Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_DMA_MAPPING_H
3 : #define _LINUX_DMA_MAPPING_H
4 :
5 : #include <linux/sizes.h>
6 : #include <linux/string.h>
7 : #include <linux/device.h>
8 : #include <linux/err.h>
9 : #include <linux/dma-direction.h>
10 : #include <linux/scatterlist.h>
11 : #include <linux/bug.h>
12 : #include <linux/mem_encrypt.h>
13 :
14 : /**
15 : * List of possible attributes associated with a DMA mapping. The semantics
16 : * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17 : */
18 :
19 : /*
20 : * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21 : * may be weakly ordered, that is that reads and writes may pass each other.
22 : */
23 : #define DMA_ATTR_WEAK_ORDERING (1UL << 1)
24 : /*
25 : * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26 : * buffered to improve performance.
27 : */
28 : #define DMA_ATTR_WRITE_COMBINE (1UL << 2)
29 : /*
30 : * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31 : * virtual mapping for the allocated buffer.
32 : */
33 : #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
34 : /*
35 : * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36 : * the CPU cache for the given buffer assuming that it has been already
37 : * transferred to 'device' domain.
38 : */
39 : #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
40 : /*
41 : * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42 : * in physical memory.
43 : */
44 : #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
45 : /*
46 : * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47 : * that it's probably not worth the time to try to allocate memory to in a way
48 : * that gives better TLB efficiency.
49 : */
50 : #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
51 : /*
52 : * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53 : * allocation failure reports (similarly to __GFP_NOWARN).
54 : */
55 : #define DMA_ATTR_NO_WARN (1UL << 8)
56 :
57 : /*
58 : * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59 : * accessible at an elevated privilege level (and ideally inaccessible or
60 : * at least read-only at lesser-privileged levels).
61 : */
62 : #define DMA_ATTR_PRIVILEGED (1UL << 9)
63 :
64 : /*
65 : * A dma_addr_t can hold any valid DMA or bus address for the platform. It can
66 : * be given to a device to use as a DMA source or target. It is specific to a
67 : * given device and there may be a translation between the CPU physical address
68 : * space and the bus address space.
69 : *
70 : * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not
71 : * be used directly in drivers, but checked for using dma_mapping_error()
72 : * instead.
73 : */
74 : #define DMA_MAPPING_ERROR (~(dma_addr_t)0)
75 :
76 : #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
77 :
78 : #ifdef CONFIG_DMA_API_DEBUG
79 : void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
80 : void debug_dma_map_single(struct device *dev, const void *addr,
81 : unsigned long len);
82 : #else
83 : static inline void debug_dma_mapping_error(struct device *dev,
84 : dma_addr_t dma_addr)
85 : {
86 : }
87 : static inline void debug_dma_map_single(struct device *dev, const void *addr,
88 : unsigned long len)
89 : {
90 : }
91 : #endif /* CONFIG_DMA_API_DEBUG */
92 :
93 : #ifdef CONFIG_HAS_DMA
94 : static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
95 : {
96 0 : debug_dma_mapping_error(dev, dma_addr);
97 :
98 0 : if (unlikely(dma_addr == DMA_MAPPING_ERROR))
99 : return -ENOMEM;
100 : return 0;
101 : }
102 :
103 : dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
104 : size_t offset, size_t size, enum dma_data_direction dir,
105 : unsigned long attrs);
106 : void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
107 : enum dma_data_direction dir, unsigned long attrs);
108 : unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
109 : int nents, enum dma_data_direction dir, unsigned long attrs);
110 : void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
111 : int nents, enum dma_data_direction dir,
112 : unsigned long attrs);
113 : int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
114 : enum dma_data_direction dir, unsigned long attrs);
115 : dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
116 : size_t size, enum dma_data_direction dir, unsigned long attrs);
117 : void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
118 : enum dma_data_direction dir, unsigned long attrs);
119 : void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
120 : enum dma_data_direction dir);
121 : void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
122 : size_t size, enum dma_data_direction dir);
123 : void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
124 : int nelems, enum dma_data_direction dir);
125 : void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
126 : int nelems, enum dma_data_direction dir);
127 : void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
128 : gfp_t flag, unsigned long attrs);
129 : void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
130 : dma_addr_t dma_handle, unsigned long attrs);
131 : void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
132 : gfp_t gfp, unsigned long attrs);
133 : void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
134 : dma_addr_t dma_handle);
135 : int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
136 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
137 : unsigned long attrs);
138 : int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
139 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
140 : unsigned long attrs);
141 : bool dma_can_mmap(struct device *dev);
142 : int dma_supported(struct device *dev, u64 mask);
143 : int dma_set_mask(struct device *dev, u64 mask);
144 : int dma_set_coherent_mask(struct device *dev, u64 mask);
145 : u64 dma_get_required_mask(struct device *dev);
146 : size_t dma_max_mapping_size(struct device *dev);
147 : bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
148 : unsigned long dma_get_merge_boundary(struct device *dev);
149 : struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
150 : enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
151 : void dma_free_noncontiguous(struct device *dev, size_t size,
152 : struct sg_table *sgt, enum dma_data_direction dir);
153 : void *dma_vmap_noncontiguous(struct device *dev, size_t size,
154 : struct sg_table *sgt);
155 : void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
156 : int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
157 : size_t size, struct sg_table *sgt);
158 : #else /* CONFIG_HAS_DMA */
159 : static inline dma_addr_t dma_map_page_attrs(struct device *dev,
160 : struct page *page, size_t offset, size_t size,
161 : enum dma_data_direction dir, unsigned long attrs)
162 : {
163 : return DMA_MAPPING_ERROR;
164 : }
165 : static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
166 : size_t size, enum dma_data_direction dir, unsigned long attrs)
167 : {
168 : }
169 : static inline unsigned int dma_map_sg_attrs(struct device *dev,
170 : struct scatterlist *sg, int nents, enum dma_data_direction dir,
171 : unsigned long attrs)
172 : {
173 : return 0;
174 : }
175 : static inline void dma_unmap_sg_attrs(struct device *dev,
176 : struct scatterlist *sg, int nents, enum dma_data_direction dir,
177 : unsigned long attrs)
178 : {
179 : }
180 : static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
181 : enum dma_data_direction dir, unsigned long attrs)
182 : {
183 : return -EOPNOTSUPP;
184 : }
185 : static inline dma_addr_t dma_map_resource(struct device *dev,
186 : phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
187 : unsigned long attrs)
188 : {
189 : return DMA_MAPPING_ERROR;
190 : }
191 : static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
192 : size_t size, enum dma_data_direction dir, unsigned long attrs)
193 : {
194 : }
195 : static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
196 : size_t size, enum dma_data_direction dir)
197 : {
198 : }
199 : static inline void dma_sync_single_for_device(struct device *dev,
200 : dma_addr_t addr, size_t size, enum dma_data_direction dir)
201 : {
202 : }
203 : static inline void dma_sync_sg_for_cpu(struct device *dev,
204 : struct scatterlist *sg, int nelems, enum dma_data_direction dir)
205 : {
206 : }
207 : static inline void dma_sync_sg_for_device(struct device *dev,
208 : struct scatterlist *sg, int nelems, enum dma_data_direction dir)
209 : {
210 : }
211 : static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
212 : {
213 : return -ENOMEM;
214 : }
215 : static inline void *dma_alloc_attrs(struct device *dev, size_t size,
216 : dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
217 : {
218 : return NULL;
219 : }
220 : static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
221 : dma_addr_t dma_handle, unsigned long attrs)
222 : {
223 : }
224 : static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
225 : dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
226 : {
227 : return NULL;
228 : }
229 : static inline void dmam_free_coherent(struct device *dev, size_t size,
230 : void *vaddr, dma_addr_t dma_handle)
231 : {
232 : }
233 : static inline int dma_get_sgtable_attrs(struct device *dev,
234 : struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
235 : size_t size, unsigned long attrs)
236 : {
237 : return -ENXIO;
238 : }
239 : static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
240 : void *cpu_addr, dma_addr_t dma_addr, size_t size,
241 : unsigned long attrs)
242 : {
243 : return -ENXIO;
244 : }
245 : static inline bool dma_can_mmap(struct device *dev)
246 : {
247 : return false;
248 : }
249 : static inline int dma_supported(struct device *dev, u64 mask)
250 : {
251 : return 0;
252 : }
253 : static inline int dma_set_mask(struct device *dev, u64 mask)
254 : {
255 : return -EIO;
256 : }
257 : static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
258 : {
259 : return -EIO;
260 : }
261 : static inline u64 dma_get_required_mask(struct device *dev)
262 : {
263 : return 0;
264 : }
265 : static inline size_t dma_max_mapping_size(struct device *dev)
266 : {
267 : return 0;
268 : }
269 : static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
270 : {
271 : return false;
272 : }
273 : static inline unsigned long dma_get_merge_boundary(struct device *dev)
274 : {
275 : return 0;
276 : }
277 : static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
278 : size_t size, enum dma_data_direction dir, gfp_t gfp,
279 : unsigned long attrs)
280 : {
281 : return NULL;
282 : }
283 : static inline void dma_free_noncontiguous(struct device *dev, size_t size,
284 : struct sg_table *sgt, enum dma_data_direction dir)
285 : {
286 : }
287 : static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
288 : struct sg_table *sgt)
289 : {
290 : return NULL;
291 : }
292 : static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
293 : {
294 : }
295 : static inline int dma_mmap_noncontiguous(struct device *dev,
296 : struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
297 : {
298 : return -EINVAL;
299 : }
300 : #endif /* CONFIG_HAS_DMA */
301 :
302 : struct page *dma_alloc_pages(struct device *dev, size_t size,
303 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
304 : void dma_free_pages(struct device *dev, size_t size, struct page *page,
305 : dma_addr_t dma_handle, enum dma_data_direction dir);
306 : int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
307 : size_t size, struct page *page);
308 :
309 : static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
310 : dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
311 : {
312 : struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
313 : return page ? page_address(page) : NULL;
314 : }
315 :
316 : static inline void dma_free_noncoherent(struct device *dev, size_t size,
317 : void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
318 : {
319 : dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
320 : }
321 :
322 0 : static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
323 : size_t size, enum dma_data_direction dir, unsigned long attrs)
324 : {
325 : /* DMA must never operate on areas that might be remapped. */
326 0 : if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
327 : "rejecting DMA map of vmalloc memory\n"))
328 : return DMA_MAPPING_ERROR;
329 0 : debug_dma_map_single(dev, ptr, size);
330 0 : return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
331 : size, dir, attrs);
332 : }
333 :
334 : static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
335 : size_t size, enum dma_data_direction dir, unsigned long attrs)
336 : {
337 0 : return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
338 : }
339 :
340 : static inline void dma_sync_single_range_for_cpu(struct device *dev,
341 : dma_addr_t addr, unsigned long offset, size_t size,
342 : enum dma_data_direction dir)
343 : {
344 : return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
345 : }
346 :
347 : static inline void dma_sync_single_range_for_device(struct device *dev,
348 : dma_addr_t addr, unsigned long offset, size_t size,
349 : enum dma_data_direction dir)
350 : {
351 : return dma_sync_single_for_device(dev, addr + offset, size, dir);
352 : }
353 :
354 : /**
355 : * dma_unmap_sgtable - Unmap the given buffer for DMA
356 : * @dev: The device for which to perform the DMA operation
357 : * @sgt: The sg_table object describing the buffer
358 : * @dir: DMA direction
359 : * @attrs: Optional DMA attributes for the unmap operation
360 : *
361 : * Unmaps a buffer described by a scatterlist stored in the given sg_table
362 : * object for the @dir DMA operation by the @dev device. After this function
363 : * the ownership of the buffer is transferred back to the CPU domain.
364 : */
365 : static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
366 : enum dma_data_direction dir, unsigned long attrs)
367 : {
368 0 : dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
369 : }
370 :
371 : /**
372 : * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
373 : * @dev: The device for which to perform the DMA operation
374 : * @sgt: The sg_table object describing the buffer
375 : * @dir: DMA direction
376 : *
377 : * Performs the needed cache synchronization and moves the ownership of the
378 : * buffer back to the CPU domain, so it is safe to perform any access to it
379 : * by the CPU. Before doing any further DMA operations, one has to transfer
380 : * the ownership of the buffer back to the DMA domain by calling the
381 : * dma_sync_sgtable_for_device().
382 : */
383 : static inline void dma_sync_sgtable_for_cpu(struct device *dev,
384 : struct sg_table *sgt, enum dma_data_direction dir)
385 : {
386 : dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
387 : }
388 :
389 : /**
390 : * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
391 : * @dev: The device for which to perform the DMA operation
392 : * @sgt: The sg_table object describing the buffer
393 : * @dir: DMA direction
394 : *
395 : * Performs the needed cache synchronization and moves the ownership of the
396 : * buffer back to the DMA domain, so it is safe to perform the DMA operation.
397 : * Once finished, one has to call dma_sync_sgtable_for_cpu() or
398 : * dma_unmap_sgtable().
399 : */
400 : static inline void dma_sync_sgtable_for_device(struct device *dev,
401 : struct sg_table *sgt, enum dma_data_direction dir)
402 : {
403 : dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
404 : }
405 :
406 : #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
407 : #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
408 : #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
409 : #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
410 : #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
411 : #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
412 : #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
413 : #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
414 :
415 : static inline void *dma_alloc_coherent(struct device *dev, size_t size,
416 : dma_addr_t *dma_handle, gfp_t gfp)
417 : {
418 0 : return dma_alloc_attrs(dev, size, dma_handle, gfp,
419 0 : (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
420 : }
421 :
422 : static inline void dma_free_coherent(struct device *dev, size_t size,
423 : void *cpu_addr, dma_addr_t dma_handle)
424 : {
425 0 : return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
426 : }
427 :
428 :
429 : static inline u64 dma_get_mask(struct device *dev)
430 : {
431 0 : if (dev->dma_mask && *dev->dma_mask)
432 : return *dev->dma_mask;
433 : return DMA_BIT_MASK(32);
434 : }
435 :
436 : /*
437 : * Set both the DMA mask and the coherent DMA mask to the same thing.
438 : * Note that we don't check the return value from dma_set_coherent_mask()
439 : * as the DMA API guarantees that the coherent DMA mask can be set to
440 : * the same or smaller than the streaming DMA mask.
441 : */
442 0 : static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
443 : {
444 0 : int rc = dma_set_mask(dev, mask);
445 0 : if (rc == 0)
446 0 : dma_set_coherent_mask(dev, mask);
447 0 : return rc;
448 : }
449 :
450 : /*
451 : * Similar to the above, except it deals with the case where the device
452 : * does not have dev->dma_mask appropriately setup.
453 : */
454 : static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
455 : {
456 : dev->dma_mask = &dev->coherent_dma_mask;
457 : return dma_set_mask_and_coherent(dev, mask);
458 : }
459 :
460 : /**
461 : * dma_addressing_limited - return if the device is addressing limited
462 : * @dev: device to check
463 : *
464 : * Return %true if the devices DMA mask is too small to address all memory in
465 : * the system, else %false. Lack of addressing bits is the prime reason for
466 : * bounce buffering, but might not be the only one.
467 : */
468 0 : static inline bool dma_addressing_limited(struct device *dev)
469 : {
470 0 : return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
471 0 : dma_get_required_mask(dev);
472 : }
473 :
474 : static inline unsigned int dma_get_max_seg_size(struct device *dev)
475 : {
476 : if (dev->dma_parms && dev->dma_parms->max_segment_size)
477 : return dev->dma_parms->max_segment_size;
478 : return SZ_64K;
479 : }
480 :
481 : static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
482 : {
483 0 : if (dev->dma_parms) {
484 0 : dev->dma_parms->max_segment_size = size;
485 : return 0;
486 : }
487 : return -EIO;
488 : }
489 :
490 : static inline unsigned long dma_get_seg_boundary(struct device *dev)
491 : {
492 : if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
493 : return dev->dma_parms->segment_boundary_mask;
494 : return ULONG_MAX;
495 : }
496 :
497 : /**
498 : * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
499 : * @dev: device to guery the boundary for
500 : * @page_shift: ilog() of the IOMMU page size
501 : *
502 : * Return the segment boundary in IOMMU page units (which may be different from
503 : * the CPU page size) for the passed in device.
504 : *
505 : * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
506 : * non-DMA API callers.
507 : */
508 : static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
509 : unsigned int page_shift)
510 : {
511 : if (!dev)
512 : return (U32_MAX >> page_shift) + 1;
513 : return (dma_get_seg_boundary(dev) >> page_shift) + 1;
514 : }
515 :
516 : static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
517 : {
518 0 : if (dev->dma_parms) {
519 0 : dev->dma_parms->segment_boundary_mask = mask;
520 : return 0;
521 : }
522 : return -EIO;
523 : }
524 :
525 : static inline unsigned int dma_get_min_align_mask(struct device *dev)
526 : {
527 : if (dev->dma_parms)
528 : return dev->dma_parms->min_align_mask;
529 : return 0;
530 : }
531 :
532 : static inline int dma_set_min_align_mask(struct device *dev,
533 : unsigned int min_align_mask)
534 : {
535 : if (WARN_ON_ONCE(!dev->dma_parms))
536 : return -EIO;
537 : dev->dma_parms->min_align_mask = min_align_mask;
538 : return 0;
539 : }
540 :
541 : static inline int dma_get_cache_alignment(void)
542 : {
543 : #ifdef ARCH_DMA_MINALIGN
544 : return ARCH_DMA_MINALIGN;
545 : #endif
546 : return 1;
547 : }
548 :
549 : static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
550 : dma_addr_t *dma_handle, gfp_t gfp)
551 : {
552 : return dmam_alloc_attrs(dev, size, dma_handle, gfp,
553 : (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
554 : }
555 :
556 : static inline void *dma_alloc_wc(struct device *dev, size_t size,
557 : dma_addr_t *dma_addr, gfp_t gfp)
558 : {
559 : unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
560 :
561 : if (gfp & __GFP_NOWARN)
562 : attrs |= DMA_ATTR_NO_WARN;
563 :
564 : return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
565 : }
566 :
567 : static inline void dma_free_wc(struct device *dev, size_t size,
568 : void *cpu_addr, dma_addr_t dma_addr)
569 : {
570 : return dma_free_attrs(dev, size, cpu_addr, dma_addr,
571 : DMA_ATTR_WRITE_COMBINE);
572 : }
573 :
574 : static inline int dma_mmap_wc(struct device *dev,
575 : struct vm_area_struct *vma,
576 : void *cpu_addr, dma_addr_t dma_addr,
577 : size_t size)
578 : {
579 : return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
580 : DMA_ATTR_WRITE_COMBINE);
581 : }
582 :
583 : #ifdef CONFIG_NEED_DMA_MAP_STATE
584 : #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
585 : #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
586 : #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
587 : #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
588 : #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
589 : #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
590 : #else
591 : #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
592 : #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
593 : #define dma_unmap_addr(PTR, ADDR_NAME) (0)
594 : #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
595 : #define dma_unmap_len(PTR, LEN_NAME) (0)
596 : #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
597 : #endif
598 :
599 : #endif /* _LINUX_DMA_MAPPING_H */
|