LCOV - code coverage report
Current view: top level - include/linux - math64.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 12 16 75.0 %
Date: 2022-12-09 01:23:36 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MATH64_H
       3             : #define _LINUX_MATH64_H
       4             : 
       5             : #include <linux/types.h>
       6             : #include <linux/math.h>
       7             : #include <vdso/math64.h>
       8             : #include <asm/div64.h>
       9             : 
      10             : #if BITS_PER_LONG == 64
      11             : 
      12             : #define div64_long(x, y) div64_s64((x), (y))
      13             : #define div64_ul(x, y)   div64_u64((x), (y))
      14             : 
      15             : /**
      16             :  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
      17             :  * @dividend: unsigned 64bit dividend
      18             :  * @divisor: unsigned 32bit divisor
      19             :  * @remainder: pointer to unsigned 32bit remainder
      20             :  *
      21             :  * Return: sets ``*remainder``, then returns dividend / divisor
      22             :  *
      23             :  * This is commonly provided by 32bit archs to provide an optimized 64bit
      24             :  * divide.
      25             :  */
      26             : static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
      27             : {
      28         190 :         *remainder = dividend % divisor;
      29         188 :         return dividend / divisor;
      30             : }
      31             : 
      32             : /*
      33             :  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
      34             :  * @dividend: signed 64bit dividend
      35             :  * @divisor: signed 32bit divisor
      36             :  * @remainder: pointer to signed 32bit remainder
      37             :  *
      38             :  * Return: sets ``*remainder``, then returns dividend / divisor
      39             :  */
      40             : static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
      41             : {
      42           0 :         *remainder = dividend % divisor;
      43           0 :         return dividend / divisor;
      44             : }
      45             : 
      46             : /*
      47             :  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
      48             :  * @dividend: unsigned 64bit dividend
      49             :  * @divisor: unsigned 64bit divisor
      50             :  * @remainder: pointer to unsigned 64bit remainder
      51             :  *
      52             :  * Return: sets ``*remainder``, then returns dividend / divisor
      53             :  */
      54             : static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
      55             : {
      56          48 :         *remainder = dividend % divisor;
      57          48 :         return dividend / divisor;
      58             : }
      59             : 
      60             : /*
      61             :  * div64_u64 - unsigned 64bit divide with 64bit divisor
      62             :  * @dividend: unsigned 64bit dividend
      63             :  * @divisor: unsigned 64bit divisor
      64             :  *
      65             :  * Return: dividend / divisor
      66             :  */
      67             : static inline u64 div64_u64(u64 dividend, u64 divisor)
      68             : {
      69           4 :         return dividend / divisor;
      70             : }
      71             : 
      72             : /*
      73             :  * div64_s64 - signed 64bit divide with 64bit divisor
      74             :  * @dividend: signed 64bit dividend
      75             :  * @divisor: signed 64bit divisor
      76             :  *
      77             :  * Return: dividend / divisor
      78             :  */
      79             : static inline s64 div64_s64(s64 dividend, s64 divisor)
      80             : {
      81          58 :         return dividend / divisor;
      82             : }
      83             : 
      84             : #elif BITS_PER_LONG == 32
      85             : 
      86             : #define div64_long(x, y) div_s64((x), (y))
      87             : #define div64_ul(x, y)   div_u64((x), (y))
      88             : 
      89             : #ifndef div_u64_rem
      90             : static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
      91             : {
      92             :         *remainder = do_div(dividend, divisor);
      93             :         return dividend;
      94             : }
      95             : #endif
      96             : 
      97             : #ifndef div_s64_rem
      98             : extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
      99             : #endif
     100             : 
     101             : #ifndef div64_u64_rem
     102             : extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
     103             : #endif
     104             : 
     105             : #ifndef div64_u64
     106             : extern u64 div64_u64(u64 dividend, u64 divisor);
     107             : #endif
     108             : 
     109             : #ifndef div64_s64
     110             : extern s64 div64_s64(s64 dividend, s64 divisor);
     111             : #endif
     112             : 
     113             : #endif /* BITS_PER_LONG */
     114             : 
     115             : /**
     116             :  * div_u64 - unsigned 64bit divide with 32bit divisor
     117             :  * @dividend: unsigned 64bit dividend
     118             :  * @divisor: unsigned 32bit divisor
     119             :  *
     120             :  * This is the most common 64bit divide and should be used if possible,
     121             :  * as many 32bit archs can optimize this variant better than a full 64bit
     122             :  * divide.
     123             :  */
     124             : #ifndef div_u64
     125             : static inline u64 div_u64(u64 dividend, u32 divisor)
     126             : {
     127             :         u32 remainder;
     128         190 :         return div_u64_rem(dividend, divisor, &remainder);
     129             : }
     130             : #endif
     131             : 
     132             : /**
     133             :  * div_s64 - signed 64bit divide with 32bit divisor
     134             :  * @dividend: signed 64bit dividend
     135             :  * @divisor: signed 32bit divisor
     136             :  */
     137             : #ifndef div_s64
     138             : static inline s64 div_s64(s64 dividend, s32 divisor)
     139             : {
     140             :         s32 remainder;
     141           0 :         return div_s64_rem(dividend, divisor, &remainder);
     142             : }
     143             : #endif
     144             : 
     145             : u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
     146             : 
     147             : #ifndef mul_u32_u32
     148             : /*
     149             :  * Many a GCC version messes this up and generates a 64x64 mult :-(
     150             :  */
     151             : static inline u64 mul_u32_u32(u32 a, u32 b)
     152             : {
     153         220 :         return (u64)a * b;
     154             : }
     155             : #endif
     156             : 
     157             : #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
     158             : 
     159             : #ifndef mul_u64_u32_shr
     160             : static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
     161             : {
     162             :         return (u64)(((unsigned __int128)a * mul) >> shift);
     163             : }
     164             : #endif /* mul_u64_u32_shr */
     165             : 
     166             : #ifndef mul_u64_u64_shr
     167             : static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
     168             : {
     169             :         return (u64)(((unsigned __int128)a * mul) >> shift);
     170             : }
     171             : #endif /* mul_u64_u64_shr */
     172             : 
     173             : #else
     174             : 
     175             : #ifndef mul_u64_u32_shr
     176             : static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
     177             : {
     178             :         u32 ah, al;
     179             :         u64 ret;
     180             : 
     181         110 :         al = a;
     182         110 :         ah = a >> 32;
     183             : 
     184         110 :         ret = mul_u32_u32(al, mul) >> shift;
     185         110 :         if (ah)
     186           0 :                 ret += mul_u32_u32(ah, mul) << (32 - shift);
     187             : 
     188             :         return ret;
     189             : }
     190             : #endif /* mul_u64_u32_shr */
     191             : 
     192             : #ifndef mul_u64_u64_shr
     193             : static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
     194             : {
     195             :         union {
     196             :                 u64 ll;
     197             :                 struct {
     198             : #ifdef __BIG_ENDIAN
     199             :                         u32 high, low;
     200             : #else
     201             :                         u32 low, high;
     202             : #endif
     203             :                 } l;
     204             :         } rl, rm, rn, rh, a0, b0;
     205             :         u64 c;
     206             : 
     207             :         a0.ll = a;
     208             :         b0.ll = b;
     209             : 
     210             :         rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
     211             :         rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
     212             :         rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
     213             :         rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
     214             : 
     215             :         /*
     216             :          * Each of these lines computes a 64-bit intermediate result into "c",
     217             :          * starting at bits 32-95.  The low 32-bits go into the result of the
     218             :          * multiplication, the high 32-bits are carried into the next step.
     219             :          */
     220             :         rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
     221             :         rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
     222             :         rh.l.high = (c >> 32) + rh.l.high;
     223             : 
     224             :         /*
     225             :          * The 128-bit result of the multiplication is in rl.ll and rh.ll,
     226             :          * shift it right and throw away the high part of the result.
     227             :          */
     228             :         if (shift == 0)
     229             :                 return rl.ll;
     230             :         if (shift < 64)
     231             :                 return (rl.ll >> shift) | (rh.ll << (64 - shift));
     232             :         return rh.ll >> (shift & 63);
     233             : }
     234             : #endif /* mul_u64_u64_shr */
     235             : 
     236             : #endif
     237             : 
     238             : #ifndef mul_s64_u64_shr
     239             : static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
     240             : {
     241             :         u64 ret;
     242             : 
     243             :         /*
     244             :          * Extract the sign before the multiplication and put it back
     245             :          * afterwards if needed.
     246             :          */
     247             :         ret = mul_u64_u64_shr(abs(a), b, shift);
     248             : 
     249             :         if (a < 0)
     250             :                 ret = -((s64) ret);
     251             : 
     252             :         return ret;
     253             : }
     254             : #endif /* mul_s64_u64_shr */
     255             : 
     256             : #ifndef mul_u64_u32_div
     257             : static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
     258             : {
     259             :         union {
     260             :                 u64 ll;
     261             :                 struct {
     262             : #ifdef __BIG_ENDIAN
     263             :                         u32 high, low;
     264             : #else
     265             :                         u32 low, high;
     266             : #endif
     267             :                 } l;
     268             :         } u, rl, rh;
     269             : 
     270             :         u.ll = a;
     271             :         rl.ll = mul_u32_u32(u.l.low, mul);
     272             :         rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
     273             : 
     274             :         /* Bits 32-63 of the result will be in rh.l.low. */
     275             :         rl.l.high = do_div(rh.ll, divisor);
     276             : 
     277             :         /* Bits 0-31 of the result will be in rl.l.low. */
     278             :         do_div(rl.ll, divisor);
     279             : 
     280             :         rl.l.high = rh.l.low;
     281             :         return rl.ll;
     282             : }
     283             : #endif /* mul_u64_u32_div */
     284             : 
     285             : u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
     286             : 
     287             : #define DIV64_U64_ROUND_UP(ll, d)       \
     288             :         ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
     289             : 
     290             : /**
     291             :  * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
     292             :  * @dividend: unsigned 64bit dividend
     293             :  * @divisor: unsigned 64bit divisor
     294             :  *
     295             :  * Divide unsigned 64bit dividend by unsigned 64bit divisor
     296             :  * and round to closest integer.
     297             :  *
     298             :  * Return: dividend / divisor rounded to nearest integer
     299             :  */
     300             : #define DIV64_U64_ROUND_CLOSEST(dividend, divisor)      \
     301             :         ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
     302             : 
     303             : /*
     304             :  * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
     305             :  * @dividend: unsigned 64bit dividend
     306             :  * @divisor: unsigned 32bit divisor
     307             :  *
     308             :  * Divide unsigned 64bit dividend by unsigned 32bit divisor
     309             :  * and round to closest integer.
     310             :  *
     311             :  * Return: dividend / divisor rounded to nearest integer
     312             :  */
     313             : #define DIV_U64_ROUND_CLOSEST(dividend, divisor)        \
     314             :         ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
     315             : 
     316             : /*
     317             :  * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
     318             :  * @dividend: signed 64bit dividend
     319             :  * @divisor: signed 32bit divisor
     320             :  *
     321             :  * Divide signed 64bit dividend by signed 32bit divisor
     322             :  * and round to closest integer.
     323             :  *
     324             :  * Return: dividend / divisor rounded to nearest integer
     325             :  */
     326             : #define DIV_S64_ROUND_CLOSEST(dividend, divisor)(       \
     327             : {                                                       \
     328             :         s64 __x = (dividend);                           \
     329             :         s32 __d = (divisor);                            \
     330             :         ((__x > 0) == (__d > 0)) ?                        \
     331             :                 div_s64((__x + (__d / 2)), __d) :       \
     332             :                 div_s64((__x - (__d / 2)), __d);        \
     333             : }                                                       \
     334             : )
     335             : #endif /* _LINUX_MATH64_H */

Generated by: LCOV version 1.14