Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : /* memcontrol.h - Memory Controller
3 : *
4 : * Copyright IBM Corporation, 2007
5 : * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 : *
7 : * Copyright 2007 OpenVZ SWsoft Inc
8 : * Author: Pavel Emelianov <xemul@openvz.org>
9 : */
10 :
11 : #ifndef _LINUX_MEMCONTROL_H
12 : #define _LINUX_MEMCONTROL_H
13 : #include <linux/cgroup.h>
14 : #include <linux/vm_event_item.h>
15 : #include <linux/hardirq.h>
16 : #include <linux/jump_label.h>
17 : #include <linux/page_counter.h>
18 : #include <linux/vmpressure.h>
19 : #include <linux/eventfd.h>
20 : #include <linux/mm.h>
21 : #include <linux/vmstat.h>
22 : #include <linux/writeback.h>
23 : #include <linux/page-flags.h>
24 :
25 : struct mem_cgroup;
26 : struct obj_cgroup;
27 : struct page;
28 : struct mm_struct;
29 : struct kmem_cache;
30 :
31 : /* Cgroup-specific page state, on top of universal node page state */
32 : enum memcg_stat_item {
33 : MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 : MEMCG_SOCK,
35 : MEMCG_PERCPU_B,
36 : MEMCG_VMALLOC,
37 : MEMCG_KMEM,
38 : MEMCG_NR_STAT,
39 : };
40 :
41 : enum memcg_memory_event {
42 : MEMCG_LOW,
43 : MEMCG_HIGH,
44 : MEMCG_MAX,
45 : MEMCG_OOM,
46 : MEMCG_OOM_KILL,
47 : MEMCG_OOM_GROUP_KILL,
48 : MEMCG_SWAP_HIGH,
49 : MEMCG_SWAP_MAX,
50 : MEMCG_SWAP_FAIL,
51 : MEMCG_NR_MEMORY_EVENTS,
52 : };
53 :
54 : struct mem_cgroup_reclaim_cookie {
55 : pg_data_t *pgdat;
56 : unsigned int generation;
57 : };
58 :
59 : #ifdef CONFIG_MEMCG
60 :
61 : #define MEM_CGROUP_ID_SHIFT 16
62 : #define MEM_CGROUP_ID_MAX USHRT_MAX
63 :
64 : struct mem_cgroup_id {
65 : int id;
66 : refcount_t ref;
67 : };
68 :
69 : /*
70 : * Per memcg event counter is incremented at every pagein/pageout. With THP,
71 : * it will be incremented by the number of pages. This counter is used
72 : * to trigger some periodic events. This is straightforward and better
73 : * than using jiffies etc. to handle periodic memcg event.
74 : */
75 : enum mem_cgroup_events_target {
76 : MEM_CGROUP_TARGET_THRESH,
77 : MEM_CGROUP_TARGET_SOFTLIMIT,
78 : MEM_CGROUP_NTARGETS,
79 : };
80 :
81 : struct memcg_vmstats_percpu {
82 : /* Local (CPU and cgroup) page state & events */
83 : long state[MEMCG_NR_STAT];
84 : unsigned long events[NR_VM_EVENT_ITEMS];
85 :
86 : /* Delta calculation for lockless upward propagation */
87 : long state_prev[MEMCG_NR_STAT];
88 : unsigned long events_prev[NR_VM_EVENT_ITEMS];
89 :
90 : /* Cgroup1: threshold notifications & softlimit tree updates */
91 : unsigned long nr_page_events;
92 : unsigned long targets[MEM_CGROUP_NTARGETS];
93 : };
94 :
95 : struct memcg_vmstats {
96 : /* Aggregated (CPU and subtree) page state & events */
97 : long state[MEMCG_NR_STAT];
98 : unsigned long events[NR_VM_EVENT_ITEMS];
99 :
100 : /* Pending child counts during tree propagation */
101 : long state_pending[MEMCG_NR_STAT];
102 : unsigned long events_pending[NR_VM_EVENT_ITEMS];
103 : };
104 :
105 : struct mem_cgroup_reclaim_iter {
106 : struct mem_cgroup *position;
107 : /* scan generation, increased every round-trip */
108 : unsigned int generation;
109 : };
110 :
111 : /*
112 : * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
113 : * shrinkers, which have elements charged to this memcg.
114 : */
115 : struct shrinker_info {
116 : struct rcu_head rcu;
117 : atomic_long_t *nr_deferred;
118 : unsigned long *map;
119 : };
120 :
121 : struct lruvec_stats_percpu {
122 : /* Local (CPU and cgroup) state */
123 : long state[NR_VM_NODE_STAT_ITEMS];
124 :
125 : /* Delta calculation for lockless upward propagation */
126 : long state_prev[NR_VM_NODE_STAT_ITEMS];
127 : };
128 :
129 : struct lruvec_stats {
130 : /* Aggregated (CPU and subtree) state */
131 : long state[NR_VM_NODE_STAT_ITEMS];
132 :
133 : /* Pending child counts during tree propagation */
134 : long state_pending[NR_VM_NODE_STAT_ITEMS];
135 : };
136 :
137 : /*
138 : * per-node information in memory controller.
139 : */
140 : struct mem_cgroup_per_node {
141 : struct lruvec lruvec;
142 :
143 : struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
144 : struct lruvec_stats lruvec_stats;
145 :
146 : unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
147 :
148 : struct mem_cgroup_reclaim_iter iter;
149 :
150 : struct shrinker_info __rcu *shrinker_info;
151 :
152 : struct rb_node tree_node; /* RB tree node */
153 : unsigned long usage_in_excess;/* Set to the value by which */
154 : /* the soft limit is exceeded*/
155 : bool on_tree;
156 : struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 : /* use container_of */
158 : };
159 :
160 : struct mem_cgroup_threshold {
161 : struct eventfd_ctx *eventfd;
162 : unsigned long threshold;
163 : };
164 :
165 : /* For threshold */
166 : struct mem_cgroup_threshold_ary {
167 : /* An array index points to threshold just below or equal to usage. */
168 : int current_threshold;
169 : /* Size of entries[] */
170 : unsigned int size;
171 : /* Array of thresholds */
172 : struct mem_cgroup_threshold entries[];
173 : };
174 :
175 : struct mem_cgroup_thresholds {
176 : /* Primary thresholds array */
177 : struct mem_cgroup_threshold_ary *primary;
178 : /*
179 : * Spare threshold array.
180 : * This is needed to make mem_cgroup_unregister_event() "never fail".
181 : * It must be able to store at least primary->size - 1 entries.
182 : */
183 : struct mem_cgroup_threshold_ary *spare;
184 : };
185 :
186 : #if defined(CONFIG_SMP)
187 : struct memcg_padding {
188 : char x[0];
189 : } ____cacheline_internodealigned_in_smp;
190 : #define MEMCG_PADDING(name) struct memcg_padding name
191 : #else
192 : #define MEMCG_PADDING(name)
193 : #endif
194 :
195 : /*
196 : * Remember four most recent foreign writebacks with dirty pages in this
197 : * cgroup. Inode sharing is expected to be uncommon and, even if we miss
198 : * one in a given round, we're likely to catch it later if it keeps
199 : * foreign-dirtying, so a fairly low count should be enough.
200 : *
201 : * See mem_cgroup_track_foreign_dirty_slowpath() for details.
202 : */
203 : #define MEMCG_CGWB_FRN_CNT 4
204 :
205 : struct memcg_cgwb_frn {
206 : u64 bdi_id; /* bdi->id of the foreign inode */
207 : int memcg_id; /* memcg->css.id of foreign inode */
208 : u64 at; /* jiffies_64 at the time of dirtying */
209 : struct wb_completion done; /* tracks in-flight foreign writebacks */
210 : };
211 :
212 : /*
213 : * Bucket for arbitrarily byte-sized objects charged to a memory
214 : * cgroup. The bucket can be reparented in one piece when the cgroup
215 : * is destroyed, without having to round up the individual references
216 : * of all live memory objects in the wild.
217 : */
218 : struct obj_cgroup {
219 : struct percpu_ref refcnt;
220 : struct mem_cgroup *memcg;
221 : atomic_t nr_charged_bytes;
222 : union {
223 : struct list_head list; /* protected by objcg_lock */
224 : struct rcu_head rcu;
225 : };
226 : };
227 :
228 : /*
229 : * The memory controller data structure. The memory controller controls both
230 : * page cache and RSS per cgroup. We would eventually like to provide
231 : * statistics based on the statistics developed by Rik Van Riel for clock-pro,
232 : * to help the administrator determine what knobs to tune.
233 : */
234 : struct mem_cgroup {
235 : struct cgroup_subsys_state css;
236 :
237 : /* Private memcg ID. Used to ID objects that outlive the cgroup */
238 : struct mem_cgroup_id id;
239 :
240 : /* Accounted resources */
241 : struct page_counter memory; /* Both v1 & v2 */
242 :
243 : union {
244 : struct page_counter swap; /* v2 only */
245 : struct page_counter memsw; /* v1 only */
246 : };
247 :
248 : /* Legacy consumer-oriented counters */
249 : struct page_counter kmem; /* v1 only */
250 : struct page_counter tcpmem; /* v1 only */
251 :
252 : /* Range enforcement for interrupt charges */
253 : struct work_struct high_work;
254 :
255 : unsigned long soft_limit;
256 :
257 : /* vmpressure notifications */
258 : struct vmpressure vmpressure;
259 :
260 : /*
261 : * Should the OOM killer kill all belonging tasks, had it kill one?
262 : */
263 : bool oom_group;
264 :
265 : /* protected by memcg_oom_lock */
266 : bool oom_lock;
267 : int under_oom;
268 :
269 : int swappiness;
270 : /* OOM-Killer disable */
271 : int oom_kill_disable;
272 :
273 : /* memory.events and memory.events.local */
274 : struct cgroup_file events_file;
275 : struct cgroup_file events_local_file;
276 :
277 : /* handle for "memory.swap.events" */
278 : struct cgroup_file swap_events_file;
279 :
280 : /* protect arrays of thresholds */
281 : struct mutex thresholds_lock;
282 :
283 : /* thresholds for memory usage. RCU-protected */
284 : struct mem_cgroup_thresholds thresholds;
285 :
286 : /* thresholds for mem+swap usage. RCU-protected */
287 : struct mem_cgroup_thresholds memsw_thresholds;
288 :
289 : /* For oom notifier event fd */
290 : struct list_head oom_notify;
291 :
292 : /*
293 : * Should we move charges of a task when a task is moved into this
294 : * mem_cgroup ? And what type of charges should we move ?
295 : */
296 : unsigned long move_charge_at_immigrate;
297 : /* taken only while moving_account > 0 */
298 : spinlock_t move_lock;
299 : unsigned long move_lock_flags;
300 :
301 : MEMCG_PADDING(_pad1_);
302 :
303 : /* memory.stat */
304 : struct memcg_vmstats vmstats;
305 :
306 : /* memory.events */
307 : atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
308 : atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
309 :
310 : unsigned long socket_pressure;
311 :
312 : /* Legacy tcp memory accounting */
313 : bool tcpmem_active;
314 : int tcpmem_pressure;
315 :
316 : #ifdef CONFIG_MEMCG_KMEM
317 : int kmemcg_id;
318 : struct obj_cgroup __rcu *objcg;
319 : /* list of inherited objcgs, protected by objcg_lock */
320 : struct list_head objcg_list;
321 : #endif
322 :
323 : MEMCG_PADDING(_pad2_);
324 :
325 : /*
326 : * set > 0 if pages under this cgroup are moving to other cgroup.
327 : */
328 : atomic_t moving_account;
329 : struct task_struct *move_lock_task;
330 :
331 : struct memcg_vmstats_percpu __percpu *vmstats_percpu;
332 :
333 : #ifdef CONFIG_CGROUP_WRITEBACK
334 : struct list_head cgwb_list;
335 : struct wb_domain cgwb_domain;
336 : struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
337 : #endif
338 :
339 : /* List of events which userspace want to receive */
340 : struct list_head event_list;
341 : spinlock_t event_list_lock;
342 :
343 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 : struct deferred_split deferred_split_queue;
345 : #endif
346 :
347 : struct mem_cgroup_per_node *nodeinfo[];
348 : };
349 :
350 : /*
351 : * size of first charge trial. "32" comes from vmscan.c's magic value.
352 : * TODO: maybe necessary to use big numbers in big irons.
353 : */
354 : #define MEMCG_CHARGE_BATCH 32U
355 :
356 : extern struct mem_cgroup *root_mem_cgroup;
357 :
358 : enum page_memcg_data_flags {
359 : /* page->memcg_data is a pointer to an objcgs vector */
360 : MEMCG_DATA_OBJCGS = (1UL << 0),
361 : /* page has been accounted as a non-slab kernel page */
362 : MEMCG_DATA_KMEM = (1UL << 1),
363 : /* the next bit after the last actual flag */
364 : __NR_MEMCG_DATA_FLAGS = (1UL << 2),
365 : };
366 :
367 : #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
368 :
369 : static inline bool folio_memcg_kmem(struct folio *folio);
370 :
371 : /*
372 : * After the initialization objcg->memcg is always pointing at
373 : * a valid memcg, but can be atomically swapped to the parent memcg.
374 : *
375 : * The caller must ensure that the returned memcg won't be released:
376 : * e.g. acquire the rcu_read_lock or css_set_lock.
377 : */
378 : static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
379 : {
380 : return READ_ONCE(objcg->memcg);
381 : }
382 :
383 : /*
384 : * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
385 : * @folio: Pointer to the folio.
386 : *
387 : * Returns a pointer to the memory cgroup associated with the folio,
388 : * or NULL. This function assumes that the folio is known to have a
389 : * proper memory cgroup pointer. It's not safe to call this function
390 : * against some type of folios, e.g. slab folios or ex-slab folios or
391 : * kmem folios.
392 : */
393 : static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
394 : {
395 : unsigned long memcg_data = folio->memcg_data;
396 :
397 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
398 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
399 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
400 :
401 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
402 : }
403 :
404 : /*
405 : * __folio_objcg - get the object cgroup associated with a kmem folio.
406 : * @folio: Pointer to the folio.
407 : *
408 : * Returns a pointer to the object cgroup associated with the folio,
409 : * or NULL. This function assumes that the folio is known to have a
410 : * proper object cgroup pointer. It's not safe to call this function
411 : * against some type of folios, e.g. slab folios or ex-slab folios or
412 : * LRU folios.
413 : */
414 : static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
415 : {
416 : unsigned long memcg_data = folio->memcg_data;
417 :
418 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
419 : VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
420 : VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
421 :
422 : return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
423 : }
424 :
425 : /*
426 : * folio_memcg - Get the memory cgroup associated with a folio.
427 : * @folio: Pointer to the folio.
428 : *
429 : * Returns a pointer to the memory cgroup associated with the folio,
430 : * or NULL. This function assumes that the folio is known to have a
431 : * proper memory cgroup pointer. It's not safe to call this function
432 : * against some type of folios, e.g. slab folios or ex-slab folios.
433 : *
434 : * For a non-kmem folio any of the following ensures folio and memcg binding
435 : * stability:
436 : *
437 : * - the folio lock
438 : * - LRU isolation
439 : * - lock_page_memcg()
440 : * - exclusive reference
441 : *
442 : * For a kmem folio a caller should hold an rcu read lock to protect memcg
443 : * associated with a kmem folio from being released.
444 : */
445 : static inline struct mem_cgroup *folio_memcg(struct folio *folio)
446 : {
447 : if (folio_memcg_kmem(folio))
448 : return obj_cgroup_memcg(__folio_objcg(folio));
449 : return __folio_memcg(folio);
450 : }
451 :
452 : static inline struct mem_cgroup *page_memcg(struct page *page)
453 : {
454 : return folio_memcg(page_folio(page));
455 : }
456 :
457 : /**
458 : * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
459 : * @folio: Pointer to the folio.
460 : *
461 : * This function assumes that the folio is known to have a
462 : * proper memory cgroup pointer. It's not safe to call this function
463 : * against some type of folios, e.g. slab folios or ex-slab folios.
464 : *
465 : * Return: A pointer to the memory cgroup associated with the folio,
466 : * or NULL.
467 : */
468 : static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
469 : {
470 : unsigned long memcg_data = READ_ONCE(folio->memcg_data);
471 :
472 : VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
473 : WARN_ON_ONCE(!rcu_read_lock_held());
474 :
475 : if (memcg_data & MEMCG_DATA_KMEM) {
476 : struct obj_cgroup *objcg;
477 :
478 : objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 : return obj_cgroup_memcg(objcg);
480 : }
481 :
482 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
483 : }
484 :
485 : /*
486 : * page_memcg_check - get the memory cgroup associated with a page
487 : * @page: a pointer to the page struct
488 : *
489 : * Returns a pointer to the memory cgroup associated with the page,
490 : * or NULL. This function unlike page_memcg() can take any page
491 : * as an argument. It has to be used in cases when it's not known if a page
492 : * has an associated memory cgroup pointer or an object cgroups vector or
493 : * an object cgroup.
494 : *
495 : * For a non-kmem page any of the following ensures page and memcg binding
496 : * stability:
497 : *
498 : * - the page lock
499 : * - LRU isolation
500 : * - lock_page_memcg()
501 : * - exclusive reference
502 : *
503 : * For a kmem page a caller should hold an rcu read lock to protect memcg
504 : * associated with a kmem page from being released.
505 : */
506 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
507 : {
508 : /*
509 : * Because page->memcg_data might be changed asynchronously
510 : * for slab pages, READ_ONCE() should be used here.
511 : */
512 : unsigned long memcg_data = READ_ONCE(page->memcg_data);
513 :
514 : if (memcg_data & MEMCG_DATA_OBJCGS)
515 : return NULL;
516 :
517 : if (memcg_data & MEMCG_DATA_KMEM) {
518 : struct obj_cgroup *objcg;
519 :
520 : objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 : return obj_cgroup_memcg(objcg);
522 : }
523 :
524 : return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
525 : }
526 :
527 : static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
528 : {
529 : struct mem_cgroup *memcg;
530 :
531 : rcu_read_lock();
532 : retry:
533 : memcg = obj_cgroup_memcg(objcg);
534 : if (unlikely(!css_tryget(&memcg->css)))
535 : goto retry;
536 : rcu_read_unlock();
537 :
538 : return memcg;
539 : }
540 :
541 : #ifdef CONFIG_MEMCG_KMEM
542 : /*
543 : * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
544 : * @folio: Pointer to the folio.
545 : *
546 : * Checks if the folio has MemcgKmem flag set. The caller must ensure
547 : * that the folio has an associated memory cgroup. It's not safe to call
548 : * this function against some types of folios, e.g. slab folios.
549 : */
550 : static inline bool folio_memcg_kmem(struct folio *folio)
551 : {
552 : VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
553 : VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
554 : return folio->memcg_data & MEMCG_DATA_KMEM;
555 : }
556 :
557 :
558 : #else
559 : static inline bool folio_memcg_kmem(struct folio *folio)
560 : {
561 : return false;
562 : }
563 :
564 : #endif
565 :
566 : static inline bool PageMemcgKmem(struct page *page)
567 : {
568 : return folio_memcg_kmem(page_folio(page));
569 : }
570 :
571 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
572 : {
573 : return (memcg == root_mem_cgroup);
574 : }
575 :
576 : static inline bool mem_cgroup_disabled(void)
577 : {
578 : return !cgroup_subsys_enabled(memory_cgrp_subsys);
579 : }
580 :
581 : static inline void mem_cgroup_protection(struct mem_cgroup *root,
582 : struct mem_cgroup *memcg,
583 : unsigned long *min,
584 : unsigned long *low)
585 : {
586 : *min = *low = 0;
587 :
588 : if (mem_cgroup_disabled())
589 : return;
590 :
591 : /*
592 : * There is no reclaim protection applied to a targeted reclaim.
593 : * We are special casing this specific case here because
594 : * mem_cgroup_protected calculation is not robust enough to keep
595 : * the protection invariant for calculated effective values for
596 : * parallel reclaimers with different reclaim target. This is
597 : * especially a problem for tail memcgs (as they have pages on LRU)
598 : * which would want to have effective values 0 for targeted reclaim
599 : * but a different value for external reclaim.
600 : *
601 : * Example
602 : * Let's have global and A's reclaim in parallel:
603 : * |
604 : * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
605 : * |\
606 : * | C (low = 1G, usage = 2.5G)
607 : * B (low = 1G, usage = 0.5G)
608 : *
609 : * For the global reclaim
610 : * A.elow = A.low
611 : * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
612 : * C.elow = min(C.usage, C.low)
613 : *
614 : * With the effective values resetting we have A reclaim
615 : * A.elow = 0
616 : * B.elow = B.low
617 : * C.elow = C.low
618 : *
619 : * If the global reclaim races with A's reclaim then
620 : * B.elow = C.elow = 0 because children_low_usage > A.elow)
621 : * is possible and reclaiming B would be violating the protection.
622 : *
623 : */
624 : if (root == memcg)
625 : return;
626 :
627 : *min = READ_ONCE(memcg->memory.emin);
628 : *low = READ_ONCE(memcg->memory.elow);
629 : }
630 :
631 : void mem_cgroup_calculate_protection(struct mem_cgroup *root,
632 : struct mem_cgroup *memcg);
633 :
634 : static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
635 : {
636 : /*
637 : * The root memcg doesn't account charges, and doesn't support
638 : * protection.
639 : */
640 : return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
641 :
642 : }
643 :
644 : static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
645 : {
646 : if (!mem_cgroup_supports_protection(memcg))
647 : return false;
648 :
649 : return READ_ONCE(memcg->memory.elow) >=
650 : page_counter_read(&memcg->memory);
651 : }
652 :
653 : static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
654 : {
655 : if (!mem_cgroup_supports_protection(memcg))
656 : return false;
657 :
658 : return READ_ONCE(memcg->memory.emin) >=
659 : page_counter_read(&memcg->memory);
660 : }
661 :
662 : int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
663 :
664 : /**
665 : * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
666 : * @folio: Folio to charge.
667 : * @mm: mm context of the allocating task.
668 : * @gfp: Reclaim mode.
669 : *
670 : * Try to charge @folio to the memcg that @mm belongs to, reclaiming
671 : * pages according to @gfp if necessary. If @mm is NULL, try to
672 : * charge to the active memcg.
673 : *
674 : * Do not use this for folios allocated for swapin.
675 : *
676 : * Return: 0 on success. Otherwise, an error code is returned.
677 : */
678 : static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
679 : gfp_t gfp)
680 : {
681 : if (mem_cgroup_disabled())
682 : return 0;
683 : return __mem_cgroup_charge(folio, mm, gfp);
684 : }
685 :
686 : int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
687 : gfp_t gfp, swp_entry_t entry);
688 : void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
689 :
690 : void __mem_cgroup_uncharge(struct folio *folio);
691 :
692 : /**
693 : * mem_cgroup_uncharge - Uncharge a folio.
694 : * @folio: Folio to uncharge.
695 : *
696 : * Uncharge a folio previously charged with mem_cgroup_charge().
697 : */
698 : static inline void mem_cgroup_uncharge(struct folio *folio)
699 : {
700 : if (mem_cgroup_disabled())
701 : return;
702 : __mem_cgroup_uncharge(folio);
703 : }
704 :
705 : void __mem_cgroup_uncharge_list(struct list_head *page_list);
706 : static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
707 : {
708 : if (mem_cgroup_disabled())
709 : return;
710 : __mem_cgroup_uncharge_list(page_list);
711 : }
712 :
713 : void mem_cgroup_migrate(struct folio *old, struct folio *new);
714 :
715 : /**
716 : * mem_cgroup_lruvec - get the lru list vector for a memcg & node
717 : * @memcg: memcg of the wanted lruvec
718 : * @pgdat: pglist_data
719 : *
720 : * Returns the lru list vector holding pages for a given @memcg &
721 : * @pgdat combination. This can be the node lruvec, if the memory
722 : * controller is disabled.
723 : */
724 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
725 : struct pglist_data *pgdat)
726 : {
727 : struct mem_cgroup_per_node *mz;
728 : struct lruvec *lruvec;
729 :
730 : if (mem_cgroup_disabled()) {
731 : lruvec = &pgdat->__lruvec;
732 : goto out;
733 : }
734 :
735 : if (!memcg)
736 : memcg = root_mem_cgroup;
737 :
738 : mz = memcg->nodeinfo[pgdat->node_id];
739 : lruvec = &mz->lruvec;
740 : out:
741 : /*
742 : * Since a node can be onlined after the mem_cgroup was created,
743 : * we have to be prepared to initialize lruvec->pgdat here;
744 : * and if offlined then reonlined, we need to reinitialize it.
745 : */
746 : if (unlikely(lruvec->pgdat != pgdat))
747 : lruvec->pgdat = pgdat;
748 : return lruvec;
749 : }
750 :
751 : /**
752 : * folio_lruvec - return lruvec for isolating/putting an LRU folio
753 : * @folio: Pointer to the folio.
754 : *
755 : * This function relies on folio->mem_cgroup being stable.
756 : */
757 : static inline struct lruvec *folio_lruvec(struct folio *folio)
758 : {
759 : struct mem_cgroup *memcg = folio_memcg(folio);
760 :
761 : VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
762 : return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
763 : }
764 :
765 : struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
766 :
767 : struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
768 :
769 : struct lruvec *folio_lruvec_lock(struct folio *folio);
770 : struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
771 : struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
772 : unsigned long *flags);
773 :
774 : #ifdef CONFIG_DEBUG_VM
775 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
776 : #else
777 : static inline
778 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
779 : {
780 : }
781 : #endif
782 :
783 : static inline
784 : struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
785 : return css ? container_of(css, struct mem_cgroup, css) : NULL;
786 : }
787 :
788 : static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
789 : {
790 : return percpu_ref_tryget(&objcg->refcnt);
791 : }
792 :
793 : static inline void obj_cgroup_get(struct obj_cgroup *objcg)
794 : {
795 : percpu_ref_get(&objcg->refcnt);
796 : }
797 :
798 : static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
799 : unsigned long nr)
800 : {
801 : percpu_ref_get_many(&objcg->refcnt, nr);
802 : }
803 :
804 : static inline void obj_cgroup_put(struct obj_cgroup *objcg)
805 : {
806 : percpu_ref_put(&objcg->refcnt);
807 : }
808 :
809 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810 : {
811 : if (memcg)
812 : css_put(&memcg->css);
813 : }
814 :
815 : #define mem_cgroup_from_counter(counter, member) \
816 : container_of(counter, struct mem_cgroup, member)
817 :
818 : struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 : struct mem_cgroup *,
820 : struct mem_cgroup_reclaim_cookie *);
821 : void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822 : int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 : int (*)(struct task_struct *, void *), void *);
824 :
825 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826 : {
827 : if (mem_cgroup_disabled())
828 : return 0;
829 :
830 : return memcg->id.id;
831 : }
832 : struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833 :
834 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
835 : {
836 : return mem_cgroup_from_css(seq_css(m));
837 : }
838 :
839 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
840 : {
841 : struct mem_cgroup_per_node *mz;
842 :
843 : if (mem_cgroup_disabled())
844 : return NULL;
845 :
846 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
847 : return mz->memcg;
848 : }
849 :
850 : /**
851 : * parent_mem_cgroup - find the accounting parent of a memcg
852 : * @memcg: memcg whose parent to find
853 : *
854 : * Returns the parent memcg, or NULL if this is the root or the memory
855 : * controller is in legacy no-hierarchy mode.
856 : */
857 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
858 : {
859 : return mem_cgroup_from_css(memcg->css.parent);
860 : }
861 :
862 : static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
863 : struct mem_cgroup *root)
864 : {
865 : if (root == memcg)
866 : return true;
867 : return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
868 : }
869 :
870 : static inline bool mm_match_cgroup(struct mm_struct *mm,
871 : struct mem_cgroup *memcg)
872 : {
873 : struct mem_cgroup *task_memcg;
874 : bool match = false;
875 :
876 : rcu_read_lock();
877 : task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
878 : if (task_memcg)
879 : match = mem_cgroup_is_descendant(task_memcg, memcg);
880 : rcu_read_unlock();
881 : return match;
882 : }
883 :
884 : struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
885 : ino_t page_cgroup_ino(struct page *page);
886 :
887 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
888 : {
889 : if (mem_cgroup_disabled())
890 : return true;
891 : return !!(memcg->css.flags & CSS_ONLINE);
892 : }
893 :
894 : void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
895 : int zid, int nr_pages);
896 :
897 : static inline
898 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
899 : enum lru_list lru, int zone_idx)
900 : {
901 : struct mem_cgroup_per_node *mz;
902 :
903 : mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
904 : return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
905 : }
906 :
907 : void mem_cgroup_handle_over_high(void);
908 :
909 : unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
910 :
911 : unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
912 :
913 : void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
914 : struct task_struct *p);
915 :
916 : void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
917 :
918 : static inline void mem_cgroup_enter_user_fault(void)
919 : {
920 : WARN_ON(current->in_user_fault);
921 : current->in_user_fault = 1;
922 : }
923 :
924 : static inline void mem_cgroup_exit_user_fault(void)
925 : {
926 : WARN_ON(!current->in_user_fault);
927 : current->in_user_fault = 0;
928 : }
929 :
930 : static inline bool task_in_memcg_oom(struct task_struct *p)
931 : {
932 : return p->memcg_in_oom;
933 : }
934 :
935 : bool mem_cgroup_oom_synchronize(bool wait);
936 : struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
937 : struct mem_cgroup *oom_domain);
938 : void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
939 :
940 : #ifdef CONFIG_MEMCG_SWAP
941 : extern bool cgroup_memory_noswap;
942 : #endif
943 :
944 : void folio_memcg_lock(struct folio *folio);
945 : void folio_memcg_unlock(struct folio *folio);
946 : void lock_page_memcg(struct page *page);
947 : void unlock_page_memcg(struct page *page);
948 :
949 : void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
950 :
951 : /* idx can be of type enum memcg_stat_item or node_stat_item */
952 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
953 : int idx, int val)
954 : {
955 : unsigned long flags;
956 :
957 : local_irq_save(flags);
958 : __mod_memcg_state(memcg, idx, val);
959 : local_irq_restore(flags);
960 : }
961 :
962 : static inline void mod_memcg_page_state(struct page *page,
963 : int idx, int val)
964 : {
965 : struct mem_cgroup *memcg;
966 :
967 : if (mem_cgroup_disabled())
968 : return;
969 :
970 : rcu_read_lock();
971 : memcg = page_memcg(page);
972 : if (memcg)
973 : mod_memcg_state(memcg, idx, val);
974 : rcu_read_unlock();
975 : }
976 :
977 : static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
978 : {
979 : return READ_ONCE(memcg->vmstats.state[idx]);
980 : }
981 :
982 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
983 : enum node_stat_item idx)
984 : {
985 : struct mem_cgroup_per_node *pn;
986 :
987 : if (mem_cgroup_disabled())
988 : return node_page_state(lruvec_pgdat(lruvec), idx);
989 :
990 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
991 : return READ_ONCE(pn->lruvec_stats.state[idx]);
992 : }
993 :
994 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
995 : enum node_stat_item idx)
996 : {
997 : struct mem_cgroup_per_node *pn;
998 : long x = 0;
999 : int cpu;
1000 :
1001 : if (mem_cgroup_disabled())
1002 : return node_page_state(lruvec_pgdat(lruvec), idx);
1003 :
1004 : pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005 : for_each_possible_cpu(cpu)
1006 : x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1007 : #ifdef CONFIG_SMP
1008 : if (x < 0)
1009 : x = 0;
1010 : #endif
1011 : return x;
1012 : }
1013 :
1014 : void mem_cgroup_flush_stats(void);
1015 : void mem_cgroup_flush_stats_delayed(void);
1016 :
1017 : void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1018 : int val);
1019 : void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1020 :
1021 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1022 : int val)
1023 : {
1024 : unsigned long flags;
1025 :
1026 : local_irq_save(flags);
1027 : __mod_lruvec_kmem_state(p, idx, val);
1028 : local_irq_restore(flags);
1029 : }
1030 :
1031 : static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1032 : enum node_stat_item idx, int val)
1033 : {
1034 : unsigned long flags;
1035 :
1036 : local_irq_save(flags);
1037 : __mod_memcg_lruvec_state(lruvec, idx, val);
1038 : local_irq_restore(flags);
1039 : }
1040 :
1041 : void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1042 : unsigned long count);
1043 :
1044 : static inline void count_memcg_events(struct mem_cgroup *memcg,
1045 : enum vm_event_item idx,
1046 : unsigned long count)
1047 : {
1048 : unsigned long flags;
1049 :
1050 : local_irq_save(flags);
1051 : __count_memcg_events(memcg, idx, count);
1052 : local_irq_restore(flags);
1053 : }
1054 :
1055 : static inline void count_memcg_page_event(struct page *page,
1056 : enum vm_event_item idx)
1057 : {
1058 : struct mem_cgroup *memcg = page_memcg(page);
1059 :
1060 : if (memcg)
1061 : count_memcg_events(memcg, idx, 1);
1062 : }
1063 :
1064 : static inline void count_memcg_event_mm(struct mm_struct *mm,
1065 : enum vm_event_item idx)
1066 : {
1067 : struct mem_cgroup *memcg;
1068 :
1069 : if (mem_cgroup_disabled())
1070 : return;
1071 :
1072 : rcu_read_lock();
1073 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1074 : if (likely(memcg))
1075 : count_memcg_events(memcg, idx, 1);
1076 : rcu_read_unlock();
1077 : }
1078 :
1079 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1080 : enum memcg_memory_event event)
1081 : {
1082 : bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1083 : event == MEMCG_SWAP_FAIL;
1084 :
1085 : atomic_long_inc(&memcg->memory_events_local[event]);
1086 : if (!swap_event)
1087 : cgroup_file_notify(&memcg->events_local_file);
1088 :
1089 : do {
1090 : atomic_long_inc(&memcg->memory_events[event]);
1091 : if (swap_event)
1092 : cgroup_file_notify(&memcg->swap_events_file);
1093 : else
1094 : cgroup_file_notify(&memcg->events_file);
1095 :
1096 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1097 : break;
1098 : if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1099 : break;
1100 : } while ((memcg = parent_mem_cgroup(memcg)) &&
1101 : !mem_cgroup_is_root(memcg));
1102 : }
1103 :
1104 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1105 : enum memcg_memory_event event)
1106 : {
1107 : struct mem_cgroup *memcg;
1108 :
1109 : if (mem_cgroup_disabled())
1110 : return;
1111 :
1112 : rcu_read_lock();
1113 : memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 : if (likely(memcg))
1115 : memcg_memory_event(memcg, event);
1116 : rcu_read_unlock();
1117 : }
1118 :
1119 : void split_page_memcg(struct page *head, unsigned int nr);
1120 :
1121 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1122 : gfp_t gfp_mask,
1123 : unsigned long *total_scanned);
1124 :
1125 : #else /* CONFIG_MEMCG */
1126 :
1127 : #define MEM_CGROUP_ID_SHIFT 0
1128 : #define MEM_CGROUP_ID_MAX 0
1129 :
1130 : static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1131 : {
1132 : return NULL;
1133 : }
1134 :
1135 : static inline struct mem_cgroup *page_memcg(struct page *page)
1136 : {
1137 : return NULL;
1138 : }
1139 :
1140 : static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1141 : {
1142 0 : WARN_ON_ONCE(!rcu_read_lock_held());
1143 : return NULL;
1144 : }
1145 :
1146 : static inline struct mem_cgroup *page_memcg_check(struct page *page)
1147 : {
1148 : return NULL;
1149 : }
1150 :
1151 : static inline bool folio_memcg_kmem(struct folio *folio)
1152 : {
1153 : return false;
1154 : }
1155 :
1156 : static inline bool PageMemcgKmem(struct page *page)
1157 : {
1158 : return false;
1159 : }
1160 :
1161 : static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1162 : {
1163 : return true;
1164 : }
1165 :
1166 : static inline bool mem_cgroup_disabled(void)
1167 : {
1168 : return true;
1169 : }
1170 :
1171 : static inline void memcg_memory_event(struct mem_cgroup *memcg,
1172 : enum memcg_memory_event event)
1173 : {
1174 : }
1175 :
1176 : static inline void memcg_memory_event_mm(struct mm_struct *mm,
1177 : enum memcg_memory_event event)
1178 : {
1179 : }
1180 :
1181 : static inline void mem_cgroup_protection(struct mem_cgroup *root,
1182 : struct mem_cgroup *memcg,
1183 : unsigned long *min,
1184 : unsigned long *low)
1185 : {
1186 0 : *min = *low = 0;
1187 : }
1188 :
1189 : static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1190 : struct mem_cgroup *memcg)
1191 : {
1192 : }
1193 :
1194 : static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1195 : {
1196 : return false;
1197 : }
1198 :
1199 : static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1200 : {
1201 : return false;
1202 : }
1203 :
1204 : static inline int mem_cgroup_charge(struct folio *folio,
1205 : struct mm_struct *mm, gfp_t gfp)
1206 : {
1207 : return 0;
1208 : }
1209 :
1210 : static inline int mem_cgroup_swapin_charge_page(struct page *page,
1211 : struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1212 : {
1213 : return 0;
1214 : }
1215 :
1216 : static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1217 : {
1218 : }
1219 :
1220 : static inline void mem_cgroup_uncharge(struct folio *folio)
1221 : {
1222 : }
1223 :
1224 : static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1225 : {
1226 : }
1227 :
1228 : static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1229 : {
1230 : }
1231 :
1232 : static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1233 : struct pglist_data *pgdat)
1234 : {
1235 0 : return &pgdat->__lruvec;
1236 : }
1237 :
1238 : static inline struct lruvec *folio_lruvec(struct folio *folio)
1239 : {
1240 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1241 : return &pgdat->__lruvec;
1242 : }
1243 :
1244 : static inline
1245 : void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1246 : {
1247 : }
1248 :
1249 : static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1250 : {
1251 : return NULL;
1252 : }
1253 :
1254 : static inline bool mm_match_cgroup(struct mm_struct *mm,
1255 : struct mem_cgroup *memcg)
1256 : {
1257 : return true;
1258 : }
1259 :
1260 : static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1261 : {
1262 : return NULL;
1263 : }
1264 :
1265 : static inline
1266 : struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1267 : {
1268 : return NULL;
1269 : }
1270 :
1271 : static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1272 : {
1273 : }
1274 :
1275 : static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1276 : {
1277 : struct pglist_data *pgdat = folio_pgdat(folio);
1278 :
1279 : spin_lock(&pgdat->__lruvec.lru_lock);
1280 : return &pgdat->__lruvec;
1281 : }
1282 :
1283 : static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1284 : {
1285 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1286 :
1287 0 : spin_lock_irq(&pgdat->__lruvec.lru_lock);
1288 : return &pgdat->__lruvec;
1289 : }
1290 :
1291 : static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1292 : unsigned long *flagsp)
1293 : {
1294 0 : struct pglist_data *pgdat = folio_pgdat(folio);
1295 :
1296 0 : spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1297 : return &pgdat->__lruvec;
1298 : }
1299 :
1300 : static inline struct mem_cgroup *
1301 : mem_cgroup_iter(struct mem_cgroup *root,
1302 : struct mem_cgroup *prev,
1303 : struct mem_cgroup_reclaim_cookie *reclaim)
1304 : {
1305 : return NULL;
1306 : }
1307 :
1308 : static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1309 : struct mem_cgroup *prev)
1310 : {
1311 : }
1312 :
1313 : static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1314 : int (*fn)(struct task_struct *, void *), void *arg)
1315 : {
1316 : return 0;
1317 : }
1318 :
1319 : static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1320 : {
1321 : return 0;
1322 : }
1323 :
1324 0 : static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1325 : {
1326 0 : WARN_ON_ONCE(id);
1327 : /* XXX: This should always return root_mem_cgroup */
1328 0 : return NULL;
1329 : }
1330 :
1331 : static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1332 : {
1333 : return NULL;
1334 : }
1335 :
1336 : static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1337 : {
1338 : return NULL;
1339 : }
1340 :
1341 : static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1342 : {
1343 : return true;
1344 : }
1345 :
1346 : static inline
1347 : unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1348 : enum lru_list lru, int zone_idx)
1349 : {
1350 : return 0;
1351 : }
1352 :
1353 : static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1354 : {
1355 : return 0;
1356 : }
1357 :
1358 : static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1359 : {
1360 : return 0;
1361 : }
1362 :
1363 : static inline void
1364 : mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1365 : {
1366 : }
1367 :
1368 : static inline void
1369 : mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1370 : {
1371 : }
1372 :
1373 : static inline void lock_page_memcg(struct page *page)
1374 : {
1375 : }
1376 :
1377 : static inline void unlock_page_memcg(struct page *page)
1378 : {
1379 : }
1380 :
1381 : static inline void folio_memcg_lock(struct folio *folio)
1382 : {
1383 : }
1384 :
1385 : static inline void folio_memcg_unlock(struct folio *folio)
1386 : {
1387 : }
1388 :
1389 : static inline void mem_cgroup_handle_over_high(void)
1390 : {
1391 : }
1392 :
1393 : static inline void mem_cgroup_enter_user_fault(void)
1394 : {
1395 : }
1396 :
1397 : static inline void mem_cgroup_exit_user_fault(void)
1398 : {
1399 : }
1400 :
1401 : static inline bool task_in_memcg_oom(struct task_struct *p)
1402 : {
1403 : return false;
1404 : }
1405 :
1406 : static inline bool mem_cgroup_oom_synchronize(bool wait)
1407 : {
1408 : return false;
1409 : }
1410 :
1411 : static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1412 : struct task_struct *victim, struct mem_cgroup *oom_domain)
1413 : {
1414 : return NULL;
1415 : }
1416 :
1417 : static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1418 : {
1419 : }
1420 :
1421 : static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1422 : int idx,
1423 : int nr)
1424 : {
1425 : }
1426 :
1427 : static inline void mod_memcg_state(struct mem_cgroup *memcg,
1428 : int idx,
1429 : int nr)
1430 : {
1431 : }
1432 :
1433 : static inline void mod_memcg_page_state(struct page *page,
1434 : int idx, int val)
1435 : {
1436 : }
1437 :
1438 : static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1439 : {
1440 : return 0;
1441 : }
1442 :
1443 : static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1444 : enum node_stat_item idx)
1445 : {
1446 0 : return node_page_state(lruvec_pgdat(lruvec), idx);
1447 : }
1448 :
1449 : static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1450 : enum node_stat_item idx)
1451 : {
1452 : return node_page_state(lruvec_pgdat(lruvec), idx);
1453 : }
1454 :
1455 : static inline void mem_cgroup_flush_stats(void)
1456 : {
1457 : }
1458 :
1459 : static inline void mem_cgroup_flush_stats_delayed(void)
1460 : {
1461 : }
1462 :
1463 : static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1464 : enum node_stat_item idx, int val)
1465 : {
1466 : }
1467 :
1468 : static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1469 : int val)
1470 : {
1471 0 : struct page *page = virt_to_head_page(p);
1472 :
1473 0 : __mod_node_page_state(page_pgdat(page), idx, val);
1474 : }
1475 :
1476 : static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1477 : int val)
1478 : {
1479 : struct page *page = virt_to_head_page(p);
1480 :
1481 : mod_node_page_state(page_pgdat(page), idx, val);
1482 : }
1483 :
1484 : static inline void count_memcg_events(struct mem_cgroup *memcg,
1485 : enum vm_event_item idx,
1486 : unsigned long count)
1487 : {
1488 : }
1489 :
1490 : static inline void __count_memcg_events(struct mem_cgroup *memcg,
1491 : enum vm_event_item idx,
1492 : unsigned long count)
1493 : {
1494 : }
1495 :
1496 : static inline void count_memcg_page_event(struct page *page,
1497 : int idx)
1498 : {
1499 : }
1500 :
1501 : static inline
1502 : void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1503 : {
1504 : }
1505 :
1506 : static inline void split_page_memcg(struct page *head, unsigned int nr)
1507 : {
1508 : }
1509 :
1510 : static inline
1511 : unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1512 : gfp_t gfp_mask,
1513 : unsigned long *total_scanned)
1514 : {
1515 : return 0;
1516 : }
1517 : #endif /* CONFIG_MEMCG */
1518 :
1519 : static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1520 : {
1521 0 : __mod_lruvec_kmem_state(p, idx, 1);
1522 : }
1523 :
1524 : static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1525 : {
1526 0 : __mod_lruvec_kmem_state(p, idx, -1);
1527 : }
1528 :
1529 : static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1530 : {
1531 : struct mem_cgroup *memcg;
1532 :
1533 0 : memcg = lruvec_memcg(lruvec);
1534 : if (!memcg)
1535 : return NULL;
1536 : memcg = parent_mem_cgroup(memcg);
1537 : if (!memcg)
1538 : return NULL;
1539 : return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1540 : }
1541 :
1542 : static inline void unlock_page_lruvec(struct lruvec *lruvec)
1543 : {
1544 : spin_unlock(&lruvec->lru_lock);
1545 : }
1546 :
1547 : static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1548 : {
1549 0 : spin_unlock_irq(&lruvec->lru_lock);
1550 : }
1551 :
1552 : static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1553 : unsigned long flags)
1554 : {
1555 0 : spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1556 : }
1557 :
1558 : /* Test requires a stable page->memcg binding, see page_memcg() */
1559 : static inline bool folio_matches_lruvec(struct folio *folio,
1560 : struct lruvec *lruvec)
1561 : {
1562 0 : return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1563 : lruvec_memcg(lruvec) == folio_memcg(folio);
1564 : }
1565 :
1566 : /* Don't lock again iff page's lruvec locked */
1567 0 : static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1568 : struct lruvec *locked_lruvec)
1569 : {
1570 0 : if (locked_lruvec) {
1571 0 : if (folio_matches_lruvec(folio, locked_lruvec))
1572 : return locked_lruvec;
1573 :
1574 0 : unlock_page_lruvec_irq(locked_lruvec);
1575 : }
1576 :
1577 0 : return folio_lruvec_lock_irq(folio);
1578 : }
1579 :
1580 : /* Don't lock again iff page's lruvec locked */
1581 0 : static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1582 : struct lruvec *locked_lruvec, unsigned long *flags)
1583 : {
1584 0 : if (locked_lruvec) {
1585 0 : if (folio_matches_lruvec(folio, locked_lruvec))
1586 : return locked_lruvec;
1587 :
1588 0 : unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1589 : }
1590 :
1591 0 : return folio_lruvec_lock_irqsave(folio, flags);
1592 : }
1593 :
1594 : #ifdef CONFIG_CGROUP_WRITEBACK
1595 :
1596 : struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1597 : void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1598 : unsigned long *pheadroom, unsigned long *pdirty,
1599 : unsigned long *pwriteback);
1600 :
1601 : void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1602 : struct bdi_writeback *wb);
1603 :
1604 : static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1605 : struct bdi_writeback *wb)
1606 : {
1607 : if (mem_cgroup_disabled())
1608 : return;
1609 :
1610 : if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1611 : mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1612 : }
1613 :
1614 : void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1615 :
1616 : #else /* CONFIG_CGROUP_WRITEBACK */
1617 :
1618 : static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1619 : {
1620 : return NULL;
1621 : }
1622 :
1623 : static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1624 : unsigned long *pfilepages,
1625 : unsigned long *pheadroom,
1626 : unsigned long *pdirty,
1627 : unsigned long *pwriteback)
1628 : {
1629 : }
1630 :
1631 : static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1632 : struct bdi_writeback *wb)
1633 : {
1634 : }
1635 :
1636 : static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1637 : {
1638 : }
1639 :
1640 : #endif /* CONFIG_CGROUP_WRITEBACK */
1641 :
1642 : struct sock;
1643 : bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1644 : gfp_t gfp_mask);
1645 : void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1646 : #ifdef CONFIG_MEMCG
1647 : extern struct static_key_false memcg_sockets_enabled_key;
1648 : #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1649 : void mem_cgroup_sk_alloc(struct sock *sk);
1650 : void mem_cgroup_sk_free(struct sock *sk);
1651 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1652 : {
1653 : if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1654 : return true;
1655 : do {
1656 : if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1657 : return true;
1658 : } while ((memcg = parent_mem_cgroup(memcg)));
1659 : return false;
1660 : }
1661 :
1662 : int alloc_shrinker_info(struct mem_cgroup *memcg);
1663 : void free_shrinker_info(struct mem_cgroup *memcg);
1664 : void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1665 : void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1666 : #else
1667 : #define mem_cgroup_sockets_enabled 0
1668 : static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1669 : static inline void mem_cgroup_sk_free(struct sock *sk) { };
1670 : static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1671 : {
1672 : return false;
1673 : }
1674 :
1675 : static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1676 : int nid, int shrinker_id)
1677 : {
1678 : }
1679 : #endif
1680 :
1681 : #ifdef CONFIG_MEMCG_KMEM
1682 : bool mem_cgroup_kmem_disabled(void);
1683 : int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1684 : void __memcg_kmem_uncharge_page(struct page *page, int order);
1685 :
1686 : struct obj_cgroup *get_obj_cgroup_from_current(void);
1687 :
1688 : int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1689 : void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1690 :
1691 : extern struct static_key_false memcg_kmem_enabled_key;
1692 :
1693 : static inline bool memcg_kmem_enabled(void)
1694 : {
1695 : return static_branch_likely(&memcg_kmem_enabled_key);
1696 : }
1697 :
1698 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1699 : int order)
1700 : {
1701 : if (memcg_kmem_enabled())
1702 : return __memcg_kmem_charge_page(page, gfp, order);
1703 : return 0;
1704 : }
1705 :
1706 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1707 : {
1708 : if (memcg_kmem_enabled())
1709 : __memcg_kmem_uncharge_page(page, order);
1710 : }
1711 :
1712 : /*
1713 : * A helper for accessing memcg's kmem_id, used for getting
1714 : * corresponding LRU lists.
1715 : */
1716 : static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1717 : {
1718 : return memcg ? memcg->kmemcg_id : -1;
1719 : }
1720 :
1721 : struct mem_cgroup *mem_cgroup_from_obj(void *p);
1722 :
1723 : #else
1724 : static inline bool mem_cgroup_kmem_disabled(void)
1725 : {
1726 : return true;
1727 : }
1728 :
1729 : static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1730 : int order)
1731 : {
1732 : return 0;
1733 : }
1734 :
1735 : static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1736 : {
1737 : }
1738 :
1739 : static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1740 : int order)
1741 : {
1742 : return 0;
1743 : }
1744 :
1745 : static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1746 : {
1747 : }
1748 :
1749 : static inline bool memcg_kmem_enabled(void)
1750 : {
1751 : return false;
1752 : }
1753 :
1754 : static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1755 : {
1756 : return -1;
1757 : }
1758 :
1759 : static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1760 : {
1761 : return NULL;
1762 : }
1763 :
1764 : #endif /* CONFIG_MEMCG_KMEM */
1765 :
1766 : #endif /* _LINUX_MEMCONTROL_H */
|