blkdev_put(bdev, mode);
    1362           0 :                 down_write(&s->s_umount);
    1363             :         } else {
    1364           0 :                 s->s_mode = mode;
    1365           0 :                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
    1366           0 :                 sb_set_blocksize(s, block_size(bdev));
    1367           0 :                 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1368           0 :                 if (error) {
    1369           0 :                         deactivate_locked_super(s);
    1370           0 :                         goto error;
    1371             :                 }
    1372             : 
    1373           0 :                 s->s_flags |= SB_ACTIVE;
    1374           0 :                 bdev->bd_super = s;
    1375             :         }
    1376             : 
    1377           0 :         return dget(s->s_root);
    1378             : 
    1379             : error_s:
    1380           0 :         error = PTR_ERR(s);
    1381             : error_bdev:
    1382           0 :         blkdev_put(bdev, mode);
    1383             : error:
    1384           0 :         return ERR_PTR(error);
    1385             : }
    1386             : EXPORT_SYMBOL(mount_bdev);
    1387             : 
    1388           0 : void kill_block_super(struct super_block *sb)
    1389             : {
    1390           0 :         struct block_device *bdev = sb->s_bdev;
    1391           0 :         fmode_t mode = sb->s_mode;
    1392             : 
    1393           0 :         bdev->bd_super = NULL;
    1394           0 :         generic_shutdown_super(sb);
    1395           0 :         sync_blockdev(bdev);
    1396           0 :         WARN_ON_ONCE(!(mode & FMODE_EXCL));
    1397           0 :         blkdev_put(bdev, mode | FMODE_EXCL);
    1398           0 : }
    1399             : 
    1400             : EXPORT_SYMBOL(kill_block_super);
    1401             : #endif
    1402             : 
    1403           0 : struct dentry *mount_nodev(struct file_system_type *fs_type,
    1404             :         int flags, void *data,
    1405             :         int (*fill_super)(struct super_block *, void *, int))
    1406             : {
    1407             :         int error;
    1408           0 :         struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
    1409             : 
    1410           0 :         if (IS_ERR(s))
    1411             :                 return ERR_CAST(s);
    1412             : 
    1413           0 :         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1414           0 :         if (error) {
    1415           0 :                 deactivate_locked_super(s);
    1416           0 :                 return ERR_PTR(error);
    1417             :         }
    1418           0 :         s->s_flags |= SB_ACTIVE;
    1419           0 :         return dget(s->s_root);
    1420             : }
    1421             : EXPORT_SYMBOL(mount_nodev);
    1422             : 
    1423           0 : int reconfigure_single(struct super_block *s,
    1424             :                        int flags, void *data)
    1425             : {
    1426             :         struct fs_context *fc;
    1427             :         int ret;
    1428             : 
    1429             :         /* The caller really need to be passing fc down into mount_single(),
    1430             :          * then a chunk of this can be removed.  [Bollocks -- AV]
    1431             :          * Better yet, reconfiguration shouldn't happen, but rather the second
    1432             :          * mount should be rejected if the parameters are not compatible.
    1433             :          */
    1434           0 :         fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
    1435           0 :         if (IS_ERR(fc))
    1436           0 :                 return PTR_ERR(fc);
    1437             : 
    1438           0 :         ret = parse_monolithic_mount_data(fc, data);
    1439           0 :         if (ret < 0)
    1440             :                 goto out;
    1441             : 
    1442           0 :         ret = reconfigure_super(fc);
    1443             : out:
    1444           0 :         put_fs_context(fc);
    1445           0 :         return ret;
    1446             : }
    1447             : 
    1448           0 : static int compare_single(struct super_block *s, void *p)
    1449             : {
    1450           0 :         return 1;
    1451             : }
    1452             : 
    1453           0 : struct dentry *mount_single(struct file_system_type *fs_type,
    1454             :         int flags, void *data,
    1455             :         int (*fill_super)(struct super_block *, void *, int))
    1456             : {
    1457             :         struct super_block *s;
    1458             :         int error;
    1459             : 
    1460           0 :         s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
    1461           0 :         if (IS_ERR(s))
    1462             :                 return ERR_CAST(s);
    1463           0 :         if (!s->s_root) {
    1464           0 :                 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
    1465           0 :                 if (!error)
    1466           0 :                         s->s_flags |= SB_ACTIVE;
    1467             :         } else {
    1468           0 :                 error = reconfigure_single(s, flags, data);
    1469             :         }
    1470           0 :         if (unlikely(error)) {
    1471           0 :                 deactivate_locked_super(s);
    1472           0 :                 return ERR_PTR(error);
    1473             :         }
    1474           0 :         return dget(s->s_root);
    1475             : }
    1476             : EXPORT_SYMBOL(mount_single);
    1477             : 
    1478             : /**
    1479             :  * vfs_get_tree - Get the mountable root
    1480             :  * @fc: The superblock configuration context.
    1481             :  *
    1482             :  * The filesystem is invoked to get or create a superblock which can then later
    1483             :  * be used for mounting.  The filesystem places a pointer to the root to be
    1484             :  * used for mounting in @fc->root.
    1485             :  */
    1486          10 : int vfs_get_tree(struct fs_context *fc)
    1487             : {
    1488             :         struct super_block *sb;
    1489             :         int error;
    1490             : 
    1491          10 :         if (fc->root)
    1492             :                 return -EBUSY;
    1493             : 
    1494             :         /* Get the mountable root in fc->root, with a ref on the root and a ref
    1495             :          * on the superblock.
    1496             :          */
    1497          10 :         error = fc->ops->get_tree(fc);
    1498          10 :         if (error < 0)
    1499             :                 return error;
    1500             : 
    1501          10 :         if (!fc->root) {
    1502           0 :                 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
    1503             :                        fc->fs_type->name);
    1504             :                 /* We don't know what the locking state of the superblock is -
    1505             :                  * if there is a superblock.
    1506             :                  */
    1507           0 :                 BUG();
    1508             :         }
    1509             : 
    1510          10 :         sb = fc->root->d_sb;
    1511          10 :         WARN_ON(!sb->s_bdi);
    1512             : 
    1513             :         /*
    1514             :          * Write barrier is for super_cache_count(). We place it before setting
    1515             :          * SB_BORN as the data dependency between the two functions is the
    1516             :          * superblock structure contents that we just set up, not the SB_BORN
    1517             :          * flag.
    1518             :          */
    1519          10 :         smp_wmb();
    1520          10 :         sb->s_flags |= SB_BORN;
    1521             : 
    1522          10 :         error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
    1523             :         if (unlikely(error)) {
    1524             :                 fc_drop_locked(fc);
    1525             :                 return error;
    1526             :         }
    1527             : 
    1528             :         /*
    1529             :          * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
    1530             :          * but s_maxbytes was an unsigned long long for many releases. Throw
    1531             :          * this warning for a little while to try and catch filesystems that
    1532             :          * violate this rule.
    1533             :          */
    1534          10 :         WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
    1535             :                 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
    1536             : 
    1537             :         return 0;
    1538             : }
    1539             : EXPORT_SYMBOL(vfs_get_tree);
    1540             : 
    1541             : /*
    1542             :  * Setup private BDI for given superblock. It gets automatically cleaned up
    1543             :  * in generic_shutdown_super().
    1544             :  */
    1545           0 : int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
    1546             : {
    1547             :         struct backing_dev_info *bdi;
    1548             :         int err;
    1549             :         va_list args;
    1550             : 
    1551           0 :         bdi = bdi_alloc(NUMA_NO_NODE);
    1552           0 :         if (!bdi)
    1553             :                 return -ENOMEM;
    1554             : 
    1555           0 :         va_start(args, fmt);
    1556           0 :         err = bdi_register_va(bdi, fmt, args);
    1557           0 :         va_end(args);
    1558           0 :         if (err) {
    1559           0 :                 bdi_put(bdi);
    1560           0 :                 return err;
    1561             :         }
    1562           0 :         WARN_ON(sb->s_bdi != &noop_backing_dev_info);
    1563           0 :         sb->s_bdi = bdi;
    1564           0 :         sb->s_iflags |= SB_I_PERSB_BDI;
    1565             : 
    1566           0 :         return 0;
    1567             : }
    1568             : EXPORT_SYMBOL(super_setup_bdi_name);
    1569             : 
    1570             : /*
    1571             :  * Setup private BDI for given superblock. I gets automatically cleaned up
    1572             :  * in generic_shutdown_super().
    1573             :  */
    1574           0 : int super_setup_bdi(struct super_block *sb)
    1575             : {
    1576             :         static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
    1577             : 
    1578           0 :         return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
    1579             :                                     atomic_long_inc_return(&bdi_seq));
    1580             : }
    1581             : EXPORT_SYMBOL(super_setup_bdi);
    1582             : 
    1583             : /**
    1584             :  * sb_wait_write - wait until all writers to given file system finish
    1585             :  * @sb: the super for which we wait
    1586             :  * @level: type of writers we wait for (normal vs page fault)
    1587             :  *
    1588             :  * This function waits until there are no writers of given type to given file
    1589             :  * system.
    1590             :  */
    1591             : static void sb_wait_write(struct super_block *sb, int level)
    1592             : {
    1593           0 :         percpu_down_write(sb->s_writers.rw_sem + level-1);
    1594             : }
    1595             : 
    1596             : /*
    1597             :  * We are going to return to userspace and forget about these locks, the
    1598             :  * ownership goes to the caller of thaw_super() which does unlock().
    1599             :  */
    1600             : static void lockdep_sb_freeze_release(struct super_block *sb)
    1601             : {
    1602             :         int level;
    1603             : 
    1604           0 :         for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
    1605             :                 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
    1606             : }
    1607             : 
    1608             : /*
    1609             :  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
    1610             :  */
    1611             : static void lockdep_sb_freeze_acquire(struct super_block *sb)
    1612             : {
    1613             :         int level;
    1614             : 
    1615           0 :         for (level = 0; level < SB_FREEZE_LEVELS; ++level)
    1616             :                 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
    1617             : }
    1618             : 
    1619             : static void sb_freeze_unlock(struct super_block *sb, int level)
    1620             : {
    1621           0 :         for (level--; level >= 0; level--)
    1622           0 :                 percpu_up_write(sb->s_writers.rw_sem + level);
    1623             : }
    1624             : 
    1625             : /**
    1626             :  * freeze_super - lock the filesystem and force it into a consistent state
    1627             :  * @sb: the super to lock
    1628             :  *
    1629             :  * Syncs the super to make sure the filesystem is consistent and calls the fs's
    1630             :  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
    1631             :  * -EBUSY.
    1632             :  *
    1633             :  * During this function, sb->s_writers.frozen goes through these values:
    1634             :  *
    1635             :  * SB_UNFROZEN: File system is normal, all writes progress as usual.
    1636             :  *
    1637             :  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
    1638             :  * writes should be blocked, though page faults are still allowed. We wait for
    1639             :  * all writes to complete and then proceed to the next stage.
    1640             :  *
    1641             :  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
    1642             :  * but internal fs threads can still modify the filesystem (although they
    1643             :  * should not dirty new pages or inodes), writeback can run etc. After waiting
    1644             :  * for all running page faults we sync the filesystem which will clean all
    1645             :  * dirty pages and inodes (no new dirty pages or inodes can be created when
    1646             :  * sync is running).
    1647             :  *
    1648             :  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
    1649             :  * modification are blocked (e.g. XFS preallocation truncation on inode
    1650             :  * reclaim). This is usually implemented by blocking new transactions for
    1651             :  * filesystems that have them and need this additional guard. After all
    1652             :  * internal writers are finished we call ->freeze_fs() to finish filesystem
    1653             :  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
    1654             :  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
    1655             :  *
    1656             :  * sb->s_writers.frozen is protected by sb->s_umount.
    1657             :  */
    1658           0 : int freeze_super(struct super_block *sb)
    1659             : {
    1660             :         int ret;
    1661             : 
    1662           0 :         atomic_inc(&sb->s_active);
    1663           0 :         down_write(&sb->s_umount);
    1664           0 :         if (sb->s_writers.frozen != SB_UNFROZEN) {
    1665           0 :                 deactivate_locked_super(sb);
    1666           0 :                 return -EBUSY;
    1667             :         }
    1668             : 
    1669           0 :         if (!(sb->s_flags & SB_BORN)) {
    1670           0 :                 up_write(&sb->s_umount);
    1671           0 :                 return 0;       /* sic - it's "nothing to do" */
    1672             :         }
    1673             : 
    1674           0 :         if (sb_rdonly(sb)) {
    1675             :                 /* Nothing to do really... */
    1676           0 :                 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
    1677           0 :                 up_write(&sb->s_umount);
    1678           0 :                 return 0;
    1679             :         }
    1680             : 
    1681           0 :         sb->s_writers.frozen = SB_FREEZE_WRITE;
    1682             :         /* Release s_umount to preserve sb_start_write -> s_umount ordering */
    1683           0 :         up_write(&sb->s_umount);
    1684           0 :         sb_wait_write(sb, SB_FREEZE_WRITE);
    1685           0 :         down_write(&sb->s_umount);
    1686             : 
    1687             :         /* Now we go and block page faults... */
    1688           0 :         sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
    1689           0 :         sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
    1690             : 
    1691             :         /* All writers are done so after syncing there won't be dirty data */
    1692           0 :         ret = sync_filesystem(sb);
    1693           0 :         if (ret) {
    1694           0 :                 sb->s_writers.frozen = SB_UNFROZEN;
    1695           0 :                 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
    1696           0 :                 wake_up(&sb->s_writers.wait_unfrozen);
    1697           0 :                 deactivate_locked_super(sb);
    1698           0 :                 return ret;
    1699             :         }
    1700             : 
    1701             :         /* Now wait for internal filesystem counter */
    1702           0 :         sb->s_writers.frozen = SB_FREEZE_FS;
    1703           0 :         sb_wait_write(sb, SB_FREEZE_FS);
    1704             : 
    1705           0 :         if (sb->s_op->freeze_fs) {
    1706           0 :                 ret = sb->s_op->freeze_fs(sb);
    1707           0 :                 if (ret) {
    1708           0 :                         printk(KERN_ERR
    1709             :                                 "VFS:Filesystem freeze failed\n");
    1710           0 :                         sb->s_writers.frozen = SB_UNFROZEN;
    1711           0 :                         sb_freeze_unlock(sb, SB_FREEZE_FS);
    1712           0 :                         wake_up(&sb->s_writers.wait_unfrozen);
    1713           0 :                         deactivate_locked_super(sb);
    1714           0 :                         return ret;
    1715             :                 }
    1716             :         }
    1717             :         /*
    1718             :          * For debugging purposes so that fs can warn if it sees write activity
    1719             :          * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
    1720             :          */
    1721           0 :         sb->s_writers.frozen = SB_FREEZE_COMPLETE;
    1722           0 :         lockdep_sb_freeze_release(sb);
    1723           0 :         up_write(&sb->s_umount);
    1724           0 :         return 0;
    1725             : }
    1726             : EXPORT_SYMBOL(freeze_super);
    1727             : 
    1728           0 : static int thaw_super_locked(struct super_block *sb)
    1729             : {
    1730             :         int error;
    1731             : 
    1732           0 :         if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
    1733           0 :                 up_write(&sb->s_umount);
    1734           0 :                 return -EINVAL;
    1735             :         }
    1736             : 
    1737           0 :         if (sb_rdonly(sb)) {
    1738           0 :                 sb->s_writers.frozen = SB_UNFROZEN;
    1739           0 :                 goto out;
    1740             :         }
    1741             : 
    1742           0 :         lockdep_sb_freeze_acquire(sb);
    1743             : 
    1744           0 :         if (sb->s_op->unfreeze_fs) {
    1745           0 :                 error = sb->s_op->unfreeze_fs(sb);
    1746           0 :                 if (error) {
    1747           0 :                         printk(KERN_ERR
    1748             :                                 "VFS:Filesystem thaw failed\n");
    1749           0 :                         lockdep_sb_freeze_release(sb);
    1750           0 :                         up_write(&sb->s_umount);
    1751           0 :                         return error;
    1752             :                 }
    1753             :         }
    1754             : 
    1755           0 :         sb->s_writers.frozen = SB_UNFROZEN;
    1756             :         sb_freeze_unlock(sb, SB_FREEZE_FS);
    1757             : out:
    1758           0 :         wake_up(&sb->s_writers.wait_unfrozen);
    1759           0 :         deactivate_locked_super(sb);
    1760           0 :         return 0;
    1761             : }
    1762             : 
    1763             : /**
    1764             :  * thaw_super -- unlock filesystem
    1765             :  * @sb: the super to thaw
    1766             :  *
    1767             :  * Unlocks the filesystem and marks it writeable again after freeze_super().
    1768             :  */
    1769           0 : int thaw_super(struct super_block *sb)
    1770             : {
    1771           0 :         down_write(&sb->s_umount);
    1772           0 :         return thaw_super_locked(sb);
    1773             : }
    1774             : EXPORT_SYMBOL(thaw_super);

Generated by: LCOV version 1.14