LCOV - code coverage report
Current view: top level - include/linux - gfp.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 12 16 75.0 %
Date: 2022-12-09 01:23:36 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef __LINUX_GFP_H
       3             : #define __LINUX_GFP_H
       4             : 
       5             : #include <linux/mmdebug.h>
       6             : #include <linux/mmzone.h>
       7             : #include <linux/stddef.h>
       8             : #include <linux/linkage.h>
       9             : #include <linux/topology.h>
      10             : 
      11             : /* The typedef is in types.h but we want the documentation here */
      12             : #if 0
      13             : /**
      14             :  * typedef gfp_t - Memory allocation flags.
      15             :  *
      16             :  * GFP flags are commonly used throughout Linux to indicate how memory
      17             :  * should be allocated.  The GFP acronym stands for get_free_pages(),
      18             :  * the underlying memory allocation function.  Not every GFP flag is
      19             :  * supported by every function which may allocate memory.  Most users
      20             :  * will want to use a plain ``GFP_KERNEL``.
      21             :  */
      22             : typedef unsigned int __bitwise gfp_t;
      23             : #endif
      24             : 
      25             : struct vm_area_struct;
      26             : 
      27             : /*
      28             :  * In case of changes, please don't forget to update
      29             :  * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
      30             :  */
      31             : 
      32             : /* Plain integer GFP bitmasks. Do not use this directly. */
      33             : #define ___GFP_DMA              0x01u
      34             : #define ___GFP_HIGHMEM          0x02u
      35             : #define ___GFP_DMA32            0x04u
      36             : #define ___GFP_MOVABLE          0x08u
      37             : #define ___GFP_RECLAIMABLE      0x10u
      38             : #define ___GFP_HIGH             0x20u
      39             : #define ___GFP_IO               0x40u
      40             : #define ___GFP_FS               0x80u
      41             : #define ___GFP_ZERO             0x100u
      42             : #define ___GFP_ATOMIC           0x200u
      43             : #define ___GFP_DIRECT_RECLAIM   0x400u
      44             : #define ___GFP_KSWAPD_RECLAIM   0x800u
      45             : #define ___GFP_WRITE            0x1000u
      46             : #define ___GFP_NOWARN           0x2000u
      47             : #define ___GFP_RETRY_MAYFAIL    0x4000u
      48             : #define ___GFP_NOFAIL           0x8000u
      49             : #define ___GFP_NORETRY          0x10000u
      50             : #define ___GFP_MEMALLOC         0x20000u
      51             : #define ___GFP_COMP             0x40000u
      52             : #define ___GFP_NOMEMALLOC       0x80000u
      53             : #define ___GFP_HARDWALL         0x100000u
      54             : #define ___GFP_THISNODE         0x200000u
      55             : #define ___GFP_ACCOUNT          0x400000u
      56             : #define ___GFP_ZEROTAGS         0x800000u
      57             : #ifdef CONFIG_KASAN_HW_TAGS
      58             : #define ___GFP_SKIP_ZERO                0x1000000u
      59             : #define ___GFP_SKIP_KASAN_UNPOISON      0x2000000u
      60             : #define ___GFP_SKIP_KASAN_POISON        0x4000000u
      61             : #else
      62             : #define ___GFP_SKIP_ZERO                0
      63             : #define ___GFP_SKIP_KASAN_UNPOISON      0
      64             : #define ___GFP_SKIP_KASAN_POISON        0
      65             : #endif
      66             : #ifdef CONFIG_LOCKDEP
      67             : #define ___GFP_NOLOCKDEP        0x8000000u
      68             : #else
      69             : #define ___GFP_NOLOCKDEP        0
      70             : #endif
      71             : /* If the above are modified, __GFP_BITS_SHIFT may need updating */
      72             : 
      73             : /*
      74             :  * Physical address zone modifiers (see linux/mmzone.h - low four bits)
      75             :  *
      76             :  * Do not put any conditional on these. If necessary modify the definitions
      77             :  * without the underscores and use them consistently. The definitions here may
      78             :  * be used in bit comparisons.
      79             :  */
      80             : #define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
      81             : #define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
      82             : #define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
      83             : #define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
      84             : #define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
      85             : 
      86             : /**
      87             :  * DOC: Page mobility and placement hints
      88             :  *
      89             :  * Page mobility and placement hints
      90             :  * ---------------------------------
      91             :  *
      92             :  * These flags provide hints about how mobile the page is. Pages with similar
      93             :  * mobility are placed within the same pageblocks to minimise problems due
      94             :  * to external fragmentation.
      95             :  *
      96             :  * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
      97             :  * moved by page migration during memory compaction or can be reclaimed.
      98             :  *
      99             :  * %__GFP_RECLAIMABLE is used for slab allocations that specify
     100             :  * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
     101             :  *
     102             :  * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
     103             :  * these pages will be spread between local zones to avoid all the dirty
     104             :  * pages being in one zone (fair zone allocation policy).
     105             :  *
     106             :  * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
     107             :  *
     108             :  * %__GFP_THISNODE forces the allocation to be satisfied from the requested
     109             :  * node with no fallbacks or placement policy enforcements.
     110             :  *
     111             :  * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
     112             :  */
     113             : #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
     114             : #define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
     115             : #define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
     116             : #define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
     117             : #define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)
     118             : 
     119             : /**
     120             :  * DOC: Watermark modifiers
     121             :  *
     122             :  * Watermark modifiers -- controls access to emergency reserves
     123             :  * ------------------------------------------------------------
     124             :  *
     125             :  * %__GFP_HIGH indicates that the caller is high-priority and that granting
     126             :  * the request is necessary before the system can make forward progress.
     127             :  * For example, creating an IO context to clean pages.
     128             :  *
     129             :  * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
     130             :  * high priority. Users are typically interrupt handlers. This may be
     131             :  * used in conjunction with %__GFP_HIGH
     132             :  *
     133             :  * %__GFP_MEMALLOC allows access to all memory. This should only be used when
     134             :  * the caller guarantees the allocation will allow more memory to be freed
     135             :  * very shortly e.g. process exiting or swapping. Users either should
     136             :  * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
     137             :  * Users of this flag have to be extremely careful to not deplete the reserve
     138             :  * completely and implement a throttling mechanism which controls the
     139             :  * consumption of the reserve based on the amount of freed memory.
     140             :  * Usage of a pre-allocated pool (e.g. mempool) should be always considered
     141             :  * before using this flag.
     142             :  *
     143             :  * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
     144             :  * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
     145             :  */
     146             : #define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
     147             : #define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
     148             : #define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
     149             : #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
     150             : 
     151             : /**
     152             :  * DOC: Reclaim modifiers
     153             :  *
     154             :  * Reclaim modifiers
     155             :  * -----------------
     156             :  * Please note that all the following flags are only applicable to sleepable
     157             :  * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
     158             :  *
     159             :  * %__GFP_IO can start physical IO.
     160             :  *
     161             :  * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
     162             :  * allocator recursing into the filesystem which might already be holding
     163             :  * locks.
     164             :  *
     165             :  * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
     166             :  * This flag can be cleared to avoid unnecessary delays when a fallback
     167             :  * option is available.
     168             :  *
     169             :  * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
     170             :  * the low watermark is reached and have it reclaim pages until the high
     171             :  * watermark is reached. A caller may wish to clear this flag when fallback
     172             :  * options are available and the reclaim is likely to disrupt the system. The
     173             :  * canonical example is THP allocation where a fallback is cheap but
     174             :  * reclaim/compaction may cause indirect stalls.
     175             :  *
     176             :  * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
     177             :  *
     178             :  * The default allocator behavior depends on the request size. We have a concept
     179             :  * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
     180             :  * !costly allocations are too essential to fail so they are implicitly
     181             :  * non-failing by default (with some exceptions like OOM victims might fail so
     182             :  * the caller still has to check for failures) while costly requests try to be
     183             :  * not disruptive and back off even without invoking the OOM killer.
     184             :  * The following three modifiers might be used to override some of these
     185             :  * implicit rules
     186             :  *
     187             :  * %__GFP_NORETRY: The VM implementation will try only very lightweight
     188             :  * memory direct reclaim to get some memory under memory pressure (thus
     189             :  * it can sleep). It will avoid disruptive actions like OOM killer. The
     190             :  * caller must handle the failure which is quite likely to happen under
     191             :  * heavy memory pressure. The flag is suitable when failure can easily be
     192             :  * handled at small cost, such as reduced throughput
     193             :  *
     194             :  * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
     195             :  * procedures that have previously failed if there is some indication
     196             :  * that progress has been made else where.  It can wait for other
     197             :  * tasks to attempt high level approaches to freeing memory such as
     198             :  * compaction (which removes fragmentation) and page-out.
     199             :  * There is still a definite limit to the number of retries, but it is
     200             :  * a larger limit than with %__GFP_NORETRY.
     201             :  * Allocations with this flag may fail, but only when there is
     202             :  * genuinely little unused memory. While these allocations do not
     203             :  * directly trigger the OOM killer, their failure indicates that
     204             :  * the system is likely to need to use the OOM killer soon.  The
     205             :  * caller must handle failure, but can reasonably do so by failing
     206             :  * a higher-level request, or completing it only in a much less
     207             :  * efficient manner.
     208             :  * If the allocation does fail, and the caller is in a position to
     209             :  * free some non-essential memory, doing so could benefit the system
     210             :  * as a whole.
     211             :  *
     212             :  * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
     213             :  * cannot handle allocation failures. The allocation could block
     214             :  * indefinitely but will never return with failure. Testing for
     215             :  * failure is pointless.
     216             :  * New users should be evaluated carefully (and the flag should be
     217             :  * used only when there is no reasonable failure policy) but it is
     218             :  * definitely preferable to use the flag rather than opencode endless
     219             :  * loop around allocator.
     220             :  * Using this flag for costly allocations is _highly_ discouraged.
     221             :  */
     222             : #define __GFP_IO        ((__force gfp_t)___GFP_IO)
     223             : #define __GFP_FS        ((__force gfp_t)___GFP_FS)
     224             : #define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
     225             : #define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
     226             : #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
     227             : #define __GFP_RETRY_MAYFAIL     ((__force gfp_t)___GFP_RETRY_MAYFAIL)
     228             : #define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
     229             : #define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)
     230             : 
     231             : /**
     232             :  * DOC: Action modifiers
     233             :  *
     234             :  * Action modifiers
     235             :  * ----------------
     236             :  *
     237             :  * %__GFP_NOWARN suppresses allocation failure reports.
     238             :  *
     239             :  * %__GFP_COMP address compound page metadata.
     240             :  *
     241             :  * %__GFP_ZERO returns a zeroed page on success.
     242             :  *
     243             :  * %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
     244             :  * is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
     245             :  * __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
     246             :  * memory tags at the same time as zeroing memory has minimal additional
     247             :  * performace impact.
     248             :  *
     249             :  * %__GFP_SKIP_KASAN_UNPOISON makes KASAN skip unpoisoning on page allocation.
     250             :  * Only effective in HW_TAGS mode.
     251             :  *
     252             :  * %__GFP_SKIP_KASAN_POISON makes KASAN skip poisoning on page deallocation.
     253             :  * Typically, used for userspace pages. Only effective in HW_TAGS mode.
     254             :  */
     255             : #define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
     256             : #define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
     257             : #define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
     258             : #define __GFP_ZEROTAGS  ((__force gfp_t)___GFP_ZEROTAGS)
     259             : #define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
     260             : #define __GFP_SKIP_KASAN_UNPOISON ((__force gfp_t)___GFP_SKIP_KASAN_UNPOISON)
     261             : #define __GFP_SKIP_KASAN_POISON   ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
     262             : 
     263             : /* Disable lockdep for GFP context tracking */
     264             : #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
     265             : 
     266             : /* Room for N __GFP_FOO bits */
     267             : #define __GFP_BITS_SHIFT (27 + IS_ENABLED(CONFIG_LOCKDEP))
     268             : #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
     269             : 
     270             : /**
     271             :  * DOC: Useful GFP flag combinations
     272             :  *
     273             :  * Useful GFP flag combinations
     274             :  * ----------------------------
     275             :  *
     276             :  * Useful GFP flag combinations that are commonly used. It is recommended
     277             :  * that subsystems start with one of these combinations and then set/clear
     278             :  * %__GFP_FOO flags as necessary.
     279             :  *
     280             :  * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
     281             :  * watermark is applied to allow access to "atomic reserves".
     282             :  * The current implementation doesn't support NMI and few other strict
     283             :  * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
     284             :  *
     285             :  * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
     286             :  * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
     287             :  *
     288             :  * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
     289             :  * accounted to kmemcg.
     290             :  *
     291             :  * %GFP_NOWAIT is for kernel allocations that should not stall for direct
     292             :  * reclaim, start physical IO or use any filesystem callback.
     293             :  *
     294             :  * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
     295             :  * that do not require the starting of any physical IO.
     296             :  * Please try to avoid using this flag directly and instead use
     297             :  * memalloc_noio_{save,restore} to mark the whole scope which cannot
     298             :  * perform any IO with a short explanation why. All allocation requests
     299             :  * will inherit GFP_NOIO implicitly.
     300             :  *
     301             :  * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
     302             :  * Please try to avoid using this flag directly and instead use
     303             :  * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
     304             :  * recurse into the FS layer with a short explanation why. All allocation
     305             :  * requests will inherit GFP_NOFS implicitly.
     306             :  *
     307             :  * %GFP_USER is for userspace allocations that also need to be directly
     308             :  * accessibly by the kernel or hardware. It is typically used by hardware
     309             :  * for buffers that are mapped to userspace (e.g. graphics) that hardware
     310             :  * still must DMA to. cpuset limits are enforced for these allocations.
     311             :  *
     312             :  * %GFP_DMA exists for historical reasons and should be avoided where possible.
     313             :  * The flags indicates that the caller requires that the lowest zone be
     314             :  * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
     315             :  * it would require careful auditing as some users really require it and
     316             :  * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
     317             :  * lowest zone as a type of emergency reserve.
     318             :  *
     319             :  * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
     320             :  * address. Note that kmalloc(..., GFP_DMA32) does not return DMA32 memory
     321             :  * because the DMA32 kmalloc cache array is not implemented.
     322             :  * (Reason: there is no such user in kernel).
     323             :  *
     324             :  * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
     325             :  * do not need to be directly accessible by the kernel but that cannot
     326             :  * move once in use. An example may be a hardware allocation that maps
     327             :  * data directly into userspace but has no addressing limitations.
     328             :  *
     329             :  * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
     330             :  * need direct access to but can use kmap() when access is required. They
     331             :  * are expected to be movable via page reclaim or page migration. Typically,
     332             :  * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
     333             :  *
     334             :  * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
     335             :  * are compound allocations that will generally fail quickly if memory is not
     336             :  * available and will not wake kswapd/kcompactd on failure. The _LIGHT
     337             :  * version does not attempt reclaim/compaction at all and is by default used
     338             :  * in page fault path, while the non-light is used by khugepaged.
     339             :  */
     340             : #define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
     341             : #define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
     342             : #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
     343             : #define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
     344             : #define GFP_NOIO        (__GFP_RECLAIM)
     345             : #define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
     346             : #define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
     347             : #define GFP_DMA         __GFP_DMA
     348             : #define GFP_DMA32       __GFP_DMA32
     349             : #define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
     350             : #define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE | \
     351             :                          __GFP_SKIP_KASAN_POISON)
     352             : #define GFP_TRANSHUGE_LIGHT     ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
     353             :                          __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
     354             : #define GFP_TRANSHUGE   (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
     355             : 
     356             : /* Convert GFP flags to their corresponding migrate type */
     357             : #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
     358             : #define GFP_MOVABLE_SHIFT 3
     359             : 
     360             : static inline int gfp_migratetype(const gfp_t gfp_flags)
     361             : {
     362             :         VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
     363             :         BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
     364             :         BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
     365             : 
     366         483 :         if (unlikely(page_group_by_mobility_disabled))
     367             :                 return MIGRATE_UNMOVABLE;
     368             : 
     369             :         /* Group based on mobility */
     370         483 :         return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
     371             : }
     372             : #undef GFP_MOVABLE_MASK
     373             : #undef GFP_MOVABLE_SHIFT
     374             : 
     375             : static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
     376             : {
     377         328 :         return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
     378             : }
     379             : 
     380             : /**
     381             :  * gfpflags_normal_context - is gfp_flags a normal sleepable context?
     382             :  * @gfp_flags: gfp_flags to test
     383             :  *
     384             :  * Test whether @gfp_flags indicates that the allocation is from the
     385             :  * %current context and allowed to sleep.
     386             :  *
     387             :  * An allocation being allowed to block doesn't mean it owns the %current
     388             :  * context.  When direct reclaim path tries to allocate memory, the
     389             :  * allocation context is nested inside whatever %current was doing at the
     390             :  * time of the original allocation.  The nested allocation may be allowed
     391             :  * to block but modifying anything %current owns can corrupt the outer
     392             :  * context's expectations.
     393             :  *
     394             :  * %true result from this function indicates that the allocation context
     395             :  * can sleep and use anything that's associated with %current.
     396             :  */
     397             : static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
     398             : {
     399             :         return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
     400             :                 __GFP_DIRECT_RECLAIM;
     401             : }
     402             : 
     403             : #ifdef CONFIG_HIGHMEM
     404             : #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
     405             : #else
     406             : #define OPT_ZONE_HIGHMEM ZONE_NORMAL
     407             : #endif
     408             : 
     409             : #ifdef CONFIG_ZONE_DMA
     410             : #define OPT_ZONE_DMA ZONE_DMA
     411             : #else
     412             : #define OPT_ZONE_DMA ZONE_NORMAL
     413             : #endif
     414             : 
     415             : #ifdef CONFIG_ZONE_DMA32
     416             : #define OPT_ZONE_DMA32 ZONE_DMA32
     417             : #else
     418             : #define OPT_ZONE_DMA32 ZONE_NORMAL
     419             : #endif
     420             : 
     421             : /*
     422             :  * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
     423             :  * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
     424             :  * bits long and there are 16 of them to cover all possible combinations of
     425             :  * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
     426             :  *
     427             :  * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
     428             :  * But GFP_MOVABLE is not only a zone specifier but also an allocation
     429             :  * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
     430             :  * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
     431             :  *
     432             :  *       bit       result
     433             :  *       =================
     434             :  *       0x0    => NORMAL
     435             :  *       0x1    => DMA or NORMAL
     436             :  *       0x2    => HIGHMEM or NORMAL
     437             :  *       0x3    => BAD (DMA+HIGHMEM)
     438             :  *       0x4    => DMA32 or NORMAL
     439             :  *       0x5    => BAD (DMA+DMA32)
     440             :  *       0x6    => BAD (HIGHMEM+DMA32)
     441             :  *       0x7    => BAD (HIGHMEM+DMA32+DMA)
     442             :  *       0x8    => NORMAL (MOVABLE+0)
     443             :  *       0x9    => DMA or NORMAL (MOVABLE+DMA)
     444             :  *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
     445             :  *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
     446             :  *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
     447             :  *       0xd    => BAD (MOVABLE+DMA32+DMA)
     448             :  *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
     449             :  *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
     450             :  *
     451             :  * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
     452             :  */
     453             : 
     454             : #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
     455             : /* ZONE_DEVICE is not a valid GFP zone specifier */
     456             : #define GFP_ZONES_SHIFT 2
     457             : #else
     458             : #define GFP_ZONES_SHIFT ZONES_SHIFT
     459             : #endif
     460             : 
     461             : #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
     462             : #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
     463             : #endif
     464             : 
     465             : #define GFP_ZONE_TABLE ( \
     466             :         (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)                                     \
     467             :         | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)                 \
     468             :         | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)         \
     469             :         | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)                     \
     470             :         | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)                      \
     471             :         | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
     472             :         | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
     473             :         | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
     474             : )
     475             : 
     476             : /*
     477             :  * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
     478             :  * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
     479             :  * entry starting with bit 0. Bit is set if the combination is not
     480             :  * allowed.
     481             :  */
     482             : #define GFP_ZONE_BAD ( \
     483             :         1 << (___GFP_DMA | ___GFP_HIGHMEM)                                      \
     484             :         | 1 << (___GFP_DMA | ___GFP_DMA32)                                      \
     485             :         | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)                                  \
     486             :         | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)                     \
     487             :         | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)                   \
     488             :         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)                     \
     489             :         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)                 \
     490             :         | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
     491             : )
     492             : 
     493             : static inline enum zone_type gfp_zone(gfp_t flags)
     494             : {
     495             :         enum zone_type z;
     496         486 :         int bit = (__force int) (flags & GFP_ZONEMASK);
     497             : 
     498         486 :         z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
     499             :                                          ((1 << GFP_ZONES_SHIFT) - 1);
     500             :         VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
     501             :         return z;
     502             : }
     503             : 
     504             : /*
     505             :  * There is only one page-allocator function, and two main namespaces to
     506             :  * it. The alloc_page*() variants return 'struct page *' and as such
     507             :  * can allocate highmem pages, the *get*page*() variants return
     508             :  * virtual kernel addresses to the allocated page(s).
     509             :  */
     510             : 
     511             : static inline int gfp_zonelist(gfp_t flags)
     512             : {
     513             : #ifdef CONFIG_NUMA
     514             :         if (unlikely(flags & __GFP_THISNODE))
     515             :                 return ZONELIST_NOFALLBACK;
     516             : #endif
     517             :         return ZONELIST_FALLBACK;
     518             : }
     519             : 
     520             : /*
     521             :  * We get the zone list from the current node and the gfp_mask.
     522             :  * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
     523             :  * There are two zonelists per node, one for all zones with memory and
     524             :  * one containing just zones from the node the zonelist belongs to.
     525             :  *
     526             :  * For the case of non-NUMA systems the NODE_DATA() gets optimized to
     527             :  * &contig_page_data at compile-time.
     528             :  */
     529             : static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
     530             : {
     531         486 :         return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
     532             : }
     533             : 
     534             : #ifndef HAVE_ARCH_FREE_PAGE
     535             : static inline void arch_free_page(struct page *page, int order) { }
     536             : #endif
     537             : #ifndef HAVE_ARCH_ALLOC_PAGE
     538             : static inline void arch_alloc_page(struct page *page, int order) { }
     539             : #endif
     540             : 
     541             : struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
     542             :                 nodemask_t *nodemask);
     543             : struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
     544             :                 nodemask_t *nodemask);
     545             : 
     546             : unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
     547             :                                 nodemask_t *nodemask, int nr_pages,
     548             :                                 struct list_head *page_list,
     549             :                                 struct page **page_array);
     550             : 
     551             : unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
     552             :                                 unsigned long nr_pages,
     553             :                                 struct page **page_array);
     554             : 
     555             : /* Bulk allocate order-0 pages */
     556             : static inline unsigned long
     557             : alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
     558             : {
     559             :         return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
     560             : }
     561             : 
     562             : static inline unsigned long
     563             : alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
     564             : {
     565             :         return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
     566             : }
     567             : 
     568             : static inline unsigned long
     569             : alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array)
     570             : {
     571          15 :         if (nid == NUMA_NO_NODE)
     572          15 :                 nid = numa_mem_id();
     573             : 
     574          15 :         return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array);
     575             : }
     576             : 
     577             : /*
     578             :  * Allocate pages, preferring the node given as nid. The node must be valid and
     579             :  * online. For more general interface, see alloc_pages_node().
     580             :  */
     581             : static inline struct page *
     582             : __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
     583             : {
     584             :         VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
     585             :         VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
     586             : 
     587         468 :         return __alloc_pages(gfp_mask, order, nid, NULL);
     588             : }
     589             : 
     590             : static inline
     591             : struct folio *__folio_alloc_node(gfp_t gfp, unsigned int order, int nid)
     592             : {
     593             :         VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
     594             :         VM_WARN_ON((gfp & __GFP_THISNODE) && !node_online(nid));
     595             : 
     596           0 :         return __folio_alloc(gfp, order, nid, NULL);
     597             : }
     598             : 
     599             : /*
     600             :  * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
     601             :  * prefer the current CPU's closest node. Otherwise node must be valid and
     602             :  * online.
     603             :  */
     604             : static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
     605             :                                                 unsigned int order)
     606             : {
     607           0 :         if (nid == NUMA_NO_NODE)
     608           0 :                 nid = numa_mem_id();
     609             : 
     610         467 :         return __alloc_pages_node(nid, gfp_mask, order);
     611             : }
     612             : 
     613             : #ifdef CONFIG_NUMA
     614             : struct page *alloc_pages(gfp_t gfp, unsigned int order);
     615             : struct folio *folio_alloc(gfp_t gfp, unsigned order);
     616             : struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
     617             :                         struct vm_area_struct *vma, unsigned long addr,
     618             :                         bool hugepage);
     619             : struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
     620             :                 unsigned long addr, bool hugepage);
     621             : #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
     622             :         alloc_pages_vma(gfp_mask, order, vma, addr, true)
     623             : #else
     624             : static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
     625             : {
     626         934 :         return alloc_pages_node(numa_node_id(), gfp_mask, order);
     627             : }
     628             : static inline struct folio *folio_alloc(gfp_t gfp, unsigned int order)
     629             : {
     630           0 :         return __folio_alloc_node(gfp, order, numa_node_id());
     631             : }
     632             : #define alloc_pages_vma(gfp_mask, order, vma, addr, hugepage) \
     633             :         alloc_pages(gfp_mask, order)
     634             : #define vma_alloc_folio(gfp, order, vma, addr, hugepage)                \
     635             :         folio_alloc(gfp, order)
     636             : #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
     637             :         alloc_pages(gfp_mask, order)
     638             : #endif
     639             : #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
     640             : #define alloc_page_vma(gfp_mask, vma, addr)                     \
     641             :         alloc_pages_vma(gfp_mask, 0, vma, addr, false)
     642             : 
     643             : extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
     644             : extern unsigned long get_zeroed_page(gfp_t gfp_mask);
     645             : 
     646             : void *alloc_pages_exact(size_t size, gfp_t gfp_mask) __alloc_size(1);
     647             : void free_pages_exact(void *virt, size_t size);
     648             : __meminit void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
     649             : 
     650             : #define __get_free_page(gfp_mask) \
     651             :                 __get_free_pages((gfp_mask), 0)
     652             : 
     653             : #define __get_dma_pages(gfp_mask, order) \
     654             :                 __get_free_pages((gfp_mask) | GFP_DMA, (order))
     655             : 
     656             : extern void __free_pages(struct page *page, unsigned int order);
     657             : extern void free_pages(unsigned long addr, unsigned int order);
     658             : 
     659             : struct page_frag_cache;
     660             : extern void __page_frag_cache_drain(struct page *page, unsigned int count);
     661             : extern void *page_frag_alloc_align(struct page_frag_cache *nc,
     662             :                                    unsigned int fragsz, gfp_t gfp_mask,
     663             :                                    unsigned int align_mask);
     664             : 
     665             : static inline void *page_frag_alloc(struct page_frag_cache *nc,
     666             :                              unsigned int fragsz, gfp_t gfp_mask)
     667             : {
     668             :         return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
     669             : }
     670             : 
     671             : extern void page_frag_free(void *addr);
     672             : 
     673             : #define __free_page(page) __free_pages((page), 0)
     674             : #define free_page(addr) free_pages((addr), 0)
     675             : 
     676             : void page_alloc_init(void);
     677             : void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
     678             : void drain_all_pages(struct zone *zone);
     679             : void drain_local_pages(struct zone *zone);
     680             : 
     681             : void page_alloc_init_late(void);
     682             : 
     683             : /*
     684             :  * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
     685             :  * GFP flags are used before interrupts are enabled. Once interrupts are
     686             :  * enabled, it is set to __GFP_BITS_MASK while the system is running. During
     687             :  * hibernation, it is used by PM to avoid I/O during memory allocation while
     688             :  * devices are suspended.
     689             :  */
     690             : extern gfp_t gfp_allowed_mask;
     691             : 
     692             : /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
     693             : bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
     694             : 
     695             : extern void pm_restrict_gfp_mask(void);
     696             : extern void pm_restore_gfp_mask(void);
     697             : 
     698             : extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
     699             : 
     700             : #ifdef CONFIG_PM_SLEEP
     701             : extern bool pm_suspended_storage(void);
     702             : #else
     703             : static inline bool pm_suspended_storage(void)
     704             : {
     705             :         return false;
     706             : }
     707             : #endif /* CONFIG_PM_SLEEP */
     708             : 
     709             : #ifdef CONFIG_CONTIG_ALLOC
     710             : /* The below functions must be run on a range from a single zone. */
     711             : extern int alloc_contig_range(unsigned long start, unsigned long end,
     712             :                               unsigned migratetype, gfp_t gfp_mask);
     713             : extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
     714             :                                        int nid, nodemask_t *nodemask);
     715             : #endif
     716             : void free_contig_range(unsigned long pfn, unsigned long nr_pages);
     717             : 
     718             : #ifdef CONFIG_CMA
     719             : /* CMA stuff */
     720             : extern void init_cma_reserved_pageblock(struct page *page);
     721             : #endif
     722             : 
     723             : #endif /* __LINUX_GFP_H */

Generated by: LCOV version 1.14