LCOV - code coverage report
Current view: top level - include/linux - mm.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 46 204 22.5 %
Date: 2022-12-09 01:23:36 Functions: 1 8 12.5 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MM_H
       3             : #define _LINUX_MM_H
       4             : 
       5             : #include <linux/errno.h>
       6             : #include <linux/mmdebug.h>
       7             : #include <linux/gfp.h>
       8             : #include <linux/bug.h>
       9             : #include <linux/list.h>
      10             : #include <linux/mmzone.h>
      11             : #include <linux/rbtree.h>
      12             : #include <linux/atomic.h>
      13             : #include <linux/debug_locks.h>
      14             : #include <linux/mm_types.h>
      15             : #include <linux/mmap_lock.h>
      16             : #include <linux/range.h>
      17             : #include <linux/pfn.h>
      18             : #include <linux/percpu-refcount.h>
      19             : #include <linux/bit_spinlock.h>
      20             : #include <linux/shrinker.h>
      21             : #include <linux/resource.h>
      22             : #include <linux/page_ext.h>
      23             : #include <linux/err.h>
      24             : #include <linux/page-flags.h>
      25             : #include <linux/page_ref.h>
      26             : #include <linux/overflow.h>
      27             : #include <linux/sizes.h>
      28             : #include <linux/sched.h>
      29             : #include <linux/pgtable.h>
      30             : #include <linux/kasan.h>
      31             : 
      32             : struct mempolicy;
      33             : struct anon_vma;
      34             : struct anon_vma_chain;
      35             : struct user_struct;
      36             : struct pt_regs;
      37             : 
      38             : extern int sysctl_page_lock_unfairness;
      39             : 
      40             : void init_mm_internals(void);
      41             : 
      42             : #ifndef CONFIG_NUMA             /* Don't use mapnrs, do it properly */
      43             : extern unsigned long max_mapnr;
      44             : 
      45             : static inline void set_max_mapnr(unsigned long limit)
      46             : {
      47             :         max_mapnr = limit;
      48             : }
      49             : #else
      50             : static inline void set_max_mapnr(unsigned long limit) { }
      51             : #endif
      52             : 
      53             : extern atomic_long_t _totalram_pages;
      54             : static inline unsigned long totalram_pages(void)
      55             : {
      56          24 :         return (unsigned long)atomic_long_read(&_totalram_pages);
      57             : }
      58             : 
      59             : static inline void totalram_pages_inc(void)
      60             : {
      61           0 :         atomic_long_inc(&_totalram_pages);
      62             : }
      63             : 
      64             : static inline void totalram_pages_dec(void)
      65             : {
      66             :         atomic_long_dec(&_totalram_pages);
      67             : }
      68             : 
      69             : static inline void totalram_pages_add(long count)
      70             : {
      71           1 :         atomic_long_add(count, &_totalram_pages);
      72             : }
      73             : 
      74             : extern void * high_memory;
      75             : extern int page_cluster;
      76             : 
      77             : #ifdef CONFIG_SYSCTL
      78             : extern int sysctl_legacy_va_layout;
      79             : #else
      80             : #define sysctl_legacy_va_layout 0
      81             : #endif
      82             : 
      83             : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
      84             : extern const int mmap_rnd_bits_min;
      85             : extern const int mmap_rnd_bits_max;
      86             : extern int mmap_rnd_bits __read_mostly;
      87             : #endif
      88             : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
      89             : extern const int mmap_rnd_compat_bits_min;
      90             : extern const int mmap_rnd_compat_bits_max;
      91             : extern int mmap_rnd_compat_bits __read_mostly;
      92             : #endif
      93             : 
      94             : #include <asm/page.h>
      95             : #include <asm/processor.h>
      96             : 
      97             : /*
      98             :  * Architectures that support memory tagging (assigning tags to memory regions,
      99             :  * embedding these tags into addresses that point to these memory regions, and
     100             :  * checking that the memory and the pointer tags match on memory accesses)
     101             :  * redefine this macro to strip tags from pointers.
     102             :  * It's defined as noop for architectures that don't support memory tagging.
     103             :  */
     104             : #ifndef untagged_addr
     105             : #define untagged_addr(addr) (addr)
     106             : #endif
     107             : 
     108             : #ifndef __pa_symbol
     109             : #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
     110             : #endif
     111             : 
     112             : #ifndef page_to_virt
     113             : #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
     114             : #endif
     115             : 
     116             : #ifndef lm_alias
     117             : #define lm_alias(x)     __va(__pa_symbol(x))
     118             : #endif
     119             : 
     120             : /*
     121             :  * To prevent common memory management code establishing
     122             :  * a zero page mapping on a read fault.
     123             :  * This macro should be defined within <asm/pgtable.h>.
     124             :  * s390 does this to prevent multiplexing of hardware bits
     125             :  * related to the physical page in case of virtualization.
     126             :  */
     127             : #ifndef mm_forbids_zeropage
     128             : #define mm_forbids_zeropage(X)  (0)
     129             : #endif
     130             : 
     131             : /*
     132             :  * On some architectures it is expensive to call memset() for small sizes.
     133             :  * If an architecture decides to implement their own version of
     134             :  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
     135             :  * define their own version of this macro in <asm/pgtable.h>
     136             :  */
     137             : #if BITS_PER_LONG == 64
     138             : /* This function must be updated when the size of struct page grows above 80
     139             :  * or reduces below 56. The idea that compiler optimizes out switch()
     140             :  * statement, and only leaves move/store instructions. Also the compiler can
     141             :  * combine write statements if they are both assignments and can be reordered,
     142             :  * this can result in several of the writes here being dropped.
     143             :  */
     144             : #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
     145             : static inline void __mm_zero_struct_page(struct page *page)
     146             : {
     147      266125 :         unsigned long *_pp = (void *)page;
     148             : 
     149             :          /* Check that struct page is either 56, 64, 72, or 80 bytes */
     150             :         BUILD_BUG_ON(sizeof(struct page) & 7);
     151             :         BUILD_BUG_ON(sizeof(struct page) < 56);
     152             :         BUILD_BUG_ON(sizeof(struct page) > 80);
     153             : 
     154             :         switch (sizeof(struct page)) {
     155             :         case 80:
     156             :                 _pp[9] = 0;
     157             :                 fallthrough;
     158             :         case 72:
     159             :                 _pp[8] = 0;
     160             :                 fallthrough;
     161             :         case 64:
     162             :                 _pp[7] = 0;
     163             :                 fallthrough;
     164             :         case 56:
     165      266125 :                 _pp[6] = 0;
     166      266125 :                 _pp[5] = 0;
     167      266125 :                 _pp[4] = 0;
     168      266125 :                 _pp[3] = 0;
     169             :                 _pp[2] = 0;
     170             :                 _pp[1] = 0;
     171             :                 _pp[0] = 0;
     172             :         }
     173             : }
     174             : #else
     175             : #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
     176             : #endif
     177             : 
     178             : /*
     179             :  * Default maximum number of active map areas, this limits the number of vmas
     180             :  * per mm struct. Users can overwrite this number by sysctl but there is a
     181             :  * problem.
     182             :  *
     183             :  * When a program's coredump is generated as ELF format, a section is created
     184             :  * per a vma. In ELF, the number of sections is represented in unsigned short.
     185             :  * This means the number of sections should be smaller than 65535 at coredump.
     186             :  * Because the kernel adds some informative sections to a image of program at
     187             :  * generating coredump, we need some margin. The number of extra sections is
     188             :  * 1-3 now and depends on arch. We use "5" as safe margin, here.
     189             :  *
     190             :  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
     191             :  * not a hard limit any more. Although some userspace tools can be surprised by
     192             :  * that.
     193             :  */
     194             : #define MAPCOUNT_ELF_CORE_MARGIN        (5)
     195             : #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
     196             : 
     197             : extern int sysctl_max_map_count;
     198             : 
     199             : extern unsigned long sysctl_user_reserve_kbytes;
     200             : extern unsigned long sysctl_admin_reserve_kbytes;
     201             : 
     202             : extern int sysctl_overcommit_memory;
     203             : extern int sysctl_overcommit_ratio;
     204             : extern unsigned long sysctl_overcommit_kbytes;
     205             : 
     206             : int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
     207             :                 loff_t *);
     208             : int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
     209             :                 loff_t *);
     210             : int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
     211             :                 loff_t *);
     212             : 
     213             : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
     214             : #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
     215             : #define folio_page_idx(folio, p)        (page_to_pfn(p) - folio_pfn(folio))
     216             : #else
     217             : #define nth_page(page,n) ((page) + (n))
     218             : #define folio_page_idx(folio, p)        ((p) - &(folio)->page)
     219             : #endif
     220             : 
     221             : /* to align the pointer to the (next) page boundary */
     222             : #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
     223             : 
     224             : /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
     225             : #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
     226             : 
     227             : #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
     228             : static inline struct folio *lru_to_folio(struct list_head *head)
     229             : {
     230           0 :         return list_entry((head)->prev, struct folio, lru);
     231             : }
     232             : 
     233             : void setup_initial_init_mm(void *start_code, void *end_code,
     234             :                            void *end_data, void *brk);
     235             : 
     236             : /*
     237             :  * Linux kernel virtual memory manager primitives.
     238             :  * The idea being to have a "virtual" mm in the same way
     239             :  * we have a virtual fs - giving a cleaner interface to the
     240             :  * mm details, and allowing different kinds of memory mappings
     241             :  * (from shared memory to executable loading to arbitrary
     242             :  * mmap() functions).
     243             :  */
     244             : 
     245             : struct vm_area_struct *vm_area_alloc(struct mm_struct *);
     246             : struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
     247             : void vm_area_free(struct vm_area_struct *);
     248             : 
     249             : #ifndef CONFIG_MMU
     250             : extern struct rb_root nommu_region_tree;
     251             : extern struct rw_semaphore nommu_region_sem;
     252             : 
     253             : extern unsigned int kobjsize(const void *objp);
     254             : #endif
     255             : 
     256             : /*
     257             :  * vm_flags in vm_area_struct, see mm_types.h.
     258             :  * When changing, update also include/trace/events/mmflags.h
     259             :  */
     260             : #define VM_NONE         0x00000000
     261             : 
     262             : #define VM_READ         0x00000001      /* currently active flags */
     263             : #define VM_WRITE        0x00000002
     264             : #define VM_EXEC         0x00000004
     265             : #define VM_SHARED       0x00000008
     266             : 
     267             : /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
     268             : #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
     269             : #define VM_MAYWRITE     0x00000020
     270             : #define VM_MAYEXEC      0x00000040
     271             : #define VM_MAYSHARE     0x00000080
     272             : 
     273             : #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
     274             : #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
     275             : #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
     276             : #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
     277             : 
     278             : #define VM_LOCKED       0x00002000
     279             : #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
     280             : 
     281             :                                         /* Used by sys_madvise() */
     282             : #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
     283             : #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
     284             : 
     285             : #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
     286             : #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
     287             : #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
     288             : #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
     289             : #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
     290             : #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
     291             : #define VM_SYNC         0x00800000      /* Synchronous page faults */
     292             : #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
     293             : #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
     294             : #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
     295             : 
     296             : #ifdef CONFIG_MEM_SOFT_DIRTY
     297             : # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
     298             : #else
     299             : # define VM_SOFTDIRTY   0
     300             : #endif
     301             : 
     302             : #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
     303             : #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
     304             : #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
     305             : #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
     306             : 
     307             : #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
     308             : #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
     309             : #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
     310             : #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
     311             : #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
     312             : #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
     313             : #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
     314             : #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
     315             : #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
     316             : #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
     317             : #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
     318             : #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
     319             : 
     320             : #ifdef CONFIG_ARCH_HAS_PKEYS
     321             : # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
     322             : # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
     323             : # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
     324             : # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
     325             : # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
     326             : #ifdef CONFIG_PPC
     327             : # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
     328             : #else
     329             : # define VM_PKEY_BIT4  0
     330             : #endif
     331             : #endif /* CONFIG_ARCH_HAS_PKEYS */
     332             : 
     333             : #if defined(CONFIG_X86)
     334             : # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
     335             : #elif defined(CONFIG_PPC)
     336             : # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
     337             : #elif defined(CONFIG_PARISC)
     338             : # define VM_GROWSUP     VM_ARCH_1
     339             : #elif defined(CONFIG_IA64)
     340             : # define VM_GROWSUP     VM_ARCH_1
     341             : #elif defined(CONFIG_SPARC64)
     342             : # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
     343             : # define VM_ARCH_CLEAR  VM_SPARC_ADI
     344             : #elif defined(CONFIG_ARM64)
     345             : # define VM_ARM64_BTI   VM_ARCH_1       /* BTI guarded page, a.k.a. GP bit */
     346             : # define VM_ARCH_CLEAR  VM_ARM64_BTI
     347             : #elif !defined(CONFIG_MMU)
     348             : # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
     349             : #endif
     350             : 
     351             : #if defined(CONFIG_ARM64_MTE)
     352             : # define VM_MTE         VM_HIGH_ARCH_0  /* Use Tagged memory for access control */
     353             : # define VM_MTE_ALLOWED VM_HIGH_ARCH_1  /* Tagged memory permitted */
     354             : #else
     355             : # define VM_MTE         VM_NONE
     356             : # define VM_MTE_ALLOWED VM_NONE
     357             : #endif
     358             : 
     359             : #ifndef VM_GROWSUP
     360             : # define VM_GROWSUP     VM_NONE
     361             : #endif
     362             : 
     363             : #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
     364             : # define VM_UFFD_MINOR_BIT      37
     365             : # define VM_UFFD_MINOR          BIT(VM_UFFD_MINOR_BIT)  /* UFFD minor faults */
     366             : #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
     367             : # define VM_UFFD_MINOR          VM_NONE
     368             : #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
     369             : 
     370             : /* Bits set in the VMA until the stack is in its final location */
     371             : #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
     372             : 
     373             : #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
     374             : 
     375             : /* Common data flag combinations */
     376             : #define VM_DATA_FLAGS_TSK_EXEC  (VM_READ | VM_WRITE | TASK_EXEC | \
     377             :                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
     378             : #define VM_DATA_FLAGS_NON_EXEC  (VM_READ | VM_WRITE | VM_MAYREAD | \
     379             :                                  VM_MAYWRITE | VM_MAYEXEC)
     380             : #define VM_DATA_FLAGS_EXEC      (VM_READ | VM_WRITE | VM_EXEC | \
     381             :                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
     382             : 
     383             : #ifndef VM_DATA_DEFAULT_FLAGS           /* arch can override this */
     384             : #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
     385             : #endif
     386             : 
     387             : #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
     388             : #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
     389             : #endif
     390             : 
     391             : #ifdef CONFIG_STACK_GROWSUP
     392             : #define VM_STACK        VM_GROWSUP
     393             : #else
     394             : #define VM_STACK        VM_GROWSDOWN
     395             : #endif
     396             : 
     397             : #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
     398             : 
     399             : /* VMA basic access permission flags */
     400             : #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
     401             : 
     402             : 
     403             : /*
     404             :  * Special vmas that are non-mergable, non-mlock()able.
     405             :  */
     406             : #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
     407             : 
     408             : /* This mask prevents VMA from being scanned with khugepaged */
     409             : #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
     410             : 
     411             : /* This mask defines which mm->def_flags a process can inherit its parent */
     412             : #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
     413             : 
     414             : /* This mask is used to clear all the VMA flags used by mlock */
     415             : #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
     416             : 
     417             : /* Arch-specific flags to clear when updating VM flags on protection change */
     418             : #ifndef VM_ARCH_CLEAR
     419             : # define VM_ARCH_CLEAR  VM_NONE
     420             : #endif
     421             : #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
     422             : 
     423             : /*
     424             :  * mapping from the currently active vm_flags protection bits (the
     425             :  * low four bits) to a page protection mask..
     426             :  */
     427             : extern pgprot_t protection_map[16];
     428             : 
     429             : /*
     430             :  * The default fault flags that should be used by most of the
     431             :  * arch-specific page fault handlers.
     432             :  */
     433             : #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
     434             :                              FAULT_FLAG_KILLABLE | \
     435             :                              FAULT_FLAG_INTERRUPTIBLE)
     436             : 
     437             : /**
     438             :  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
     439             :  * @flags: Fault flags.
     440             :  *
     441             :  * This is mostly used for places where we want to try to avoid taking
     442             :  * the mmap_lock for too long a time when waiting for another condition
     443             :  * to change, in which case we can try to be polite to release the
     444             :  * mmap_lock in the first round to avoid potential starvation of other
     445             :  * processes that would also want the mmap_lock.
     446             :  *
     447             :  * Return: true if the page fault allows retry and this is the first
     448             :  * attempt of the fault handling; false otherwise.
     449             :  */
     450             : static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
     451             : {
     452           0 :         return (flags & FAULT_FLAG_ALLOW_RETRY) &&
     453             :             (!(flags & FAULT_FLAG_TRIED));
     454             : }
     455             : 
     456             : #define FAULT_FLAG_TRACE \
     457             :         { FAULT_FLAG_WRITE,             "WRITE" }, \
     458             :         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
     459             :         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
     460             :         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
     461             :         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
     462             :         { FAULT_FLAG_TRIED,             "TRIED" }, \
     463             :         { FAULT_FLAG_USER,              "USER" }, \
     464             :         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
     465             :         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }, \
     466             :         { FAULT_FLAG_INTERRUPTIBLE,     "INTERRUPTIBLE" }
     467             : 
     468             : /*
     469             :  * vm_fault is filled by the pagefault handler and passed to the vma's
     470             :  * ->fault function. The vma's ->fault is responsible for returning a bitmask
     471             :  * of VM_FAULT_xxx flags that give details about how the fault was handled.
     472             :  *
     473             :  * MM layer fills up gfp_mask for page allocations but fault handler might
     474             :  * alter it if its implementation requires a different allocation context.
     475             :  *
     476             :  * pgoff should be used in favour of virtual_address, if possible.
     477             :  */
     478             : struct vm_fault {
     479             :         const struct {
     480             :                 struct vm_area_struct *vma;     /* Target VMA */
     481             :                 gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
     482             :                 pgoff_t pgoff;                  /* Logical page offset based on vma */
     483             :                 unsigned long address;          /* Faulting virtual address - masked */
     484             :                 unsigned long real_address;     /* Faulting virtual address - unmasked */
     485             :         };
     486             :         enum fault_flag flags;          /* FAULT_FLAG_xxx flags
     487             :                                          * XXX: should really be 'const' */
     488             :         pmd_t *pmd;                     /* Pointer to pmd entry matching
     489             :                                          * the 'address' */
     490             :         pud_t *pud;                     /* Pointer to pud entry matching
     491             :                                          * the 'address'
     492             :                                          */
     493             :         union {
     494             :                 pte_t orig_pte;         /* Value of PTE at the time of fault */
     495             :                 pmd_t orig_pmd;         /* Value of PMD at the time of fault,
     496             :                                          * used by PMD fault only.
     497             :                                          */
     498             :         };
     499             : 
     500             :         struct page *cow_page;          /* Page handler may use for COW fault */
     501             :         struct page *page;              /* ->fault handlers should return a
     502             :                                          * page here, unless VM_FAULT_NOPAGE
     503             :                                          * is set (which is also implied by
     504             :                                          * VM_FAULT_ERROR).
     505             :                                          */
     506             :         /* These three entries are valid only while holding ptl lock */
     507             :         pte_t *pte;                     /* Pointer to pte entry matching
     508             :                                          * the 'address'. NULL if the page
     509             :                                          * table hasn't been allocated.
     510             :                                          */
     511             :         spinlock_t *ptl;                /* Page table lock.
     512             :                                          * Protects pte page table if 'pte'
     513             :                                          * is not NULL, otherwise pmd.
     514             :                                          */
     515             :         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
     516             :                                          * vm_ops->map_pages() sets up a page
     517             :                                          * table from atomic context.
     518             :                                          * do_fault_around() pre-allocates
     519             :                                          * page table to avoid allocation from
     520             :                                          * atomic context.
     521             :                                          */
     522             : };
     523             : 
     524             : /* page entry size for vm->huge_fault() */
     525             : enum page_entry_size {
     526             :         PE_SIZE_PTE = 0,
     527             :         PE_SIZE_PMD,
     528             :         PE_SIZE_PUD,
     529             : };
     530             : 
     531             : /*
     532             :  * These are the virtual MM functions - opening of an area, closing and
     533             :  * unmapping it (needed to keep files on disk up-to-date etc), pointer
     534             :  * to the functions called when a no-page or a wp-page exception occurs.
     535             :  */
     536             : struct vm_operations_struct {
     537             :         void (*open)(struct vm_area_struct * area);
     538             :         /**
     539             :          * @close: Called when the VMA is being removed from the MM.
     540             :          * Context: User context.  May sleep.  Caller holds mmap_lock.
     541             :          */
     542             :         void (*close)(struct vm_area_struct * area);
     543             :         /* Called any time before splitting to check if it's allowed */
     544             :         int (*may_split)(struct vm_area_struct *area, unsigned long addr);
     545             :         int (*mremap)(struct vm_area_struct *area);
     546             :         /*
     547             :          * Called by mprotect() to make driver-specific permission
     548             :          * checks before mprotect() is finalised.   The VMA must not
     549             :          * be modified.  Returns 0 if eprotect() can proceed.
     550             :          */
     551             :         int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
     552             :                         unsigned long end, unsigned long newflags);
     553             :         vm_fault_t (*fault)(struct vm_fault *vmf);
     554             :         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
     555             :                         enum page_entry_size pe_size);
     556             :         vm_fault_t (*map_pages)(struct vm_fault *vmf,
     557             :                         pgoff_t start_pgoff, pgoff_t end_pgoff);
     558             :         unsigned long (*pagesize)(struct vm_area_struct * area);
     559             : 
     560             :         /* notification that a previously read-only page is about to become
     561             :          * writable, if an error is returned it will cause a SIGBUS */
     562             :         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
     563             : 
     564             :         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
     565             :         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
     566             : 
     567             :         /* called by access_process_vm when get_user_pages() fails, typically
     568             :          * for use by special VMAs. See also generic_access_phys() for a generic
     569             :          * implementation useful for any iomem mapping.
     570             :          */
     571             :         int (*access)(struct vm_area_struct *vma, unsigned long addr,
     572             :                       void *buf, int len, int write);
     573             : 
     574             :         /* Called by the /proc/PID/maps code to ask the vma whether it
     575             :          * has a special name.  Returning non-NULL will also cause this
     576             :          * vma to be dumped unconditionally. */
     577             :         const char *(*name)(struct vm_area_struct *vma);
     578             : 
     579             : #ifdef CONFIG_NUMA
     580             :         /*
     581             :          * set_policy() op must add a reference to any non-NULL @new mempolicy
     582             :          * to hold the policy upon return.  Caller should pass NULL @new to
     583             :          * remove a policy and fall back to surrounding context--i.e. do not
     584             :          * install a MPOL_DEFAULT policy, nor the task or system default
     585             :          * mempolicy.
     586             :          */
     587             :         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
     588             : 
     589             :         /*
     590             :          * get_policy() op must add reference [mpol_get()] to any policy at
     591             :          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
     592             :          * in mm/mempolicy.c will do this automatically.
     593             :          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
     594             :          * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
     595             :          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
     596             :          * must return NULL--i.e., do not "fallback" to task or system default
     597             :          * policy.
     598             :          */
     599             :         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
     600             :                                         unsigned long addr);
     601             : #endif
     602             :         /*
     603             :          * Called by vm_normal_page() for special PTEs to find the
     604             :          * page for @addr.  This is useful if the default behavior
     605             :          * (using pte_page()) would not find the correct page.
     606             :          */
     607             :         struct page *(*find_special_page)(struct vm_area_struct *vma,
     608             :                                           unsigned long addr);
     609             : };
     610             : 
     611             : static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
     612             : {
     613             :         static const struct vm_operations_struct dummy_vm_ops = {};
     614             : 
     615           0 :         memset(vma, 0, sizeof(*vma));
     616           0 :         vma->vm_mm = mm;
     617           0 :         vma->vm_ops = &dummy_vm_ops;
     618           0 :         INIT_LIST_HEAD(&vma->anon_vma_chain);
     619             : }
     620             : 
     621             : static inline void vma_set_anonymous(struct vm_area_struct *vma)
     622             : {
     623           0 :         vma->vm_ops = NULL;
     624             : }
     625             : 
     626             : static inline bool vma_is_anonymous(struct vm_area_struct *vma)
     627             : {
     628           0 :         return !vma->vm_ops;
     629             : }
     630             : 
     631             : static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
     632             : {
     633           0 :         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
     634             : 
     635           0 :         if (!maybe_stack)
     636             :                 return false;
     637             : 
     638           0 :         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
     639             :                                                 VM_STACK_INCOMPLETE_SETUP)
     640             :                 return true;
     641             : 
     642             :         return false;
     643             : }
     644             : 
     645             : static inline bool vma_is_foreign(struct vm_area_struct *vma)
     646             : {
     647             :         if (!current->mm)
     648             :                 return true;
     649             : 
     650             :         if (current->mm != vma->vm_mm)
     651             :                 return true;
     652             : 
     653             :         return false;
     654             : }
     655             : 
     656             : static inline bool vma_is_accessible(struct vm_area_struct *vma)
     657             : {
     658           0 :         return vma->vm_flags & VM_ACCESS_FLAGS;
     659             : }
     660             : 
     661             : #ifdef CONFIG_SHMEM
     662             : /*
     663             :  * The vma_is_shmem is not inline because it is used only by slow
     664             :  * paths in userfault.
     665             :  */
     666             : bool vma_is_shmem(struct vm_area_struct *vma);
     667             : #else
     668             : static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
     669             : #endif
     670             : 
     671             : int vma_is_stack_for_current(struct vm_area_struct *vma);
     672             : 
     673             : /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
     674             : #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
     675             : 
     676             : struct mmu_gather;
     677             : struct inode;
     678             : 
     679             : static inline unsigned int compound_order(struct page *page)
     680             : {
     681          11 :         if (!PageHead(page))
     682             :                 return 0;
     683          11 :         return page[1].compound_order;
     684             : }
     685             : 
     686             : /**
     687             :  * folio_order - The allocation order of a folio.
     688             :  * @folio: The folio.
     689             :  *
     690             :  * A folio is composed of 2^order pages.  See get_order() for the definition
     691             :  * of order.
     692             :  *
     693             :  * Return: The order of the folio.
     694             :  */
     695             : static inline unsigned int folio_order(struct folio *folio)
     696             : {
     697          22 :         return compound_order(&folio->page);
     698             : }
     699             : 
     700             : #include <linux/huge_mm.h>
     701             : 
     702             : /*
     703             :  * Methods to modify the page usage count.
     704             :  *
     705             :  * What counts for a page usage:
     706             :  * - cache mapping   (page->mapping)
     707             :  * - private data    (page->private)
     708             :  * - page mapped in a task's page tables, each mapping
     709             :  *   is counted separately
     710             :  *
     711             :  * Also, many kernel routines increase the page count before a critical
     712             :  * routine so they can be sure the page doesn't go away from under them.
     713             :  */
     714             : 
     715             : /*
     716             :  * Drop a ref, return true if the refcount fell to zero (the page has no users)
     717             :  */
     718             : static inline int put_page_testzero(struct page *page)
     719             : {
     720             :         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
     721          11 :         return page_ref_dec_and_test(page);
     722             : }
     723             : 
     724             : static inline int folio_put_testzero(struct folio *folio)
     725             : {
     726           0 :         return put_page_testzero(&folio->page);
     727             : }
     728             : 
     729             : /*
     730             :  * Try to grab a ref unless the page has a refcount of zero, return false if
     731             :  * that is the case.
     732             :  * This can be called when MMU is off so it must not access
     733             :  * any of the virtual mappings.
     734             :  */
     735             : static inline bool get_page_unless_zero(struct page *page)
     736             : {
     737           0 :         return page_ref_add_unless(page, 1, 0);
     738             : }
     739             : 
     740             : extern int page_is_ram(unsigned long pfn);
     741             : 
     742             : enum {
     743             :         REGION_INTERSECTS,
     744             :         REGION_DISJOINT,
     745             :         REGION_MIXED,
     746             : };
     747             : 
     748             : int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
     749             :                       unsigned long desc);
     750             : 
     751             : /* Support for virtually mapped pages */
     752             : struct page *vmalloc_to_page(const void *addr);
     753             : unsigned long vmalloc_to_pfn(const void *addr);
     754             : 
     755             : /*
     756             :  * Determine if an address is within the vmalloc range
     757             :  *
     758             :  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
     759             :  * is no special casing required.
     760             :  */
     761             : 
     762             : #ifndef is_ioremap_addr
     763             : #define is_ioremap_addr(x) is_vmalloc_addr(x)
     764             : #endif
     765             : 
     766             : #ifdef CONFIG_MMU
     767             : extern bool is_vmalloc_addr(const void *x);
     768             : extern int is_vmalloc_or_module_addr(const void *x);
     769             : #else
     770             : static inline bool is_vmalloc_addr(const void *x)
     771             : {
     772             :         return false;
     773             : }
     774             : static inline int is_vmalloc_or_module_addr(const void *x)
     775             : {
     776             :         return 0;
     777             : }
     778             : #endif
     779             : 
     780             : /*
     781             :  * How many times the entire folio is mapped as a single unit (eg by a
     782             :  * PMD or PUD entry).  This is probably not what you want, except for
     783             :  * debugging purposes; look at folio_mapcount() or page_mapcount()
     784             :  * instead.
     785             :  */
     786             : static inline int folio_entire_mapcount(struct folio *folio)
     787             : {
     788             :         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
     789           0 :         return atomic_read(folio_mapcount_ptr(folio)) + 1;
     790             : }
     791             : 
     792             : /*
     793             :  * Mapcount of compound page as a whole, does not include mapped sub-pages.
     794             :  *
     795             :  * Must be called only for compound pages.
     796             :  */
     797             : static inline int compound_mapcount(struct page *page)
     798             : {
     799             :         return folio_entire_mapcount(page_folio(page));
     800             : }
     801             : 
     802             : /*
     803             :  * The atomic page->_mapcount, starts from -1: so that transitions
     804             :  * both from it and to it can be tracked, using atomic_inc_and_test
     805             :  * and atomic_add_negative(-1).
     806             :  */
     807             : static inline void page_mapcount_reset(struct page *page)
     808             : {
     809      532250 :         atomic_set(&(page)->_mapcount, -1);
     810             : }
     811             : 
     812             : int __page_mapcount(struct page *page);
     813             : 
     814             : /*
     815             :  * Mapcount of 0-order page; when compound sub-page, includes
     816             :  * compound_mapcount().
     817             :  *
     818             :  * Result is undefined for pages which cannot be mapped into userspace.
     819             :  * For example SLAB or special types of pages. See function page_has_type().
     820             :  * They use this place in struct page differently.
     821             :  */
     822           0 : static inline int page_mapcount(struct page *page)
     823             : {
     824           0 :         if (unlikely(PageCompound(page)))
     825           0 :                 return __page_mapcount(page);
     826           0 :         return atomic_read(&page->_mapcount) + 1;
     827             : }
     828             : 
     829             : int folio_mapcount(struct folio *folio);
     830             : 
     831             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     832             : static inline int total_mapcount(struct page *page)
     833             : {
     834             :         return folio_mapcount(page_folio(page));
     835             : }
     836             : 
     837             : #else
     838             : static inline int total_mapcount(struct page *page)
     839             : {
     840             :         return page_mapcount(page);
     841             : }
     842             : #endif
     843             : 
     844             : static inline struct page *virt_to_head_page(const void *x)
     845             : {
     846           0 :         struct page *page = virt_to_page(x);
     847             : 
     848           0 :         return compound_head(page);
     849             : }
     850             : 
     851             : static inline struct folio *virt_to_folio(const void *x)
     852             : {
     853       11094 :         struct page *page = virt_to_page(x);
     854             : 
     855        5547 :         return page_folio(page);
     856             : }
     857             : 
     858             : void __put_page(struct page *page);
     859             : 
     860             : void put_pages_list(struct list_head *pages);
     861             : 
     862             : void split_page(struct page *page, unsigned int order);
     863             : void folio_copy(struct folio *dst, struct folio *src);
     864             : 
     865             : unsigned long nr_free_buffer_pages(void);
     866             : 
     867             : /*
     868             :  * Compound pages have a destructor function.  Provide a
     869             :  * prototype for that function and accessor functions.
     870             :  * These are _only_ valid on the head of a compound page.
     871             :  */
     872             : typedef void compound_page_dtor(struct page *);
     873             : 
     874             : /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
     875             : enum compound_dtor_id {
     876             :         NULL_COMPOUND_DTOR,
     877             :         COMPOUND_PAGE_DTOR,
     878             : #ifdef CONFIG_HUGETLB_PAGE
     879             :         HUGETLB_PAGE_DTOR,
     880             : #endif
     881             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     882             :         TRANSHUGE_PAGE_DTOR,
     883             : #endif
     884             :         NR_COMPOUND_DTORS,
     885             : };
     886             : extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
     887             : 
     888             : static inline void set_compound_page_dtor(struct page *page,
     889             :                 enum compound_dtor_id compound_dtor)
     890             : {
     891             :         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
     892         109 :         page[1].compound_dtor = compound_dtor;
     893             : }
     894             : 
     895             : static inline void destroy_compound_page(struct page *page)
     896             : {
     897             :         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
     898           0 :         compound_page_dtors[page[1].compound_dtor](page);
     899             : }
     900             : 
     901             : static inline int head_compound_pincount(struct page *head)
     902             : {
     903           0 :         return atomic_read(compound_pincount_ptr(head));
     904             : }
     905             : 
     906             : static inline void set_compound_order(struct page *page, unsigned int order)
     907             : {
     908         109 :         page[1].compound_order = order;
     909             : #ifdef CONFIG_64BIT
     910         109 :         page[1].compound_nr = 1U << order;
     911             : #endif
     912             : }
     913             : 
     914             : /* Returns the number of pages in this potentially compound page. */
     915             : static inline unsigned long compound_nr(struct page *page)
     916             : {
     917           0 :         if (!PageHead(page))
     918             :                 return 1;
     919             : #ifdef CONFIG_64BIT
     920           0 :         return page[1].compound_nr;
     921             : #else
     922             :         return 1UL << compound_order(page);
     923             : #endif
     924             : }
     925             : 
     926             : /* Returns the number of bytes in this potentially compound page. */
     927             : static inline unsigned long page_size(struct page *page)
     928             : {
     929           0 :         return PAGE_SIZE << compound_order(page);
     930             : }
     931             : 
     932             : /* Returns the number of bits needed for the number of bytes in a page */
     933             : static inline unsigned int page_shift(struct page *page)
     934             : {
     935             :         return PAGE_SHIFT + compound_order(page);
     936             : }
     937             : 
     938             : /**
     939             :  * thp_order - Order of a transparent huge page.
     940             :  * @page: Head page of a transparent huge page.
     941             :  */
     942             : static inline unsigned int thp_order(struct page *page)
     943             : {
     944             :         VM_BUG_ON_PGFLAGS(PageTail(page), page);
     945           0 :         return compound_order(page);
     946             : }
     947             : 
     948             : /**
     949             :  * thp_nr_pages - The number of regular pages in this huge page.
     950             :  * @page: The head page of a huge page.
     951             :  */
     952             : static inline int thp_nr_pages(struct page *page)
     953             : {
     954             :         VM_BUG_ON_PGFLAGS(PageTail(page), page);
     955           0 :         return compound_nr(page);
     956             : }
     957             : 
     958             : /**
     959             :  * thp_size - Size of a transparent huge page.
     960             :  * @page: Head page of a transparent huge page.
     961             :  *
     962             :  * Return: Number of bytes in this page.
     963             :  */
     964             : static inline unsigned long thp_size(struct page *page)
     965             : {
     966           0 :         return PAGE_SIZE << thp_order(page);
     967             : }
     968             : 
     969             : void free_compound_page(struct page *page);
     970             : 
     971             : #ifdef CONFIG_MMU
     972             : /*
     973             :  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
     974             :  * servicing faults for write access.  In the normal case, do always want
     975             :  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
     976             :  * that do not have writing enabled, when used by access_process_vm.
     977             :  */
     978             : static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
     979             : {
     980           0 :         if (likely(vma->vm_flags & VM_WRITE))
     981             :                 pte = pte_mkwrite(pte);
     982             :         return pte;
     983             : }
     984             : 
     985             : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
     986             : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
     987             : 
     988             : vm_fault_t finish_fault(struct vm_fault *vmf);
     989             : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
     990             : #endif
     991             : 
     992             : /*
     993             :  * Multiple processes may "see" the same page. E.g. for untouched
     994             :  * mappings of /dev/null, all processes see the same page full of
     995             :  * zeroes, and text pages of executables and shared libraries have
     996             :  * only one copy in memory, at most, normally.
     997             :  *
     998             :  * For the non-reserved pages, page_count(page) denotes a reference count.
     999             :  *   page_count() == 0 means the page is free. page->lru is then used for
    1000             :  *   freelist management in the buddy allocator.
    1001             :  *   page_count() > 0  means the page has been allocated.
    1002             :  *
    1003             :  * Pages are allocated by the slab allocator in order to provide memory
    1004             :  * to kmalloc and kmem_cache_alloc. In this case, the management of the
    1005             :  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
    1006             :  * unless a particular usage is carefully commented. (the responsibility of
    1007             :  * freeing the kmalloc memory is the caller's, of course).
    1008             :  *
    1009             :  * A page may be used by anyone else who does a __get_free_page().
    1010             :  * In this case, page_count still tracks the references, and should only
    1011             :  * be used through the normal accessor functions. The top bits of page->flags
    1012             :  * and page->virtual store page management information, but all other fields
    1013             :  * are unused and could be used privately, carefully. The management of this
    1014             :  * page is the responsibility of the one who allocated it, and those who have
    1015             :  * subsequently been given references to it.
    1016             :  *
    1017             :  * The other pages (we may call them "pagecache pages") are completely
    1018             :  * managed by the Linux memory manager: I/O, buffers, swapping etc.
    1019             :  * The following discussion applies only to them.
    1020             :  *
    1021             :  * A pagecache page contains an opaque `private' member, which belongs to the
    1022             :  * page's address_space. Usually, this is the address of a circular list of
    1023             :  * the page's disk buffers. PG_private must be set to tell the VM to call
    1024             :  * into the filesystem to release these pages.
    1025             :  *
    1026             :  * A page may belong to an inode's memory mapping. In this case, page->mapping
    1027             :  * is the pointer to the inode, and page->index is the file offset of the page,
    1028             :  * in units of PAGE_SIZE.
    1029             :  *
    1030             :  * If pagecache pages are not associated with an inode, they are said to be
    1031             :  * anonymous pages. These may become associated with the swapcache, and in that
    1032             :  * case PG_swapcache is set, and page->private is an offset into the swapcache.
    1033             :  *
    1034             :  * In either case (swapcache or inode backed), the pagecache itself holds one
    1035             :  * reference to the page. Setting PG_private should also increment the
    1036             :  * refcount. The each user mapping also has a reference to the page.
    1037             :  *
    1038             :  * The pagecache pages are stored in a per-mapping radix tree, which is
    1039             :  * rooted at mapping->i_pages, and indexed by offset.
    1040             :  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
    1041             :  * lists, we instead now tag pages as dirty/writeback in the radix tree.
    1042             :  *
    1043             :  * All pagecache pages may be subject to I/O:
    1044             :  * - inode pages may need to be read from disk,
    1045             :  * - inode pages which have been modified and are MAP_SHARED may need
    1046             :  *   to be written back to the inode on disk,
    1047             :  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
    1048             :  *   modified may need to be swapped out to swap space and (later) to be read
    1049             :  *   back into memory.
    1050             :  */
    1051             : 
    1052             : /*
    1053             :  * The zone field is never updated after free_area_init_core()
    1054             :  * sets it, so none of the operations on it need to be atomic.
    1055             :  */
    1056             : 
    1057             : /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
    1058             : #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
    1059             : #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
    1060             : #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
    1061             : #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
    1062             : #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
    1063             : 
    1064             : /*
    1065             :  * Define the bit shifts to access each section.  For non-existent
    1066             :  * sections we define the shift as 0; that plus a 0 mask ensures
    1067             :  * the compiler will optimise away reference to them.
    1068             :  */
    1069             : #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
    1070             : #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
    1071             : #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
    1072             : #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
    1073             : #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
    1074             : 
    1075             : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
    1076             : #ifdef NODE_NOT_IN_PAGE_FLAGS
    1077             : #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
    1078             : #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
    1079             :                                                 SECTIONS_PGOFF : ZONES_PGOFF)
    1080             : #else
    1081             : #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
    1082             : #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
    1083             :                                                 NODES_PGOFF : ZONES_PGOFF)
    1084             : #endif
    1085             : 
    1086             : #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
    1087             : 
    1088             : #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
    1089             : #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
    1090             : #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
    1091             : #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
    1092             : #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
    1093             : #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
    1094             : 
    1095             : static inline enum zone_type page_zonenum(const struct page *page)
    1096             : {
    1097        2309 :         ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
    1098        1779 :         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
    1099             : }
    1100             : 
    1101             : static inline enum zone_type folio_zonenum(const struct folio *folio)
    1102             : {
    1103           0 :         return page_zonenum(&folio->page);
    1104             : }
    1105             : 
    1106             : #ifdef CONFIG_ZONE_DEVICE
    1107             : static inline bool is_zone_device_page(const struct page *page)
    1108             : {
    1109             :         return page_zonenum(page) == ZONE_DEVICE;
    1110             : }
    1111             : extern void memmap_init_zone_device(struct zone *, unsigned long,
    1112             :                                     unsigned long, struct dev_pagemap *);
    1113             : #else
    1114             : static inline bool is_zone_device_page(const struct page *page)
    1115             : {
    1116             :         return false;
    1117             : }
    1118             : #endif
    1119             : 
    1120             : static inline bool folio_is_zone_device(const struct folio *folio)
    1121             : {
    1122           0 :         return is_zone_device_page(&folio->page);
    1123             : }
    1124             : 
    1125             : static inline bool is_zone_movable_page(const struct page *page)
    1126             : {
    1127           0 :         return page_zonenum(page) == ZONE_MOVABLE;
    1128             : }
    1129             : 
    1130             : #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
    1131             : DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
    1132             : 
    1133             : bool __put_devmap_managed_page(struct page *page);
    1134             : static inline bool put_devmap_managed_page(struct page *page)
    1135             : {
    1136             :         if (!static_branch_unlikely(&devmap_managed_key))
    1137             :                 return false;
    1138             :         if (!is_zone_device_page(page))
    1139             :                 return false;
    1140             :         return __put_devmap_managed_page(page);
    1141             : }
    1142             : 
    1143             : #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
    1144             : static inline bool put_devmap_managed_page(struct page *page)
    1145             : {
    1146             :         return false;
    1147             : }
    1148             : #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
    1149             : 
    1150             : /* 127: arbitrary random number, small enough to assemble well */
    1151             : #define folio_ref_zero_or_close_to_overflow(folio) \
    1152             :         ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
    1153             : 
    1154             : /**
    1155             :  * folio_get - Increment the reference count on a folio.
    1156             :  * @folio: The folio.
    1157             :  *
    1158             :  * Context: May be called in any context, as long as you know that
    1159             :  * you have a refcount on the folio.  If you do not already have one,
    1160             :  * folio_try_get() may be the right interface for you to use.
    1161             :  */
    1162             : static inline void folio_get(struct folio *folio)
    1163             : {
    1164             :         VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
    1165           0 :         folio_ref_inc(folio);
    1166             : }
    1167             : 
    1168             : static inline void get_page(struct page *page)
    1169             : {
    1170           0 :         folio_get(page_folio(page));
    1171             : }
    1172             : 
    1173             : bool __must_check try_grab_page(struct page *page, unsigned int flags);
    1174             : 
    1175           0 : static inline __must_check bool try_get_page(struct page *page)
    1176             : {
    1177           0 :         page = compound_head(page);
    1178           0 :         if (WARN_ON_ONCE(page_ref_count(page) <= 0))
    1179             :                 return false;
    1180           0 :         page_ref_inc(page);
    1181           0 :         return true;
    1182             : }
    1183             : 
    1184             : /**
    1185             :  * folio_put - Decrement the reference count on a folio.
    1186             :  * @folio: The folio.
    1187             :  *
    1188             :  * If the folio's reference count reaches zero, the memory will be
    1189             :  * released back to the page allocator and may be used by another
    1190             :  * allocation immediately.  Do not access the memory or the struct folio
    1191             :  * after calling folio_put() unless you can be sure that it wasn't the
    1192             :  * last reference.
    1193             :  *
    1194             :  * Context: May be called in process or interrupt context, but not in NMI
    1195             :  * context.  May be called while holding a spinlock.
    1196             :  */
    1197             : static inline void folio_put(struct folio *folio)
    1198             : {
    1199           0 :         if (folio_put_testzero(folio))
    1200           0 :                 __put_page(&folio->page);
    1201             : }
    1202             : 
    1203             : /**
    1204             :  * folio_put_refs - Reduce the reference count on a folio.
    1205             :  * @folio: The folio.
    1206             :  * @refs: The amount to subtract from the folio's reference count.
    1207             :  *
    1208             :  * If the folio's reference count reaches zero, the memory will be
    1209             :  * released back to the page allocator and may be used by another
    1210             :  * allocation immediately.  Do not access the memory or the struct folio
    1211             :  * after calling folio_put_refs() unless you can be sure that these weren't
    1212             :  * the last references.
    1213             :  *
    1214             :  * Context: May be called in process or interrupt context, but not in NMI
    1215             :  * context.  May be called while holding a spinlock.
    1216             :  */
    1217             : static inline void folio_put_refs(struct folio *folio, int refs)
    1218             : {
    1219           0 :         if (folio_ref_sub_and_test(folio, refs))
    1220           0 :                 __put_page(&folio->page);
    1221             : }
    1222             : 
    1223           0 : static inline void put_page(struct page *page)
    1224             : {
    1225           0 :         struct folio *folio = page_folio(page);
    1226             : 
    1227             :         /*
    1228             :          * For some devmap managed pages we need to catch refcount transition
    1229             :          * from 2 to 1:
    1230             :          */
    1231           0 :         if (put_devmap_managed_page(&folio->page))
    1232             :                 return;
    1233             :         folio_put(folio);
    1234             : }
    1235             : 
    1236             : /*
    1237             :  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
    1238             :  * the page's refcount so that two separate items are tracked: the original page
    1239             :  * reference count, and also a new count of how many pin_user_pages() calls were
    1240             :  * made against the page. ("gup-pinned" is another term for the latter).
    1241             :  *
    1242             :  * With this scheme, pin_user_pages() becomes special: such pages are marked as
    1243             :  * distinct from normal pages. As such, the unpin_user_page() call (and its
    1244             :  * variants) must be used in order to release gup-pinned pages.
    1245             :  *
    1246             :  * Choice of value:
    1247             :  *
    1248             :  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
    1249             :  * counts with respect to pin_user_pages() and unpin_user_page() becomes
    1250             :  * simpler, due to the fact that adding an even power of two to the page
    1251             :  * refcount has the effect of using only the upper N bits, for the code that
    1252             :  * counts up using the bias value. This means that the lower bits are left for
    1253             :  * the exclusive use of the original code that increments and decrements by one
    1254             :  * (or at least, by much smaller values than the bias value).
    1255             :  *
    1256             :  * Of course, once the lower bits overflow into the upper bits (and this is
    1257             :  * OK, because subtraction recovers the original values), then visual inspection
    1258             :  * no longer suffices to directly view the separate counts. However, for normal
    1259             :  * applications that don't have huge page reference counts, this won't be an
    1260             :  * issue.
    1261             :  *
    1262             :  * Locking: the lockless algorithm described in folio_try_get_rcu()
    1263             :  * provides safe operation for get_user_pages(), page_mkclean() and
    1264             :  * other calls that race to set up page table entries.
    1265             :  */
    1266             : #define GUP_PIN_COUNTING_BIAS (1U << 10)
    1267             : 
    1268             : void unpin_user_page(struct page *page);
    1269             : void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
    1270             :                                  bool make_dirty);
    1271             : void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
    1272             :                                       bool make_dirty);
    1273             : void unpin_user_pages(struct page **pages, unsigned long npages);
    1274             : 
    1275             : static inline bool is_cow_mapping(vm_flags_t flags)
    1276             : {
    1277           0 :         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
    1278             : }
    1279             : 
    1280             : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
    1281             : #define SECTION_IN_PAGE_FLAGS
    1282             : #endif
    1283             : 
    1284             : /*
    1285             :  * The identification function is mainly used by the buddy allocator for
    1286             :  * determining if two pages could be buddies. We are not really identifying
    1287             :  * the zone since we could be using the section number id if we do not have
    1288             :  * node id available in page flags.
    1289             :  * We only guarantee that it will return the same value for two combinable
    1290             :  * pages in a zone.
    1291             :  */
    1292             : static inline int page_zone_id(struct page *page)
    1293             : {
    1294         552 :         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
    1295             : }
    1296             : 
    1297             : #ifdef NODE_NOT_IN_PAGE_FLAGS
    1298             : extern int page_to_nid(const struct page *page);
    1299             : #else
    1300             : static inline int page_to_nid(const struct page *page)
    1301             : {
    1302        3666 :         struct page *p = (struct page *)page;
    1303             : 
    1304             :         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
    1305             : }
    1306             : #endif
    1307             : 
    1308             : static inline int folio_nid(const struct folio *folio)
    1309             : {
    1310         551 :         return page_to_nid(&folio->page);
    1311             : }
    1312             : 
    1313             : #ifdef CONFIG_NUMA_BALANCING
    1314             : static inline int cpu_pid_to_cpupid(int cpu, int pid)
    1315             : {
    1316             :         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
    1317             : }
    1318             : 
    1319             : static inline int cpupid_to_pid(int cpupid)
    1320             : {
    1321             :         return cpupid & LAST__PID_MASK;
    1322             : }
    1323             : 
    1324             : static inline int cpupid_to_cpu(int cpupid)
    1325             : {
    1326             :         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
    1327             : }
    1328             : 
    1329             : static inline int cpupid_to_nid(int cpupid)
    1330             : {
    1331             :         return cpu_to_node(cpupid_to_cpu(cpupid));
    1332             : }
    1333             : 
    1334             : static inline bool cpupid_pid_unset(int cpupid)
    1335             : {
    1336             :         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
    1337             : }
    1338             : 
    1339             : static inline bool cpupid_cpu_unset(int cpupid)
    1340             : {
    1341             :         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
    1342             : }
    1343             : 
    1344             : static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
    1345             : {
    1346             :         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
    1347             : }
    1348             : 
    1349             : #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
    1350             : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
    1351             : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    1352             : {
    1353             :         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
    1354             : }
    1355             : 
    1356             : static inline int page_cpupid_last(struct page *page)
    1357             : {
    1358             :         return page->_last_cpupid;
    1359             : }
    1360             : static inline void page_cpupid_reset_last(struct page *page)
    1361             : {
    1362             :         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
    1363             : }
    1364             : #else
    1365             : static inline int page_cpupid_last(struct page *page)
    1366             : {
    1367             :         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
    1368             : }
    1369             : 
    1370             : extern int page_cpupid_xchg_last(struct page *page, int cpupid);
    1371             : 
    1372             : static inline void page_cpupid_reset_last(struct page *page)
    1373             : {
    1374             :         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
    1375             : }
    1376             : #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
    1377             : #else /* !CONFIG_NUMA_BALANCING */
    1378             : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    1379             : {
    1380           0 :         return page_to_nid(page); /* XXX */
    1381             : }
    1382             : 
    1383             : static inline int page_cpupid_last(struct page *page)
    1384             : {
    1385             :         return page_to_nid(page); /* XXX */
    1386             : }
    1387             : 
    1388             : static inline int cpupid_to_nid(int cpupid)
    1389             : {
    1390             :         return -1;
    1391             : }
    1392             : 
    1393             : static inline int cpupid_to_pid(int cpupid)
    1394             : {
    1395             :         return -1;
    1396             : }
    1397             : 
    1398             : static inline int cpupid_to_cpu(int cpupid)
    1399             : {
    1400             :         return -1;
    1401             : }
    1402             : 
    1403             : static inline int cpu_pid_to_cpupid(int nid, int pid)
    1404             : {
    1405             :         return -1;
    1406             : }
    1407             : 
    1408             : static inline bool cpupid_pid_unset(int cpupid)
    1409             : {
    1410             :         return true;
    1411             : }
    1412             : 
    1413             : static inline void page_cpupid_reset_last(struct page *page)
    1414             : {
    1415             : }
    1416             : 
    1417             : static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
    1418             : {
    1419             :         return false;
    1420             : }
    1421             : #endif /* CONFIG_NUMA_BALANCING */
    1422             : 
    1423             : #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
    1424             : 
    1425             : /*
    1426             :  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
    1427             :  * setting tags for all pages to native kernel tag value 0xff, as the default
    1428             :  * value 0x00 maps to 0xff.
    1429             :  */
    1430             : 
    1431             : static inline u8 page_kasan_tag(const struct page *page)
    1432             : {
    1433             :         u8 tag = 0xff;
    1434             : 
    1435             :         if (kasan_enabled()) {
    1436             :                 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
    1437             :                 tag ^= 0xff;
    1438             :         }
    1439             : 
    1440             :         return tag;
    1441             : }
    1442             : 
    1443             : static inline void page_kasan_tag_set(struct page *page, u8 tag)
    1444             : {
    1445             :         unsigned long old_flags, flags;
    1446             : 
    1447             :         if (!kasan_enabled())
    1448             :                 return;
    1449             : 
    1450             :         tag ^= 0xff;
    1451             :         old_flags = READ_ONCE(page->flags);
    1452             :         do {
    1453             :                 flags = old_flags;
    1454             :                 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
    1455             :                 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
    1456             :         } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
    1457             : }
    1458             : 
    1459             : static inline void page_kasan_tag_reset(struct page *page)
    1460             : {
    1461             :         if (kasan_enabled())
    1462             :                 page_kasan_tag_set(page, 0xff);
    1463             : }
    1464             : 
    1465             : #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
    1466             : 
    1467             : static inline u8 page_kasan_tag(const struct page *page)
    1468             : {
    1469             :         return 0xff;
    1470             : }
    1471             : 
    1472             : static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
    1473             : static inline void page_kasan_tag_reset(struct page *page) { }
    1474             : 
    1475             : #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
    1476             : 
    1477             : static inline struct zone *page_zone(const struct page *page)
    1478             : {
    1479        4208 :         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
    1480             : }
    1481             : 
    1482             : static inline pg_data_t *page_pgdat(const struct page *page)
    1483             : {
    1484        1274 :         return NODE_DATA(page_to_nid(page));
    1485             : }
    1486             : 
    1487             : static inline struct zone *folio_zone(const struct folio *folio)
    1488             : {
    1489           0 :         return page_zone(&folio->page);
    1490             : }
    1491             : 
    1492             : static inline pg_data_t *folio_pgdat(const struct folio *folio)
    1493             : {
    1494         457 :         return page_pgdat(&folio->page);
    1495             : }
    1496             : 
    1497             : #ifdef SECTION_IN_PAGE_FLAGS
    1498             : static inline void set_page_section(struct page *page, unsigned long section)
    1499             : {
    1500             :         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
    1501             :         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
    1502             : }
    1503             : 
    1504             : static inline unsigned long page_to_section(const struct page *page)
    1505             : {
    1506             :         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
    1507             : }
    1508             : #endif
    1509             : 
    1510             : /**
    1511             :  * folio_pfn - Return the Page Frame Number of a folio.
    1512             :  * @folio: The folio.
    1513             :  *
    1514             :  * A folio may contain multiple pages.  The pages have consecutive
    1515             :  * Page Frame Numbers.
    1516             :  *
    1517             :  * Return: The Page Frame Number of the first page in the folio.
    1518             :  */
    1519             : static inline unsigned long folio_pfn(struct folio *folio)
    1520             : {
    1521           0 :         return page_to_pfn(&folio->page);
    1522             : }
    1523             : 
    1524             : static inline atomic_t *folio_pincount_ptr(struct folio *folio)
    1525             : {
    1526           0 :         return &folio_page(folio, 1)->compound_pincount;
    1527             : }
    1528             : 
    1529             : /**
    1530             :  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
    1531             :  * @folio: The folio.
    1532             :  *
    1533             :  * This function checks if a folio has been pinned via a call to
    1534             :  * a function in the pin_user_pages() family.
    1535             :  *
    1536             :  * For small folios, the return value is partially fuzzy: false is not fuzzy,
    1537             :  * because it means "definitely not pinned for DMA", but true means "probably
    1538             :  * pinned for DMA, but possibly a false positive due to having at least
    1539             :  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
    1540             :  *
    1541             :  * False positives are OK, because: a) it's unlikely for a folio to
    1542             :  * get that many refcounts, and b) all the callers of this routine are
    1543             :  * expected to be able to deal gracefully with a false positive.
    1544             :  *
    1545             :  * For large folios, the result will be exactly correct. That's because
    1546             :  * we have more tracking data available: the compound_pincount is used
    1547             :  * instead of the GUP_PIN_COUNTING_BIAS scheme.
    1548             :  *
    1549             :  * For more information, please see Documentation/core-api/pin_user_pages.rst.
    1550             :  *
    1551             :  * Return: True, if it is likely that the page has been "dma-pinned".
    1552             :  * False, if the page is definitely not dma-pinned.
    1553             :  */
    1554             : static inline bool folio_maybe_dma_pinned(struct folio *folio)
    1555             : {
    1556           0 :         if (folio_test_large(folio))
    1557           0 :                 return atomic_read(folio_pincount_ptr(folio)) > 0;
    1558             : 
    1559             :         /*
    1560             :          * folio_ref_count() is signed. If that refcount overflows, then
    1561             :          * folio_ref_count() returns a negative value, and callers will avoid
    1562             :          * further incrementing the refcount.
    1563             :          *
    1564             :          * Here, for that overflow case, use the sign bit to count a little
    1565             :          * bit higher via unsigned math, and thus still get an accurate result.
    1566             :          */
    1567           0 :         return ((unsigned int)folio_ref_count(folio)) >=
    1568             :                 GUP_PIN_COUNTING_BIAS;
    1569             : }
    1570             : 
    1571             : static inline bool page_maybe_dma_pinned(struct page *page)
    1572             : {
    1573           0 :         return folio_maybe_dma_pinned(page_folio(page));
    1574             : }
    1575             : 
    1576             : /*
    1577             :  * This should most likely only be called during fork() to see whether we
    1578             :  * should break the cow immediately for a page on the src mm.
    1579             :  */
    1580           0 : static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
    1581             :                                           struct page *page)
    1582             : {
    1583           0 :         if (!is_cow_mapping(vma->vm_flags))
    1584             :                 return false;
    1585             : 
    1586           0 :         if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
    1587             :                 return false;
    1588             : 
    1589             :         return page_maybe_dma_pinned(page);
    1590             : }
    1591             : 
    1592             : /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
    1593             : #ifdef CONFIG_MIGRATION
    1594             : static inline bool is_pinnable_page(struct page *page)
    1595             : {
    1596           0 :         return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
    1597           0 :                 is_zero_pfn(page_to_pfn(page));
    1598             : }
    1599             : #else
    1600             : static inline bool is_pinnable_page(struct page *page)
    1601             : {
    1602             :         return true;
    1603             : }
    1604             : #endif
    1605             : 
    1606             : static inline bool folio_is_pinnable(struct folio *folio)
    1607             : {
    1608           0 :         return is_pinnable_page(&folio->page);
    1609             : }
    1610             : 
    1611             : static inline void set_page_zone(struct page *page, enum zone_type zone)
    1612             : {
    1613             :         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
    1614      266125 :         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
    1615             : }
    1616             : 
    1617             : static inline void set_page_node(struct page *page, unsigned long node)
    1618             : {
    1619             :         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
    1620             :         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
    1621             : }
    1622             : 
    1623             : static inline void set_page_links(struct page *page, enum zone_type zone,
    1624             :         unsigned long node, unsigned long pfn)
    1625             : {
    1626      532250 :         set_page_zone(page, zone);
    1627      266125 :         set_page_node(page, node);
    1628             : #ifdef SECTION_IN_PAGE_FLAGS
    1629             :         set_page_section(page, pfn_to_section_nr(pfn));
    1630             : #endif
    1631             : }
    1632             : 
    1633             : /**
    1634             :  * folio_nr_pages - The number of pages in the folio.
    1635             :  * @folio: The folio.
    1636             :  *
    1637             :  * Return: A positive power of two.
    1638             :  */
    1639             : static inline long folio_nr_pages(struct folio *folio)
    1640             : {
    1641           0 :         return compound_nr(&folio->page);
    1642             : }
    1643             : 
    1644             : /**
    1645             :  * folio_next - Move to the next physical folio.
    1646             :  * @folio: The folio we're currently operating on.
    1647             :  *
    1648             :  * If you have physically contiguous memory which may span more than
    1649             :  * one folio (eg a &struct bio_vec), use this function to move from one
    1650             :  * folio to the next.  Do not use it if the memory is only virtually
    1651             :  * contiguous as the folios are almost certainly not adjacent to each
    1652             :  * other.  This is the folio equivalent to writing ``page++``.
    1653             :  *
    1654             :  * Context: We assume that the folios are refcounted and/or locked at a
    1655             :  * higher level and do not adjust the reference counts.
    1656             :  * Return: The next struct folio.
    1657             :  */
    1658             : static inline struct folio *folio_next(struct folio *folio)
    1659             : {
    1660             :         return (struct folio *)folio_page(folio, folio_nr_pages(folio));
    1661             : }
    1662             : 
    1663             : /**
    1664             :  * folio_shift - The size of the memory described by this folio.
    1665             :  * @folio: The folio.
    1666             :  *
    1667             :  * A folio represents a number of bytes which is a power-of-two in size.
    1668             :  * This function tells you which power-of-two the folio is.  See also
    1669             :  * folio_size() and folio_order().
    1670             :  *
    1671             :  * Context: The caller should have a reference on the folio to prevent
    1672             :  * it from being split.  It is not necessary for the folio to be locked.
    1673             :  * Return: The base-2 logarithm of the size of this folio.
    1674             :  */
    1675             : static inline unsigned int folio_shift(struct folio *folio)
    1676             : {
    1677           0 :         return PAGE_SHIFT + folio_order(folio);
    1678             : }
    1679             : 
    1680             : /**
    1681             :  * folio_size - The number of bytes in a folio.
    1682             :  * @folio: The folio.
    1683             :  *
    1684             :  * Context: The caller should have a reference on the folio to prevent
    1685             :  * it from being split.  It is not necessary for the folio to be locked.
    1686             :  * Return: The number of bytes in this folio.
    1687             :  */
    1688             : static inline size_t folio_size(struct folio *folio)
    1689             : {
    1690           0 :         return PAGE_SIZE << folio_order(folio);
    1691             : }
    1692             : 
    1693             : #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
    1694             : static inline int arch_make_page_accessible(struct page *page)
    1695             : {
    1696             :         return 0;
    1697             : }
    1698             : #endif
    1699             : 
    1700             : #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
    1701             : static inline int arch_make_folio_accessible(struct folio *folio)
    1702             : {
    1703             :         int ret;
    1704           0 :         long i, nr = folio_nr_pages(folio);
    1705             : 
    1706           0 :         for (i = 0; i < nr; i++) {
    1707             :                 ret = arch_make_page_accessible(folio_page(folio, i));
    1708             :                 if (ret)
    1709             :                         break;
    1710             :         }
    1711             : 
    1712             :         return ret;
    1713             : }
    1714             : #endif
    1715             : 
    1716             : /*
    1717             :  * Some inline functions in vmstat.h depend on page_zone()
    1718             :  */
    1719             : #include <linux/vmstat.h>
    1720             : 
    1721             : static __always_inline void *lowmem_page_address(const struct page *page)
    1722             : {
    1723        1604 :         return page_to_virt(page);
    1724             : }
    1725             : 
    1726             : #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
    1727             : #define HASHED_PAGE_VIRTUAL
    1728             : #endif
    1729             : 
    1730             : #if defined(WANT_PAGE_VIRTUAL)
    1731             : static inline void *page_address(const struct page *page)
    1732             : {
    1733             :         return page->virtual;
    1734             : }
    1735             : static inline void set_page_address(struct page *page, void *address)
    1736             : {
    1737             :         page->virtual = address;
    1738             : }
    1739             : #define page_address_init()  do { } while(0)
    1740             : #endif
    1741             : 
    1742             : #if defined(HASHED_PAGE_VIRTUAL)
    1743             : void *page_address(const struct page *page);
    1744             : void set_page_address(struct page *page, void *virtual);
    1745             : void page_address_init(void);
    1746             : #endif
    1747             : 
    1748             : #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
    1749             : #define page_address(page) lowmem_page_address(page)
    1750             : #define set_page_address(page, address)  do { } while(0)
    1751             : #define page_address_init()  do { } while(0)
    1752             : #endif
    1753             : 
    1754             : static inline void *folio_address(const struct folio *folio)
    1755             : {
    1756         908 :         return page_address(&folio->page);
    1757             : }
    1758             : 
    1759             : extern void *page_rmapping(struct page *page);
    1760             : extern pgoff_t __page_file_index(struct page *page);
    1761             : 
    1762             : /*
    1763             :  * Return the pagecache index of the passed page.  Regular pagecache pages
    1764             :  * use ->index whereas swapcache pages use swp_offset(->private)
    1765             :  */
    1766           0 : static inline pgoff_t page_index(struct page *page)
    1767             : {
    1768           0 :         if (unlikely(PageSwapCache(page)))
    1769           0 :                 return __page_file_index(page);
    1770           0 :         return page->index;
    1771             : }
    1772             : 
    1773             : bool page_mapped(struct page *page);
    1774             : bool folio_mapped(struct folio *folio);
    1775             : 
    1776             : /*
    1777             :  * Return true only if the page has been allocated with
    1778             :  * ALLOC_NO_WATERMARKS and the low watermark was not
    1779             :  * met implying that the system is under some pressure.
    1780             :  */
    1781             : static inline bool page_is_pfmemalloc(const struct page *page)
    1782             : {
    1783             :         /*
    1784             :          * lru.next has bit 1 set if the page is allocated from the
    1785             :          * pfmemalloc reserves.  Callers may simply overwrite it if
    1786             :          * they do not need to preserve that information.
    1787             :          */
    1788         454 :         return (uintptr_t)page->lru.next & BIT(1);
    1789             : }
    1790             : 
    1791             : /*
    1792             :  * Only to be called by the page allocator on a freshly allocated
    1793             :  * page.
    1794             :  */
    1795             : static inline void set_page_pfmemalloc(struct page *page)
    1796             : {
    1797           0 :         page->lru.next = (void *)BIT(1);
    1798             : }
    1799             : 
    1800             : static inline void clear_page_pfmemalloc(struct page *page)
    1801             : {
    1802         528 :         page->lru.next = NULL;
    1803             : }
    1804             : 
    1805             : /*
    1806             :  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
    1807             :  */
    1808             : extern void pagefault_out_of_memory(void);
    1809             : 
    1810             : #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
    1811             : #define offset_in_thp(page, p)  ((unsigned long)(p) & (thp_size(page) - 1))
    1812             : #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
    1813             : 
    1814             : /*
    1815             :  * Flags passed to show_mem() and show_free_areas() to suppress output in
    1816             :  * various contexts.
    1817             :  */
    1818             : #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
    1819             : 
    1820             : extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
    1821             : 
    1822             : #ifdef CONFIG_MMU
    1823             : extern bool can_do_mlock(void);
    1824             : #else
    1825             : static inline bool can_do_mlock(void) { return false; }
    1826             : #endif
    1827             : extern int user_shm_lock(size_t, struct ucounts *);
    1828             : extern void user_shm_unlock(size_t, struct ucounts *);
    1829             : 
    1830             : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
    1831             :                              pte_t pte);
    1832             : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
    1833             :                                 pmd_t pmd);
    1834             : 
    1835             : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    1836             :                   unsigned long size);
    1837             : void zap_page_range(struct vm_area_struct *vma, unsigned long address,
    1838             :                     unsigned long size);
    1839             : void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
    1840             :                 unsigned long start, unsigned long end);
    1841             : 
    1842             : struct mmu_notifier_range;
    1843             : 
    1844             : void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
    1845             :                 unsigned long end, unsigned long floor, unsigned long ceiling);
    1846             : int
    1847             : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
    1848             : int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
    1849             :                           struct mmu_notifier_range *range, pte_t **ptepp,
    1850             :                           pmd_t **pmdpp, spinlock_t **ptlp);
    1851             : int follow_pte(struct mm_struct *mm, unsigned long address,
    1852             :                pte_t **ptepp, spinlock_t **ptlp);
    1853             : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    1854             :         unsigned long *pfn);
    1855             : int follow_phys(struct vm_area_struct *vma, unsigned long address,
    1856             :                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
    1857             : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    1858             :                         void *buf, int len, int write);
    1859             : 
    1860             : extern void truncate_pagecache(struct inode *inode, loff_t new);
    1861             : extern void truncate_setsize(struct inode *inode, loff_t newsize);
    1862             : void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
    1863             : void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
    1864             : int generic_error_remove_page(struct address_space *mapping, struct page *page);
    1865             : 
    1866             : #ifdef CONFIG_MMU
    1867             : extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
    1868             :                                   unsigned long address, unsigned int flags,
    1869             :                                   struct pt_regs *regs);
    1870             : extern int fixup_user_fault(struct mm_struct *mm,
    1871             :                             unsigned long address, unsigned int fault_flags,
    1872             :                             bool *unlocked);
    1873             : void unmap_mapping_pages(struct address_space *mapping,
    1874             :                 pgoff_t start, pgoff_t nr, bool even_cows);
    1875             : void unmap_mapping_range(struct address_space *mapping,
    1876             :                 loff_t const holebegin, loff_t const holelen, int even_cows);
    1877             : #else
    1878             : static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
    1879             :                                          unsigned long address, unsigned int flags,
    1880             :                                          struct pt_regs *regs)
    1881             : {
    1882             :         /* should never happen if there's no MMU */
    1883             :         BUG();
    1884             :         return VM_FAULT_SIGBUS;
    1885             : }
    1886             : static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
    1887             :                 unsigned int fault_flags, bool *unlocked)
    1888             : {
    1889             :         /* should never happen if there's no MMU */
    1890             :         BUG();
    1891             :         return -EFAULT;
    1892             : }
    1893             : static inline void unmap_mapping_pages(struct address_space *mapping,
    1894             :                 pgoff_t start, pgoff_t nr, bool even_cows) { }
    1895             : static inline void unmap_mapping_range(struct address_space *mapping,
    1896             :                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
    1897             : #endif
    1898             : 
    1899             : static inline void unmap_shared_mapping_range(struct address_space *mapping,
    1900             :                 loff_t const holebegin, loff_t const holelen)
    1901             : {
    1902             :         unmap_mapping_range(mapping, holebegin, holelen, 0);
    1903             : }
    1904             : 
    1905             : extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
    1906             :                 void *buf, int len, unsigned int gup_flags);
    1907             : extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    1908             :                 void *buf, int len, unsigned int gup_flags);
    1909             : extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
    1910             :                               void *buf, int len, unsigned int gup_flags);
    1911             : 
    1912             : long get_user_pages_remote(struct mm_struct *mm,
    1913             :                             unsigned long start, unsigned long nr_pages,
    1914             :                             unsigned int gup_flags, struct page **pages,
    1915             :                             struct vm_area_struct **vmas, int *locked);
    1916             : long pin_user_pages_remote(struct mm_struct *mm,
    1917             :                            unsigned long start, unsigned long nr_pages,
    1918             :                            unsigned int gup_flags, struct page **pages,
    1919             :                            struct vm_area_struct **vmas, int *locked);
    1920             : long get_user_pages(unsigned long start, unsigned long nr_pages,
    1921             :                             unsigned int gup_flags, struct page **pages,
    1922             :                             struct vm_area_struct **vmas);
    1923             : long pin_user_pages(unsigned long start, unsigned long nr_pages,
    1924             :                     unsigned int gup_flags, struct page **pages,
    1925             :                     struct vm_area_struct **vmas);
    1926             : long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    1927             :                     struct page **pages, unsigned int gup_flags);
    1928             : long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    1929             :                     struct page **pages, unsigned int gup_flags);
    1930             : 
    1931             : int get_user_pages_fast(unsigned long start, int nr_pages,
    1932             :                         unsigned int gup_flags, struct page **pages);
    1933             : int pin_user_pages_fast(unsigned long start, int nr_pages,
    1934             :                         unsigned int gup_flags, struct page **pages);
    1935             : 
    1936             : int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
    1937             : int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
    1938             :                         struct task_struct *task, bool bypass_rlim);
    1939             : 
    1940             : struct kvec;
    1941             : int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
    1942             :                         struct page **pages);
    1943             : struct page *get_dump_page(unsigned long addr);
    1944             : 
    1945             : bool folio_mark_dirty(struct folio *folio);
    1946             : bool set_page_dirty(struct page *page);
    1947             : int set_page_dirty_lock(struct page *page);
    1948             : 
    1949             : int get_cmdline(struct task_struct *task, char *buffer, int buflen);
    1950             : 
    1951             : extern unsigned long move_page_tables(struct vm_area_struct *vma,
    1952             :                 unsigned long old_addr, struct vm_area_struct *new_vma,
    1953             :                 unsigned long new_addr, unsigned long len,
    1954             :                 bool need_rmap_locks);
    1955             : 
    1956             : /*
    1957             :  * Flags used by change_protection().  For now we make it a bitmap so
    1958             :  * that we can pass in multiple flags just like parameters.  However
    1959             :  * for now all the callers are only use one of the flags at the same
    1960             :  * time.
    1961             :  */
    1962             : /* Whether we should allow dirty bit accounting */
    1963             : #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
    1964             : /* Whether this protection change is for NUMA hints */
    1965             : #define  MM_CP_PROT_NUMA                   (1UL << 1)
    1966             : /* Whether this change is for write protecting */
    1967             : #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
    1968             : #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
    1969             : #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
    1970             :                                             MM_CP_UFFD_WP_RESOLVE)
    1971             : 
    1972             : extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
    1973             :                               unsigned long end, pgprot_t newprot,
    1974             :                               unsigned long cp_flags);
    1975             : extern int mprotect_fixup(struct vm_area_struct *vma,
    1976             :                           struct vm_area_struct **pprev, unsigned long start,
    1977             :                           unsigned long end, unsigned long newflags);
    1978             : 
    1979             : /*
    1980             :  * doesn't attempt to fault and will return short.
    1981             :  */
    1982             : int get_user_pages_fast_only(unsigned long start, int nr_pages,
    1983             :                              unsigned int gup_flags, struct page **pages);
    1984             : int pin_user_pages_fast_only(unsigned long start, int nr_pages,
    1985             :                              unsigned int gup_flags, struct page **pages);
    1986             : 
    1987             : static inline bool get_user_page_fast_only(unsigned long addr,
    1988             :                         unsigned int gup_flags, struct page **pagep)
    1989             : {
    1990             :         return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
    1991             : }
    1992             : /*
    1993             :  * per-process(per-mm_struct) statistics.
    1994             :  */
    1995             : static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
    1996             : {
    1997           0 :         long val = atomic_long_read(&mm->rss_stat.count[member]);
    1998             : 
    1999             : #ifdef SPLIT_RSS_COUNTING
    2000             :         /*
    2001             :          * counter is updated in asynchronous manner and may go to minus.
    2002             :          * But it's never be expected number for users.
    2003             :          */
    2004             :         if (val < 0)
    2005             :                 val = 0;
    2006             : #endif
    2007           0 :         return (unsigned long)val;
    2008             : }
    2009             : 
    2010             : void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
    2011             : 
    2012             : static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
    2013             : {
    2014           0 :         long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
    2015             : 
    2016           0 :         mm_trace_rss_stat(mm, member, count);
    2017             : }
    2018             : 
    2019             : static inline void inc_mm_counter(struct mm_struct *mm, int member)
    2020             : {
    2021           0 :         long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
    2022             : 
    2023           0 :         mm_trace_rss_stat(mm, member, count);
    2024             : }
    2025             : 
    2026             : static inline void dec_mm_counter(struct mm_struct *mm, int member)
    2027             : {
    2028           0 :         long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
    2029             : 
    2030           0 :         mm_trace_rss_stat(mm, member, count);
    2031             : }
    2032             : 
    2033             : /* Optimized variant when page is already known not to be PageAnon */
    2034             : static inline int mm_counter_file(struct page *page)
    2035             : {
    2036           0 :         if (PageSwapBacked(page))
    2037             :                 return MM_SHMEMPAGES;
    2038             :         return MM_FILEPAGES;
    2039             : }
    2040             : 
    2041           0 : static inline int mm_counter(struct page *page)
    2042             : {
    2043           0 :         if (PageAnon(page))
    2044             :                 return MM_ANONPAGES;
    2045             :         return mm_counter_file(page);
    2046             : }
    2047             : 
    2048             : static inline unsigned long get_mm_rss(struct mm_struct *mm)
    2049             : {
    2050           0 :         return get_mm_counter(mm, MM_FILEPAGES) +
    2051           0 :                 get_mm_counter(mm, MM_ANONPAGES) +
    2052           0 :                 get_mm_counter(mm, MM_SHMEMPAGES);
    2053             : }
    2054             : 
    2055             : static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
    2056             : {
    2057           0 :         return max(mm->hiwater_rss, get_mm_rss(mm));
    2058             : }
    2059             : 
    2060             : static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
    2061             : {
    2062             :         return max(mm->hiwater_vm, mm->total_vm);
    2063             : }
    2064             : 
    2065             : static inline void update_hiwater_rss(struct mm_struct *mm)
    2066             : {
    2067           0 :         unsigned long _rss = get_mm_rss(mm);
    2068             : 
    2069           0 :         if ((mm)->hiwater_rss < _rss)
    2070           0 :                 (mm)->hiwater_rss = _rss;
    2071             : }
    2072             : 
    2073             : static inline void update_hiwater_vm(struct mm_struct *mm)
    2074             : {
    2075           0 :         if (mm->hiwater_vm < mm->total_vm)
    2076           0 :                 mm->hiwater_vm = mm->total_vm;
    2077             : }
    2078             : 
    2079             : static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
    2080             : {
    2081           0 :         mm->hiwater_rss = get_mm_rss(mm);
    2082             : }
    2083             : 
    2084             : static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
    2085             :                                          struct mm_struct *mm)
    2086             : {
    2087           0 :         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
    2088             : 
    2089           0 :         if (*maxrss < hiwater_rss)
    2090           0 :                 *maxrss = hiwater_rss;
    2091             : }
    2092             : 
    2093             : #if defined(SPLIT_RSS_COUNTING)
    2094             : void sync_mm_rss(struct mm_struct *mm);
    2095             : #else
    2096             : static inline void sync_mm_rss(struct mm_struct *mm)
    2097             : {
    2098             : }
    2099             : #endif
    2100             : 
    2101             : #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
    2102             : static inline int pte_special(pte_t pte)
    2103             : {
    2104             :         return 0;
    2105             : }
    2106             : 
    2107             : static inline pte_t pte_mkspecial(pte_t pte)
    2108             : {
    2109             :         return pte;
    2110             : }
    2111             : #endif
    2112             : 
    2113             : #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
    2114             : static inline int pte_devmap(pte_t pte)
    2115             : {
    2116             :         return 0;
    2117             : }
    2118             : #endif
    2119             : 
    2120             : int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
    2121             : 
    2122             : extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    2123             :                                spinlock_t **ptl);
    2124             : static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
    2125             :                                     spinlock_t **ptl)
    2126             : {
    2127             :         pte_t *ptep;
    2128           0 :         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
    2129             :         return ptep;
    2130             : }
    2131             : 
    2132             : #ifdef __PAGETABLE_P4D_FOLDED
    2133             : static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
    2134             :                                                 unsigned long address)
    2135             : {
    2136             :         return 0;
    2137             : }
    2138             : #else
    2139             : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
    2140             : #endif
    2141             : 
    2142             : #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
    2143             : static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
    2144             :                                                 unsigned long address)
    2145             : {
    2146             :         return 0;
    2147             : }
    2148             : static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
    2149             : static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
    2150             : 
    2151             : #else
    2152             : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
    2153             : 
    2154             : static inline void mm_inc_nr_puds(struct mm_struct *mm)
    2155             : {
    2156             :         if (mm_pud_folded(mm))
    2157             :                 return;
    2158             :         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
    2159             : }
    2160             : 
    2161             : static inline void mm_dec_nr_puds(struct mm_struct *mm)
    2162             : {
    2163             :         if (mm_pud_folded(mm))
    2164             :                 return;
    2165             :         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
    2166             : }
    2167             : #endif
    2168             : 
    2169             : #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
    2170             : static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
    2171             :                                                 unsigned long address)
    2172             : {
    2173             :         return 0;
    2174             : }
    2175             : 
    2176             : static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
    2177             : static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
    2178             : 
    2179             : #else
    2180             : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
    2181             : 
    2182             : static inline void mm_inc_nr_pmds(struct mm_struct *mm)
    2183             : {
    2184             :         if (mm_pmd_folded(mm))
    2185             :                 return;
    2186           2 :         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
    2187             : }
    2188             : 
    2189             : static inline void mm_dec_nr_pmds(struct mm_struct *mm)
    2190             : {
    2191             :         if (mm_pmd_folded(mm))
    2192             :                 return;
    2193           0 :         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
    2194             : }
    2195             : #endif
    2196             : 
    2197             : #ifdef CONFIG_MMU
    2198             : static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
    2199             : {
    2200           0 :         atomic_long_set(&mm->pgtables_bytes, 0);
    2201             : }
    2202             : 
    2203             : static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
    2204             : {
    2205           0 :         return atomic_long_read(&mm->pgtables_bytes);
    2206             : }
    2207             : 
    2208             : static inline void mm_inc_nr_ptes(struct mm_struct *mm)
    2209             : {
    2210           0 :         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
    2211             : }
    2212             : 
    2213             : static inline void mm_dec_nr_ptes(struct mm_struct *mm)
    2214             : {
    2215           0 :         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
    2216             : }
    2217             : #else
    2218             : 
    2219             : static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
    2220             : static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
    2221             : {
    2222             :         return 0;
    2223             : }
    2224             : 
    2225             : static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
    2226             : static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
    2227             : #endif
    2228             : 
    2229             : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
    2230             : int __pte_alloc_kernel(pmd_t *pmd);
    2231             : 
    2232             : #if defined(CONFIG_MMU)
    2233             : 
    2234             : static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
    2235             :                 unsigned long address)
    2236             : {
    2237           0 :         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
    2238           0 :                 NULL : p4d_offset(pgd, address);
    2239             : }
    2240             : 
    2241             : static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
    2242             :                 unsigned long address)
    2243             : {
    2244           0 :         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
    2245           0 :                 NULL : pud_offset(p4d, address);
    2246             : }
    2247             : 
    2248           0 : static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    2249             : {
    2250           0 :         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
    2251           0 :                 NULL: pmd_offset(pud, address);
    2252             : }
    2253             : #endif /* CONFIG_MMU */
    2254             : 
    2255             : #if USE_SPLIT_PTE_PTLOCKS
    2256             : #if ALLOC_SPLIT_PTLOCKS
    2257             : void __init ptlock_cache_init(void);
    2258             : extern bool ptlock_alloc(struct page *page);
    2259             : extern void ptlock_free(struct page *page);
    2260             : 
    2261             : static inline spinlock_t *ptlock_ptr(struct page *page)
    2262             : {
    2263             :         return page->ptl;
    2264             : }
    2265             : #else /* ALLOC_SPLIT_PTLOCKS */
    2266             : static inline void ptlock_cache_init(void)
    2267             : {
    2268             : }
    2269             : 
    2270             : static inline bool ptlock_alloc(struct page *page)
    2271             : {
    2272             :         return true;
    2273             : }
    2274             : 
    2275             : static inline void ptlock_free(struct page *page)
    2276             : {
    2277             : }
    2278             : 
    2279             : static inline spinlock_t *ptlock_ptr(struct page *page)
    2280             : {
    2281             :         return &page->ptl;
    2282             : }
    2283             : #endif /* ALLOC_SPLIT_PTLOCKS */
    2284             : 
    2285             : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2286             : {
    2287             :         return ptlock_ptr(pmd_page(*pmd));
    2288             : }
    2289             : 
    2290             : static inline bool ptlock_init(struct page *page)
    2291             : {
    2292             :         /*
    2293             :          * prep_new_page() initialize page->private (and therefore page->ptl)
    2294             :          * with 0. Make sure nobody took it in use in between.
    2295             :          *
    2296             :          * It can happen if arch try to use slab for page table allocation:
    2297             :          * slab code uses page->slab_cache, which share storage with page->ptl.
    2298             :          */
    2299             :         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
    2300             :         if (!ptlock_alloc(page))
    2301             :                 return false;
    2302             :         spin_lock_init(ptlock_ptr(page));
    2303             :         return true;
    2304             : }
    2305             : 
    2306             : #else   /* !USE_SPLIT_PTE_PTLOCKS */
    2307             : /*
    2308             :  * We use mm->page_table_lock to guard all pagetable pages of the mm.
    2309             :  */
    2310             : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2311             : {
    2312           0 :         return &mm->page_table_lock;
    2313             : }
    2314             : static inline void ptlock_cache_init(void) {}
    2315             : static inline bool ptlock_init(struct page *page) { return true; }
    2316             : static inline void ptlock_free(struct page *page) {}
    2317             : #endif /* USE_SPLIT_PTE_PTLOCKS */
    2318             : 
    2319             : static inline void pgtable_init(void)
    2320             : {
    2321             :         ptlock_cache_init();
    2322           1 :         pgtable_cache_init();
    2323             : }
    2324             : 
    2325             : static inline bool pgtable_pte_page_ctor(struct page *page)
    2326             : {
    2327           0 :         if (!ptlock_init(page))
    2328             :                 return false;
    2329           0 :         __SetPageTable(page);
    2330           0 :         inc_lruvec_page_state(page, NR_PAGETABLE);
    2331             :         return true;
    2332             : }
    2333             : 
    2334             : static inline void pgtable_pte_page_dtor(struct page *page)
    2335             : {
    2336           0 :         ptlock_free(page);
    2337           0 :         __ClearPageTable(page);
    2338           0 :         dec_lruvec_page_state(page, NR_PAGETABLE);
    2339             : }
    2340             : 
    2341             : #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
    2342             : ({                                                      \
    2343             :         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
    2344             :         pte_t *__pte = pte_offset_map(pmd, address);    \
    2345             :         *(ptlp) = __ptl;                                \
    2346             :         spin_lock(__ptl);                               \
    2347             :         __pte;                                          \
    2348             : })
    2349             : 
    2350             : #define pte_unmap_unlock(pte, ptl)      do {            \
    2351             :         spin_unlock(ptl);                               \
    2352             :         pte_unmap(pte);                                 \
    2353             : } while (0)
    2354             : 
    2355             : #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
    2356             : 
    2357             : #define pte_alloc_map(mm, pmd, address)                 \
    2358             :         (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
    2359             : 
    2360             : #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
    2361             :         (pte_alloc(mm, pmd) ?                   \
    2362             :                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
    2363             : 
    2364             : #define pte_alloc_kernel(pmd, address)                  \
    2365             :         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
    2366             :                 NULL: pte_offset_kernel(pmd, address))
    2367             : 
    2368             : #if USE_SPLIT_PMD_PTLOCKS
    2369             : 
    2370             : static struct page *pmd_to_page(pmd_t *pmd)
    2371             : {
    2372             :         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
    2373             :         return virt_to_page((void *)((unsigned long) pmd & mask));
    2374             : }
    2375             : 
    2376             : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2377             : {
    2378             :         return ptlock_ptr(pmd_to_page(pmd));
    2379             : }
    2380             : 
    2381             : static inline bool pmd_ptlock_init(struct page *page)
    2382             : {
    2383             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    2384             :         page->pmd_huge_pte = NULL;
    2385             : #endif
    2386             :         return ptlock_init(page);
    2387             : }
    2388             : 
    2389             : static inline void pmd_ptlock_free(struct page *page)
    2390             : {
    2391             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    2392             :         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
    2393             : #endif
    2394             :         ptlock_free(page);
    2395             : }
    2396             : 
    2397             : #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
    2398             : 
    2399             : #else
    2400             : 
    2401             : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2402             : {
    2403             :         return &mm->page_table_lock;
    2404             : }
    2405             : 
    2406             : static inline bool pmd_ptlock_init(struct page *page) { return true; }
    2407             : static inline void pmd_ptlock_free(struct page *page) {}
    2408             : 
    2409             : #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
    2410             : 
    2411             : #endif
    2412             : 
    2413             : static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
    2414             : {
    2415           0 :         spinlock_t *ptl = pmd_lockptr(mm, pmd);
    2416           0 :         spin_lock(ptl);
    2417             :         return ptl;
    2418             : }
    2419             : 
    2420             : static inline bool pgtable_pmd_page_ctor(struct page *page)
    2421             : {
    2422           1 :         if (!pmd_ptlock_init(page))
    2423             :                 return false;
    2424           1 :         __SetPageTable(page);
    2425           2 :         inc_lruvec_page_state(page, NR_PAGETABLE);
    2426             :         return true;
    2427             : }
    2428             : 
    2429             : static inline void pgtable_pmd_page_dtor(struct page *page)
    2430             : {
    2431           0 :         pmd_ptlock_free(page);
    2432           0 :         __ClearPageTable(page);
    2433           0 :         dec_lruvec_page_state(page, NR_PAGETABLE);
    2434             : }
    2435             : 
    2436             : /*
    2437             :  * No scalability reason to split PUD locks yet, but follow the same pattern
    2438             :  * as the PMD locks to make it easier if we decide to.  The VM should not be
    2439             :  * considered ready to switch to split PUD locks yet; there may be places
    2440             :  * which need to be converted from page_table_lock.
    2441             :  */
    2442             : static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
    2443             : {
    2444             :         return &mm->page_table_lock;
    2445             : }
    2446             : 
    2447             : static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
    2448             : {
    2449           1 :         spinlock_t *ptl = pud_lockptr(mm, pud);
    2450             : 
    2451           1 :         spin_lock(ptl);
    2452             :         return ptl;
    2453             : }
    2454             : 
    2455             : extern void __init pagecache_init(void);
    2456             : extern void free_initmem(void);
    2457             : 
    2458             : /*
    2459             :  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
    2460             :  * into the buddy system. The freed pages will be poisoned with pattern
    2461             :  * "poison" if it's within range [0, UCHAR_MAX].
    2462             :  * Return pages freed into the buddy system.
    2463             :  */
    2464             : extern unsigned long free_reserved_area(void *start, void *end,
    2465             :                                         int poison, const char *s);
    2466             : 
    2467             : extern void adjust_managed_page_count(struct page *page, long count);
    2468             : extern void mem_init_print_info(void);
    2469             : 
    2470             : extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
    2471             : 
    2472             : /* Free the reserved page into the buddy system, so it gets managed. */
    2473             : static inline void free_reserved_page(struct page *page)
    2474             : {
    2475           0 :         ClearPageReserved(page);
    2476           0 :         init_page_count(page);
    2477           0 :         __free_page(page);
    2478           0 :         adjust_managed_page_count(page, 1);
    2479             : }
    2480             : #define free_highmem_page(page) free_reserved_page(page)
    2481             : 
    2482             : static inline void mark_page_reserved(struct page *page)
    2483             : {
    2484             :         SetPageReserved(page);
    2485             :         adjust_managed_page_count(page, -1);
    2486             : }
    2487             : 
    2488             : /*
    2489             :  * Default method to free all the __init memory into the buddy system.
    2490             :  * The freed pages will be poisoned with pattern "poison" if it's within
    2491             :  * range [0, UCHAR_MAX].
    2492             :  * Return pages freed into the buddy system.
    2493             :  */
    2494             : static inline unsigned long free_initmem_default(int poison)
    2495             : {
    2496             :         extern char __init_begin[], __init_end[];
    2497             : 
    2498           0 :         return free_reserved_area(&__init_begin, &__init_end,
    2499             :                                   poison, "unused kernel image (initmem)");
    2500             : }
    2501             : 
    2502             : static inline unsigned long get_num_physpages(void)
    2503             : {
    2504             :         int nid;
    2505           1 :         unsigned long phys_pages = 0;
    2506             : 
    2507           2 :         for_each_online_node(nid)
    2508           1 :                 phys_pages += node_present_pages(nid);
    2509             : 
    2510             :         return phys_pages;
    2511             : }
    2512             : 
    2513             : /*
    2514             :  * Using memblock node mappings, an architecture may initialise its
    2515             :  * zones, allocate the backing mem_map and account for memory holes in an
    2516             :  * architecture independent manner.
    2517             :  *
    2518             :  * An architecture is expected to register range of page frames backed by
    2519             :  * physical memory with memblock_add[_node]() before calling
    2520             :  * free_area_init() passing in the PFN each zone ends at. At a basic
    2521             :  * usage, an architecture is expected to do something like
    2522             :  *
    2523             :  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
    2524             :  *                                                       max_highmem_pfn};
    2525             :  * for_each_valid_physical_page_range()
    2526             :  *      memblock_add_node(base, size, nid, MEMBLOCK_NONE)
    2527             :  * free_area_init(max_zone_pfns);
    2528             :  */
    2529             : void free_area_init(unsigned long *max_zone_pfn);
    2530             : unsigned long node_map_pfn_alignment(void);
    2531             : unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
    2532             :                                                 unsigned long end_pfn);
    2533             : extern unsigned long absent_pages_in_range(unsigned long start_pfn,
    2534             :                                                 unsigned long end_pfn);
    2535             : extern void get_pfn_range_for_nid(unsigned int nid,
    2536             :                         unsigned long *start_pfn, unsigned long *end_pfn);
    2537             : extern unsigned long find_min_pfn_with_active_regions(void);
    2538             : 
    2539             : #ifndef CONFIG_NUMA
    2540             : static inline int early_pfn_to_nid(unsigned long pfn)
    2541             : {
    2542             :         return 0;
    2543             : }
    2544             : #else
    2545             : /* please see mm/page_alloc.c */
    2546             : extern int __meminit early_pfn_to_nid(unsigned long pfn);
    2547             : #endif
    2548             : 
    2549             : extern void set_dma_reserve(unsigned long new_dma_reserve);
    2550             : extern void memmap_init_range(unsigned long, int, unsigned long,
    2551             :                 unsigned long, unsigned long, enum meminit_context,
    2552             :                 struct vmem_altmap *, int migratetype);
    2553             : extern void setup_per_zone_wmarks(void);
    2554             : extern void calculate_min_free_kbytes(void);
    2555             : extern int __meminit init_per_zone_wmark_min(void);
    2556             : extern void mem_init(void);
    2557             : extern void __init mmap_init(void);
    2558             : extern void show_mem(unsigned int flags, nodemask_t *nodemask);
    2559             : extern long si_mem_available(void);
    2560             : extern void si_meminfo(struct sysinfo * val);
    2561             : extern void si_meminfo_node(struct sysinfo *val, int nid);
    2562             : #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
    2563             : extern unsigned long arch_reserved_kernel_pages(void);
    2564             : #endif
    2565             : 
    2566             : extern __printf(3, 4)
    2567             : void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
    2568             : 
    2569             : extern void setup_per_cpu_pageset(void);
    2570             : 
    2571             : /* page_alloc.c */
    2572             : extern int min_free_kbytes;
    2573             : extern int watermark_boost_factor;
    2574             : extern int watermark_scale_factor;
    2575             : extern bool arch_has_descending_max_zone_pfns(void);
    2576             : 
    2577             : /* nommu.c */
    2578             : extern atomic_long_t mmap_pages_allocated;
    2579             : extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
    2580             : 
    2581             : /* interval_tree.c */
    2582             : void vma_interval_tree_insert(struct vm_area_struct *node,
    2583             :                               struct rb_root_cached *root);
    2584             : void vma_interval_tree_insert_after(struct vm_area_struct *node,
    2585             :                                     struct vm_area_struct *prev,
    2586             :                                     struct rb_root_cached *root);
    2587             : void vma_interval_tree_remove(struct vm_area_struct *node,
    2588             :                               struct rb_root_cached *root);
    2589             : struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
    2590             :                                 unsigned long start, unsigned long last);
    2591             : struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
    2592             :                                 unsigned long start, unsigned long last);
    2593             : 
    2594             : #define vma_interval_tree_foreach(vma, root, start, last)               \
    2595             :         for (vma = vma_interval_tree_iter_first(root, start, last);     \
    2596             :              vma; vma = vma_interval_tree_iter_next(vma, start, last))
    2597             : 
    2598             : void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
    2599             :                                    struct rb_root_cached *root);
    2600             : void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
    2601             :                                    struct rb_root_cached *root);
    2602             : struct anon_vma_chain *
    2603             : anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
    2604             :                                   unsigned long start, unsigned long last);
    2605             : struct anon_vma_chain *anon_vma_interval_tree_iter_next(
    2606             :         struct anon_vma_chain *node, unsigned long start, unsigned long last);
    2607             : #ifdef CONFIG_DEBUG_VM_RB
    2608             : void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
    2609             : #endif
    2610             : 
    2611             : #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
    2612             :         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
    2613             :              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
    2614             : 
    2615             : /* mmap.c */
    2616             : extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
    2617             : extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
    2618             :         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
    2619             :         struct vm_area_struct *expand);
    2620             : static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
    2621             :         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
    2622             : {
    2623           0 :         return __vma_adjust(vma, start, end, pgoff, insert, NULL);
    2624             : }
    2625             : extern struct vm_area_struct *vma_merge(struct mm_struct *,
    2626             :         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
    2627             :         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
    2628             :         struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
    2629             : extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
    2630             : extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
    2631             :         unsigned long addr, int new_below);
    2632             : extern int split_vma(struct mm_struct *, struct vm_area_struct *,
    2633             :         unsigned long addr, int new_below);
    2634             : extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
    2635             : extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
    2636             :         struct rb_node **, struct rb_node *);
    2637             : extern void unlink_file_vma(struct vm_area_struct *);
    2638             : extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
    2639             :         unsigned long addr, unsigned long len, pgoff_t pgoff,
    2640             :         bool *need_rmap_locks);
    2641             : extern void exit_mmap(struct mm_struct *);
    2642             : 
    2643             : static inline int check_data_rlimit(unsigned long rlim,
    2644             :                                     unsigned long new,
    2645             :                                     unsigned long start,
    2646             :                                     unsigned long end_data,
    2647             :                                     unsigned long start_data)
    2648             : {
    2649           0 :         if (rlim < RLIM_INFINITY) {
    2650           0 :                 if (((new - start) + (end_data - start_data)) > rlim)
    2651             :                         return -ENOSPC;
    2652             :         }
    2653             : 
    2654             :         return 0;
    2655             : }
    2656             : 
    2657             : extern int mm_take_all_locks(struct mm_struct *mm);
    2658             : extern void mm_drop_all_locks(struct mm_struct *mm);
    2659             : 
    2660             : extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
    2661             : extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
    2662             : extern struct file *get_mm_exe_file(struct mm_struct *mm);
    2663             : extern struct file *get_task_exe_file(struct task_struct *task);
    2664             : 
    2665             : extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
    2666             : extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
    2667             : 
    2668             : extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
    2669             :                                    const struct vm_special_mapping *sm);
    2670             : extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
    2671             :                                    unsigned long addr, unsigned long len,
    2672             :                                    unsigned long flags,
    2673             :                                    const struct vm_special_mapping *spec);
    2674             : /* This is an obsolete alternative to _install_special_mapping. */
    2675             : extern int install_special_mapping(struct mm_struct *mm,
    2676             :                                    unsigned long addr, unsigned long len,
    2677             :                                    unsigned long flags, struct page **pages);
    2678             : 
    2679             : unsigned long randomize_stack_top(unsigned long stack_top);
    2680             : 
    2681             : extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
    2682             : 
    2683             : extern unsigned long mmap_region(struct file *file, unsigned long addr,
    2684             :         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
    2685             :         struct list_head *uf);
    2686             : extern unsigned long do_mmap(struct file *file, unsigned long addr,
    2687             :         unsigned long len, unsigned long prot, unsigned long flags,
    2688             :         unsigned long pgoff, unsigned long *populate, struct list_head *uf);
    2689             : extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
    2690             :                        struct list_head *uf, bool downgrade);
    2691             : extern int do_munmap(struct mm_struct *, unsigned long, size_t,
    2692             :                      struct list_head *uf);
    2693             : extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
    2694             : 
    2695             : #ifdef CONFIG_MMU
    2696             : extern int __mm_populate(unsigned long addr, unsigned long len,
    2697             :                          int ignore_errors);
    2698             : static inline void mm_populate(unsigned long addr, unsigned long len)
    2699             : {
    2700             :         /* Ignore errors */
    2701           0 :         (void) __mm_populate(addr, len, 1);
    2702             : }
    2703             : #else
    2704             : static inline void mm_populate(unsigned long addr, unsigned long len) {}
    2705             : #endif
    2706             : 
    2707             : /* These take the mm semaphore themselves */
    2708             : extern int __must_check vm_brk(unsigned long, unsigned long);
    2709             : extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
    2710             : extern int vm_munmap(unsigned long, size_t);
    2711             : extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
    2712             :         unsigned long, unsigned long,
    2713             :         unsigned long, unsigned long);
    2714             : 
    2715             : struct vm_unmapped_area_info {
    2716             : #define VM_UNMAPPED_AREA_TOPDOWN 1
    2717             :         unsigned long flags;
    2718             :         unsigned long length;
    2719             :         unsigned long low_limit;
    2720             :         unsigned long high_limit;
    2721             :         unsigned long align_mask;
    2722             :         unsigned long align_offset;
    2723             : };
    2724             : 
    2725             : extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
    2726             : 
    2727             : /* truncate.c */
    2728             : extern void truncate_inode_pages(struct address_space *, loff_t);
    2729             : extern void truncate_inode_pages_range(struct address_space *,
    2730             :                                        loff_t lstart, loff_t lend);
    2731             : extern void truncate_inode_pages_final(struct address_space *);
    2732             : 
    2733             : /* generic vm_area_ops exported for stackable file systems */
    2734             : extern vm_fault_t filemap_fault(struct vm_fault *vmf);
    2735             : extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
    2736             :                 pgoff_t start_pgoff, pgoff_t end_pgoff);
    2737             : extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
    2738             : 
    2739             : extern unsigned long stack_guard_gap;
    2740             : /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
    2741             : extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
    2742             : 
    2743             : /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
    2744             : extern int expand_downwards(struct vm_area_struct *vma,
    2745             :                 unsigned long address);
    2746             : #if VM_GROWSUP
    2747             : extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
    2748             : #else
    2749             :   #define expand_upwards(vma, address) (0)
    2750             : #endif
    2751             : 
    2752             : /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
    2753             : extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
    2754             : extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
    2755             :                                              struct vm_area_struct **pprev);
    2756             : 
    2757             : /**
    2758             :  * find_vma_intersection() - Look up the first VMA which intersects the interval
    2759             :  * @mm: The process address space.
    2760             :  * @start_addr: The inclusive start user address.
    2761             :  * @end_addr: The exclusive end user address.
    2762             :  *
    2763             :  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
    2764             :  * start_addr < end_addr.
    2765             :  */
    2766             : static inline
    2767             : struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
    2768             :                                              unsigned long start_addr,
    2769             :                                              unsigned long end_addr)
    2770             : {
    2771           0 :         struct vm_area_struct *vma = find_vma(mm, start_addr);
    2772             : 
    2773           0 :         if (vma && end_addr <= vma->vm_start)
    2774           0 :                 vma = NULL;
    2775             :         return vma;
    2776             : }
    2777             : 
    2778             : /**
    2779             :  * vma_lookup() - Find a VMA at a specific address
    2780             :  * @mm: The process address space.
    2781             :  * @addr: The user address.
    2782             :  *
    2783             :  * Return: The vm_area_struct at the given address, %NULL otherwise.
    2784             :  */
    2785             : static inline
    2786             : struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
    2787             : {
    2788           0 :         struct vm_area_struct *vma = find_vma(mm, addr);
    2789             : 
    2790           0 :         if (vma && addr < vma->vm_start)
    2791           0 :                 vma = NULL;
    2792             : 
    2793             :         return vma;
    2794             : }
    2795             : 
    2796             : static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
    2797             : {
    2798           0 :         unsigned long vm_start = vma->vm_start;
    2799             : 
    2800           0 :         if (vma->vm_flags & VM_GROWSDOWN) {
    2801           0 :                 vm_start -= stack_guard_gap;
    2802           0 :                 if (vm_start > vma->vm_start)
    2803           0 :                         vm_start = 0;
    2804             :         }
    2805             :         return vm_start;
    2806             : }
    2807             : 
    2808             : static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
    2809             : {
    2810           0 :         unsigned long vm_end = vma->vm_end;
    2811             : 
    2812             :         if (vma->vm_flags & VM_GROWSUP) {
    2813             :                 vm_end += stack_guard_gap;
    2814             :                 if (vm_end < vma->vm_end)
    2815             :                         vm_end = -PAGE_SIZE;
    2816             :         }
    2817             :         return vm_end;
    2818             : }
    2819             : 
    2820             : static inline unsigned long vma_pages(struct vm_area_struct *vma)
    2821             : {
    2822           0 :         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
    2823             : }
    2824             : 
    2825             : /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
    2826             : static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
    2827             :                                 unsigned long vm_start, unsigned long vm_end)
    2828             : {
    2829           0 :         struct vm_area_struct *vma = find_vma(mm, vm_start);
    2830             : 
    2831           0 :         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
    2832           0 :                 vma = NULL;
    2833             : 
    2834             :         return vma;
    2835             : }
    2836             : 
    2837             : static inline bool range_in_vma(struct vm_area_struct *vma,
    2838             :                                 unsigned long start, unsigned long end)
    2839             : {
    2840           0 :         return (vma && vma->vm_start <= start && end <= vma->vm_end);
    2841             : }
    2842             : 
    2843             : #ifdef CONFIG_MMU
    2844             : pgprot_t vm_get_page_prot(unsigned long vm_flags);
    2845             : void vma_set_page_prot(struct vm_area_struct *vma);
    2846             : #else
    2847             : static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
    2848             : {
    2849             :         return __pgprot(0);
    2850             : }
    2851             : static inline void vma_set_page_prot(struct vm_area_struct *vma)
    2852             : {
    2853             :         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
    2854             : }
    2855             : #endif
    2856             : 
    2857             : void vma_set_file(struct vm_area_struct *vma, struct file *file);
    2858             : 
    2859             : #ifdef CONFIG_NUMA_BALANCING
    2860             : unsigned long change_prot_numa(struct vm_area_struct *vma,
    2861             :                         unsigned long start, unsigned long end);
    2862             : #endif
    2863             : 
    2864             : struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
    2865             : int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
    2866             :                         unsigned long pfn, unsigned long size, pgprot_t);
    2867             : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
    2868             :                 unsigned long pfn, unsigned long size, pgprot_t prot);
    2869             : int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
    2870             : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
    2871             :                         struct page **pages, unsigned long *num);
    2872             : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2873             :                                 unsigned long num);
    2874             : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    2875             :                                 unsigned long num);
    2876             : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2877             :                         unsigned long pfn);
    2878             : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
    2879             :                         unsigned long pfn, pgprot_t pgprot);
    2880             : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    2881             :                         pfn_t pfn);
    2882             : vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
    2883             :                         pfn_t pfn, pgprot_t pgprot);
    2884             : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
    2885             :                 unsigned long addr, pfn_t pfn);
    2886             : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
    2887             : 
    2888             : static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
    2889             :                                 unsigned long addr, struct page *page)
    2890             : {
    2891             :         int err = vm_insert_page(vma, addr, page);
    2892             : 
    2893             :         if (err == -ENOMEM)
    2894             :                 return VM_FAULT_OOM;
    2895             :         if (err < 0 && err != -EBUSY)
    2896             :                 return VM_FAULT_SIGBUS;
    2897             : 
    2898             :         return VM_FAULT_NOPAGE;
    2899             : }
    2900             : 
    2901             : #ifndef io_remap_pfn_range
    2902             : static inline int io_remap_pfn_range(struct vm_area_struct *vma,
    2903             :                                      unsigned long addr, unsigned long pfn,
    2904             :                                      unsigned long size, pgprot_t prot)
    2905             : {
    2906           0 :         return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
    2907             : }
    2908             : #endif
    2909             : 
    2910             : static inline vm_fault_t vmf_error(int err)
    2911             : {
    2912           0 :         if (err == -ENOMEM)
    2913             :                 return VM_FAULT_OOM;
    2914             :         return VM_FAULT_SIGBUS;
    2915             : }
    2916             : 
    2917             : struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
    2918             :                          unsigned int foll_flags);
    2919             : 
    2920             : #define FOLL_WRITE      0x01    /* check pte is writable */
    2921             : #define FOLL_TOUCH      0x02    /* mark page accessed */
    2922             : #define FOLL_GET        0x04    /* do get_page on page */
    2923             : #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
    2924             : #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
    2925             : #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
    2926             :                                  * and return without waiting upon it */
    2927             : #define FOLL_NOFAULT    0x80    /* do not fault in pages */
    2928             : #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
    2929             : #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
    2930             : #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
    2931             : #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
    2932             : #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
    2933             : #define FOLL_COW        0x4000  /* internal GUP flag */
    2934             : #define FOLL_ANON       0x8000  /* don't do file mappings */
    2935             : #define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
    2936             : #define FOLL_SPLIT_PMD  0x20000 /* split huge pmd before returning */
    2937             : #define FOLL_PIN        0x40000 /* pages must be released via unpin_user_page */
    2938             : #define FOLL_FAST_ONLY  0x80000 /* gup_fast: prevent fall-back to slow gup */
    2939             : 
    2940             : /*
    2941             :  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
    2942             :  * other. Here is what they mean, and how to use them:
    2943             :  *
    2944             :  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
    2945             :  * period _often_ under userspace control.  This is in contrast to
    2946             :  * iov_iter_get_pages(), whose usages are transient.
    2947             :  *
    2948             :  * FIXME: For pages which are part of a filesystem, mappings are subject to the
    2949             :  * lifetime enforced by the filesystem and we need guarantees that longterm
    2950             :  * users like RDMA and V4L2 only establish mappings which coordinate usage with
    2951             :  * the filesystem.  Ideas for this coordination include revoking the longterm
    2952             :  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
    2953             :  * added after the problem with filesystems was found FS DAX VMAs are
    2954             :  * specifically failed.  Filesystem pages are still subject to bugs and use of
    2955             :  * FOLL_LONGTERM should be avoided on those pages.
    2956             :  *
    2957             :  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
    2958             :  * Currently only get_user_pages() and get_user_pages_fast() support this flag
    2959             :  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
    2960             :  * is due to an incompatibility with the FS DAX check and
    2961             :  * FAULT_FLAG_ALLOW_RETRY.
    2962             :  *
    2963             :  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
    2964             :  * that region.  And so, CMA attempts to migrate the page before pinning, when
    2965             :  * FOLL_LONGTERM is specified.
    2966             :  *
    2967             :  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
    2968             :  * but an additional pin counting system) will be invoked. This is intended for
    2969             :  * anything that gets a page reference and then touches page data (for example,
    2970             :  * Direct IO). This lets the filesystem know that some non-file-system entity is
    2971             :  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
    2972             :  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
    2973             :  * a call to unpin_user_page().
    2974             :  *
    2975             :  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
    2976             :  * and separate refcounting mechanisms, however, and that means that each has
    2977             :  * its own acquire and release mechanisms:
    2978             :  *
    2979             :  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
    2980             :  *
    2981             :  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
    2982             :  *
    2983             :  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
    2984             :  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
    2985             :  * calls applied to them, and that's perfectly OK. This is a constraint on the
    2986             :  * callers, not on the pages.)
    2987             :  *
    2988             :  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
    2989             :  * directly by the caller. That's in order to help avoid mismatches when
    2990             :  * releasing pages: get_user_pages*() pages must be released via put_page(),
    2991             :  * while pin_user_pages*() pages must be released via unpin_user_page().
    2992             :  *
    2993             :  * Please see Documentation/core-api/pin_user_pages.rst for more information.
    2994             :  */
    2995             : 
    2996             : static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
    2997             : {
    2998           0 :         if (vm_fault & VM_FAULT_OOM)
    2999             :                 return -ENOMEM;
    3000           0 :         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
    3001           0 :                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
    3002           0 :         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
    3003             :                 return -EFAULT;
    3004             :         return 0;
    3005             : }
    3006             : 
    3007             : typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
    3008             : extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
    3009             :                                unsigned long size, pte_fn_t fn, void *data);
    3010             : extern int apply_to_existing_page_range(struct mm_struct *mm,
    3011             :                                    unsigned long address, unsigned long size,
    3012             :                                    pte_fn_t fn, void *data);
    3013             : 
    3014             : extern void init_mem_debugging_and_hardening(void);
    3015             : #ifdef CONFIG_PAGE_POISONING
    3016             : extern void __kernel_poison_pages(struct page *page, int numpages);
    3017             : extern void __kernel_unpoison_pages(struct page *page, int numpages);
    3018             : extern bool _page_poisoning_enabled_early;
    3019             : DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
    3020             : static inline bool page_poisoning_enabled(void)
    3021             : {
    3022             :         return _page_poisoning_enabled_early;
    3023             : }
    3024             : /*
    3025             :  * For use in fast paths after init_mem_debugging() has run, or when a
    3026             :  * false negative result is not harmful when called too early.
    3027             :  */
    3028             : static inline bool page_poisoning_enabled_static(void)
    3029             : {
    3030             :         return static_branch_unlikely(&_page_poisoning_enabled);
    3031             : }
    3032             : static inline void kernel_poison_pages(struct page *page, int numpages)
    3033             : {
    3034             :         if (page_poisoning_enabled_static())
    3035             :                 __kernel_poison_pages(page, numpages);
    3036             : }
    3037             : static inline void kernel_unpoison_pages(struct page *page, int numpages)
    3038             : {
    3039             :         if (page_poisoning_enabled_static())
    3040             :                 __kernel_unpoison_pages(page, numpages);
    3041             : }
    3042             : #else
    3043             : static inline bool page_poisoning_enabled(void) { return false; }
    3044             : static inline bool page_poisoning_enabled_static(void) { return false; }
    3045             : static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
    3046             : static inline void kernel_poison_pages(struct page *page, int numpages) { }
    3047             : static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
    3048             : #endif
    3049             : 
    3050             : DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
    3051             : static inline bool want_init_on_alloc(gfp_t flags)
    3052             : {
    3053         544 :         if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
    3054             :                                 &init_on_alloc))
    3055             :                 return true;
    3056         528 :         return flags & __GFP_ZERO;
    3057             : }
    3058             : 
    3059             : DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
    3060           3 : static inline bool want_init_on_free(void)
    3061             : {
    3062         811 :         return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
    3063             :                                    &init_on_free);
    3064             : }
    3065             : 
    3066             : extern bool _debug_pagealloc_enabled_early;
    3067             : DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
    3068             : 
    3069             : static inline bool debug_pagealloc_enabled(void)
    3070             : {
    3071             :         return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
    3072             :                 _debug_pagealloc_enabled_early;
    3073             : }
    3074             : 
    3075             : /*
    3076             :  * For use in fast paths after init_debug_pagealloc() has run, or when a
    3077             :  * false negative result is not harmful when called too early.
    3078             :  */
    3079             : static inline bool debug_pagealloc_enabled_static(void)
    3080             : {
    3081             :         if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
    3082             :                 return false;
    3083             : 
    3084             :         return static_branch_unlikely(&_debug_pagealloc_enabled);
    3085             : }
    3086             : 
    3087             : #ifdef CONFIG_DEBUG_PAGEALLOC
    3088             : /*
    3089             :  * To support DEBUG_PAGEALLOC architecture must ensure that
    3090             :  * __kernel_map_pages() never fails
    3091             :  */
    3092             : extern void __kernel_map_pages(struct page *page, int numpages, int enable);
    3093             : 
    3094             : static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
    3095             : {
    3096             :         if (debug_pagealloc_enabled_static())
    3097             :                 __kernel_map_pages(page, numpages, 1);
    3098             : }
    3099             : 
    3100             : static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
    3101             : {
    3102             :         if (debug_pagealloc_enabled_static())
    3103             :                 __kernel_map_pages(page, numpages, 0);
    3104             : }
    3105             : #else   /* CONFIG_DEBUG_PAGEALLOC */
    3106             : static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
    3107             : static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
    3108             : #endif  /* CONFIG_DEBUG_PAGEALLOC */
    3109             : 
    3110             : #ifdef __HAVE_ARCH_GATE_AREA
    3111             : extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
    3112             : extern int in_gate_area_no_mm(unsigned long addr);
    3113             : extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
    3114             : #else
    3115             : static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
    3116             : {
    3117             :         return NULL;
    3118             : }
    3119             : static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
    3120             : static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
    3121             : {
    3122             :         return 0;
    3123             : }
    3124             : #endif  /* __HAVE_ARCH_GATE_AREA */
    3125             : 
    3126             : extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
    3127             : 
    3128             : #ifdef CONFIG_SYSCTL
    3129             : extern int sysctl_drop_caches;
    3130             : int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
    3131             :                 loff_t *);
    3132             : #endif
    3133             : 
    3134             : void drop_slab(void);
    3135             : 
    3136             : #ifndef CONFIG_MMU
    3137             : #define randomize_va_space 0
    3138             : #else
    3139             : extern int randomize_va_space;
    3140             : #endif
    3141             : 
    3142             : const char * arch_vma_name(struct vm_area_struct *vma);
    3143             : #ifdef CONFIG_MMU
    3144             : void print_vma_addr(char *prefix, unsigned long rip);
    3145             : #else
    3146             : static inline void print_vma_addr(char *prefix, unsigned long rip)
    3147             : {
    3148             : }
    3149             : #endif
    3150             : 
    3151             : #ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
    3152             : int vmemmap_remap_free(unsigned long start, unsigned long end,
    3153             :                        unsigned long reuse);
    3154             : int vmemmap_remap_alloc(unsigned long start, unsigned long end,
    3155             :                         unsigned long reuse, gfp_t gfp_mask);
    3156             : #endif
    3157             : 
    3158             : void *sparse_buffer_alloc(unsigned long size);
    3159             : struct page * __populate_section_memmap(unsigned long pfn,
    3160             :                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
    3161             : pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
    3162             : p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
    3163             : pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
    3164             : pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
    3165             : pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
    3166             :                             struct vmem_altmap *altmap);
    3167             : void *vmemmap_alloc_block(unsigned long size, int node);
    3168             : struct vmem_altmap;
    3169             : void *vmemmap_alloc_block_buf(unsigned long size, int node,
    3170             :                               struct vmem_altmap *altmap);
    3171             : void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
    3172             : int vmemmap_populate_basepages(unsigned long start, unsigned long end,
    3173             :                                int node, struct vmem_altmap *altmap);
    3174             : int vmemmap_populate(unsigned long start, unsigned long end, int node,
    3175             :                 struct vmem_altmap *altmap);
    3176             : void vmemmap_populate_print_last(void);
    3177             : #ifdef CONFIG_MEMORY_HOTPLUG
    3178             : void vmemmap_free(unsigned long start, unsigned long end,
    3179             :                 struct vmem_altmap *altmap);
    3180             : #endif
    3181             : void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
    3182             :                                   unsigned long nr_pages);
    3183             : 
    3184             : enum mf_flags {
    3185             :         MF_COUNT_INCREASED = 1 << 0,
    3186             :         MF_ACTION_REQUIRED = 1 << 1,
    3187             :         MF_MUST_KILL = 1 << 2,
    3188             :         MF_SOFT_OFFLINE = 1 << 3,
    3189             :         MF_UNPOISON = 1 << 4,
    3190             : };
    3191             : extern int memory_failure(unsigned long pfn, int flags);
    3192             : extern void memory_failure_queue(unsigned long pfn, int flags);
    3193             : extern void memory_failure_queue_kick(int cpu);
    3194             : extern int unpoison_memory(unsigned long pfn);
    3195             : extern int sysctl_memory_failure_early_kill;
    3196             : extern int sysctl_memory_failure_recovery;
    3197             : extern void shake_page(struct page *p);
    3198             : extern atomic_long_t num_poisoned_pages __read_mostly;
    3199             : extern int soft_offline_page(unsigned long pfn, int flags);
    3200             : #ifdef CONFIG_MEMORY_FAILURE
    3201             : extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
    3202             : #else
    3203             : static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
    3204             : {
    3205             :         return 0;
    3206             : }
    3207             : #endif
    3208             : 
    3209             : #ifndef arch_memory_failure
    3210             : static inline int arch_memory_failure(unsigned long pfn, int flags)
    3211             : {
    3212             :         return -ENXIO;
    3213             : }
    3214             : #endif
    3215             : 
    3216             : #ifndef arch_is_platform_page
    3217             : static inline bool arch_is_platform_page(u64 paddr)
    3218             : {
    3219             :         return false;
    3220             : }
    3221             : #endif
    3222             : 
    3223             : /*
    3224             :  * Error handlers for various types of pages.
    3225             :  */
    3226             : enum mf_result {
    3227             :         MF_IGNORED,     /* Error: cannot be handled */
    3228             :         MF_FAILED,      /* Error: handling failed */
    3229             :         MF_DELAYED,     /* Will be handled later */
    3230             :         MF_RECOVERED,   /* Successfully recovered */
    3231             : };
    3232             : 
    3233             : enum mf_action_page_type {
    3234             :         MF_MSG_KERNEL,
    3235             :         MF_MSG_KERNEL_HIGH_ORDER,
    3236             :         MF_MSG_SLAB,
    3237             :         MF_MSG_DIFFERENT_COMPOUND,
    3238             :         MF_MSG_HUGE,
    3239             :         MF_MSG_FREE_HUGE,
    3240             :         MF_MSG_NON_PMD_HUGE,
    3241             :         MF_MSG_UNMAP_FAILED,
    3242             :         MF_MSG_DIRTY_SWAPCACHE,
    3243             :         MF_MSG_CLEAN_SWAPCACHE,
    3244             :         MF_MSG_DIRTY_MLOCKED_LRU,
    3245             :         MF_MSG_CLEAN_MLOCKED_LRU,
    3246             :         MF_MSG_DIRTY_UNEVICTABLE_LRU,
    3247             :         MF_MSG_CLEAN_UNEVICTABLE_LRU,
    3248             :         MF_MSG_DIRTY_LRU,
    3249             :         MF_MSG_CLEAN_LRU,
    3250             :         MF_MSG_TRUNCATED_LRU,
    3251             :         MF_MSG_BUDDY,
    3252             :         MF_MSG_DAX,
    3253             :         MF_MSG_UNSPLIT_THP,
    3254             :         MF_MSG_DIFFERENT_PAGE_SIZE,
    3255             :         MF_MSG_UNKNOWN,
    3256             : };
    3257             : 
    3258             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    3259             : extern void clear_huge_page(struct page *page,
    3260             :                             unsigned long addr_hint,
    3261             :                             unsigned int pages_per_huge_page);
    3262             : extern void copy_user_huge_page(struct page *dst, struct page *src,
    3263             :                                 unsigned long addr_hint,
    3264             :                                 struct vm_area_struct *vma,
    3265             :                                 unsigned int pages_per_huge_page);
    3266             : extern long copy_huge_page_from_user(struct page *dst_page,
    3267             :                                 const void __user *usr_src,
    3268             :                                 unsigned int pages_per_huge_page,
    3269             :                                 bool allow_pagefault);
    3270             : 
    3271             : /**
    3272             :  * vma_is_special_huge - Are transhuge page-table entries considered special?
    3273             :  * @vma: Pointer to the struct vm_area_struct to consider
    3274             :  *
    3275             :  * Whether transhuge page-table entries are considered "special" following
    3276             :  * the definition in vm_normal_page().
    3277             :  *
    3278             :  * Return: true if transhuge page-table entries should be considered special,
    3279             :  * false otherwise.
    3280             :  */
    3281             : static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
    3282             : {
    3283             :         return vma_is_dax(vma) || (vma->vm_file &&
    3284             :                                    (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
    3285             : }
    3286             : 
    3287             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    3288             : 
    3289             : #ifdef CONFIG_DEBUG_PAGEALLOC
    3290             : extern unsigned int _debug_guardpage_minorder;
    3291             : DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
    3292             : 
    3293             : static inline unsigned int debug_guardpage_minorder(void)
    3294             : {
    3295             :         return _debug_guardpage_minorder;
    3296             : }
    3297             : 
    3298             : static inline bool debug_guardpage_enabled(void)
    3299             : {
    3300             :         return static_branch_unlikely(&_debug_guardpage_enabled);
    3301             : }
    3302             : 
    3303             : static inline bool page_is_guard(struct page *page)
    3304             : {
    3305             :         if (!debug_guardpage_enabled())
    3306             :                 return false;
    3307             : 
    3308             :         return PageGuard(page);
    3309             : }
    3310             : #else
    3311             : static inline unsigned int debug_guardpage_minorder(void) { return 0; }
    3312             : static inline bool debug_guardpage_enabled(void) { return false; }
    3313             : static inline bool page_is_guard(struct page *page) { return false; }
    3314             : #endif /* CONFIG_DEBUG_PAGEALLOC */
    3315             : 
    3316             : #if MAX_NUMNODES > 1
    3317             : void __init setup_nr_node_ids(void);
    3318             : #else
    3319             : static inline void setup_nr_node_ids(void) {}
    3320             : #endif
    3321             : 
    3322             : extern int memcmp_pages(struct page *page1, struct page *page2);
    3323             : 
    3324             : static inline int pages_identical(struct page *page1, struct page *page2)
    3325             : {
    3326             :         return !memcmp_pages(page1, page2);
    3327             : }
    3328             : 
    3329             : #ifdef CONFIG_MAPPING_DIRTY_HELPERS
    3330             : unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
    3331             :                                                 pgoff_t first_index, pgoff_t nr,
    3332             :                                                 pgoff_t bitmap_pgoff,
    3333             :                                                 unsigned long *bitmap,
    3334             :                                                 pgoff_t *start,
    3335             :                                                 pgoff_t *end);
    3336             : 
    3337             : unsigned long wp_shared_mapping_range(struct address_space *mapping,
    3338             :                                       pgoff_t first_index, pgoff_t nr);
    3339             : #endif
    3340             : 
    3341             : extern int sysctl_nr_trim_pages;
    3342             : 
    3343             : #ifdef CONFIG_PRINTK
    3344             : void mem_dump_obj(void *object);
    3345             : #else
    3346             : static inline void mem_dump_obj(void *object) {}
    3347             : #endif
    3348             : 
    3349             : /**
    3350             :  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
    3351             :  * @seals: the seals to check
    3352             :  * @vma: the vma to operate on
    3353             :  *
    3354             :  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
    3355             :  * the vma flags.  Return 0 if check pass, or <0 for errors.
    3356             :  */
    3357             : static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
    3358             : {
    3359           0 :         if (seals & F_SEAL_FUTURE_WRITE) {
    3360             :                 /*
    3361             :                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
    3362             :                  * "future write" seal active.
    3363             :                  */
    3364           0 :                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
    3365             :                         return -EPERM;
    3366             : 
    3367             :                 /*
    3368             :                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
    3369             :                  * MAP_SHARED and read-only, take care to not allow mprotect to
    3370             :                  * revert protections on such mappings. Do this only for shared
    3371             :                  * mappings. For private mappings, don't need to mask
    3372             :                  * VM_MAYWRITE as we still want them to be COW-writable.
    3373             :                  */
    3374           0 :                 if (vma->vm_flags & VM_SHARED)
    3375           0 :                         vma->vm_flags &= ~(VM_MAYWRITE);
    3376             :         }
    3377             : 
    3378             :         return 0;
    3379             : }
    3380             : 
    3381             : #ifdef CONFIG_ANON_VMA_NAME
    3382             : int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
    3383             :                           unsigned long len_in,
    3384             :                           struct anon_vma_name *anon_name);
    3385             : #else
    3386             : static inline int
    3387             : madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
    3388             :                       unsigned long len_in, struct anon_vma_name *anon_name) {
    3389             :         return 0;
    3390             : }
    3391             : #endif
    3392             : 
    3393             : #endif /* _LINUX_MM_H */

Generated by: LCOV version 1.14